Design Limitations of Langeven Transducers With PZT8, PZT4, and PMN-PZT Stacks

George Bromfield (Piezo Innovations LLC), Presenter

Ultrasonic Industry Association 45th Symposium Seattle April 4, 2016

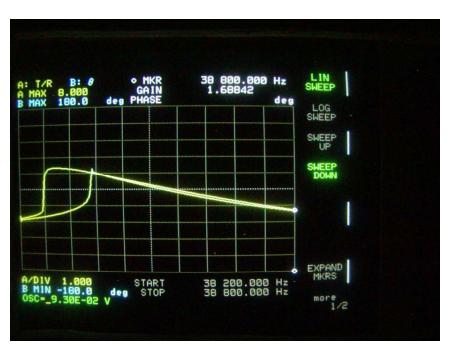
Agenda

- Nonlinear Behavior of Langeven Transducers
 - Overview of Mathieson (Glasgow University Paper)
 - The Influence of Piezoceramic Stack Location
- Material Properties & Analysis Tools
 - PZT4, PZT8, PMN-PZT (Single Crystal)
 - Computer Model Using PiezoTran : Acoustic Transmission Line Theory
- Designs Limited by Reserve Power
 - Coupling Coefficient,
 - Voltage
- Designs Limited by Heat
 - Piezo Stack Cyclic Stress

Scope

Mathieson

- Three Stack Geometries
- Four 10mm PZT4 Rings
- Longitudinal Bending and Torsion Modes of Vibration
- Jump / Hysteresis amplitude plots Vs Volts 1 to 50 VRMS
- Reduced Scope of this Presentation
 - First Longitudinal Mode of Vibration
 - Two Design Geometries



Non Linear Behavior

40 kHz Dumbbell Transducer with 20 MPa bias-stress

- Piezo Innovations Measurement Method
 - HP Impedance/Gain Phase Analyzer 4194A
 - Transfer Function Mode
 - Instruments Inc.L6 or Krohn-Hite 7500 Constant Voltage Amplifier

Material Properties

Inputs For PiezoTran Transducer Analysis Software

Material	k ₃₃	Q	E ^T 33	g ₃₃	Tc
PZT 4	0.71	500	1300	24.5	328
PZT 8	0.64	1000	1000	25	300
PMN-PZT	0.93	100	4850	35.6	211

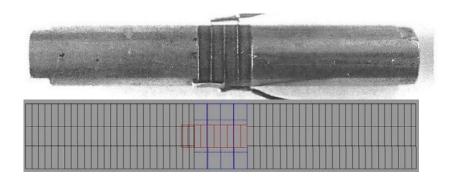
Note: Usage temperature range is typically limited to 1/2 Tc

k₃₃ is the measure of the ability of thickness mode piezo ceramic stacks to convert electrical energy into mechanical energy

Material	Young's Mod 10 ³ MPa	Q*	Density Kg/m ³	Sound Velocity m/s
Titanium 6 al4v	117	20,000	4500	4916
Aluminum2014A-T6	74	10,000	2800	5141
Stainless Steel 316	210	7,000	7750	5200
Beryllium Copper	127		8300	3911
Brass	95		8500	3343
Alumina	240		3300	8528
Tungsten	400		17100	4836

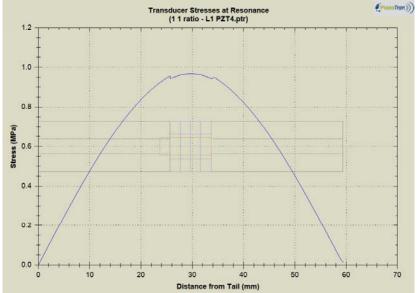
* Typical Q values can be determined from Wuchinich paper entitled :A practical evaluation of harmonic elastic power loss in substantially strained structures

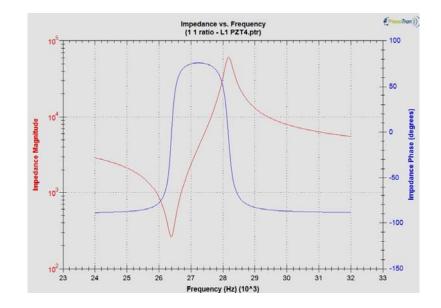
PiezoTran Transducer Analysis


- Acoustic Transmission Line Theory

		nnovations)										
N	lodel Analysis											
	Model File										-	
L1 P			Analys Setting	s Start		Stop Fr 3200	30.4045	Freq. Step 5	P-P Voltage 2.828	RLoss 24.5	- Pie	zoTran)))
	Model Descrip	tion				ID	and the	-	an Delta	G33	K33T	S33D
1 1 ra		rased	Piezo Properti			5	The	ckness T 2	an Delta 0.015	0.022	1470	8.53E-12
Tra	sducer Assembly	,	,							1		
	Туре	OD Front	OD Rear	ID	Length	B	ladius	Elemen	ts Materia	1	Density	c
•	Rod	10	0	3	25.7	0		46	Brass		8500	3343
	Anchor Point	0	0	0	0	0		0			0	0
	Piezo Stack	0	0	0	8.0599	999 0		4			0	0
	Rod	10	0			100		100	100		Statistics and a second second	22.02
			Ū	3	25.7	0		46	Brass		8500	3343
	sducer Assembly								Brass	Distance	8500 from Tip (m	
		6		59.46		Selecte	ed Con		1 of 4 ts Materia			

Piezo Ring Propert	ies ID Thicknes	55
10 5	2	
Material	Densit	у
Navy Type I	▼ 7600	
Tan Delta	G33	_
0.015	0.022	
S33D	К33Т	_
8.53E-12	1470	
Electrode Propertie	s	
Thickness	Density Sound	of
0.01 80		
Joint Properties -		
Thickness	Density Sound	of
0.001 24		
Include Electrod	es/Joints at Stack End	5
Apply Properties	Close Editor	1


PiezoTran Output



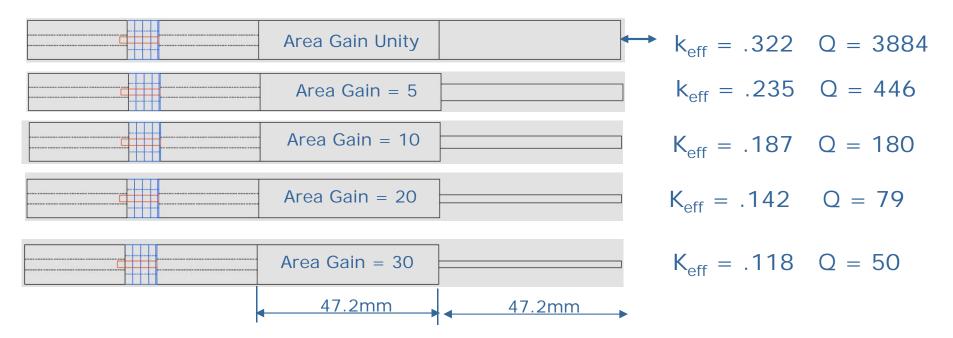
L1 PZT4.ptr_results - Notepad	Mathieson Measured Values
File Edit Format View Help	
Description 1 1 ratio Resonant Frequency = 26390.0 Maximum Conductance = 0.003797	Resonant Frequency = 26576
Anti-Resonant Frequency = 28170.0 Maximum Resistance = 60802 Q = 129.5056	Q = 255
RLoss = 24.50 Coupling Coefficient (K) = 0.3497	$k \text{ eff} = 0.351$
Low Frequency (1000 Hz) Capacitance = 1.4214E-009 Maximum Tip Displacement = 2.1227E-007	Tip Displacement = 0.2 microns
Applied Voltage (P-P) = 2.8280 Applied Voltage (RMS) = 1.0000	Applied Voltage 1.0 RMS
Power (Watts) = 0.0038 Real Current (amps) = 0.0038	PiezoInnovations

Piezotran Outputs

Reserve Power Index (IEC 6147)

- Scope
 - Ultrasonic Systems Operating in 20 kHz to 60 kHz
 - Typically Used to Fragment tissue and bone
 - Symmetrical ¹/₂ wave transducer with 5 Variable Gain Horns
- Definition
 - Ratio Of Maximum Electrical Power to Quiescent Electrical Power
 - A measure of How Much "Extra" Power is Available to Maintain a Constant Tip Excursion Amplitude Under Various Load Conditions

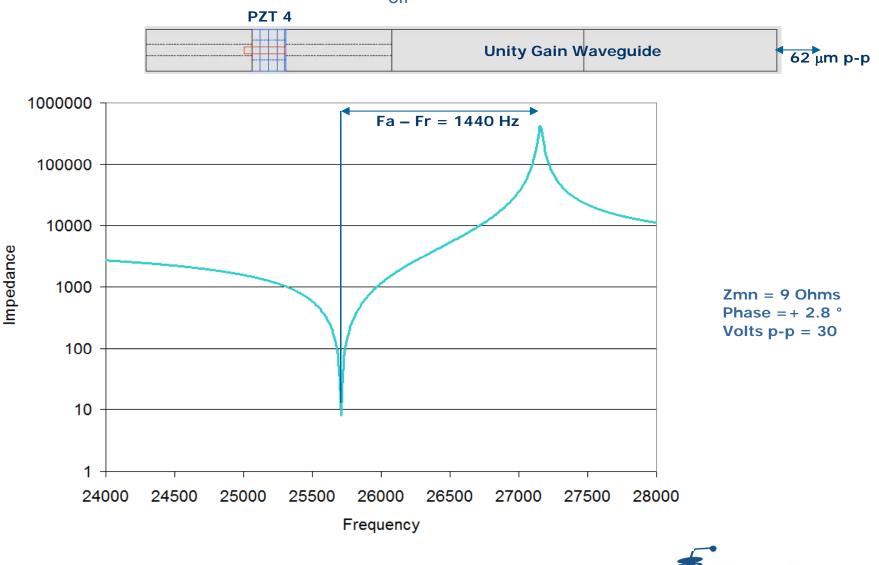
• Illustrative Example (Using PiezoTran)


- Assumptions
 - Control System is Voltage Limited to 800 Vp-p
 - Tip Displacement = 62 μm p-p
 - Power = 13 watts
 - Rloss =1 Tip loading condition
- Output
 - Impedance Plots that Illustrate the Importance of Coupling Coefficient

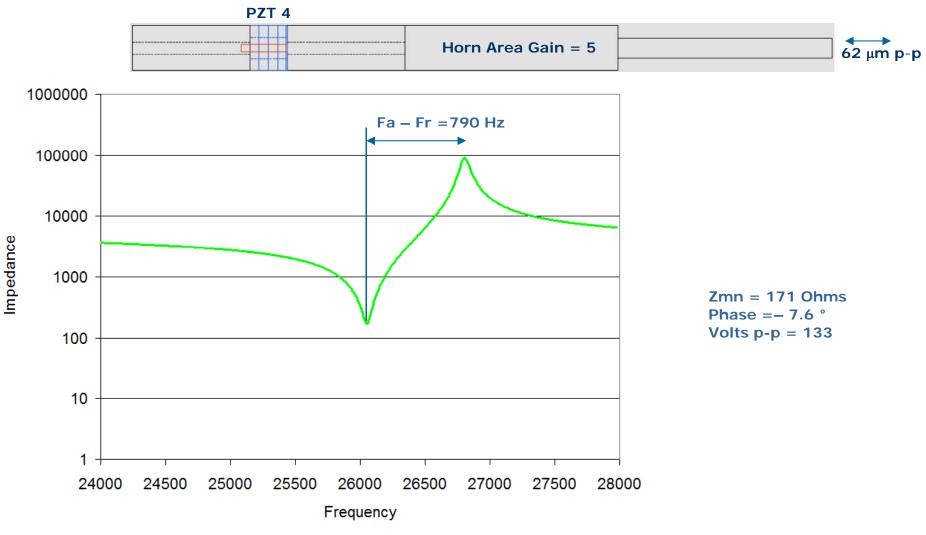
Illustrative Examples

5 Horn Geometries

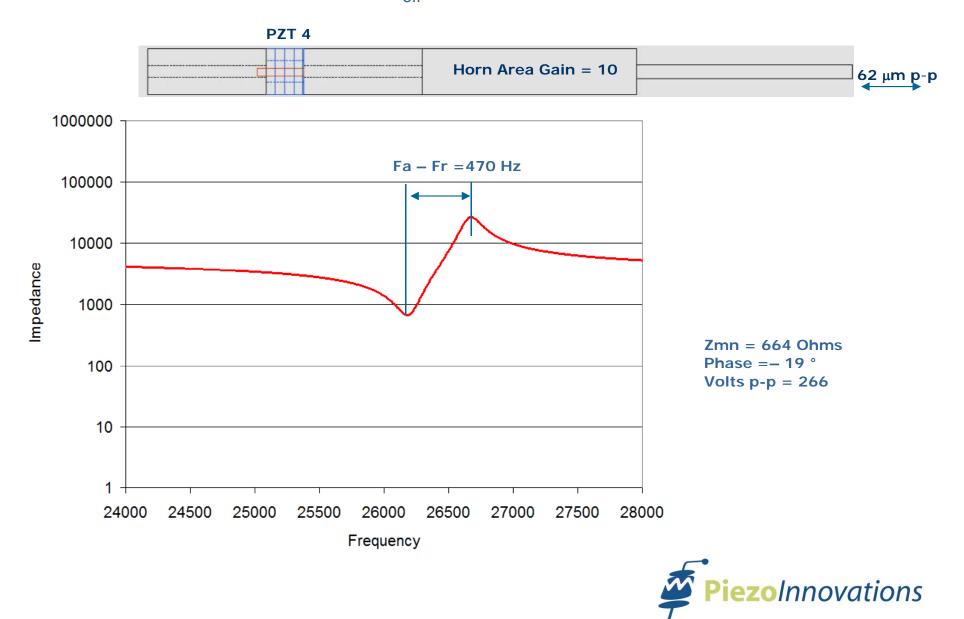
- Resonant Frequency Constant at 26 kHz
- Tip Displacements Constant at 62 μm p-p
- Constant Tip Load Rloss =1
- Power Constant at 13 Watts

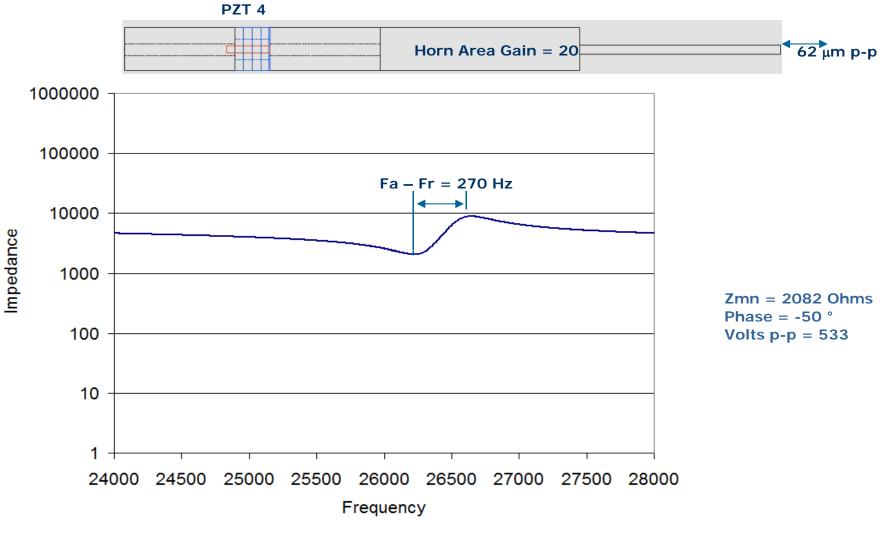


Titanium horns Velocity c = 4916 m/s


Unity Gain Horn

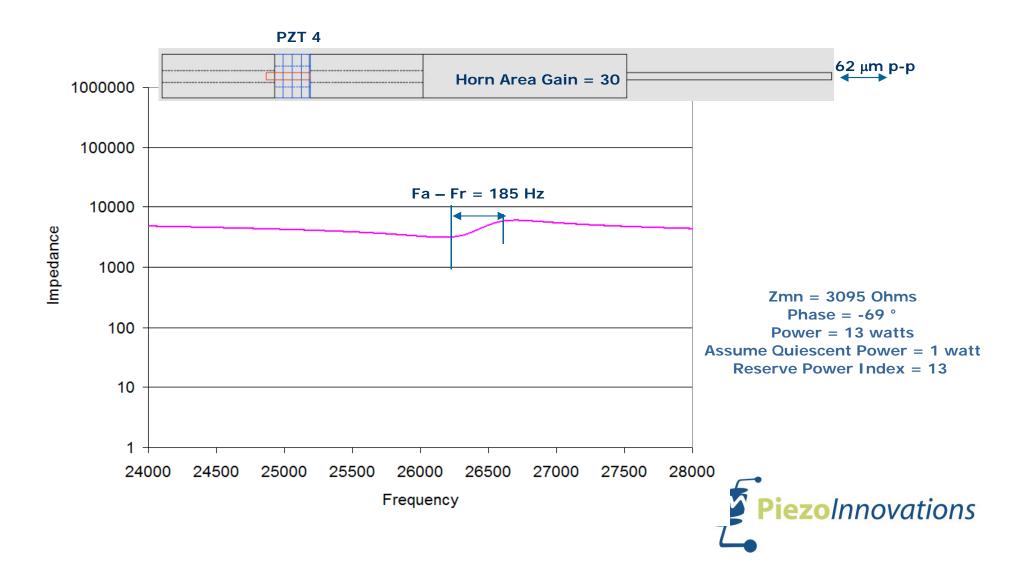
 $k_{eff} = 0.322$



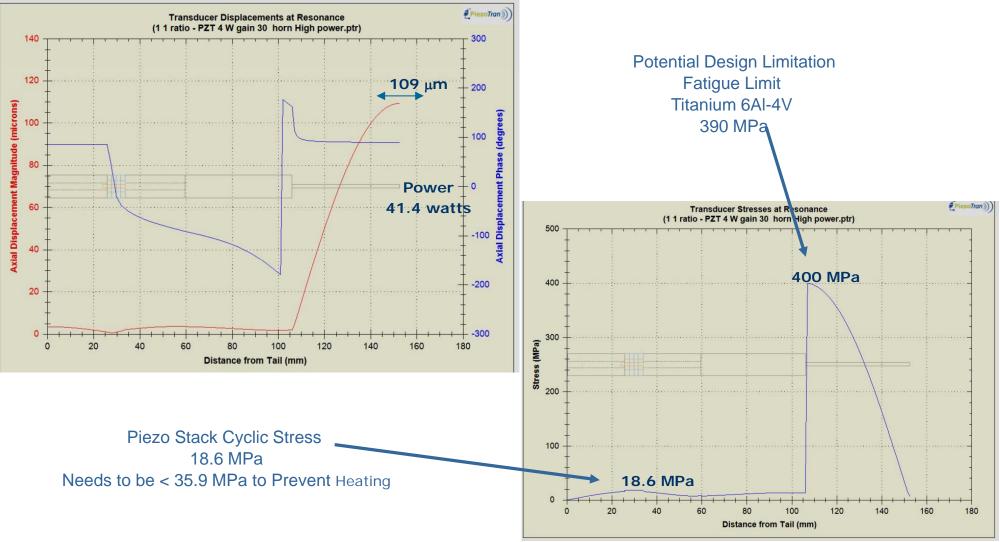


Horn Area Gain = 10 $k_{eff} = 0.187$

Horn Area Gain = 20


k eff = 0.142

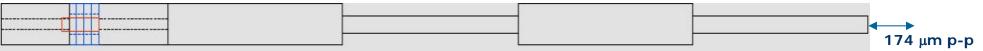
Horn Area Gain = 30

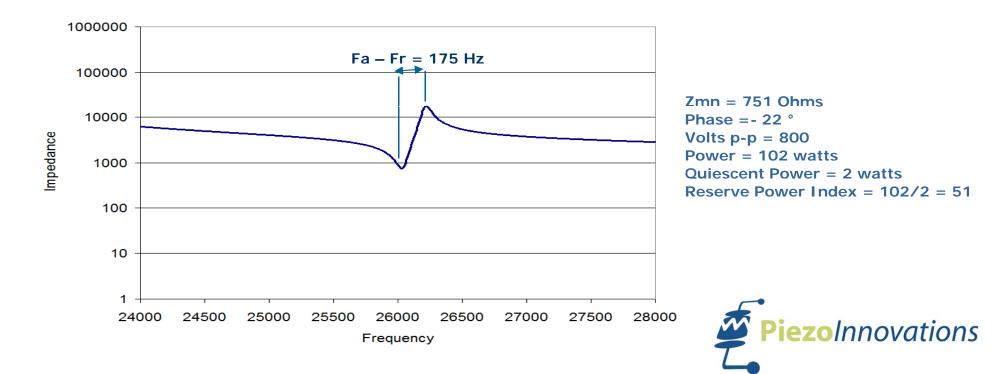

k eff = 0.118 Voltage Limited by Control System 800 Vp-p

Horn Area Gain = 30

k eff = 0.118

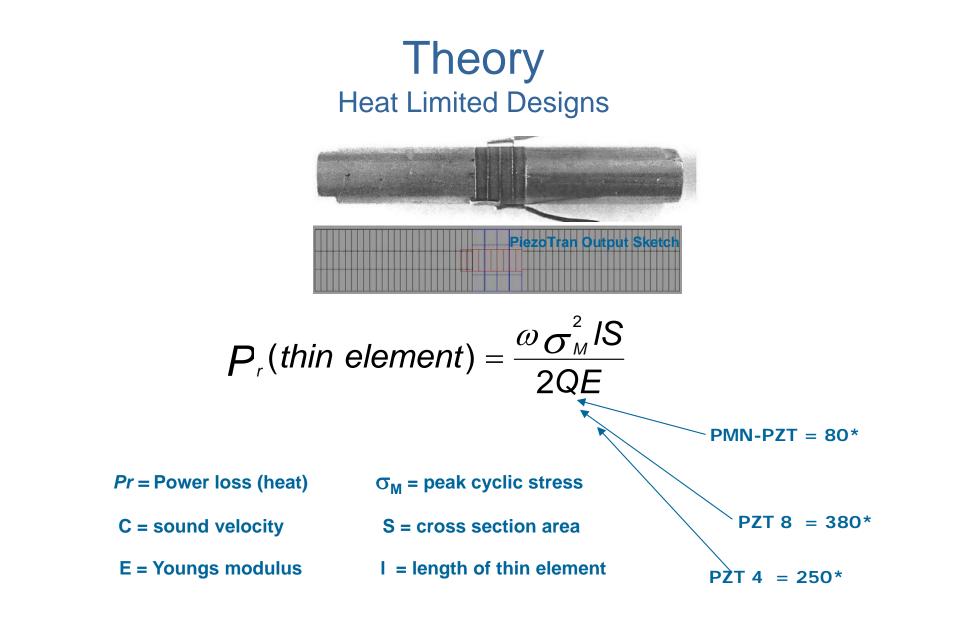
Assume Voltage Limit Can be Increased to 500 Vrms (1414 Vp-p)





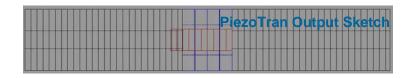
Change to PMN-PZT k eff = 0.115

- Single Stage Horn (Not Practical)
 - Gain = 87 Minor Diameter = 1.07 mm
- Dual Stage Horn



Heat Limited Performance

- Experimental Data
 - PZT 8 & PZT4 Dumbbells Like this
 - Manually Tuned for Resonance Frequency
 - Air Cooled
 - Stabilize at Approximately 41 ° C* after 10 Minutes
 - Power Manually Adjusted to 1.2 Watts
 - Each Piezo Ring Dissipates approximately 250 mWatts
 - Each End Mass Dissipates 100 mWatts (Includes Joints)



Q : Defined as the ratio of the energy stored to that lost per cycle multiplied by 2 π

*Note: Published values of piezo Q relate to test samples Actual values used based on dumbbell experimental data

Heat Limited Designs Power Required to Heat Transducer to 41 °C

- Four Ring Designs PZT8 & PZT4
 - Each Piezo Ring 250 mWatts
 - Each Brass End Mass 100 mWatts

Four Ring Design 7/8 Configuration PMN-PZT

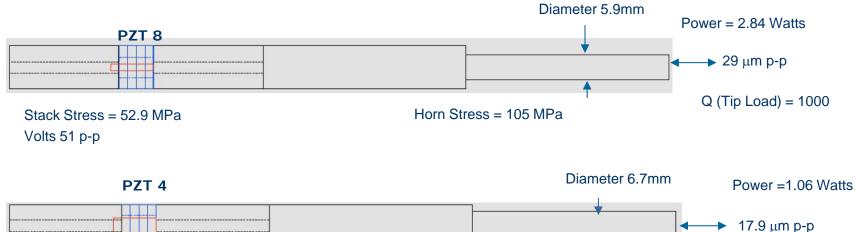
- Ring (1) 319 mWatts Ring (2) 281 mWatts
- Ring (3) 219 mWatts Ring (4) 145 mWatts

- Two Ring Design PMN-PZT
 - Each Ring 300 mWatts (Increased to Compensate For End Mass Conduction)
- One Ring Design PMN-PZT

 Ring (1) 364 mWatts (Increased to Compensate For End Mass Conduction)
PiezoInnovations

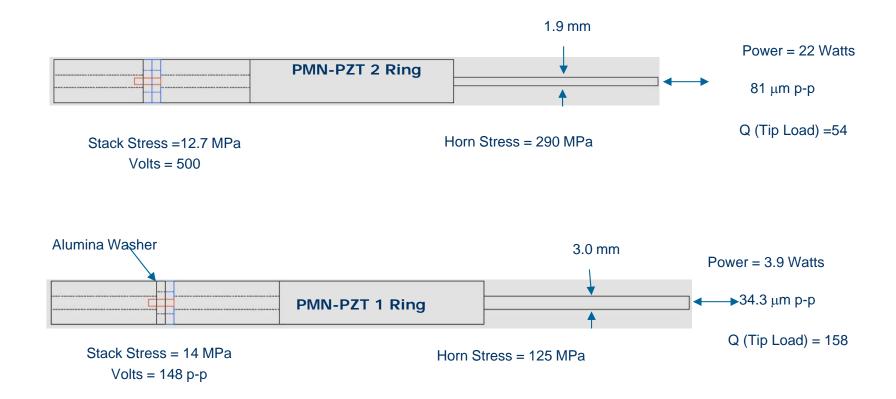
Method

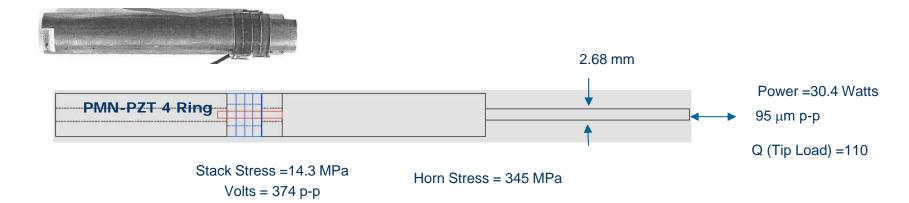
$$P_r$$
(thin element) = $\frac{\omega \sigma_M^2 IS}{2QE}$


- PiezoTran Output
 - Paste Text Output to Excel Spread Sheet
 - Adjust Accumulated P_r To Coincide With Heat Related Power
 - Determine Corresponding Max p-p Nodal Stress
- PiezoTran Input
 - Adjust PiezoTran Voltage to Corresponding Nodal Stress Value
- PiezoTran Output
 - Keff, Volts p-p, Power, Stack Stress, Horn Stress

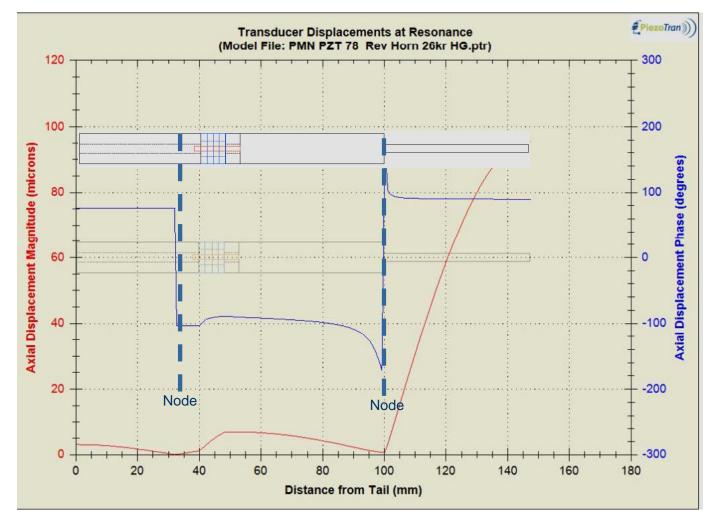
PZT8 Comparison With PZT4 Heat Limit 41° C

- 26 kHz Resonant Frequency
 - Adjust End Mass Length
- 0.230 k_{eff}





PMN-PZT 2 Ring Comparison With PMN-PZT 1 Ring Heat Limit 40° C


PMN-PZT 7/8 Configuration (Horn Attached to Rear Mass)

PMN-PZT 7/8 Configuration (Horn Attached to Rear Mass)

Nodal Pattern

Tabulated Results

Resonant Frequency Tuned to 26 kHz by Adjusting End Mass Length keff 0.230 by Adjusting Hom Diameter

Transducer	Stroke	Power	Volts	Q	Horn Stress	Stack Stress
	µт р-р	(Watts)	p-p		MPa	MPa
4 Ring PZT8	29	2.84	51	1000	105	52.9
4 Ring PZT4	17.9	1.06	21	1478	64.5	35.9
PMN-PZT 7/8	95	30.4	374	110	345	14.3
PMN-PZT 2 Ring	81	22	500	54	290	12.7
PMN-PZT 1 Ring	34.3	3.9	148	158	125	14

Conclusions

• Design Limitations

- Coupling Coefficient keff Related:
 - Primary Reserve Power
 - Secondary Horn Stress
- Stack Heat Related:
 - Mechanical Q of the Piezo Rings and Joints
 - Location in the Stack
 - PZT8 Superior to PZT4
- PMN-PZT
 - Potentially Superior Performance
 - Customized Alternate Design Configurations
 - Dual Cascaded Horns, 2 Rings and 1 Ring Piezo Stacks
 - Piezo Stacks Located Away From Nodes

Acknowledgments

Andrew Mathieson and Glasgow University Primary Reference "The Influence of Piezoceramic Stack Location on Nonlinear Behavior of Langevin Transducers" IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 60, No6, June 2013

Moog Components Group Salt Lake City Thanks For Their Sponsorship

