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PREFACE

Interest in the physical properties of piczoclectric crystals, as well
as in their practical applications, has become so great as to make the
necd felt for o comprebensive treatise. The prescat book is an attempt
to mect this need, at least in part.

Piczoclectricity is related by so many ties to all branches of physics
that any general text on the subject must be to some extent o trentise
on crystal physics. Thai this book makes no attempt to comprise the
whole of crystal physies is evident from the faet that such topics as
metallie erystals and structure sensitiveness are hardly mentioned.
Even with regard to insulating erystals the diseussion i« confined mainty
to those with piezoelectric properties. Such matters s thermal proper-
tics and plasticity are treated, if at all, only insofar ns they have a bearing
on the ceniral theme. On tho other hand, it seetned desirable to include
chapters on elnsticity, pyroelectricity, and certain optical effects, pro-
sentling the basie principles and those specinl features which relute them
to piezoelectric phenomena.

Considerable space has been given to the theory of the piezo resonator,
its equivalent electrieal network, and graphical methods for the analysis
of resonator problems.

Rochelle salt and other Seignetin-electries have been treated at some
length, because of the interesting problenys they present and their wide
range of present and future applications, The intelligent use of these
erystals in technienl deviees is impossible without a knowledge of their
properties and of the accompanying theory. The noles on ferro-
magnetism in the Appendix were written as an aid in interpreting the
analogous effects in the Seignetc-eleclrics. Those who desire only a
brief treatment of the subjeet will find that various aspects of the proper-
1ics and theory of Rochelle salt are summarized in the opening paragraphs
of Chaps. XX, XXIII, and XXV and also in §8471 1o 476 and 489 to 480,

A new formulation of piczoelectric theory, known as the “polarization
theory,” has recently been made by Prof. 1lans Mueller and Dr. W. P,
Muson in their attacks on the problem of Rochelle galt. Tn Chap. X1
the author has shown how this and still other formulations may be
derived from thermodynamic principles and has developed the polariza-
tion theory in general form, applicable to all piezoclectric erystals.

Those who use the book as & general text on the physical properties
and applications of piezoelectric crystals will find their material chiefly

1x
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in Chaps. I to III, V, VII, VIII, X to XV, XVIII, XIX, and XXVIII
to XXXI, supplemented by the opening sections of most of the other
chapters, and by §§49 to 52 and 172 to-175,

Sinee the book is intended for research workers as well as for students
of physies and radio amateurs who wish to learn more about erystals, it
is unavoidable that some portions place more demands than others on
previous acquaintance with physics, mathematics, and electric-circuit
theory. Not much previous scientific training is required for under-
standing most of Chaps. I, I, XVI, XIX, and XXVIII, as well ag the
introductions to many other chapters, in which general surveys of
various topics are given; Chaps. VIII, XIII, XVII, and XX may be
mentioned in particular,

In genersl, details of electric circuits have been omitted; a few
typical examples are given. Although a laboratory manual on piezo-
electric crystals would doubtless be useful, limitations of space prevent
the present book from going much further in this direction than to
include some paragraphs on the technique of quartz and Rochelle salt.

Here and there in the book will be found material that has not been
published elsewhere. This matenal includes some of the methods of
approach and development, as well as some original eontnibutions to the
field. Mention may be made of considerable portions of Chaps. V, XI,
XTI, XITI, X1V, and XVII; the devices suggested in Figs. 105 and 156
and in the footnote on page 417; and some experimental results obtained
by studenis at Wesleyan University and described in their theses.*

In general, the reference numbers in the text are the numbers of
books or articles listed in the general bibliography at the end of the
book. Book numbers have the prefix B. Special bibliographies, on
electrets and on the effect of X-rays on vibrating crystals, will be found
at the ends of Chaps. IX and XIII, respectively. Text references to
articles in these bibliographies are in square brackets in the respective
chapters.

For permission to use certain illustrations, thanks are extended to the
publishers of the following books and journals and to the suthors con-
cerned: Hermann & Cie, Paris; B. G. Teubner, Leipzig; Annalen der
Physik; Bell Sysiem Technical Journal; Elektrische Nachrichten-Technik;
Ergebnisse der exakten Naturwissenschafien; Helvetica Physica Acta; Pro-
ceedings of the Instituie of Radio Engineers; Annals of the New York
Academy of Sciences; Physics; Physical Review; Physikalische Zettschrift;
Proceedings of the Physical Society; Proceedings of the Royal Society
(London); Telefunken-Zeitung; Mémoires de la Soctéié vaudoise des sciences
naturelles; Zeitschrifi fiir technische Physik.

*To g large extent the gtudents’ investigations were initiated by Prof. Van Dyke
and carried out under his direction, as parts of an extended program of research.



PREFACE x

Thanks are due to the following students and assistants, in addition
to those mentioned in the text, for their efficient aid in experimental
work, ealculations, and the preparation of diagrams: H. P. Blakeslee,
A. H. Butler, R. 8. Cohen, C. A. Dyer, R. C. Hitchcock, G. J. Holton,
H. H. Hubbell, Jr., R. I. Hulsizer, Jr., R. 8, Kardag, G. H. Kent, G. A.
Kolstad, J. F. Miller, D. O. North, E. T. Peabody, Miss E. Ruthven
Tremain, J. E. Walstrom, M. E, White, and P. D. Zottu. Special
recognition should be given to the aid rendered by Dr. H. Jaffe in experi- .
mentation and computation and particularly in the assembling of much
of the material for the chapters on Rochelle salt and atomic theory, For
aid In preparing the data on the structure of quartz the author is indebted
to G. J. Holton,

Grateful acknowledgment is made o Dr. W. P. Mason and the Bell
Laboratories for diagrams, elastic and piezoelectric equations, and unpub-
lished experimental data; to J. K. Clapp and the General Radio Company
for the use of the photograph shown in Fig. 103 and for technieal infor-
mation; t0 the Brush Development Company for Rochelle-salt crystals
and much valuable information; and to the Naval Research Laboratory
for acecess to their bibliography on erystals.

Many sections of the book have been read by the auther’s students,
whose comments and criticisms bave been very stimulating. Certain
portions have been examined by Prof. Hang Mueller, Prof, V. B, Eaton,
Dr. W. P. Mason, and Dr. Hans Jaffe, frorn whom many helpful sug-
gestions have been received. The author i3 especially indebted to
Prof. K. 8. Van Dyke and Dr. W. M. Cady for much patient perusal of
manuscript, constructive criticism, and many invaluable suggestions
during the growth of the book. The careful reading of the manuscript
in its final form by Lieut. F. H. Rathmann, USNR, of the Naval Research
Laborstory, has also led to various emendations, To all these good
friends the author is very grateful. TFor such errors as may still remain
in the text he is responsible, not they.

WarLTEr Guyron Capy.

MippreTowN, CONN.,
January, 1946.
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SYMBOLS AND ABBREVIATIONS

References are given to sections in which the symbols are defined or
first used.

A Amplitude of vibration, real or complex, §56.

a Coefficient of linear thermal expansion, §20.

Gty Dar Piezoelectric stress and strain constants used in the polarization
theory, §189,

abc Crystallographic axes, §4.

8, b e Intercepts of the unit face on the a-, b-, c-axes, §4.

B Dielectric saturation coefficient, §§449, 452.

b Breadth of a bar or plate; electrio susceptance (application to the
resonator in §269).

C Eleetric capacitance; for resonator, see R, L, C, C; below.

Cs Capacitance of gap between crystal and electrodes, §284.

¢ Wave velocity, §55; generalized symbol for an eiastic streas coefficient,
§201.

[ Ilastic stiffness coefficient, §26; superseripts E, P, I, and *denote the

values at constant electric field, constant polarization, constant
total displacement, and constant normal displacement, respectively,
ag explained in Chap. XIIL.
Electric displacement.
Piezoelectric atrain constant, §§23, 124.
Electric field strength, §20.
Thickness of a plate or bar.
Electric spacing = e + kw, §110.
Effective electric spacing of a resonator, §§220, 249,
Piczoelectric stress constant, §§23, 124.
Frictional factor, §56; internal ficld strength, §§113, 486.
Frequency; fy = wo/2x = fundamental frequency, §58.
Frequencies at series and parallel resonance, §276.
In Frequencies for maximum and minimum admittance, §279.
Equivalent stiffness, §62,
Electric conductance (application to a resonstor in §269).
Magnetic ficld atrength; wave constant = fI, §362.
Order of harmonie, §55; ratio of any frequency f to the fundamental
frequency fo, §61.
Electric current; moment of inertia, §74; magnetic polarization, §548.
Mechfnical equivalent of heat, §23.
(=1L
The Boitzmann constant, §114.
Wavelength constant, §56; dielectric constant = permittivity, §103.
Effective dielectric constant for lengthwise vibrations, §229,
Dieleotric constant for field in any direction m; other special paffixes
are explained in §§105, 107, 430,
xxi
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xxii
¥, &

ke/eec

me/sec

mf, mmf
N

N,

n

P

Po

v

ppm

Q

U, v

e g

X .
XYz
X, Yl, zr

SYMBOLS AND ABBREVIATIONS

Dieloctric constants, respectively, of a crystal free and clamped,
§3104, 124, 204.

Kilocycles per second; cccasionally, when there is no ambiguity,
the term is abbreviated to ke.

The Langevin function, §§114, 548; seli-inductance (for seli-induct-
ance of & resonator see B, L, C, C, below).

Length,

Dircetion cosines.

Equivalent mass of a resonator, §62.

Milliamperes.

Megacycles per second; cccasionally, when there is mo ambiguity,
the symbol is abbreviated to me.

microfarad, micromicrofarad.

Number of molecules per unit volume, §113; dymamic torsional
stiffness, §74.

Static torsional stiffness, §35.

shear modulus, §24; measure of dissonance (8 = wg — ), §58.

KElectric polarization.

Spontaneous polarization.

Pyroelectric constant, §§20, 516; coefficient of the generalized Langevin
function, §§114, 552.

Parts por million.

Quantity of heat, §20; torque, §35; electric charge; quality factor =
»/8 = wl/R, §§56, 269.

Quality factor at harmonic h, §232,

Electrocaloric constant, §523; coefficient of the generalizod Langevin
function, §§114, 552; general stifiness factor in vibrational equations,
§55; thermoelastic coefficient, §§20, 23.

Stiffness factors with and without a gap, rospectively.

Equivalent electric constants of a resonator, §232,

Same for a resonator with gap, §232.

Equivalent constants for overtone of order &, §232,

Equivalent serics constants, §271.

Equivalent parallel constants, §273.

Electromechanieal ratio, §233.

Generalized symbol for an elastic compliance coefficient, §§20, 201.

Elastic complinnce coefficient, §26; special superscripts sume ag for ea.

Scale value for admittances on the resonance circle, §266.

Beale valuo for impedances on the resonance circle, §270.

Absclute temperature; torsional compliance, §35,

Time; temperature in degrecs centigrade.

Constant of the gap effect, §237.

Components of displacement of a particle, §26

Potential; potential difference.

Velocity of a particle in vibration, §58.

Equivalent frictional coefficient of a resonator, §62.

Total gap between crystal and electrodes, §110.

Generalized symbol for a atress, §§20, 201; electric reactance (for
reactance of n resonator see §232).

A component of stress, §25.

Orthogonal axes, §5.

Rotated orthogonal axes, §38.
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SYMBOLS AND ABBREVIATIONS xxiii

Driving stress, with orientation indieated by n, in resonator theory,
§228.

Generglized aymbol for a strain, §20,

A component, of strain, §26.

Coordinates in space.

Young’®s modulus, §24; electric admittance (for admittance of a
resonator see §§232, 265, 269).

Electric impedance (for impedance of a resonator see §§232, 265, 269).

Damping factor or attenuation constant, §56; molecular polarizability,
§113; temperature coeflicient (usually with a subscript), §885, 357.

Direction cosines.

Internal field constant, §§113, 484; parameter in theory of forced
vibrations, §57; of thickness vibrations, §250,

Logarithmic decrement per eycle, $56.

Generalized symbols for piezoelectric constants da 211d ems, used when
it i desirable to omit suffixes, §§20, 201, 228, 246.

Second thermodynamic potential, §23.

Dielectric susceptibility, §104; special suffixes and superscripts are
in general the same a3 for k, but see also §§449, 450, 454.

Clamped susceptibility of Rochelle salt, §450.

Angular parameter for expressing general orientation of a plate, §62.

Angle of rotation, §§38, 51; phase angle, §234.

Coeflicients of dielectric impermeability, §106.

Upper and lower Curie temperatures,

A small departure of temperature from a standard value, §20,

Volume elasticity, §24.

Warvelength; Lamé coefficient, §31.

Moment of a dipole, §113.

First thermodynamic potential, §23; vibrational displacement of a
particle, §56.

Denaity; radius of resonance circle, §266.

Summation over integral values of = from 1 to A,

Burface density of electric charge; Poisson’s ratio, §24; seale value for
frequency, §267.

Beale value for frequency, §268.

"Torsional strain, §35.

Force acting on the equivalent mass M of a resonator, §62.

Angle of azimuth, §51.

Reciprocal susceptibility, §106; special suffixes and superscripts same
as for 4.

Angle of skew used in expressing the general orientation of a plate,
§52.

Angular velocity or pulsatance; special subscripts same as for f,

Cyecles; eycles per second; order of magnitude.

Approximate equality.

Identical with.

Some of the foregoing symbols, as well as others not listed, are used
ﬂucally for special purposes. In such cases they are suitably defined.






PIEZOELECTRICITY

CHAPTER 1
INTRODUCTION

Lorsgu’une idée nouvelle naissail dans Uesprit du Vinci, elle ne s’y engendrait pas
d’elie-mdéme ef sans cause; elle y étail produile par quelque circonstance exiérieure, par
Uobservation d’un phénomdne naturel, par la conversation &’ un homme, plus souvent encore
par la lecture d'un Hure. —P. DurEeM.

Man’s earliest production of an clectrical effect came through the
agency of mechanjcal forces. A mysterious attractive power was known
by the ancient Greeks to be a property of elekiron (amber) when rubbed.*
In Iater centuneﬂ, as morc was learned about electricity, its various
mamfesta,mons wore distinguished by qpecm.l Wl prefixes, as galva,n"ﬂ:, volta.lc,
a.mmal frictional, contact, I tramthermallo— tribo-, actino-,
pyro-, piezo~, or strepho-, some of which are now obsolete or abandoned.

It had long bheen observed that a tourmaline crystal when placed in
hot ashes first attracted and then repelled them. This fact first became
known in Eurcpe about 1703, when tourmalines were brought from
Ceylon by Dutch merchants, but the attracting power of the crystal
seems {0 have been recognized in Ceylon and India from time immemorial.
It was spometimes ealled the “Ceyvlon magnet,’”” and in 1747 Linnaeus
gave it the scientific name lapis clectricus. Its electrical character was
established in 1756 by Aepinus, who noted the opposite polarities at the
two ends of a heated tourmaline crystal. In 1824 Brewster, who had
observed the effect with various kinds of crystals, introduced the name
“pyroelectricity.” Among the crystals with which he found the pyro-
electric effect was Rochelle salt. The first definite theory of pyro-
electricity—which most subsequent investigations have tended to confirm
—was that of Lord Kelvin, who, noting that Canten in 1759 had observed
opposite polarities on the freshly exposed surfaces of a fractured tourma-
line crystal, postulated a state of permanent polarization in every pyro-
electric crystal. According to this theory the pyroelectric effect is siraply
a manifestation of the temperature coefficient of this polarization.

* Although a knowledge of this property of amber is frequently attributed to
Thales in the sixth century B.c., the first authentic account that has come down to ua

eppears to be in Plato’s (427-347 B.c.) “ Timaeus,” Sec. 80¢,
1
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Following a conjecture of Coulomb’s that electricity might be pro-
duced by pressure, Haiiy (the ‘‘father of crystallography”) and later
A. C. Becquerel performed experiments in which certain erystals showed
electrical effects when compressed. Their findings—especislly the fact
that positive results were reported with such non-piezoelectric crystals as
calcite—led, however, to the conclusion that what they observed was
chiefly, if not entirely, contact electricity.*

Credit may confidently be given to the brothers Pierre and Jacques
Curiet for the discovery in 1880 that some crystals when compressed in
particular directions show positive and negative charges on certain por-
tions of their surfaces, the charges being proportional to the pressure and
disappearing when the pressure is withdrawn,

This was no chance discovery. Pierre Curie’s previous study of the
relation between pyroelectric phenomena and crystal symmetry led the
two brothers not only to look for*electrifieation from pressure but to
foresee in what direction pressure should be applied and in which classes
the effect was to be expected. It is fitting to quote here, in translation,
the opening paragraphs of their paper in which the discovery was

announced.

“Those crystals having one or more axes whose ends are unlike, that is to say
hemihedral crystals with oblique faces, have the special physical property of giving
rise to two electric poles of opposite signs at the extremities of these axes when they

* Nevertheless, there was something prophetie in a statement by A. C. Becquerel
(Bull. soc. philomath. Paris, ser. 3, vol. 7, pp. 149155, 1820} quoted at the beginning
of Chap. VIII.

 Pierre Curie was born in Paris on May 15, 1859. After attending the Sorbonne,
where he served as preparator in physics and received the master’s degree and later the
degreo of doctor of science, he was appointed to a professorship in the Municipal
School of Physics and Chemistry in Paris in 1895, and in the same year he married
Marie Sklodowska. In 1800 he became 8 professor at the Sorbonne. In addition to
his famous work on radioactivity in collaboration with Mme. Curic and on piezo-
electric and other properties of dielectries with his brother, his researches ineluded the
principles of aymmetry, the design of various-messuring instraments of great deli-
cacy, and especially the effects of temperature on magnetism. IHe died on Apr.
19, 1606.

Paul-Jacques Curie was born in Parisin 1853, At the age of twenty he became
preparator of chemistry ¢ourses in the School of Pharmacy and later preparator in the
laboratory of mineralogy under Friedel, at the Sorbonne. He was associnted with
Triedel in & series of publications on pyrtoelectricity. It was in this laboratory that
he and Pierre Curie discovered piezoelectricity in 1880. For this discovery the two
brothers were awarded the Planté prize in 1805. In 1893 Jacques Curie became head
lecturer in mineralogy at the University of Montpelier. His last work in physics
was his determination of the piezoelectric congtant of quartz in 1910, Suffering from
a serious deafness, he retired in 1925 and died in 1941. (The information ¢oncerning
Jacques Curie was obtained through the courtesy of his son, Prof, Maurice Curie.)
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are subjected to & change in temperature: this is the phenomenon known under the
name of pyroeleclricity. .

“We have found a new method for the development of polar electricity in these
same crystals, consisting in subjecting them to variations in pressure along their
hemihedral axzes.”

These remarks are followed by a brief account of the preparation of
flat plates cut according to the proper orientation, provided with tin-foil
electrodes, and connected to an electrometer. Deflections were observed
on the application of pressure to plates from the following crystals: zine
blende, sodium chlorate, boracite, tourmaline, quartz, calamine, topaz,
tartaric acid, cane sugar, and Rochelle salt. In later papers the Curies
described piezoelectric effects in other crystals, the first quantitative
measurements of the effect in quartz and tourmaline, practical applica-
tions of piezoelectric crystals, and the verification of the converse effect,
to which reference will presently be made.

Great interest was immediately aroused in scientifie circles. In par-
ticular, Hankel took exception to the Curies’ belief in a one-to-one
eorrespondence between the electrical effects of thermal and mechanical
deformation. He contended that the new effect obeyed special laws of
its own and proposed the name *“‘piezoelectricity,” a term that was
promptly accepted by all, including the Curie brothers themselves.

This question of the relation of pyro- to piezoelectricity has been the
object of much discussion, especially on the part of Voigt. He pointed
out that a distinetion must be made between “true’ pyroelectricity
caused by a change in temperature alone and the ‘false’ pyroelectricity
that is due to the deformation which accompanies a change in tempera-
ture and which is therefore of piezoelectrie origin. Nor does it in any
sense detract from the brilliance of the Curies’ discovery to say that the
first manifestations of piezoelectricity were observed centuries before
their time, under the guise of electrification through heat.

The pyroelectric effect is 5o closely related to the piezoelectric that
we shall have frequent occasion to refer to it. According to the die-
tionary (Webster’s “New International Dictionary,” 1939) the two
effects are thus defined:*

*

* S0 many mispronunciations of “piezoelectricity” are current that it may be
well to point out that according to both British and Americen dictionaries the first two
syllables should be pronounced like the words “pie” and *ease.” Although most
authoyities place the accent on the first syllable, in the 1834 and 1939 editions of
Webster it ig shifted to the second. This change deserves general acceptance, as
it makes the word a little more euphonious, besides conforming to the practice in
European languages.

The prefixes “plezo-" and *“pyro-"' are derived from Greek words meaning
““to press” and *fire,” respectively.
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¥ Piezoelectricily. Electricity or electric polarity due to pressure, especially in a
erystallized substance, as quartz.
“ Pyrocleciricity. A state of electric polarity produced on certain orystals by

change of temperature. . . ."”

An electromechanical phenomenon somewhat related to piezoelec-
tricity is electrostriction, for which the dictionary offers this definition:

% Blectrostriction. A deformation produced by electric stress, as the deformation
of a Leyden jar on being charged.”*

Piezoelectricity may be more precisely defined as electric polarization
produced by mechanical strain in crystals belonging to certain classes, the
polarization being proportional fo the strain and changing sign with il
This statement defines the direct piezoclectric effeci. Closely related to it
is the converse effect (sometimes called the ‘“‘reciprocal” or *‘inverse’
effect), whereby & piezoelectric crystal becomes strained, when electrically
polarized, by an amount proportional to the polarizing field. Both
effects are manifestations of the same fundamontal property of the
erystal, and they occupy a position among those physical phenomena
which are reversible. Tt is thoreforc only for historical reasons that the
term “direct”’ is applied to one rather than the other of these two effects.

The converse piezcelectric effect was not foreseen by the Curie
brothers. In the year following their discovery of the direct effect,
Lippmann discussed the application of thermodynamic principles to
reversible processes involving electric quantities, He treated the special
cases of electrostriction, pyroelectricity, and the Curies’ recent discovery,
and he asserted that there should exist a converse phenomenon corre-
sponding to each of these effects. All these predictions have been veri-
fied. The converse of pyroelectricity is the eleetrocalorie effect, which,
also on thermodynamic grounds, had already been predicted by Lord
Kelvin in 1877. Before the end of 1881 the Curies had verified the con-
verse piezoelectric effect, and in a later paper they showed that the
piezoelectric coefficient of quartz had the same value for the converse as
for the direct effect. They also called attention to the analogy between
the interaction of the direct and converse effects and Lenz’s law.

The converse piezoelectric effect has sometimes been treated as a
special type of electrostriction, Although the dictionary definitions
given above may appear to justify this treatment, the two phenomens are
essentially different. 86 far as external effects are concerned, the dis~
tinction lies in the fact that the deformations due to electrostriction are
proportional to the sguare of the applied electric field and therefore are
independent of the direction of the field. That is, to show the effect a

* For more precise definitions of pyroelectricity and electrostriction see §§515 and
137,
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substance need have no special peculiarity in its internal structure.
Indeed, electrostriction is & universal property of dielectries, whether in
the gaseous, liquid, or solid state, The effect is always extremely minute,
and we shall have but little occasion to refer to it. On the other hand,
piezoclectric deformations are directly proportional to the electric field
and reverse their sign upon reversal of field. This is possible only in
substances that possess a certain inherent “one-wayness.” Such sub-
stances are anisofropic, and the only materials with which we shall be
especially concerned are those erystals which possess the requisite degree
of asymmotry.

The phenomenological theory of piczoelestricity is based on thermo-
dynamic principles enunciated by Lord Kelvin. His penetrating and
many-sided applications of thermodynamies to erystals marked a great
advance in the study of crystal physics. The piczoclectric formulation
was carried out more completely by P. Duhem and F. Pockels and most
fully and rigorously by Woldemar Voigt in 1894. To this formulation is
devoted one of the chapters in Voigt’s monumental “Lehrbuch der
Kristallphysik,”* which appeared in 1910 and has ever since been the
bible for workers in this field. By combining the elements of symmetry
of elastic tensors and of electric vectors with the geometrical symmetry
elements of crystals he made clear in whieh of the 32 erystal classes piezo-
electric effects may exist, and for cach class he showed which of the
possible 18 piezoelectric cocfficients may have values differing from zero.

For a third of a century after its discovery piezoelectricity remained a
scientific curiosity, unmentioned in many textbooks, and furnishing
material for a few doctor’s theses. Fven among crystallographers it has
received less attention than pyroelectricity, although it was the chief
cause of most observed pyroelectric cffects, and, properly applied, it
might have served as a valuable aid in erystal classification.

Then came the spur of wartime activity. In France, cradle of piezo-
electricity, Langevin conceived the idea of exciting quartz plates elec-
trically to serve as emitters, and later also as receivers, of high-frequency
(h-f) sound waves under water. At the hands of Langevin and others the
“ocho method” has become a valuable means of locating immers:d
objects and of exploring the ocean bottom.

Langevin thus became the originator of the modern science and art
of wultrasonies. Acoustic waves having frequencies of a million or more
are now widely used, both for measuring various elastic and other proper-
ties of matter and for many practical applications in chemistry, biology,
and industry. The source of radiation may be either a magnetostriction

* Throughout the present book, references to the “Lehrbuch” will be indicated
simply by Voigt, “Iristallphysik,” or ‘“Lehrbuch.”
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oscillator or, more commonly, especially for the highest frequencies, a
vibrating piezoelectric erystal plate (usually quartz). For investigating
the properties of gases and liquids there is the acoustic interferometer,
first described by G. W. Pierce in 1925. Elastic properties of liquids and
solids are studied by various adaptations of the principle of optical diffrac-
tion produced by h-f compressional waves, discovered in 1932 inde-
pendently by Debye and Sears and by Lucas and Biquard.

The exigency of the First World War led to experiments in various
laboratories on the properties and practical applications of piezoelectric
erystals. As ig well known, these investigations have most fortunately
borne fruit in the form of many useful peacetime devices. In the course
of observing the characteristics of Rochelle-salt erystal plates for use in
underwater signaling, the author was led in 1918 to examine certain
peculiarities in their electrieal behavior in the neighborhood of frequencies
of mechanical resonance, Qut of this experience arose the development
of the piezoelectric resonator and its various uses as stabilizer, oscillator,
and filter, for which quartz was soon found to be the most suitable
material. Their operation involves a combination of the direct and con-
verse effects. At the hands of many experimenters, resonators of quartz
or tourmaline have been constructed that respond to frequencies from
the audible range to over a hundred million cycles per second. On the
purely scientific side, by means of observations with piezo resonators
knowledge has been gained of the nature of vibrations in erystalline media
and of the dynamie valucs of the elastic and piezoelectric constants.
Composite resonators have also been constructed, in which, for example,
a bar of metal is kept in resonant vibration by means of an attached
piece of quartz. By this means the elastic constants and frictional
coeflicients of various solids have been determined.

Among the technical devclopments of resonating crystals may be
mentioned their almost universal use in radio transmitting stations, either
for direct control of frequeney in the form of piezo oscillators or indirectly
a8 monitoring devices. The combination in quartz of extraordinarily
low damping with sufficiently strong piezoelectric properties to react
upon and control the frequency of vacuum-tube generators results in a
method for obtaining frequencies much more constant than is possible
by electrical tuning alone. Certain disturbing effects due to coupling
between different modes of vibration, and also the effect of changing
temperature upen frequency, can be largely avoided by cuiting quartz
plates according to special orientations. This precision reaches its culmi-
nation in the quariz clock, in which a vibrating quartz plate or ring replaces
the swinging pendulum, resulting in a timepiece more constant than the
best astronomical clocks. Piezo resonators and oscillators have proved
useful in many kinds of electrical measurement. Among recent appli-
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cations is their use as electric filters for communication lines and radio
receiving sets.

At the same time that the crystal resonator and its applications were
being investigated, there was hardly less activity in the development of
non-resonant applications of quartz and Rochelle salt and, to a less
extent, of tourmaline. Many devices have been invented, especially in
Germany and Japan, for the measurement of explosive pressures and of
velocities, accelerations, forees, vibrations of machinery, etc. In the
United States the progress has been chiefly in the field of acoustics, by
taking advantage of the extremely great piezoelectric cffect in Rochelle
salt. By the ingenious adaptation of plates from Rochelle-salt crystals,
microphones, telephone receivers, phonograph pickups, record cutters,
and other devices have been made that are in most respects superior to
their eletromagnetic predecessors,

The revival of interest in piezoelectricity has led to & vast amount of
research on the electrical properties of Rochelle salt. This substance has
turned out to be the most remarkable of all known dicleetries and the
prototype of a group of erystals known as the “Seignette-clectries.” Our
reasons for devoting to these what may seem a disproportionate amount
of space arc the close relation of their unique behavior to their piezo-
electric properties, their analogy to ferromagnetic materiels, and the
important place they occupy in the theory of polar dielectrics. For these
reasons we shall attempt in later chapters to summarize and eorrelate the
chief results that have thus far been achieved. Investigations in this
field have been most active in the United States, Russia, and Switzerland.

With respect to an atomic theory of piczoelectricity only modest prog-
ress has hitherto been made. Early attempts were put forward by the
Curies, Riecke, and Voigt and especially by Lord Kelvin. The most
rigorous treatment is that by M. Born, who in his general theory of lattice
dynamics included & consideration of dielectric, pyroelectric, and piezo-
electric effects. FHe applied his theory to a few types of cubic lattice.
In 1920 he published, with E. Bormann, the first theoretical calculation
of the piezoelectric constant of zine blende.

X-ray analysis has thrown considerable light on the arrangement of
atoms in quartz. By this means Bragg and Gibbs in 1925 arrived at a
qualitative explanation of piezoelectric polarization in this crystal. The
effect of vibrations in quartz plates upon X-ray reflection patterns has
also been studied, by both the Laue and the Bragg methods. As to
Rochelle salt, ita structure is too complex for X-rays to be of mueh help
in accounting for the piezoeleotric properties, although they have thrown
some light on the problem of the internal field. The molecular theory
of the Seignette-clectrics is still at a very early stage.

Piezoelectricity has been called by Voigt the most complicated
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branch of crystal physics. Considered only in its phenomenological
aspect, quite apart from the difficulties with which the etemic theory is
beset, a complete deseription of the piezoelectric properties of a crystal
involves a treatment in terms of three different types of directed quan-
tities, These are electrie (field and polarization), elastic (stress and

Profeasor Woldemsr Voigt. (The portrait was obtained through the courtesy of hia
grandson, Dr. E. Mollwo, of the University of Gottingen.}

strain), and the piezoelectric coefficients by which they are related. In
mathematical language the three types are, respectively, vectors (first-
order tensors) and tensors of the second and third orders. With masterly
gkill and great thoroughness Voigt worked out all the essential details of
these very intricate relations. He laid an impregnable and permanent
groundwork for the labors of all succeeding workers in this field.*

* {“'Woldemar Voipt was born in 1850. He studicd under F. Neumann, to whese
influence his interest in crystal physics was due. In 1875 he beeame Ausserordeni~
licher Profeasor of phyzics at Konigsberg, and in 1883 professor of theoretical physios
at Gottingen, where ho remained until his death in 1919. Ilc served twice as Rekior
of the University of Gottingen. Besides his monumental work in the physics of
crystals, he made notable contributions in elasticity, thermodynamica, and magneto-
and electro-optics” (translated from C. Runge, Physik. Z., vol. 21, pp. 81-82, 1920).

Voigt came very nesr to being the originator of the piezo rcsonator. In the
Tehrbuch” he gave the differentiel equations for clastic vibrations in erystals,
without, however, montioning the bearing of the piezoelectric effect on such vibrations.
Heo mentioned the use of h-f in the measurement of dielectric constants, recogniz-
ing the fact that anomalous results are to be expected at frequencies of molecular
resonance. What he did not foresee was that similar anomslies would be found with
all vibrating piczoelectric erystals whenever the applied frequency coincided with that
of n normal vibrational mode of the entire crystal specimen. It was the electronic
generator of h-f alternating currents, supplanting the induction eoil of Voigt's day,
that paved the way for the advent of the piezo resonator.



CHAPTER II
CRYSTALLOGRAPHY

An engineer gave me an ashtray
Made of a chunk of smelted blsmuth
The ore, when cooked,

Crystallizes in cubes and terraces,
Condenses in sharp stairs and corners,
Like the ruins of & mimie Cuzco.

O basic and everlasting geometry!
The cordillera itself

In the slack and purge of fire
Boils into right angles,

Takes conventional Inca pattern.
The greatest disorder on earth
Has the instinet of Perfect Form.
' —CHRISTOPEER MORLEY.

1. In speaking of bismuth, it may be said at the start that the great
majority of metallic elements and alloys erystallize with structures that
are too highly symmetrical to show the piezoelectric effect, even if they
were not conductors of electricity. Among the few exceptions are
gelenium and tellurium, which are commonly assigned to the trigonal
holoaxial class, to which quartz belongs. A few intermetallic compounds,
as MgTe and CdSe, also belong to a piezoelectric class, but they are rather
salts than metals.

No familiarity with any branch of erystal physics is possible without
at least a slight acquaintance with the principles of crystallography.
This is especially true of piezoelectricity, if for no other reason than that
without such acquaintance confusion and ambiguity are sure to arise
in the specification of erystal faces, angles of cuts, ete. Until the recent
growth of literature on piezo resonators, such matters as the definition
of positive directions of crystal axes were minutise that concerned only
erystallographers and the few workers in the field of crystal physics.
Such conventions as had been advocated were in a widely scattered
state, not readily available to physicists. It is therefore not entirely
surprising that so many investigators of plezoelectricity have been
inclined to state their own particular *“‘conventions” with regard to
axes and angles—if indeed they did not fail altogether to be apecific.
It is hardly an exaggeration to say that the only general agreement seems

9
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to have been in ignoring such definitions as had already been provided
on good authority. This practice has led to considerable confusion,
especially with regard to the recent oblique cuts in quartz. It is highly
desirable, in dealing with elastic and piezoelectric coefficients, that a
standard set of definitions concerning the positive sense of axes and of
angles be universally adopted as soon as possible. It is hoped that the
present treatment may prove to be a step in the right direction.

In this chapter only those crystallographic principles are given that
are needed for an understanding of the succeeding portions.of the book.
For a general introduction to the subject the reader may consult one or
more of the references given at the end of the chapter.

The ideal crystal consists of identieal unit cells, each similarly situated
with respect to its neighbors, forming a crystal lattice. The unit cell is the
smallest parallelepiped, identical with all others in dimensions and atomie
content, out of which the crystal could be constructed. The particular
group of atoms contained in each cell is usually chosen to conform to the
structural cell, as revealed by X-rays, whenever the structure is known.
The edges of the unit eell are parallel to the crystallographic axes, and,
a3 we shall see, its relative dimensions are simply related to the unit
distances along these axes.

There are, for any given crystal, various directions in which planes,
known as “net planes,” can be conceived as drawn, such that each plane
is populated with corresponding points of unit cells regularly arranged in
rows and columns. The erystal differs from isotropic substances in
external appearance, since in its normal growth certain of these planes
become the faces of the crystal. A more important difference is the fact
that the physical properties of a crystal vary from one direction to
another. This last statement holds for all anisotropic bodies, even a
piece of wood, which has different properties along and across the grain.

The belief is now held that ideal crystals exist rarely if ever. In the
first place an “‘ideal crystal,” for which there existed an exact correspond-
ence between external and physical symmetry, would have to be grown
in entire absence of external forces, such as gravity and stresses due to
changing temperature; and second there is the possibility that the net
planes may not be actually continuous throughout the crystal, i.e., the
erystal may bhave & ‘‘secondary structure,’” as if broken into small frag-
ments similarly oriented and closely joined, but not quite alike in size.
Since this book deals chiefly with large-scale phenomena in actual erystals,
we shall be but little concerned with the question of departure from
perfect homogeneity, except when we encounter the phenomenon of
twinning, and the existence of a so-called “domain” structure in certain
crystals.

The Law of Constancy of Angles. From what has been eaid it should
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be clear that, however much actual erystals of the same species differ in
size and in the relative development of faces, the angles between cor-
responding faces are constant. This constancy of crystal angles is a
fundamental law of crystallography,

2. Neumann's Principle. The most fundamental principle of crystal
physics is the correspondence between geometrical form and physical
properties, first pointed out hy F. Neumann. It is the basis of the
phenomenological theory of every branch of the subject. According to
this principle, when the elements of symmetry that characterize the out-
ward form of the crystal are known, the symmetry of its physical prop-
erties can be predicted. Any given physical property, as density or
thermal expansion or elasticity, may be of higher symmetry than that
of the crystal form (approaching more ciosely to that of an isotropie
body), but it cannot be of lower symmetry.

It is, of course, not to be expected that every specimen will indicate
its exact classification by visible faces. Fundamentally the symmetry
is that of the atomic structure of the umit cell; and while on a given
specimen any of the faces constituting the external symmetry may be
present, still the ensemble of all recorded faces is rarely if ever found.
For example, crystals of quartz and Rochelle salt frequently occur with-
out & visible trace of those faces which alone betray the asymmeiry on
which their characteristic piezoelectric properties depend. The extent
to which such faces are developed bears no relation to the magnitude of
the corresponding physical effects. When present, the faces of low
gymmetry in Rochelle salt are even less conspieuous than the correspond-
ing ones in quartz; yet the piezoelectric effect is hundreds of times
greater.

Neumann’s principle is a rule that works both ways. From the
study of physical properties the proper crystallographic classification has
been made of erystals that were 30 rare or so imperfect that an insufficient
number of faces could be identified. In some cases the morphology as
indicated by the physical properties has later been confirmed through
the finding of new specimens with hitherto unidentified faces.

8. The classification of crystals is somewhat analogous to that of plants
or animals into various orders, families, genera, and spocies. A very
important difference is that, while the number of possible biological
groups is apparently limitless, the number of possible crystal groups is
restricted by geometrical laws to a known finite number. The nearest
approach to freedom from restriction is in the variety of atomic arrange-
ments capable of forming crystals, and this in turn is limited only by
the nurnber of ways in which atots can form compounds. Nevertheless,
every crystal, whatever its composition, must belong to some one of the
finite number of subdivisions.
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The geometrical basis for the classification of crystals can here be
outlined in only the briefest terms. Bravais showed that the number of
types of polyhedron that will completely fill gll space is 7. These
polyhedra are usually represented in skeleton form, as an array of points,
one of which comes at each vertex of the polyhedron. These seven
arrays are the units of the seven simple space-latlices. Bravaizs also
found that, when face-centered and body-centered polyhedra are taken
into account, the number of possible space-lattices Is increased to 14,
Each polyhedron is & unif cell. It is characteristic of space-lattices that,
if the entire lattice is moved without rotation until any given point
reaches the position occupied by some other point in the original position
of the lattice, all points are found to coincide with points in the original
position. The lattice thus repeats itself, and such a translation is the

"gimplest of all covering operations. Other covering operations for the
space-lattices are rotations through certain angles about certain axes
and reflections with respect to certain planes. From the simple lattices
are evolved the seven crystal systems described below; the edges of a
polyhedron are the erystallographic axes, the faces are the pinacoids, or
bagal planes, of the crystal. Each polyhedron of a simple Bravais space~
lattice represents the class of highest symometry (the holohedral class) for
the system in question.

In general, the points that form the space-lattices do not represent
the positions of atoms. They serve merely to define the unit cells, within
which the atoms may be situated in any configuration. The symmetry
characteristics of the unit cell, and hence the elements of symmetry of
the erystal as a whole, depend on the arrangement of the atoms. As
diverse as are the atomic configurations in the thousands of different
crystals, nevertheless they can all be classified in & finite number of
space-groups, all the configurations in each group having certain geo-
metrical characteristics in common. Historically, the theory of space-
groups was fully developed long before X-rays had made possible the
determination of the arrangements of the atoms. It is a purely geo-
metrical theory. The evolution of the space-groups out of the Bravais
space-lattices consists essentially in inserting further points in the unit
cell of the space-lattice, such that the pattern can be made to repeat itself
by a combination of rotation and translation {screw gzxes), or of reflection
in a plane and translation (glide planes), in addition to the cyclic axes
of symmetry and reflection planes that characterize the Bravais lattices.
Through the labors of Schncke, Fedorov, Schoenflies, and Barlow, it has
heen proved that there are in all 230 such configurations. These con-
figurations constitute the 230 space-groups.

The space-groups are divided into 32 peint-groups, each possessing
certain symmetry characteristics with respect to a point (§6). These
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are the same a3 the 32 clusses of the crystallographer. Each point-group
is commonly designated by s symbol indicating the particular rotations
about an axis and reflections in a plane that constitute the covering
operations for that group, The symmetry operations for the point-
group do not include translations of the lattice as a whole. On the other
hand, the symmetry of a space-group is such that a symmetry operation
may result in a new position related to the original one by a translation.
A space-group may be regarded as a combining of the characteristics of
the point-group with those of the space-lattice.

Although the space-group is a more fundamental picture of crystal
properties than the point-group, it cannot be determined by gross
measurements on erystals or by observation of their general physical
properties. A more refined method is needed, and in recent years this
need has been met by X-ray analysis. Since this book has to do with
properties chavacteristic of classes, it is unnecessary to deal further with
space-groups.*

4. Crystal faces are specified in terms of their intercepts on the three
crystullographic azes, called by the crystallographer the a-, b-, and
c-axes (the use of four axes and also of the symbols a1, @, cte., in certain
cases is considered below). In each system the axial directions are
chosen s0 as to make the specification of the faces as simple as possible.
Usually a crystallographic axis is an axis of symmetry or & line normal
to a plane of symmetry or the edge between two prominent crystal faces,
It is of course understood that a erystal axis is primarily a direction with
respect to the crystal; the location of the erigin is entirely arbitrary.

It is customary to take as the unit face for a given erystal a proniinent
face having intercepts a, b, ¢, of the same order of magnitude on all three
crystallographic axes. The quantities of importance to the crystal-
lographer are the azial ratio a:b:ict and the angles between the axes;
when these have been determined, the inclinations of all possible erystal
faces can be expressed at once. This definition of the axial ratio was
adopted by the erystallographers long before the dimensions of the unit
cell had been measured by X-ray methods. It is now known that the
ratio of the three edges of the unit cell is either the same as the crystal-
lographic axial ratio or related thereto by small integers. Any plane
drawn through three points having coordinates a/k, b/k, c/1, is parallel
to & net plane of the lattice and hence to a geometrically possible erystal
face. In accordance with the Iew of rafional indices, h, k, and [ are

* The nature of space-groups and the symbols used to specify them are given in
refs. B8, B14, and B53. The theory has been fully developed by Wyckofl.B87 A good
account of the history of the subject is in Tutton. B4

+ Since the location of the origin is arbitrary, only the ratios of the intercepts are
significant. Ususlly they are so adjusted that b = 1.
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integers, including zero. It is only in the classes of highest symmetry
that all the geometrically possible faces could oceur, and even then in
most eases only & relatively small number is actually found; there are the
holohedral classes in Table I, pages 19-20. In all other classes the atomic
structure of the unit cell is such that certain faces are never formed. For
example, 8 crystal may have a face corresponding to -+a/h, +b/k,
and +¢/1, but not to +a/h, —b/k, and 4-c/l. All crystals in the same
class share the same fate as regards the suppression of certain faces.

The Miller indices are commonly used for specifying cwystal faces.
According to the Millerian system the unit face has the index (111)
(signifying that the intercepts on the three axes are the unit distances a,
b, and c¢), while the general formula for any face is (k). The symbols

Fia, 1.—Orientations of three crystal faces, illuatrating the use of the Miller indices.
The sxial ratio 4 :0B:0( is hore represented as approximately that for Rochelle salt. The
triangles ABC, AB'C, and A'BC show respestively the inclinations of fpees having the
symbola (111) (the unit face), (171}, and (211). A face through (or parallel to) B'C and
parallel to the a-axis would have the symbol {011).

h, k, L are taken in the order of the a-, b-, c- axes, and they are usually
small integers, including zero. They are proportional to the reciprocals
of the intercepts on the axes. If an intercept lies on the negative side
of an axis, a negative sign is placed above the corresponding index, as
illustrated in Fig. 1. By way of further example, it may be stated that
(001) means a face perpendicular to the c-axis at its positive end. The
corresponding face at the negative end is (001), and the two faces form
the basal pinacoid. The face (213) has intercepts at —a/2, b, and —¢/3.

Each face of & crystal is a member of a form consisting of a set of faces
similarly oriented with respect to the elements of symmetry. Each
form has a common form-symbol {hkl), where h, k, and ! have fixed
numerical values. The various faces belonging to the form are obtained
by giving to A, k, and [ all the positive and negative combinations com-
patible with the symmetry of the crystal class. It is only in the holo-
hedral class of each system that the form can be a complete octohedron.
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A set of faces having parallel intersections is called a zone. A com-
plete zone is therefore a prism. On an actual erystal the faces of the zone
may be so little developed that their intersections are absent, owing to
the intervention of faces of other forms. )

As will be seen in §5, the axes on which the intercepts are taken in
expressing the Miller indices are not orthogonal except in the cubic,
tetragonal, and rhembic systems,

Of great significance physically is the possession by many crystals of
polar azes. In crystallography a polar axis is a direction having at its
two ends faces of different forms, with different numerical indices. A
“one-wayness’’ of this sort is a sure indication of a corresponding uni-
lateral quality for this direction with regard to the physical properties.
For example, such vectorial effects as pyro- and piezoelectricity are
found only with erystals having polar axes.

B. The Seven Crystal Systems. The physicist unschooled in crystal-
lography finds himself somewhat bewildered by the diversity in nomen-
clature used by different anthorities. This applies not only to the
names of the classes but also to their grouping into systems. The geo-
metrical nature of each of the 32 classes iy of course as absolute as mathe-
matics itself.  Still, their characteristics can be expressed in various ways,
depending especially on whether they are defined in ferms of faces or of
symmetry elements. The arrangement of the 32 classes in order of
ascending or descending symmetry, and their classification into systems,
is to some degree a matter of opinion. TFor example, while some crystal-
lographers prefer to assign erystals having trigonal symmetry to a
separate system, others regard them as a hexagonal subsystem. The
number of crystal systems is accordingly given sometimes as six, some-
times as seven.

In this book the division into seven systems is adopted. As a preface
to the list given below, a few general statements should be made con-
cerning the axes and their positive directions. If a crystallographic axis
is unique, as for example by the possession of trigonal symmetry, it is
made the c-axis. In the ease of a non-polar axis the positive direction is
arbitrary. With a polar axis, if the crystal shows a pyroelectric effect
in this direction, the positive end may be defined as that at which a posi-
tive charge appears when the crystal is heated; or if piezoelectric charges
appeat at the ends of the axis when the crystal is stretched in the direction
of the axis, the positive end is that at which a positive charge appears on
stretehing.

The relations of the physicist’s orthogonal X- Y-, Z-axes to the axes
of the crystallographer, as used in this book, are explained below for each
system. The XY-, ¥Z- and ZX-planes will be referred to as the
principal planes. Except with the levogyrate (left) forms of. enantio-
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morphous erystals (§7), a right-handed orthogonal axial system is always
to be understood.

. Cubje System (also called the regular, isometrie, or tesseral system). There are
three orthogonal two- or fourfold axes aj, @i, a; of equal length, The (111) plane
therefore has equal intercepts along the three axes. The X-, ¥-, Z-axes are parallel
to ay, a, G

Tetragonal System. Orthogonal axes are used with a; and a; of equal length, both
different frome¢. The X-, Y-, Z-axes are parallel, respectively, to a,, s, c.

Rhombic (or orthorhombic) System. There are three orthogonal ages 4, b, ¢, all
unequal; they are parallel to the X-, ¥-, Z-axes, respectively.

Monoclinic System. More erystals belong to this system than to any other. The
axes are unerqual in length, the b-axis being perpendicular to the a- and c-axes, which
do not form a right angle, The positive directions of 2 and ¢ are outward from the
obtuse angle between them, while the positive direction of b (the polar axis) is such
as to make a right-handed system. The X-axis, according to Voigt’as* usage, coincides
with ¢ in direction and sign, and the Z-axis with & The Y-axis completes the right-
handed orthogonal axial system, thus making an acute angle with the a-axis. t

Triclinic System. 'The a-, b-, c-axes are all unequal and oblique. For each species
the choice of the a-, b=, ¢-axes, also of the orthogonal X-, ¥-, Z-axes, is arbitrary. .

Hezagonal System. The c-axis is the axis of sixfold symmetry, Faces are com-
monly apecified by means of the Bravais (often called the Bravais-Miller) system.
This system employa four crystallographic axes, iz., the c-axis and three others per-
pendicular to it, called A, A A,, 120° apart, each being parallel to a pair of faces of
the first-order prism, as shown in Fig. 3, A fypieal face symbol is (hiki), the four
letters corresponding to A, Ag, A, ¢, respectively. Since three parameiers suffice
to specify a face and since always A -+{ + % = 0, it is common practic: to write &s
face symbol (hi - 1), the dot signifying ¥ = — (& 4+ ¢). The orthogonal axial system
has the Z-nxis coineident with ¢, the X-axis parallel to any one of the A-axes, and the
¥-axis perpendicular to Z and X.

Since the three axes A, 4o, and Ay are equivalent, the unit {ace makes equal inter-
cepts on two of these axes. The axial ratio is therefore given by the single ratio a:e,
for both the hexagonal and the trigonal system,

Trigonal System. From the crystallographic point of view the fundamental form
is that of & rhombohedron, although in only three of the five classes i3 this form fully
developed. T'wo opposite vertices of 8 rhombohedron lie on the trigonal. (optic, or
principal) axis, thus forming a three-sided pyramid at each end of the erystal. In
two classes (Nos. 16 and 19), only the pyramid at one end of the trigonal axis is present
for each rthombohedron. With any given kind of crystal a prominent rhombohedron
(or pyremid} is selected as the primary rhombohedron {or first-order irigonal pyramid).
If twofold axes are present (as in quartz), the rhombohedron is so chosen that the
angles between the projections of its edges on the plane normal to the principal axis
are bisected by these axes, as shown in Fig. 3.

The Bravais system, with four axes, may be used as with the hexagonsl system.
1t is quite common, however, to employ the M<ilier system, aceording to which the
faces of trigonal crystels are specified in terms of the three Millerign qzes, wiz., the
three edges of the primary rhombohedron or of the first-order trigonal pyramid (see
Fig. 3). The typical face symbol is (kkl), the letters corresponding to intercepts on
the Millerian ai~, as, aroxes, respectively. The angle between any two Millerian

* “Lehrbuch,” p. 100.
{ For the gpecial convention in the case of Rochelle salt, see §481,
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axes is denoted by « and is called the Millerian angle. If this angle were 90° the
rhombehedron would become a cube and the Millerian indices would become the usual
indices for the cubic system. The trigonal and cubic systems are thus related in the
senge that the trigonal rhombohedron may be regarded as a distorted cube.*

The eyclieal order in which the Bravais and the Miller axes are to be taken is given
in §12.

For the convenience of those who may have oceasion to translate Millerian symbols
into Bravais, or vice versa, the following relations are given, in which (hkl) and
(HIKL) or (HI-L) are the Miller and Bravais symbols for the same face:

H=h-=-k;I=(kh-D;Ka{l—h;L=(h+k+1D;
h=H—K+L=2ll+4+1+0L;
kwmI~-H+4Ljl=-H—-2[4+L=K-~I4+L

For an orthogonal axial system we shall use, for Y- and Z-axes, the convention
adopted by Voigt.t The Z-axis is the trigonal axis; either end may be taken as
positive. The ¥-axis is the projection of any one of the Millerian axes upon s plane
normal to the Z-sxis; its positive direction is outward from one of the faces of the
first-order trigonal pyramid at the positive end of the Z-axis, The X-axis according
to Voigt always forms s right-handed system with the other two, We shall adhere to
Voigt’s convention for dextrogyrate forms (§7); but for levogyrate forms, for reasons
explained in §327, we shall define the positive dircction of the X-axis as that which
forms a left-handed systern with the Y- and Z-axes.

The relation of the orthogonal X-, ¥-, Z-axes to the Bravais axes is the same as for
the hexagonal system.

6. The Thirty-two Crystal Classes. As shown in Table I, the num-
bering of classes in the order of ascending symmetry, and their grouping
in systems, is taken from Rogers. The symmetry formulas in the fourth
column are those of Schonflier; in the fifth column are the Hermann-
Mauguin symbols. Voigt’s terminology for the names of the classes is
given, for the benefit of those whe are acquainted with his ““Lehrbuch.”
Voigt’s class numbers are given in parentheses. The terminology intro-
duced by Miers is also included, as the expressions are based on symmetry
elements rather than on faces and hence give rather simply the symmetry
relations that are essential in piezoelectricity.

A body or any one of its physical properties may be symmetrical with
respect to a point, a lne, a plane, or any combination of these. If
symmetrical with respect to a poznt, the body is centrosymmetrical and can
possess no polar properties; hence, no piezoclectric crystals are found in
any of the 11 centrosymmetrical clastes. With one exception, all classes
devoid of a center of symmetry are piezoelactric. The single exception
is Class 29, which, although without a center of symmetry, nevertheless

* This relation is discussed more fully by Voigt in the "“Lehrbuch,’ p. 31, and in
“Die fundamentalen physikalischen Kigenschaften der Kristalle in elementarer
Darstellung,” pp. 10-12, Leipzig, 1898,

f “Lehrbuch,” p. 750.
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has other symmetry elements that combine to exclude the piezoelectrie
property.

Symmetry with respect to a line is called axial symmelry, and the line
is an azis of symmetry.*

A plane of symmetry may be likened to a mirror. In those classes
having this type of symmetry, a plane passed through a crystal in the
proper orientation divides the erystal in such a way that to each face on
one side of the plane there corresponds a possible face on the other side,
each face being the mirror image of the other with respect to the plane,

ExpraNaTiON OF THE ScHiNFLIES Sympors or CRYSTAL SYMMETRY

Cn A cyclic axis of symmetry, 1.e,, an axis such that rotation about it through an
angle 2x/n results in a repetition of the figure. (n = 1,2,8,4,0r6.) n=1
means no symmetry at all.

Cav  An n-fold cyclic axis with & plane of symmetry nermat to it.

Chri  An n-fold cyclic axis with a center of symmetry.

Cuv  An nfold éyclic axis to which n planes of symmetry are parallel.

8: Every direction is a twofold cyclic axis with a plane of symmetry perpendicular
to it, or an ‘‘axis of composite symmetry.”’ The crystal has a center of sym-
metry and nothing else.

8¢ A fourfold cyclic axis of composite symmetry with reflection at each 90° step
of rotation (alternating axis, or Drehspicgelachse), This means that upon
rotation of 90° the figure becomes the mirror image, with respect to a plane
perpendicular to the axis, of what it was before rotation. There is no center
of aymmetry. This type of symmetry waas first described by P, Curie,

¥V 8 mutually perpendicular twofold cyclic axea.

Vs Symmetry V with addition of u plane of gymmetry normal to each of the 3 axes.

Ve Symmetry V with 2 planes of symmetry containing the principal axis, and
at 45° to the other 2 axes.

D, Axis €, (principsl axis) with n twofold axes (secondary axzes) normal to it.
(n =3, 4, or6.)

D,y Symmetry D, with n planes of symmetry containing the €, axis and bisecting the
angles between the secondary axes.

Dn Symmetry Dy with a plane of symmetry normal to the €y (prineipal} axis and
therefore n planes of symmetry each containing the prinecipal and 1 secondary
axis.

T 38 orthogonal twofold axes and 4 threefold axes (the tetrshedral group).
T, Symmetry T with a plane of symmetry normal to each of the twofold axes.
T; Symmetry T with 6 planes of symmetry each containing 2 of the threefold axes.
0 3 orthogona! fourfold axes, 6 twofold axes, and 4 threefold axes (the octahedral
group}.
Oy Symmetry O with the planes of symmetry of both T'; and T.

The classes listed in Table I as pyroelectric are those possessing
primary, or true, pyroelectricity. All pyroelectric crystals are also piezo-
electric. As will be seen in Chap. XXIX, all piezoelectric crystals may
exhibit secondary pyroelectricity.

* An axis of this type is sometimes called a cyclic axis, to distinguish it from the
serew axis mentioned in §3.
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1_’ = both piszo. and pyroelectric

Class

Names of clasues

Harmann-

No. Bchdndies Mauguin Ezsmples
Voigt Miers
Triclinio System,
1P |Hemihedral (2) | Asymmetrical [+ 1 Btrontium ditartrate
- - tetrahydrats
2 Holohedral (1) | Centrosymmetrical | S; = Cy 1 Copper sulphate
* Monoclinic Bystem
:¥ Hemimorphis (5) | Digonal polar o8} 2 Tartarie acid
4P |Hemihodral  (4) | Equatorial Cu=Ci| m Potassium tetrathionate
Holohedral {3) | Digonal equatorial Cu ”E' Gypeaum
Rhombie {or erthorhombic) System
5P Hemibedral (7} | Digonal holoaxial Y =Dy 222 Rochelle aalt
7 }_’ Hemimorphic (8) | Didigensl pelar C'ey mm?2 Calamine
8 Holohedral (6} | Didigonal equatorial| Va = D i% 2 Barite
m
Tetragonal System
8 P | Tetartohedral with | Tetragonal alternat- | S« 4 Ca3AlsSiOr
inversion axia {20) | ing
10 f Tetartohedral (18) | Tetragonal polar Ca 4 ‘Wulfenite
11 P |Homihedral with in- | Ditetragonal alter- | Va = D | 12m Ammonium and potas.
version axis (19} [ nating sium primary phoe-
phates
12 P | Enantiomorphous | Tetragonal holoaxial | D4 422 Niskel sulphate
hemibedral (15)
13 Paramorphio hemi- | Tetragonal equato- 4
hedral an | sl Cu m Scheellite
14 F | Hemimorphio hemi-{ Ditetragonal polar | Cas 4mm Pentaerythritol
- hedral (16)
Ditetragonsal squato- 422 .
15 Holohedral (14) rial Da mmm Zircon
Trigonal S8ystemn
16 P | Tetartohedral (13} | Trigonal polar s 3 Sodium pericdate
17 Paramorphic hemi- | Hexagonal alternat- | Ou 3 Dolomita
hedrsl (12) | ing ’
18 P | Enantiomorphous | Trigonsl holoaxial D 32 a-quarts
hemihedral A .
19 P j Hemimorphio hemi- | Ditrigonal polar Cw ‘3m Tourmaline
- hedral an
Dihexagonal alter- e
20 Holohedral (8) nating Du 3 Calcite
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Tapre I.—CrysTaL SysTEMs anp Crasses.—{Coniinued)

Names of classes
Clase snfliag | Hermann.

8
No. chdnflies Mauguin Examplas
Voigt Miers

Hexagonal System

21 P | Tetartohedral with | Trigonal equatorial | Ca [}
threcfold axis (27) —

22 P |[Hemihedral with | Ditrigonal equatorial | Da 6m2 Benitolte
threefold axis (26}

23 f: Tatartohedral (25) | Hexagonal polar Cs 8 Nephelite

24 P | Enantiomorpbous | Hexagonal koloaxial | De . 422 B-quarts
hemihedral  (22)

Paramorphio hemi-

25 h;du;“p ° 0(!;}41) Hexagonal equatorial | Cea % Apatite

28 P | Hemimorphic hemi-| Dihexagonsl polar | Cov Bmm Bilver iodide
hedral (23)

Dih 1equat
27 | Holohedral (2py Lop oo ST b, % % Beryl

Cubic {iapmetric or regular) System

28 P | Tetartohedral (32) | Tesseral polar r 23 Sodium chlorate
20% Enantiomorphous | Tesseral kolonxial [4] 432
hamihedral  (29)
a0 Paramorphie hemi- 2 .
hedral 31 Tesseral central Th - 3 Pyrite
31 P | Hemimorphi¢ hemi- | Ditesseral polar Ty i3m Sphalerito
hedral 30 -2
32 H:loll-mdml EZS% Ditesseral central On %3 = Sedium chieride

* No fully authentis member of Class 20 seems 0 be known. X-ray analysis has made it appear
that the eustomary assignment of cuprite, sylvite, and ammeninm chloride to this elass is incorrect.
(R. W. Q. Wyckorr, "' The Biructure of Crystals,” pp. 203, 266, 306, New York, 1924.)

7. Enantiomorphous Crystals. In the il clagses having no plane of
gymmetry, two different types of the same species may exist, those of one
type being characterized by certain faces that are related to the corre-
sponding faces of the other as the right hand is related to the left. Each
type is the mirror image of the other; neither type can be made to look
exactly like the other by a simple rotation.* Some species of crystals, as
for example Rochelle salt, commonly occur in only one of the two pos-
sible enantiomorphous forms.  In other species both forms are of frequent
oceurrence, a8 is the case with quartz.

Enantiomorphous crystals .offer & good illustration of Neumann's
principle, since certain directed physical properties have different signs
for the two types.

» However unsymmetrical & non-enantiomorphous crystal may be in external
appesarance and physical properties, a mirror-image model would after suitable rota-
tion be indistinguishable from the original.
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In the Millerian system, the symbols are the same for a “right- ”’ as
for a “left- *’ erystal, if the convention given in §327 18 accepted.

The right and left forms of an enantiomorphous erystal are also termed
the “dextrogyrate” and “levogyrate’’ forms according to the sense in
which they rotate the plane of polarization of light as seen by an observer
looking back foward the source of light (§326). The prefixes d and I (or r
and !) are often used, as for example r-quartz and I-quartz.

When orthogonal axes are used, ambiguities may be avoided by
employing a right-handed axial system for dextrogyrate crystals, left-
handed for levogyrate (§327). This practice will be followed in this book.

The 11 enantiomorphous elasses are Nos. §, 3, 6, 10, 12, 16, 18, 23, 24,
28, and 29. Of these all but the last are piezoelectric. All 11 are included
among the 15 optically active classes (§538).

8. Special Crystallographic Properties of Certain Crystals. Rhombic
Digonal Holoaxial Class, No. 6, (symmetry V, rhombie enantiomorphous
hemihedral, sphencidal, bi- or disphenocidal, or tetrahedral class). This
is one of the 11 enantiomorphous classes. Since the X-, ¥-, Z-axes are
identical with the erystallographic a-, b-, c-axes, the Millerian symbols
apply equally to either. The symmetry is such that either end of any
two of the axes may be taken as positive, The third axis is then given
the proper direction to form & right-handed system. The erystal may be
rotated 180° about any one of the three axes without change in magnitude
or sign of the physical properties.

The member of this class with which we have chiefly to do is Rochelle
salt, a diagram of which is shown in Fig. 2.* Crystals are usually dextro-
gvrate. Axial ratio a:b:c = 0.8325:1:0.4334 (see §542). The most
prominent and typical forms are the three pinacoids (pairs of faces normal
to the three axes, marked a, b, ¢ in the figure) {100}, {010}, {001} ; a series
of prisms p{110}, p,{120] not shown in the figure and p;{210} parallel to
the Z-axis; two prisms ¢{011} and r{101} parallel to the X- and ¥-axes,
four faces each; and the primary and secondary bisphenoids {111} and
v{211}, four faces each. The g-, -, 0-, and v-faces are often vestigial or
absent. Yet it is the bisphenoids that furnish the outward and visible
sign of the polarity of all three axes and of the enantiomorphous structure.
Figure 2shows a right-crystal, which is the only form that normally oceurs.
The ¢ and p faces are usually by far the most developed.t

* Recent evidence that between the femperatures —18 and +24°C Rochelle salt
should strictly be classed as monoclinic will be considered in §481. For the present
we adhere to the traditional classification.

t Figure 2 is based on a drawing in Groth.B#* In actual crystals the oceurrence
and relative size of many of the faces are very variable. Dr, H. Jaffe informs me that
in the examination of many specimens he has found {211} the commonest of the bisphe-
noids, while {111} never occurs,
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Following are the angles between an a face and the principsl prismatic
faces: Zapy = 22°35'; Zap = 39°43'; Zap, = 58°567’. For further data
on Rochelle salt see Chaps. XX and XXXI.

To this class belong other tartrates isomorphous with Rochelle salt,
which will be dealt with in Chap. XXVII.

9. Trigonal Holoarial Class, No. 18 (symmetry Dy). This class is vari-
ously described as trigonal trapezohedral, holoaxial tetartosymmetrical,
hexagonal trapezohedral tetartohedral, trigonal enantiomorphous herni-
hedral, and rhombohedral trapezohedral. As we have seen, the Millerian
axes and indices are commonly used, with the primary rhomhbohedron as
the basis, although there iz doubt whether some representatives, for
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F1a. 2—An idealized Rochelle-salt erystal. The e-faces (top and base of the prism)
and the prismatic p-faces nre usually the most doveloped. The other faces are often very
small or absent.

example quartz {ref. B14), have a truly rhombohedral structure. The
various alternative axial systems are shown in Fig. 3, which is drawn with
special reference to quartz, although in principle it is applicable to afl
trigonal erystals. BCDEFG is a section of the usual prism, perpendicular
to the trigonal axis OZ. The three pyramidal faces ABC, ADE, and AFG
belong to the primary positive first~order rhombohedron; they are the
three R-faces at one end of the quartz crystal, as shown in Fig. 5. The
remaihing pyramidal faces, ACD, etc., are r-faces, belonging to the pri-
mary negative first-order thombohedron (ref. B47). For simplicity the
pyramid is shown with hexagonal symmetry, although the R-faces are
usually larger than the ». When the E-faces are extended, they meet
along the lines AM,, AM,, and AM,, which are the edges of the rhombo-
hedron and the axes of the Millerian system. The projections of these
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axes on a plane normal to the prineipal axis, one of which is shown aa
M N, are the Y-axes of the rectangular system. The positive direstion
of any Y-axis is that in which it emerges from an R-face (see Fig. 5). In
Fig. 3, OZ is the Z-axis, positive upward (either end may be taken as
positive). Each X-axis bisects the angle between two prismatic faces, as
for example at @, forming (except with levogyrate crystals) a right-handed
system with ¥ and Z. The X-axes are the twofold (binary or digonal)
polar axes; following the Curies, they are also called eleciric axes. The
name ‘“mechanical axis’ is sometimes applied to ¥. In this book we

o}

Fra. 3.—Axes for the hexagonal and trigonsl systems, Tho Miller axes are ai, s, #a.
The Bravais axes are Aj, Az, A;, and ¢, parallel respectively to GO, €0, EO, and OA. One
of the three seta of orthogonal nxes ia shown as X, ¥, and Z, Any one of the Bravais axes
A1, As, A; may be taken as an X-axis, The projections of the Miller axes upon the basal
plane {normal to the Z-axis) are the P-axes.

shall make use of the terms X-, ¥-, and Z-axes almost exclusively; prep-
arations eut with major faces normal to these axes are X-cuts, Y-cuts, or
Z-cuts.

The three Bravais axes 4,, A, and A; are parallel to the three X-axes
apd are indicated by the lines GD, CF, and EB in Fig. 3. As usually
represented, their sense is the same as that of the X-axes in a left-quartz,
opposite in & right-quartz. The Bravais c-axis (07 in the figure) coin-
cides with the Z-axis.

10. Alpha-quartz. The word “‘crystal” is derived from the Latin
crystallum, which in turn is from the Greek xpleraddos, compounded from
xpbos, clear ice, and oré\eww, to set in order.* ‘This term was also applied

* 8. I. ToMxererr, On the Origin of the Neme “Quartz,” Mineral. Mag., vol. 26,
pp. 172-178, 1042, This paper points out that the word “crystallum” for quarts
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in ancient times to quartz, in the belief that quartz was a form of ice.
Quartz is silicon dioxide, 8i0;. Both these elements are among the most
sbundant, and 8i0,, in its various forms, crystalline or amorphous, ig
said to form about one-tenth of the earth’s crust. It is a constituent in
sandstones, in many of the rocks, and in other geological formations,

Fia. 4.—Quartsz crystals in the Musoum of Natural History at Geneva, Switserland.
They were found in 1868 in a cave at the sido of the Rhone glacier. Mountaineers were
attracted to the cave by the bright reflection of the sun from the faces of the eryatals.
The separate specimens (some weighing as much as 150 kg) were distributed among the
chaleta of the mountaineera. Later as many of the crystals as possible were purchased
and reassembled, half in Geneva and half in Berne, (Courtesy of Professor Jean Weigle
and of Dr. Revilliod, Director of the museum in Geneva.)

Sand consists largely of quartz grains, a-quartz (“low-quartsz,” or rock
crystal) is only one of the numerous crystalline forms; it is the one that
crystallizes at temperatures below 573°C (§14). If crystallization takes
place between 573 and 870°, the form known as “beta-quartz’ (*‘high-
quartz'’) is produced, of hexagonal instead of trigonal structure. Among

survived until almost the end of the cighteenth century. It presents evidence that
‘‘querts,” the original spelling of “‘quartz,” is a contraction of Querkiufters, or cross-
vein ore, used by the miners in Saxony.
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the other forms of 8i0, are tridymite, cristobalite, and the fused amor-
phous form called silica or “quartz glass.” The colors of such varieties
as rose quartz, smoky quartz, amethyst, and other gems are due to traces
of foreign matter. Unless their electric conductivity is too high or they
are found to be twinned (as is often the case with amethyst), there is
no technical reason why they should not be suitable for piezoelectrie
applications.

Our concern lies almost exclusively with a-quartz, to which we shall
in general refer simply as ‘‘quartz.” As abundant as SiO; is, in only a
few regions have crystals of any considerable size and perfection been
found. At present the supply comes chiefly from Brazil. Clear crystals
have been found of lengths of 4 ft. or more and weighing over 1001b. In
the Smithsonian Institution in Washington is & very clear quartz sphere
12% in. in diameter.*

In the past, large and clear quartz crystals were fashioned into beauti-
ful objets d’art, such as may be seen in the Louvre and other museurns, to
say nothing of spheres for erystal gazing. Too offen large crystals are
shattered in transportation or even purposely broken up by the laborers
who collect them in remote regions. For this reason as well as because
of the frequent presence of internal defects, foreign matter, and twinning,
the task of determining the orientation of the axes and of selecting those
portions suitable for cutting into plates, ete., is often not easy. The
methods for attacking this problem are described in Chap. XVI. Pyra-
midal faces at both ends are rarely found, except on crystals of small size.

It is believed that natural quartz crystals were formed either by con-~
densation of 8i0; vapor or by the evaporation of solutions of silicates in
water. Very small crystals can be produced artificially. {

* An account of this beautiful specimen is given in Science, vol. 71, p. 410, 1930.
The various forms of quartz and their occurrence in nature, as well as descriptiona of
some famous quartz specimens, are treated in a popular manner in “Quartz Family
Minerals,” by H. C. Dake, F. L. Fleener, and I. II, Wilson, New York, 1938. P.F.
Kerr and 'A. I. Ericheen {4m. Mineral,, vol. 27, pp. 487499, 1942} describe a crystal
of emoky quartz from Teofilo Otoni in Brazil, 7 ft. 2 in. long, 11 ft. 2 in. in circumfer-
ence, weighing over 5 tons.

1 A full account of this subject hes recently been prepared by Paul F. Kerr and
Elizabeth Armstrong, “Recorded Experiments in the Production of Quartz,” Bull,
Geol. Soc. Am., vol. 54, supplement 1, pp. 1-34, 1943. Most of the experiments have
been performed with steel bombas or thick-walled tubes, at pressures up to 3,000 kg/em?,
Various temperatures, extending in some cases to over 870°C, have been used.
Crystals have been produced from a large number of materials. The presence of
potassium or lithium chloride and of sodium tungstate is thought to be beneficial,
The largest artificial quartz erystals on record were produced by Chrustachoff in 1887
from aqueous dislyzed ailiea at 250 to 320°C; they messured 8 by 8 mm, reaching this
gize in 6 months. Most of the experiments of other workers, resulting in smaller
erystals (usually a millimeter or less in size), lagted only & few days. The guestion is
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11. As was stated in §7, quartz is enantiomorphous, both right- and
left-crystals being found in nature. The two types of a-quartz are repre-
gented in Fig. 5. In addition to the faces shown, which are the most
characteristic, many others have been recorded.* The trigonal sym-
metry is usually revealed by the larger size and greater smoothness of the
R- 88 compared with the r-faces. It is the z- and s-faces that indicate

Z

B 4
i

3__ _0)

.
e e o

Left-quarts Right-quarts
Fia. B~Tho two enantiomorphic forms of a-quartz, together with the orthogonal axial
systoms.
right- or left-handedness. It will be observed in Fig. 5 that in » left-
quartz the normal to the edge where these two faces meet points up and
to the left, while in right-quartz it points up and to the righf. Moreover,
the two non-parallel edges of an z-face converge upward toward the left
in a loft-quartz, upward toward the right in & right-quartz. This rule
holds true on inverting the erystal end for end; hence, either end of the
principal axis may be taken as the positive end of the Z-axis. 1In other

still open whether quartz cryatals large enough for practical purposes can be grown
in a reasonable time in the laboratory, instead of requiring the lapse of many years,
a8 seems to have heen the case in nature.

* A discussion of many less common faces on quartz crystals may be found in a
paper by A. Descloiseaux in Ann. chim. phye., vol. 44, pp. 128-316, 1855; also in
““Manuel de Mineralogie,” vol. 1, Paris, 1862, by the same author; see also G. Kalb,
Z. Krist., vol. 86, pp. 439464, 1932, vol. 89, pp. 400412, 1933, vol. 90, pp, 163-185,
1935. Further information on quartz is given in A. E. H. Tutton'sB4 ‘‘Crystal-
lography and Practical Crystal Messurement”’ and in the book by Soaman®+7.
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words, the principal axis is not a polar axis, as are the three X-axes.
Their polarity is betrayed by the z- and s-faces, when these pre present.
As indicated in Fig. 5, the 2- and s-faces oceur (in untwinned specimens)
only at alternate edges of the prism. IHence it is only at one end of each
X-axis that the sz-combination can be found—and not always there, for
in many specimens these faces are altogether absent. They are said to
be most common in ¢rystals from Brazil. In #winned erystals, on the
other hand, the sz-combination may oceasionally be found at both ends
of an X-axis. The s-faces tend to have one pair of parallel edges rela-
tively long and close together; moreover, the natural striations sometimes
visible on an s-face always point toward an adjacent z-face.

Prismatic faces, especially on large specimens, often have parallel
striations running across them in the X-direction. When present, espe-
cially on two adjacent faces, they are useful in forming a first estimate
of the axial directions. These striations are alternations between very
short segments of m- and r-faces; the effect is sometimes called palisading.
They may cause a pronounced tapering of the prismatic face, the edges
of which then usually converge toward an R-face. Usually the B~ and
r-faces are more nearly plane and perfectly oriented than the prismatic
faces.

In this book we take as the positive sense of an X-axis the direction
outward from a prismatic cdge af the ends of which z- and s-faces belong,
whether the crystal is right or left, as shown in Fig. 5 (see Chap. X VI for
a full discussion of quartz axes and their determination), This conven-
tion, with the customary Y-axes, makes the axial system right-handed
for right-quartz, left-handed for left-quartaz.

The principal {Z-) axis of quartz is of the type called a ““screw axis”;
the Si0; groups occupy positions that wind themselves progressively
about this axis, ag explained in §540. The sense of rotation in a right-
crystal is opposed to that in the leve form.

The axial ratio Tfor the Bravais-Miller axes of a-quartz at room tem-
perature is a:¢ = 1:1.100; it is the ratio OA/OB in Fig. 3, the E-face
being taken as the unit face. The Millerian angle ¢ between any two of
the Miller axes has the value 93°57’ &= 2. The R- and rfaces make an
angle of 141°47" with the corresponding m-faces.* The s-faces are at an
anglo of 24°26’ with the principal axis. Such evidence of cleavage as there
is shows itself chiefly parallel to the B- or r-faces. This can sometimes
be observed when a thin plate is shattered by too intense vibration.

12. List of the Commoner Faces of Quartz Crystals, with Miller and
Bravais Symbols. It is customary to number the Miller axes a1, as, as,

* The azimuths ¢ and polar angles 8 of the normals to the six B-faces are ¢ = 90°,
¢ = 51°47'; o = 30°, ¢ = —51°47"; and ¢ = —30° & = 51°47". For definitions of
these angles see §61.
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as well ag the Bravais-Miller axes 4., A, Ay, in eyeclical order counter-
clockwise g8 seen from the positive end of the principal (c- or Z-) axis,
whether the erystal is dextro- or levogyrate. This convention is followed
in Table 1I below and also in Fig. 6.

The names of the various faces are as follows:

m, first-order hexagonal prism.

R, primary positive first-order rhombohedron (or simply positive
rhombohedron or major rthombohedron).

r, negative first-order thombohedron (or simply negative rhombo-
hedron or miner rhombohedron).

8, trigonal bipyramid.

z, trigonal trapezohedron.

The numbers in the first column of Table II are those of the faces
marked in Fig. 6. Faces 4, 5, and 6 for m are obtained by reversing the
gign of each index of faces 1, 2, and 3. The symbols for faces K, r, s, and
z apply to the +Z-end of the crystal (the end toward the observer in
Fig. 8). For the other end, all signs of indices for R and r are reversed;
for the s~ and a-faces, any two indices of the Miller symbol are inter-
changed, with corresponding changes for the Bravais symbols. Miller
and Bravais symbols are denoted by A{ and B.

TasLe II.—SyMeoLs oF FacEs FOR RIGHT-QUARTZ

m-faces R-faces r-faces s-faces z-faces

No.
M B M B M B M B M B

1 | @1I1)] (10.0)| (1003 | (10.1)| (722)} (T0.1)} (124)| (12.1)| 412 | (1. 1)
2 | (112)] (01.0) | (010} ] (T1.1}| 212 | (AT. 1) @4 | @11 Z4D | (85.1)
3 | {20 @0 | o1y ] (01.1)| 22Dy ! (01.1)] ()| (11.1)| (T24) | (18.1)

, For a surface normal to an X-axis (the YZ-plane), the Miller indices
are (017), (011); (Ton), (101); (170), (110). Such surfaces are not com-
mon natural faces of the crystal, but they are the major faces of the X-
cuts. Surfaces normal to the Y-axes are of course simply the m-faces.
A surface normal to the prinecipal (Z-) axis (the basal plane) would have
the symbol (111) or (111).

Face Symbols for Left-quartz. 1In conformity with the principle out-
lined in §327, it would be logical to let the mirror image of Fig. 6 be the
stereographic projection for left-quartz. This procedure would require
taking the Miller and Bravais axes in clockwise instead of counter-
clockwise order, but it would offer the advantage of leaving the symbols
of all faces the same as for right-quartz. If one adheres to the usual
convention of counterclockwise order for both kinds of quarts, it is neces-
sary to assign different symbols to corresponding s- and z-faces. For
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these faces, the Miller symbols for left-quartz are derived from those for
right by interchanging any two indices (or by writing all three indices
in reverse order); from statements made above it is thus evident that the
same face symbols hold for the s- and z-faces of left-quartz at the +Z-end
of the crystal ag for right-quartz at the —Z-end. The Bravais symbols
for the s-faces of left-quartz are obtained from those of right-quartz by
changing the signs of the first three indices; for the z-faces, the first three
indices are written in reverse order with signs reversed. The open circles

Fi1a. 6.—8tereographic projoction of the fnces seen from the +Z end of a right-quarts
oryatal. The three Bravais axes 4,, A, A: aro poarallel to the X-axea of a left-quarts,
antiparallel to those of a right-quartz, The Z-pxis is toward the front. The axes marked
¥1, ¥y, ¥y are the projections of the threo Miller axes upon the plane of the primitive circle.
The circles marked s and z (without subsecripts) are the polea of those faces for a left-
quartz; they are also the poles of the same faces for a righ{-quartz at the end facing away
from the observer. For a left-guarts, the mirror image of thia figure would be used, with
the words “right' and “left" interchanged in the caption.

in Fig. 6 show the locations of the poles of the s- and z-faces of a left~

quartz at the end toward the observer.
The angles befween the normals to adjacent pairs of faces of quartz

erystals are as follows, from Tutton:

mB 38°13 mz 12°1
RR 85°46° mm 60°0/
Rr 468°16¢° T 25°67"

37°58' re 54°61’
::: 66°52°

Stereographic Projection of a Quarlz Crystal.* Figure 6 shows the
srrangement of faces at the end nearer the observer for & right-quartz.
* Stereographic projections are explained in §19.
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Attention is called especially to the trigonal disposition of the s- and r-
faces. The s-faces are the more significant, since the pole eorresponding
to each of them comes at the intersection of two circular arcs containing
also B- and r-faces. According to §19, all poles on the same are corre-
spond to faces in the same zone, having parallel intersections. For
example, one such zone comprises the series m,, x4, 8, rs, Ry, 82, and m,,

13. Ditrigonal Polar Class, No. 19 (symmetry Cy,, also called trigonal
hemimorphic hemihedral, rhombohedral hemimorphie, ditrigonal pyram-
idal, and polar ditrigonal tetartosymmetrical). The only representative
of this class that need be mentioned is fourmaline. For further infor-
mation one should consult the larger books on crystallography and
especially a paper by Worobieff.*

In chemical eomposition tourmaline is a complex silicate of boron and
aluminum and one or more of various metals. The composition, like
the color, is very varisble. Opaque specimens are generally useless for
piezoelectric purposes owing to their relatively high conductivity. The
usual form is that of a rather slender prism terminated by pyramids which
often have different degrees of bluntness, owing toc the predominance of
different types of trigonal pyramid at the two ends. The axis of the
prism is the ¢- (or Z-) axis; unlike that in the quartz class, it is a polar
axis. DBy convention that end which becomes electrically positive on
heating is called the *‘positive” end. Aepinus called this the analogous
end of a tourmaline erystal, regarding the positive increase in charge
as analogous to the positive increase in temperature; the opposite end he
called the eniilogous end (usually, but not always, the more pointed end).
It has become common usage to apply the terms ““analogous” and ““anti-
logous” to the positive and negative ends of the polar axes of other
crystals as well.

‘When once the positive direction of the Z-axis has been fixed, the
X~ and Y-axes are determined according to the general rule for the
trigonal system given in §3.

The axial ratio of tourmaline is @:¢ = 1:0.4474,

14, Hexagonal Holoaxial Class, No. 24 (symmetry Ds, hexagonal
enantiomorphous hemihedral, hemimerphic hemihedral, or trapezo-
hedral). The representative of present interest is S-quartz, or high-
quartz, the form that crystallizes at témperatures from 573 to 870°C.
Above 870° it transforms to upper high-tridymite. BS-quartz occurs as a
natural crystal, and has been grown on a small scale artificially. When
crystals of S8-quartz are cooled below 573% the outward features remain
unchanged (with minute alterations in axial ratio and density), but the

* V. V. WoroaIery, Z. Krisi., vol. 33, p. 263, 1800. A long paper, illustrated,
giving a very full account of this crystal.
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internal structure is that of a-quartz.* Similarly, crystals that grew
a8 a-quartz at temperatures below 573° are inverted to S-quartz at the
transition temperature, bearing still their trigonal faces, some of which
now are unrelated to the internal structure. Right a-quartz becomes
right f-quartz, and similarly for the left forms. A crystal may be passed
up and down through the inversion point repeatedly, having the char-
acteristic properties of a trigonal erystal on one side of the critical tem-
perature and those of a hexagonal crystal on the othér. Stresses set up
on cooling, however, are likely to cause cracks; and, after cooling, the
a-quartz may be found twinned. The inversion point has been precisely
determined to be 573.3°.t Like o-quartz, high-quartz is enantio-
morphous and has neither center nor plane of symmetry. The same axes
are used ag for a-quartz, but the twofold axes are now six in number.

15. Crystal Twinning. Much hag been written about the analogies
between erystals and living organisms, with regard to growth, disease,
and many other aitributes. One characteristic that crystals share with
menkind is the ability to change their minds. After growing to a certain
extent from the original nucleus, a crystal face may decide to change its
manner of growth, henceforth taking on particles in a different orienta-
tion. If the decision is made once and for all, a contact twin results, each
portion being entirely characteristic of the elass, but with axes in different
orientations. Sometimes there is suth a state of vacillation that it
sppears as if two crystals were so intimalely intergrown as to make
separation impossible. This is called penetration twinning; the component
parts may be of very irregular size and shape. Various intermediate
gradations between contact and penetration twins occur. Again, the
change in orientation may take place in a rhythinical manner, sometimes
producing guite uniform alternating layers, leading to visible siriations
on the surface (repeaicd, or polysynthetic, twinning). In many cases
twinning increases the apparent symmetry of a erystal.

In structure, the two components of a twin may be symmetrieal with
respect to a plane (reflection, or chirel, twing) or to a point (inversion
{wins); or one component may be relatively rotated 180° about a line
called the twin axis (orientational, or rofational, twins). Still other special
types of twinning are recognized.

The only example of twinning to which particular attention need be
given here is that in quartz crystals. Twinning in Rochelle salt is related
to the domain structure and will be treated in Chap. XXYV.

* According to Sosman (ref. B47, p. 116), departures have been found with some
specimens.

t Bates, F., and F. P. Purrrs, Nat. Bur. Standards, Sci. Paper 557, August, 1027.
The transition is so sharply defined that its use 25 a base point on the thermometric
scale is suggested,
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Twinning in guartz crystals is & very important consideration in the
selection of material for resonators as well as for specimens to be used in
the measurement of piezcelectric coeflicients. For the following state-
ments we are indebted chiefly to Sosman’s book. Orientational twinning
is common; in the case of quartz this is called twinning of the Dauphiné
type, the two components being both right or both left, but one being
rotated 180° with respect to the other about the Z-axis. Also of frequent
oceurrence is chiral twinning, known as the Brazil type, with one com-
ponent right, the other left, having a prismatic face (1120) as the twinning
plane, The electric axes may be in the same sense or in opposite senses,
depending on whether or not there is also Dauphiné twinning. Penetra-
tion twinning is common in both the Dauphiné and the Brazilian types.
Repeated twinning, especially of the Brazilian type, is often found, with
layers parallel to the faces of the trigonal prism. Other less common
types of twinning have been recorded.*

Twinning of the Dauphiné type is not revealed by optical tests with
polarized light parallel to the optic axis (§333), since both components of
the twin rotate the plane of polarization in the same sense. Since the
electric axes in the two components are opposed, thereby diminishing the
piezoelectric effect, this type is sometimes called electrical twinning. This
term is also applicable to those Bra.zll twins in which the elactric axes are
opposed. The Brazil type can always be detected in polarized light and
may therefore be called eptical twinning. There are probably not many
casges of optical twinning in which the electric activity is not impaired,
especially when the twinning is irregular.

Many badly twinned crystals show no external evidence of anything
abnormsal. In the case of penetration twinning, however, it may happen
that z- or s-faces occur at the ends of adjecent, instead of alternate,
prismatic edges. If the s-faces are all inclined in the same way when
seen from the front, the twinning is of the Dauphiné type; if they point
alternately in opposite directions, the twinning is Brazilian. Sometimes
local twinning at the surface is revealed by differences in the degree of
glossiness or, on artificially polished or etched surfaces, by a line sepa-
rating the twinned portions.

The question of the possible removal of twinning from quartz crystals
is considered by Sosman. He points out that (for Brazilian twinning)
the conversion of right- into left-quarts or the reverse must be difficult, if
not impossible, since it would require on the part of each pair of oxygen
atoms in the twinned region, not only a rotation of 180° about the prin-

* Twinning in quarts erystals is described at greater length by GrothPss; Sos-
manP47: L, Essen, Jour. Sci. Instruments, vol. 12, p. 256, 1935; W, A. Burgers, Proc. Roy.
Soc. (London), vol. 116, p. 553, 1027; and W, Bragg and R. E. Gibbs, Proc. Roy. Soc.
(London), vol. 109, pp. 405-427, 1925, ,
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cipal axis, but a further change in orientation with respect to the Si atoms
ag well. It is true that Shubnikov and Zinserling* assert that a sharply
localized stress (pressure with a steel ball) causes a (Dauphiné) twin to
form on the surface of a quartz erystal, but this holds out no hope for
the removal of twinning from the interior. Twinning in quartz is con-
sidered further in Chap. XVI.

16. Etch Figures and Their Uses. Crystal symmetry is related to
chemical as well as to physical agents. Just as the rate of growth of a
crystal from a solution or melt is different in different directions, so also
is itz rate of eolution. For example, a sphere of quartz immersed in
aqueous hydrofluoric acid assumes in time a flattened form having trig-
onal trapezohedral symmetry. _

Our interest is mainly in the microscopic figures and general patterns
produced by etching with a suitable solvent on a natural or artificial plane
on the surface of & crystal or on a sphere fashioned from & crystal. Such
figures are of great value in the identification of {aces, in determining the
axes of unfaced crystals and the positive directions of polar axes, in dis-
tinguishing between enantiomorphous forms, and in revealing the presence
of regions of twinning.

The study of etch figures is complicated by the fact that they depend
to a considerable extent on the treatment of the surface before etching,
the solvent, the extent to which the solvent is kept in circulation during
the etch process, the time of ctehing, and other factors. For etch figures
on Rochelle salt see §406; for those on quartz, §335.

17. Isomorphic Mixtures. Many instances are known of two or more
different compounds so closely related that their crystals not only belong
to the same class but can be mingled in any proportion in the same crystal.
Such a crystal may be regarded as a type of solid solution, the term 7so-
morphic referring to the similarity in crystalline form of the constituents.
Isomerphic mixtures, or “‘mixed erystals,” are found especially among
salts having the same acid radicals and related metals and with molecular
radii and axial ratios that are not too different. Such crystals are found
in nature, as for example the garnets. In the laboratory they can be
produced in great variety. We shall revert to this subject in Chap.
XXVII, where mixed crystals of Rochelle salt and certain isomorphic
salts will be dealt with.

18. The Grouping of Crystal Classes According to Physical Prop-
erties. With respect to any given physical effect each class is character-
ized by certain constants that can be arranged in matrix form according
to their geometrical properties. Each physical efiect is a relation
between two phenomena, for example, elastic stress and strain or electric
field and polarization. Mathematically, each effect is treated as the

* A, SeusNiEov and K. ZINSERLING, Z. Krist., vol. 83, pp. 243-264, 1032,
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relation between two parameters, either of which may be scalar, polar
vector, axial vector, or tensor.* From the types of parameter, one deter-
mines what constants exist in the most general case, and then from con-
siderations of crystal symmetry one learns which constants may differ
from zero for each class.

Those erystallographically related elasses having identical matrices of
constants (the magnitudes of these constants varying from one species of
crystal to another) may be combined to form a “group.” In general, the
groups are not the same as the crystal systems, though closely related to
them. Voigt dlstlngulshes 11 chief groups (Obergruppen) having centro-
symmetrical properties in common; for the elastie, dielectric, and piezo-
optic constants the number is further reduced. Piezo- and pyroelec-
tric phenomena do not fall into this scheme; each class possessing these
properties forms a group by itself.

In Table ITI pre presented the pertinent data for some of the branches
of erystal physics. The second column gives the mathematical symbols
for the physical effects involved: § = scalar, ¥ = polar vector, ¥V, =
axial vector, T = tensor. The third column indicates the number of
groups as defined above, and the last column shows how many classes
exhibit the effect named.

Tasre IIT
Effect Parameters | Groups | Classes
Elastic. ... Vi 9’ 32
Dielectrie.....coooin e V.,V 5 32
Plezo-optic. ....ovit it e e T,T 9 32
Pyroelectrie (veetorial).................. ... ... S,V 10 10
Pyroelectric (tensorial).......... ... ... ... 8, T 11 29
Thermal expansion....................... ..... 8T 11 32
Plezomagnetic. . ... ..o iiiie i niaineiiennss T, Vs 11 29
Electro-optic.........coov i iiniiinenns T,V 20 20
Piezoelactric (vectorial), ..................... ... TV 20 20
Piezoelectric (tensorial).......... ... ... ... ... T, T 9 32
Intermal friction., . ...........cooivivininans. T, T 9 32

19, Stereographic Projections of Crystal Faces. If from the center of & sphere
radii are drawn parallel to the normals to the faces of any erystal, they intersect the
spherical urface in points known as poles. A stereographic projection is the projection
of all poles of one hemisphere upon the plane of the great cirele of that hemisphere,
a3 seen by an eye at the geometrical pole of the other hemisphere. It is common
practice to combine ths projections of the poles of both hemispheres on one diagram.
The great circle is called the primitive circle.

* According to common usage the term fensor, when not otherwise qualified, means
a tensor of the second rank (a dyadic).
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If the erystal has a unique axis {(commonly taken as the Z-axis), the plane of the
primitive cirele is chosen normal to it, so that the end of the unique axis, which is now
the axis of projection, appears at the conter of the projection. If there is no unique
axig, the axis of projection is taken parallel to the intersections of the faces belonging
to some prominent zone. In what follows we shall refer to the axis of projection as
the Z-axis.

The projected poles corresponding fo faces parallel to the Z-axis lie on the primi-
tive cirele itself. All other poles fall in loci that are either straight lines or circular
gres passing through the ends of a diameter of the primitive circle. The poles on any
such locus correspond to a set of faces that form a zone (§4); the edges formed by the
intersections of such a sot of faces are all parallel. The pole at the center of tho
primitive circle represents a face normal to the Z-axis (the basal plane).

Although a stereographie projection eannot show the actual form of a erystal, it is
in important respects more useful than a perspective view of the crystal, since it
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of a crystal face ABC, struction of a stereographic projection.

reveals the symmetry characteristics at a glance and shows quantitatively the orienta-
tions of the various faces.

In Fig. 6 is shown a stercographic projection of a quarts crystal.

Since clear and simple directions for making stercographic projections are some-
what hard to find, the method now to be described may prove useful. The problem
is to find by the smallest number of operations the location of the pole P in Fig. 8,
corresponding to a face (hkl) of a erystal of given axial ratio azb:e.

The method can best be explained by reference to Fig. 7, in which the {(hkf)-plane
is represented by the triangle ABC, the normal $o which is OD. In accordance with
§4, we may let the distance OA be e/h, OB = b/k, OC = ¢/l. Any of the digits
h, k, [ may be negative, in which case the corresponding distances in the figure are to
be laid off in the negative direetions. The angular coordinates of the direction QD
are ¢ and 6, where tan ¢ = ka/hb, and tan 8 = (al/ck) cos ¢ = (bl/ck) sin p.

If O in Fig. 7 is taken as the center of the sphere, it is evident that the pole cor-
responding to the face (k) will be at the intersection of 0D with the spherical surface.
The projection on the plane of the primitive cirele (the X ¥-plane in Fig. 7) will lie
on the line OF, since it is the point where the primitive cirele is intersected by the line
from the pole on the sphere to the point on the Z-axis where the eye is located.
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The eonstruction of the stereographic projection can now be carried out according
to Fig. 8, in whick OX, OY, and ¢ are the same as in Fig. 7, and OE", a radius of the
primitive circle, is parallel to OE. It remains to find the position of P on OE".
Instead of making a separate diagram for this purpose,it is customary to perform the
construction on the same diagram. Aas the first step we imagine the COE-plane in
Fig. 7 to coincide with the plane of the paper in Fig. 8 so that OC, 0D, and OF coincide
in direction with OC’, OIF, and OF', respectively. The line 0D’ making the angle ¢
with OF’, is normsl to {hk); hence, D’ is the pole of (kkl) on the sphere. The eye i3

Fia. 9.—8tereographic projection of a Rochelle-salt crystal, with details of construction
' for the (121} lace.

located at X ; hence, P is the stereographic projection of 1Y on the plane of the primi-
tive circle, which at this stage iz perpendicular to the paper. OF ig the distance of
the stereographic projection from the center of the circle.

Having located P/, we now return the primitive cirele to ite original position in the
plane of the paper. The second and final stch in the construction consists simply
in laying off on OE" a distance OF = OFP'. P is then the desired projection of the
face (RED).

If the stereographic projection is desired for a face belonging to a hezagonal or
trigonal crystal, for which the indices are given according te the Miller or the Bravais
system, it is necessary first to calculate the relative intercepts of the face on the three
orthogonal axes. Formulas for the transformation are given, for example, by Davey
(ref. B14, p. 34) and by Wolfe*.

As an example of this construction we shall find the stereographic projection of the
(311)-face of rhombic Rochelle salt, Here k = —2, k = ~1,! = 1. From §8 we

* (. W. WorFe, Am. Mineral., vol. 28, p. 83, 1041,
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find a:b:¢ = 0.8325:1:0.4334. Hence tan ¢ = ka/kb = 0.416, ¢ = 22°36/,
cog p = 0,923

tan 6 = ( 1/c') cos ¢ = —0,893, # = —41°47'. Agin Fig, 8 these angles are laid off
on Fig. 9, and the pole for (211} is thereby located. The poles of the remaining faces
of Rochelle salt are also shown. The open ecircles indicate faces at the end of the
crystal away from the observer. This diagram reveals clearly the asymmetry of
Rochelle salt with respect to all three principal planes.

Between the Curie points, Rochelle salt has the form of s menoclinie erystal, owing
to the spontancous strain y,(§482). 'This strain rises from zero st —18 and +24°C
to a maximum of about 4’ of are at about 5°C and represents the departure of the angle
between the Y- and Z-axes from 90°. 'The alteration in Fig. 8 caused by so small an
angular change would be quite imperceptible. Strictly, one of the two black dots
representing the faces (010) and (010) (the two Y-faces) would be moved inward
radially by a very minute amount, while the other black dot would become an open
cirele moved inward by the same amount.

With those systems having oblique crystallographic axes, the axial ratios do not
at once lead to the distances OA, OB, and OC in Fig. 7. Nevertheless, the angles ¢
and 8 for any face can always be calculated from goniometric measurements, so that
Fig. 8 can be used for locating the position of the corresponding pole.
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CHAPTER III
CRYSTAL ELASTICITY

Take from our souls the strain and stress . . . WHITTIER.

Owing to the interactions between the elastic and the electric prop-
erties of piezoelectric crystals, it may be helpful, before considering
elasfic phenomena by themselves, to survey the ficld somewhat compre-
hensively, including thermal effects as well. The first part of the chapter
is devoted to this survey, which leads naturally to the expression for the
energy of a system that is under mechanical, electrie, and thermal strain,
known as the thermodynamic potential. The subject matter of the present
chapter is symbolized by the first term in that equation.

After these general preliminaries, there will follow the treatment of
the purely elastic relations. As an introduction to the special elastic
properties of crystals, the familiar expressions for stress and strain and
for the elastic constants of isotropic solids are first reviewed. The sub-
ject of shears 1s considered somewhat in detail, because of their oceurrence
in some of the more important types of resonator and other piezoelectric
devices.

After the fundamental stress-strain equations for anisotropic solids
will come consideration of the properties of the nine clastic groups into
which the 32 classes can be divided. Finally we shall give the equations
for transformation to axial systems in any orientation, first in general
form, then specialized for thosc groups which are of chief importance in
this work,

20. Relations among Elastic, Electric, and Thermal Properties of
Crystals. No study of piezoelectric phenomena can be complete without
regard to the interactions between the electroelastic effects on the one
hand and thermal phenomena on the other. The following chapters
contain abundant evidence that the subject is of more than academic
interest. 'The present discussion is confined to lnear effects, thus exclud-
ing such subjects as electrostriction.

The relationships between the three types of effect are illustrated in
Tig. 10. ‘The arrangement of symbols is here based upon Voigt's theory,
according to which a field E causes a piezoelectric stress X = —eE, where
¢ is the appropriate piezoelectric stress coefficient. Similarly = strain z
causes the electric polarization P = ex. In like manner the pyroelectric
constant p relates & change in temperature ¢ with P; the arrow from ¥ to

a9
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5Q indicates the electrocaloric effect (variation in the quantity of heat @
on application of an electric field £), which, however, is usually expressed
as & relation between the change ¢ in temperature and E (§523); the
coefficient of expansion a relates ¢ with «; the line from X to 5§, with a
coefficient b relating them, indicates the thermoelastic effect.* X and z
are related by an equation of the form # = —sX, with analogous expres-
gions for the dielectric susceptibility » and the specific heat €. The
arrows indicate the directions in which the various effects usually take
place. The additional arrow from P to E shows that an electric{ield may
exist by virtue of polarization charges.

Each of the nine straight lines forming the diagram in Fig. 10 repre-
sents what may be designated as a primary effect. In every case, how-

ever, there iz at least one other

X ¢ E  path over which the process can
take place, unless certain coeffi-
cients vanish for the particular
class to which the erystal belongs,
Such roundabout effects may be
called secondary effects. An out-
standing instance is the “false’
pyroelectric effect, due to plezo-
electric action, which may be
several times as great as the direct
effect itself. In this case the pri-
mary, or “true,” effect is indicated

¥Fia. 10.—Relations between elastic, di- PY the path #— P, while the
elactric, and thermal phenomena, adapted Seconda[y effect follows the pa‘th
from Heckmann#ts}, oy

# —z— P, 8Bimilarly, when an

elastic compliance coefficient sis measured by observations on X and
z, & plezoelectric polarization P is produced (unless e = 0), which
if the crystal is not short-circuited gives rise to a field E, which in
turn modifies the value of X; moreover, through the thermoelastic effect
the temperature changes, thus affecting the value of . While for most
crystals the thermoelastic effect is very small (adiabatie correction), this
is by no means true of the piezoelectrie reaction upon X.

This unified presentation of primary and secondary effects does not
appear t0 have been given hitherto. The reader can easily trace out still

* This expression of thermoelastic relations in terms of a coefficient such as b
relating stress to change in quantity of heat is unconventional. Usually, as on pp.
285, 286, and 784 in Voigt, the theory relates stresa to temperature, through coefficients
of thermal stress gx; these are the coefficients employed in Eq. (1) below. In the
treatment of the electrocaloric effect (3523) we shall use the symbol ¢ to designate
the electrocaloric coefficient, but there need be no confusion, since the electrocaloric ¢
does not appear in the present chapter.
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other secondary effects. The only one with which we shall be especially
concerned is the relation between E and P: the susceptibility derived
from measured values of P and F may be very different (especially with
Rochelle salt) according to whether or not the path E - X w2z —Pis
suppressed by mechanical econstraints that prohibit deformation of the
crystal.

21. We are thus led to another important consideration, vz, the
specification of the conditions under which any given coefficient is observed.
In thermodynamics one distinguishes between the fwo specific heats of
gases, (', and C,.  Similarly in solids the difference between the specifie
heat Cx at constant stress, and C. at constant strain, though small, is
real. The necessary condition, or standard state, for the experimental
determination of Cx, as well as for its use in equations, is that X and F
shall be held constant: there must be no change in applied stress, of
either mechanical or electrical origin, For €., £ and P must be constant.

Of greater importance to us are the analogous remarks that may be
made concerning the coefficients s and 4 (see also §§198, 204, and 205).
Supplementing the statement made above, it may be said that the com-
pliance coefficients s (always with appropriate subsecripts) have in general
different values according to the thermal and electrical state of the erys-
tal: not only must we discriminate betwecn the elastic coefficients at
constant temperature (isothermal) and at constant entropy (adiabatic),
but in each of these cases it is necessary to specify whether ¥ or P is con-
stant throughout the process. Frequent use will be made of the symbols
sz (or sometimes ¢*)* and of 8, (or s*} to denote constaney of field and of
polarization, respectively. Other suffixes or superseripts, as I for con-
stant electric displacement, will also be employed. Similar notation will
be used for the elastic stiffness coefficients e. It is not necessary to indi-
cate in the symbol whether T (temperature) or { is constant. In static
equations the isothermal values will be taeitly assumed; in vibrational
equations, the adiabatic.

In the case of the dielectric susceptibility we shall use the symbol 4
when X is constant (crystal ““free”), and »"" when z is constant (erystal
“clamped ).

We come now to the effects represented by the sides of the triangles
in Fig. 10. Reference has already been made to the true and the false
pyroelectric effects. Similarly, one might speak of a true and a false
thermal expansion effect in piezoelectrie crystals: the true, or primary,
effect would be abserved by holding F constant. Otherwise, a secondary
effect @ — P — E — X — x might oceur, causing & piezoelectrie contribu-
tion to the observed expansion.

* It is perhaps excusable, and certainly space-saving, to refer to the value of an
elastic coefficient at constant field as the “isagric” value (pronounced “ice-agric’).
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In the case of the direct piezoelectric effect represented by z — P, the
standard state, tacitly assumed in the fundamental equations, is with £
and ¢ constant. Strictly, if observations are not made with extreme
slowness, the application of stress X causes adiabatic heating, with a
false piezoelectric effect over the path X — 8@ — & — P. Unless the
pyroelectric constant p is very large, this may be neglected in static
experiments. When a pyroelectric crystal vibrates, however, the periodi-
cally varying temperature must make a pyroelectric contribution to the
polarization. Buch an effect deserves consideration in such crystals as
Rochelle salt.

In Fig. 10, as also in Fig. 11, the portion Xz#5Q represents the thermo-
dynamics of solids. In a broader
sense the entire figure is a thermo-
dynamic disgram, and the devel-
opment of the theory relating the
various effects is along thermo-
dynamic lines. It is in this sense
that the strain-energy function
about to be considered is called 2
“thermodynamic potential.”

22, Tt is possible to extend the fore-
poing discussion by including other
physical cffects. By way of illustration
we consider briefly the relation of mag-
netic phenomens to those already treat-
ed, even though they have but slight
bearing on the field of this book. This
cxtension requires s three-dimensional
model instead of the two-dimensional

Fro. 11—Tetrahedrons representing the  Fig, 10. Such a model is shown in
ﬁgt:g:nz‘grz%’;&]:suc' dielectric, thermal,  porsnoctive in Fig. 11, consisting of the

' tetrahedron HX&QE, which we may
call the stress letrahedron, enclosing a smaller strain tetrahedron [z0P. 'The two basic
triangles X QF and &P are the same as in Fig. 10.

In Fig. 11, H represents the magnetic field strength, related to the magnetic
polarization I (intensity of magnetization) by the cquation I = xH, analogous to
P =nE. The three quadrilaterals H/zX, H15Q0%, and {1IPE symbolize, respectively,
the relations of magnetism to elastieity (primarily piezo magnetism, though the con-
cept may be extended to include other magncetoelastic effects), to heat (thermo-
magnetic effects), and to electrostaties. The last effect is hitherto undetected, and
probably undetectabls, owing to the absence of appreciable magnetic permeability
in insulating crystals. The purpose in mentioning these magnetic cffects is to point
out that, so far as they exist at all, they are subject to secondary effects and to the
necessity of defining standard states, just as is the case with the clastie, electncal and
thermal effects to which we now turn.

It should be noted that in Fige. 10 and 11 the quantities §Q and G are scalars,
E and P vectors, X, z, H, and I tensors; in tensor analysis they are tensors of ranks 0,
1, and 2.
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23. The Thermodynamic Potentials. In the treatment of problems
in elasticity, Green in 1837 introduced the ‘‘sirain-energy function.”’*
This funetion, when applied to a reversible system, is commonly called
the free energy of the system and has been extended to include thermal
and electrical as well as elastic effects. The synonymous term *‘thermo-
dynamic potential”’ was used by Lord Kelvin and by Gibbs and applied
to crystals by Duhem and by Voigt.

When ihe free energy is expressed in terms of strains, it is known as the
first thermodynamic potential and is denoted by £ The negatives of its
differential coefficients with respect to the components of elastic atrain
are the components of stress.

The free energy is also often expressed in terms of stresses. It is then
called the second thermodynamic potenital, denoted by {; the negatives of
its differential coefficients with respect to the components of elastic stress
are then the components of strain. These potentials are further dis-
cussed in §187. Lither of these expressions for the free energy can be
expanded in powers and products of the components of strain (or of
gtress), thus becoming the sum of homogeneous funections of various
degrees. Since for an unstrained body the potential energy is a true
minimum, the first-degree term vanishes. Insofar as the strains are
small, s is usually the case, only quadratic terms need be retained. In
elasticity, for example, this amounts to the acceptance of Hooke's law.
We shall have but little oceasion to consider terms of higher degree.

As a bagis for further discussion in later chapters, as well ag with
respect to elasticity, we now write the two thermodynamic potentials in
terms of mechanical, electrical, and thermal effcets. A crystal plate is
assumed to be subjected simultaneously to an arbitrary uniform mechan-
ical stress, a uniform electric fleld in any orientation, and to be at a tem-
perature differing from some standard temperature T’ by the amount &;
AS is the change in entropy corresponding to .

The frame of reference has its X-, ¥-, and Z-axcs parallel to the prin-
cipal orthogonal axes of the crystal, as defined in Chap. II. The six
terms in each equation represent the energy in terms of the elastic,
dielectric, piezoelectric, thermal, thermoelastie, and pyroelectric prop-
erties of the material. Symbols of the form x4 denote components of the
total strain due to all causes, while X, X; are components of cxternally
applied mechanical stress (§25); ex: and i are coeficients of elastic stiff.
ness and eompliance, respectively (§26) (their values are assumed to be

* ¢ Mathematical Papers of the Late George Green,” Macmillan & Co., Lendon,
1871, p. 245: “In whatever way the elementa of any material aystem act on each other,
if gll the internal forees exerted be multiplied by the elements of their respective direc-
tions, the total sum for any assigned portion of the mass will always be the exact
differential of some function.” The phrage “in whatever way” may be regarded as
including thermal and electrical effects.
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those which would be observed at constant electric field (§76) and at the
temperature T); nif, and ni, are dieleciric susceptibilities at constant
strain and constant stress, respectively (§204); E., En are components of
the field strength in the crystal, maintained constant by potentials
applied to suitable electrodes; éms and dms aTe piezoelectric stress and
strain coefficients; J is the mechanical equivalent of heat in ergs per
calorie, p the density, C the specific heat in calories g~ deg~! (with solids
its value is practically the same at constant stress and constant strain);
g» and a, coefficients of therfnal stress and expansion;* and p. u pyro-
eleetric constant.t Summations extend from 1 to the number indicated
in the superscript. For all combinationg of different subscripts, sx = 8
and mim = 7mx; Such commutation is not permissible with the piezo-
electric coefficients. Hence in the development of Eqs. (1) and (2) there
are, in the most general case, 21 elastic terms, 6 dielectric, 18 piezo-
electric, 6 thermoelastic, and 3 pyroelectric. All products are scalar.i

8 o 3 3
E= %E E CriTali + % 2 z NembeEm + 2 2 Ry I
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* VoiaT, pp. 285 and 772.

+ Note on the use of subscripts. Just as the six components of stress or of strain
are often conveniently indicated by the subscripts 1 . . . 6, so the three components
of electric vectors are often indicated by aubscripts 1, 2, 3 instead of 2, y, 2. In writing
general expressions, applicable to all components of a given quantity, it is customary
to use a letter as subscript: for example, X, moeans a component of stress where & may
have any velue from 1 to 8. Some quantities, as, for example, elastic and piezo-
electric coefficients, require (according to the convention in common use} two sub-
geripts: das is the piezoelectrie coefficient relating a ficld parallel to ¥ to the strain 2,
while d,. is the general form of the coefficient, it being underatood that m = 1, 2, or 3,
whilek = 1,2, 3, 4,5, or 6. This symbolic notation is especially useful in the writing
of summations in abbreviated form.

The choice of letters to serve as generalized subscripts is entirely arbitrary; the
reader soon learns that the important thing is not what the symbols for the subscripts
are but where they are located.

% Since the field strength E is analogous to atress, and polarization to strain, the
sscond, third, and sixth terms in Eq, (1) should in strict consistency be expressed in
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The six terms of Eqs. (1) and (2) will be recognized ag corresponding
to the three radial and the three peripheral relations represented in Fig,
10. Qur concern is mainly with the first three terms, and in the present
chapter with the first term alone. Its use in obtaining the fundamental
stress-strain equations will be discussed in §25.

24. In the elementary theory of elasticity the three elastic constants
of an isotropic solid are Young's modulus ¥, the rigidity, or shear, modu-
lus n, and the bulk modulus, or volume elasticity, x. These are not inde-
pendent, for any one of the three can be expressed in terms of the other
two by the relations given below. Expressions involving Poisson’s ratio
o (transverse contraction: longitudinal extension) are also included.

= g = 2n(1 + )
n = 3kY _ Y
9 —-Y 21+
) 4 Y 3
“=3@n =7y 30 — 20)
O_=Y—2n 3k — 2n

2n 2Bk + n)

The relations between the elasticities of isotropic bodies and of crys-
tals are discussed in succeeding sections, especially in §31.

When & solid body is in equilibrium under a given system of exter-
nally impressed forces, its state of deformation is called a strain, while the
forces, which necessarily oceur in equal and opposite pairs, give rise to a
stress.  If all parts of the body suffer the same deformation the strain is
homogeneous: lines originally straight and parallel remsin so in the
strained state, though in general their lengths arc changed (always in
the same ratio) and their directions are altered; a square becomes a paral-
lelogram, & sphere becomes, in the most general case, a triaxial ellipsoid.

95. Stresses and Their Components. In some texts a siress is defined
gimply as force per unit area acting on any plane in the body, with the
understanding that the force may or may not be normal to the plane. In
respect to elasticity, such a definition is defective, since an elastic strain
is expressed in terms of one or more pairs of equal and opposite forces per
unit area. A force per unit area is a vector, while a pair of equal and
opposite forces per unit area is a component of a symmetrical fensor.
Graphically, a vector is usually represented by a simple arrow; similarly,

terms of polarization. The energy is, in fact, so expressed in Eq, (243) (p. 252). The
present formulation ia chosen because it makes explicit use throughout of the param-

eters that oceur in Voigt's theory.
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a tensor component, if extensional or compressional, may be represented
by an arrow with heads at both ends pointing in opposite directions.*
The two heads may be thought of as representing either the oppositely
directed impressed forces acting on opposite sides of the body under stress
or an hnpressed force balanced at any plane by a force of elastic reaction.

Stresses and Stress Systems for ¢ Homogeneous Solid in Equilibrium. A
stress is defined as the force per unit area exerted by the portion of the
body on one side of a surface element within it upon the portion on the
other side. 'This definition involves the tensorial nature of the stress; for
when the body is in equilibrium, there is on ‘‘ the other side’” an equal and
opposite force, and the pair of forces constitutes the stress. In general,
such a force can be resolved into a normal component, which is a simple
pressure (positive or negative) and a tangential component, which is one
of the pair of forees producing a shearing stress. Whatever the direction
of the force, if the body i3 in equilibrium a plane can always be drawn in
such a direction that the shearing stress vanishes (§28).

The origin of the stress may be purely mechanical, owing to contact
of the body with some material medium: the forces acting on the surface
are then called surface tractions, and if the strain is homogeneous the stress
at the outer surface is the same as at any point in the interior. On the
other hand, the stress may originate in body forces, exerted directly on
spme or all portions of the body by some agent through ““action at a dis-
tance.” To this type belong the piezoelectric stresses, i.e., mechanical
stresses in & plegoelectric crystal caused by the application of an electric
field. As will be seen later, a uniform field gives rise to a homogeneous
internal stress, tending to deform the crystal exactly as an equivalent
mechanical stress impressed externally would tend to deform it. If the
crystal is ¢lamped, the clamping mechanism exerts forces equal and oppo-
site to those produced by the field, so that the strain is zero.

In general, the term *‘impressed sfress’ means the sum of the mechan-
ical and piezoelectric stresses, with respeet to any surface element in the
crystal.

In most practical cases the body is subjected not merely to a sinple
stress such 2§ we have been discussing, but rather {0 a system of such
stresses, which may be due in part to external mechanical forces and in
part to an electric field. Hence, in the most general case we have to do
with a stress system, resolvable into siress components with rezpect to some
get, of axes. Such s stress system is treated as a second-order tensor.
The single stress discussed above may be one such component.

Where there can be no ambiguity, we shall sometitmes refer to a stress
system simply as the siress.

*In the “Lehrbuch,” p. 133, Voigt suggests a special graphical aymbol for a
shearing stress.
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A body may, of course, be in equilibrium even though the impressed
stress system is not homogeneous, asin the case of a flexed bar or of a body
subjected to a pair of opposite collinear forces applied to limited regions
on opposite sides. In general, in such cases the stress and hence the strain
become distributed throughout the body in a manner that may be very
complicated, especially in such anisotropic media as crystals, Never-
theless, the stress and strain at any point can always be regarded as
homogeneous if a sufficiently small element of volume is taken in the body
in equilibrium, ’

In a vibrating body not even small volume elements are in elastic
equilibrium. Each clement is subject to an unbalanced stress system,
the forces on opposite sides no longer being in equal and opposite pairs.
The strain in the clement is determined by the lesser of the two forces
in the pair; the difference between the two forces iz what overcomes
friction and provides the acceleration. Nevertheless, by applying
D’ Alembert’s principle we can regard the element as being in equilibrium.
The balance of forces then includes the elastic reaction, the inertial and
frictional forces, and the impressed external and body forces. In the
piezo resonator it is the body forces that do the driving.

Just as a force vector may be resolved into three components, so the
symmetrical tensor that represents a stress system may be resolved into
stz components, »iz., compressions along the three coordinate axes, and
shearing stresses with respect to the three planes normal to the axes. In
all cases a right-handed orthogonal system is used. The six components
are designated by X, ¥, Z,, Y., Z;, and X, in each case the capital letter
indicating the direction of the force and the subscript the direction of the
normal to the surface on which the force acts. Frequently we shall find
it convenient to use the symbols X1, X, X3, X4, X5, and X, where, for
example, X stands for ¥,. When a general symbol for n stress is required,
X will be used without a subseript. X, ¥y, and Z, are compressional
components, while Y,, Z., and X, are shearing components. The latter
might equally well be written Z,, X,, and Y.

Rules for the Algebraic Signs of Stresses. In agrecment with Voigt we
shall observe the following rule:

Normal to any surface, o stress is positive when compressional, negative
when extensional.

When the term “compressional”’ is used in a general sense, it is with
the understanding that a negative compression is an extension.

26. Strains and Their Components. The components of strain are
denoted by Zz, ¥y 2 Yn 2 and 2, OT by 21, 25, . . . 2s.* They are
related to the displacements as follows: If u, v, w are displacements of a

* This notation, due to Kirchhoff, is much more commonly used in piezoelectric
literature than that of Love, in which x., etc., is replaced by ez, ete.
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point whose undisturbed coordinates z, y, 2z become altered by strain to
z+u,y+ v 2+ w then

_du _ W -
T = 32 Yo =3 T 92

dw , oy ou , dw av |, du
y;-—-;.’g'l'a-z 2=t x”'":ﬁ-*"ﬁi, 4)
- dw v - oy  dw - dr  ou
20.1;'—-'55—5; 2@3—55—5—5 2w’_—é5_:33

The last row of equations takes account of the fact that in géneral an
arbitrary system of stresses produces a rotation of the body as a whole as
well as a deformation. The amount of rotation is (&2 4+ & 4+ a2y
radians about an axis whose direction is given by (&.:éy:@.). In the
case of pure shears (§27) there is no rotation.

T4y Yy, 20d 2, are the extensional components of strain, a compression
being a negative extension. The algebraic sign of these components is
positive for an extension, negalive for a compression. A positive strain
corresponds to @ negative stress (see §27). This rather unfortunate con-
vention is so deeply embedded in crystal literature that we shall not
attempt to uproot it. It is analogous to the custom in the theory of gases
of treating an externally applied pressure as positive, while a change in
volume is regarded as positive for an expansion. The nature of shearing
strains and the convention with respect to signs are considered in §27.

In elastic theory Hooke's law is assumed to be valid for all types of
deformation within the elastic limit. Linear equations then suffice to
express the stress-strain relations. Departures from linearity in the case
of certain crystals will be considered in §462.

The complete expression for the components of elastic strain of an
anisotropic body in terms of components of stress is obtained by taking
the derivatives of the entrgy function [Eq. (2)], the electric field E being
constant and the change in temperature ¢ being zero. Only the first
term remains,

]

;]
-51;—.; = 2 Xy = = Tn,

3
the negative sign conforming to the convention mentioned above. When
this expression is written out in full for all six values of h and of 7, we
obtain the following six fundamental equations for the components of
strain in terms of the components of stress and of the 36 elastic com-
pliance coefficients 811 . . . sei*

* In strict tensor notation, the components of stress and strain, which are second-
rank tensors, should be writfen with two subscripts and the elastic stiffness and
compliance coefficients, which are fourth-rank tensors, with four. We employ the
simpler notation given by Voigt.
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— 2z = 8uXa + 812V, + 8137, + 1Y, + 31524 + 816X,
—thy = suX: + 822Yy + 8332, + 85, + 835y + 826X,
—2, = 8§ X+ 352Yy + 832, + 8 Y, + sgsZs + SasXy (5)
=% = 8uX: + 80¥y + 842, + suY. + 805%. + 80X,
—2: = 561 Xs t 3V + 8532, + 85 + 86520 + 856X,
—%y = 801Xz 4 Yy 4 202, + 86Y + 5622 + 5eeX,

According to elastic theory the number of independent coefficients is
reduced from 36 to 21 by the relation sy = sy, where ¢ and k may be any
integers from 1 to 6. The 21 coefficients s are called by Voigt the
“elastic modull.” Since in English the term “modulus” is usually
applied to the ratio of stress to strain, we prefer to call the s8;; the elastic
compliance coefficients or siraply the compliances. They may also appro-
priately be called the elastic susceptibilities. We have introduced them
first, as they are the quantities derived directly from observation.

In order to express the stresses in terms of the strains, Eqgs. (5) are
solved by determinants. Each stress is then given in terms of strains
and of certain functions of the compliances, which appear as coefficients
of the strains. Calling these coefficients ¢y, . . . ¢s, we have

—X: = cnxz + cualy + e + calis + C152%s + Croxy
- Y,, = €Ty b C20ly + CosZ: + Caals + Cos2e Coglly
—Z, = cuts + Castfy + CssZz + Cpalfe + C352: T+ Caely (6)
Y = cuxs + calty + caste + Caaps + Cusze + cioxy
—Zy = ok 4 Coolly + Cua%e + Coalfs + CosZo + oy
—Xy = Car¥s + cogliy ¥+ CosZs I Coalis -+ Costo <+ Croly

Equations (5) and (6) are the generalized form of Hocke’s law. Equa-
tions {6} can also be obtained by taking the derivative of the first term in
Eq. (1) with respect to ax.

The ci are commonly called the elastic constanis. As with the com-
pliances, there are 21 independent values, owing to the relation ¢y = cu.
In order to avoid ambiguity and to distinguish them from the compliances
one may appropriately call them the stiffness cogfficients. They are analo-
gous to dielectrie stiffness, while the a; are analogous to dielectric sus-
ceptibility. Each stiffness coefficient is related to the corresponding
compliance coefficient by an equation of the form eax = Su/D, where D
ig the determinant of all the compliance coefficients [the matrix for this
determinant is evident from Eqs. (B); it appears also under Group I in
§20] and Sj; is the cofactor of the same determinant with respect to sn.

Only in the crystal class of lowest symmetry do all 21 elastic coeffi~
cients have values differing from zero. The number decreases with
ascending symmetry, becoming 3 for cubie crystals, 2 for isotropic solids,
and 1 for flyids. Wherever an sy becomes equal to zero, the correspond-
ing ¢ vanishes also,
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The two types of elastic constant are related by the following equa-
tions, in which 7 and k may have any values from 1 to 8, k being different
from 1:

[} ]
;c.ﬂn e ] 2;46;183 =0 ()]

27. Shearing Strains and Stresses. Shearing stresses and strains
play an important part in piezoelectric phenomena. The model shown

Fia. 12.—Wobden model, hinged at tho coruas, dlustiating shears  T'ho pattern painted

on the metal cross stripa shows the deformation of a circle into an ellipse.
in Fig. 12 was designed to illustrate a shearing strain. The two lines
drawn at 45° to the sides remain mutuslly perpendieular after shearing,
and they become the major and minor axes of the ellipse. If the strain
is produced by moving one side while the opposite side remains fixed, it
is called a simple shear. Adjacent cross strips, which may be considered
88 representing adjacent parallel planes in a three-dimensional body,
slide relatively to each other. This would be equally true if one of the
vertical sides of the model were moved vertically, and it would also be
true if the strips were horizontal instead of vertical.
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The definitions of the magnitude and sign of a component of shear
can be understood from Fig. 13, which represents the base OACB of a
cube having edges of length OA. The X- and Y-axes are here the “axes
corresponding to the shear.” If s force in the X-direction is applied to
the AC-face of the cube, so that the stress is X, the base OB being held
immovable, AC will move tangentially to A'C’, the distance AA’ being
proportional to X, to OA, and to the compliance sss of Eq. (5). All
planes parallel to the face OA are rotated through an angle ¢, which, for
small deformations, may be taken as equal to AA'/0A. The angle ¢ is
the measure of and numerically equal to Y

"
the  shearing strain, which in Fig. 13 is __..--'"C
positive, P il c’

A shearing strain is positive when the A (A <l
planes undergoing rotation are turned from the ¢I
positive direction of onc of the azes correspond- “'I I
ing to the strain foward the positive direction of I I
the other axis. Or, in a positive shear, o !/ B/
rectangle becomes deformed so that an acute ‘___,-Ta"—
angle lies in the quadrant between the positive o"' B X
directions Of the two azes. Fro. 13.-—A simple shear,

A shearing siress is positive when ot lends The mensure of the shearing
to produce a negalive shearing strain. The froan 3 & tn this feure the
internal elastic reaciing stress, which opposes  of the diagram is the plane of
an impressed shearing stress, thus has the °0°°"
same sign as the strain. An analogous statement may be made concern-
ing compressional impressed and reacting stresses.

Figure 13 represents a simple shear, which involves a rotation of the
body as a whole about the Z-axis. If the stress had been ¥, of the same
magnitude as before but applied vertically upward to the face BC, the
deformation would have been the same but the rotation would have been
in the opposite sense, as shown by the dotted lines in Fig. 18. If ¥,
and X, were applied simultaneously, the strain would be twice as great
and the net rotation would be zero. Since in the macroscopic deseription
of elastic phenomena it Is immaterial whether the actual sliding takes
place in one direction or the other, or in both, it is customary to use the
single symbol X, for the shearing stress in the X Y-plane, whether it is
to be regarded as producing a simple shear, as in Fig. 13, or a pure shear,
which will now be considered. Mathematically, the identification of X,
with ¥, reduces the number of components of the general stress tensor
(Xe Yy 24y Yoy By, 22y X,y Xy, ¥2) from nine to six.

In & pure shear there is no rotation of the body as a whole. It may be
regarded either as the result of two equal simple shears, as in the preceding
paragraph, or as due to a compression along one diagonal of the cube face
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and an extension along the other, as shown in Fig. 14. From the first
point of view the deformation of the square into & rhombus is effected
by the shearing stresses 8,, S and 8,, S;, which are equivalent; from
the second point of view, to the mutually perpendicular compressional
stress €, €' and extensional stress E, E'. The point to be emphasized
is that the deformation may be regarded either as a compressional or as a
shearing strain according to whether the axes of reference are parallel
to E and C or to S; and S, these sets of axes differing by 45°. Geo-
metrically, it means that by rotating the axes 45° a pure shear*becomes
transformed into a compression and
an extension at right angles, and
vice versa. The significance of this
in piezoeleciric applications is that
a shearing stress produced piezo-
electrically by an electric field can
be converted into a compression in a
direction 45° from the axes of shear.

The correlation between Egs. (4)
and Fig. 13 can now be pointed out.
Ifin Fig. 13 welet OB = z, 04 = y,
then AA'/y = BB"/z, or in differ-
ential notation du/dy = ov/0x. The
rotation of the body as a whole is
LS i given in the last row of Eqs. (4),
F1a. 14.—Equivalence of pure shenr to gand is zero when du/dy = dv/dz;this

combined extension and compression. . ers
is the condifion for a pure shear,
The second row of equations shows that in general & component of shear
such as z, is made up of two simple shears; it is *pure” or “‘irrotational ”
when these two simple shears are equal and opposite.

It is evident that such an expression as ‘‘the shear about the Z-axis"
is meaningless until the axes corresponding to the shear have been
specified. However, the expression is permissihle with the understanding
that the axes corresponding to the shear are the two orthogonsl axes
perpendicular to that axis about which the shear is regarded as taking
place, as illustrated in Fig. 13. This latter axis is that about which
the entire body rotates in a simple shear. This necessity of specifying
the ares corresponding to & shear is analogous to that of specifying the
direction of & compressional strain or stress.

8. The Ellipsoids of Elasticily. From the foregoing discussion it is evident that,
when s solid is sheared, there are two planes in which thera is no shear, but only exten~
sion and contraction. This statement may be generalized as follows, the proof being
given in treatises on elasticity: In any homogeneous strain, whether all six components
differ from zero or not, there is always a set of three orthogonal lines in the unstrained
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state that remain orthogonal and unaltered in direction after the strain. 'These lines
are the principal azes of the ellipaoid into which a sphere is transformed, This
ellipaoid is the strain ellipsoid; its parameters are the components of strain. The
radius vector in any direction is proportional to the ratio of the Iength of a line having
this direction in the strained state, to the length of the corresponding line before strain.
The planes perpendicular to the principal nxes are the principal planes, and they are
the planes in which the shearing atrains are zcro.

Aggociated with the strain ellipsoid is the reciprocal strain ellipseid. This is the
unique ellipsoid that can be constructed in the body in the unstrained state, which is
transformed by the strain into a sphere. Its principal axes are the reciproeals of those
of the strain ellipsoid; and if tho strain is pure, unaccompsnied by rotation of the body
04 a whole, its axes are coincident in direction with those of the strain ellipsoid.

In the most general type of homogeneous pure strain, in which all six components
may be present, the atrain is equivalent to three mutually perpendicular extensions,
whose directions are the principal azes of the strain. They are also the principal axes
of the reciprocal strain ellipsoid. If the strain is not pure, the principal axes of strain
have to be rotated; and in general it may be said that any strain can be resolved into
terms of simple extension and simple shear. The equations by which such trans-
formations are effected are given in §38.

In most of the problems in this book we shall be concerned only with the configura-
tion of a body after strain, without being troubled by the question whether the strain
ispurcor not. It isonly in certain vibrational problems that the rotation of the body
a8 & whole becomes important.

Analogous to the strain ellipsoid is the atress ellipsoid, the parametera of which are
components of stress; the prineipal planes are those for which the shearing stresses
vanish.

29, Elastic Constants for the Thirty-two Crystal Clagses. From their
fundamental nature it is evident that the elastic properties of all sub-
stances are centrosymmetrical; they can be described entirely in terms
of axes of symmetry. The question whether an axis is pelar or not has
no bearing on the elastic classification. Hence all crystals have a higher
degree of symmetry with respect to their elastic than to their piczoelectric
propertics, since the latter are dependent on polarity of axes and also on
elements of symmetry other than axial. With ascending symmetry the
number of independent elastic constanis decreases, the criterion being
the degree of axial symmetry. For example, if a orystal has an axis of
threefold symmetry, a rotation of the system of reference by 120° or 240°
is & “covering operation’ with respect to which all expressions involving
the elastic constants are invariant, and the number of independent con-
stants is correspondingly reduced. It is shown by Voigt that the 32
clagses fall into 11 groups (Obergruppen), in each of which the axial
symmetry is the same. These are the same groups into which crystals
are classified in the treatment of dielectric polarization, electroatriction,
thermal expansion, tensorial pyroelectricity, piezomagnetism, piezo-
optics, and the Kerr effect. For the elastic classification the matrices
aro the same in the 2 hexagonal groups and also in the 2 cubic groups.
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For the present purpose we therefore need list only 9 groupings instead
of 11.

¥ull details of the procedure are given in refs. B34, B52, and B66.
We are concerned only with the results, as presented in the following
tabulation, The class numbers are as in Table I (pages 19-20). The
coefficients are arranged in the same order as in Egs. (5) and (6), the
subscripts indicating the independent coefficients. For example, the sym-
metry in Groups VI and VII is such that cse = ci, whence cua is
written in place of cge. In accordance with §26, we write ¢13 in place
of ¢z ete., and s, in place of sy ete.

It must be emphasized that the coefficients in the following tabulation
are the ones to use in Eqs. (5) and (6) when, and only when, the frame
of reference is the three orthogonal crystallographic azes defined in §5.
Otherwise, the {ransformed coefficients must be used, according to
Chap. IV.

Grour I, Tricranie System, Crasses 1, 2

€11 C1z Ciz €14 G5 L1e S 812 &3 8iq B85 Bus
Ciz Oz €23 €24 L2s L6 812 812 813 834 825 8z
Ciz C3s €z Caa Cgs Osc 81y 821 B3t 334 835 Em
€14 €24 Car Cu Cus Cas S 8n Su S S Sus
€15 €z Cie Cay Lsn Cot 815 815 B35 Hus San Ses
€18 Czs Cys Cus  L56  Coe 816 8356 838 846 856 Sas

Grour II, MonocLiNic SysTeM, Crasser 3, 4, 5
en 1z ¢ 0 0 e 1 813 8m 0 0 sy,
€13 €3 Cax 0 0 ¢ #13 Bzg S 0 0 g
Cis ¢ Cs 0 O e St3 333 3 0 0 3y
0 0 0 cu cs O 0 0 0 384 84 0
0 0 0O cus cs O 0 0 O s8¢ 82 O
Cig Cas cas O O  ces  Bs Bas 838 0 0 &

Grovr III, RromBic SysTEM, CLAssES 6, 7, 8
en ¢ ¢y 0 0 O 8y &3 80 0 O O
Cix €2 ¢3 0 0 O 813 823 8 0 0 O
s ¢y €3 0 0 O 15 64 sy 0O 0 O
1] 0 0 Cud 0 0 0 0 0 84 0 0
0 0 0 0 ¢35 O 0 0 0 0 385 0
0 0 0 0 0 Cas 0 0 ] 1] 0 LI}

Grour IV, TeTRAGONAL SyaTtEM, CLasses 9, 11, 12, 15

€1 ¢z ca 0 0 O $1y e 8, 0 O O
ein ¢ ¢ 0 0 O 813 8u 44 0 0 O
Cia ¢3 ¢ 0 0 0 8; 83 83 0 0 O
1] 0 0 e O 0 0 0 0 gu 0 0
0 0 0 0 eu O 0 0 0 0 35, 0
0 0 0 0 0O ce 0 0 0 0 0 an
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Grovr V, TerracoNAL SysTEM, Crasses 10, 13, 14
e cir e 0 0O ex 811 89 83 0 0 &
€1z €1y oy 0O 0 —eus 813 811 su 0 0 —ane
Cu ¢ &3 0 0 O 813 8 81 0 C O
0 0 0 ¢, 0 0 0 0 0 s, 0 O
0 0 0 0 eu O 0 0 0 0 su O
ey —cs 0 0 0 Ces 81s —815 O 0 0 Bes

Grour VI, TrRicowaL SyateM, Crassgs 16, 17

€1 Gz Cu Gy —€3 O 81 812 S1s 8 —$u O
12 €11 €13 —Ciy ¢ 0 812 811 813 —381e g5 0
e cucea O 00 813 Sz 8z O o o
e —cu 0 e 0 s 814 =51 0 i 0 284
— a5 e 0 0 Cit Cra —815 83, 0 0 45 2ey

0 00 C23 C14 i((:u - cu) [4] 0 0 2825 2814 2(811 - 812)

Grour VII, Triconan Sysrtem, Crasses 18, 19, 20

£n &1z Cia e 0 0O LNt 812 813 su O 0
Cix eu e —cu 0 0 812 su 81y —du 0 0
[T Ciz €3 ] 0 0 813 8§13 83 0 0 0
ey —cy 0 cie O Q 84 —8u 0 54 0 (1]
0 ¢ 0 0 cu cu 0 0 0 0 s 23y

0 0 o 0 o Hen —oc) 0 0 0 0 2314 2(811 — 813)

Groue VIII, HexagoNaL Sysrem, Cuasses 21 1o 27

it €12 € O 0 0 &1 813 &13 O 0 0
¢y e en 0 0 O 83 811 83 0 0 O
€ ¢u e 0 0 O 81z 8 s 0 0 0
0 0 0 cu 0 1] 0 0 0 8 0 0
0 Q 0 1] e O 0 0 0 4] 844 0
0 0 0 0 0 %(011 bt Cu) 0 0 j\] 0 0 2(811 - 812)
Grour 1X, Cupic SysTesM, CLAszEs 28 1o 32
ey €z 62 0 0 O i f1z s 0 0 O
€ €1 €2 0 0 0 §12 S & 0 0 0
€2 6y e 0 0 O 812 812 s 0 0 O
0 0 0 e 0 0 a 0 0 8 O 0
0 0 0 0 eu O ¢ 0 0 0 s34 O

0 0 0 0 0 Cyq 0 V] L] 0 0 849

For comparison the corresponding cocflicients for isotropic solids are
given; the choice of axes is now arbitrary.

Isorroric SoLIDs

e 20 00O s & 8 0 0 O
A¢ A0 0O s 8 & 0 0 O
Axc 000 sno85, 8 0 0 O
000 00 0 0 0 8 0 0
0000 n O 0 0 0 0 & O
0000 0= 0 0 0 0 0
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It will be observed that the & occurs in exactly the same way as the ¢
in all groups except VI, VII, and VIII, for trigonal and hexagonal crystals.
The syinmetry of these groups requires that css = {£11 — €12)/2, while
868 = 2(811 — $12), and also that s4s = 2825 and s = 2834 in the trigonal
groups.

30, The character of the various elastic constants is indicated in
Fig. 15, in which the types of strain that can be produced by the com-
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Fig. 18.—Table showing the stress-strain relntion associntod with each type of elastic
constant. In the small schematic diagrama, arrows represent forces; dotted lines, strains.

ponents of stress are denoted by L, T, L/, 7', 8, and §'. L (lohgitudinal)
and T (transverse) indicate extensional strains parallel and transverse,
respectively, to extensional streeses, as shown in the figure. S (shear)
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and 8" are shearing strains in planes to which shearing stresses are,
respectively, parallel and perpendicular. L/ indicates a relation between
a shearing stress and an extensional strain parallel to the axis of the shear
{or the converse), while in 7" an extensional strain is in the plane of a
shearing stress (or the converse).

All crystals, together with isotropic solids, have values differing from
zero for the elastic coefficients corresponding to L, T, and 8. Fluids
have only compressibility, which is equivalent to writingn = 0, T = —L.
In four of the nine groups of crystals no other elastic coefficients exist
than those of the I-, T-, and S-types.

Elastic coefficients of types L and 8, represented by cm or sm
(h =1 ...86), aro essentially positive. With few exceptions all com-
pliance coefficients of type T are negative, ag they must necessarily
be in isotropic substances, in whieh the positive extension due to an
extensional stress is always accompanied by a negative lateral extension.
In all other cases the signs of elastic coefficients of crystals may be positive
or negative.

31. Comparison of Isotropic Solids with Crystals. It is of some
interest to compare the elastic properties of isotropic solids with those
of crystals, especially crystals of cubic symmetry, In Group IX the
three constants €y, €z, €us are all independent. On the other hand the
three isotropic constants ¢, A, 2, although forming & matrix precisely like
that of eubic crystals, are not all independent. An isotropic substance
has an infinite degree of symmetry about all axes. Since this statement
includes hexagonal symmetry, it follows that the special relations for
trigonal and hexagonal crystals noted at the end of §29 hold here also,
viz.,n = (c — A)/2and s, = 2(s — ). Bearing this in mind and apply-
ing Eqgs. (3), we can now interpret the elastic constants Y, &, and ¢ in the
light of the fundamental parameters given in the tabulation above, both
for isotropic substances and for erystals. We thus find, as is also proved
in treatises on elasticity, that, for isotropic solids,

=n(3?\+2ﬂ) n=c——?\ k_37\+2n A (8)

Y »+n 2 =73 TN+ )

The constants A and n are the “Lamé coefficients” of elastic theory.*
n is the rigidity, while A, to which no name seems to have been given, is
a measure of the resistance offered by an isotropic solid to compressional
strain in a direction at right angles to an extensional stress. In other
words, it expresses the lateral incontractibility of a stretched solid. A is
thus related to Poisson’s ratio ¢; but since the combination of an exten-
gional strain with a compressional strain at right angles to it always

*The symbol s was originally used in place of #.
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involves a shear, and hence the rigidity modulus n, it turns out that # is
& function of both \ and =, as shown in Eq. (8).

In terms of A and n the following expressions for ¢, 8, 8, and s; in the
matrices for isotropic solids in §29 are easily derived:

o AEkn 1 TM
TaBrF 2 Y T 2n(3n + 2n)

82. Poisson’s ratio calls for further consideration, since it occurs in
the theory of vibrations of crystals. If a simple compressional stress
X, is applied to any solid, the resulting compressional strains are
2 = —8uXa ¥y = —80X,, and 2, = —§3X, If the substance is iso-
tropie, ¥, = 2. = .(812/811) = Z.8:/5. Since by definition ¢ = y,/z., it
is evident that one may also write ¢ = &/s. As defined in this manner
Poisson’s ratio is a negative quantity, since, as is seen from Eq. (9), s, and
s have opposite signs. Nevertheless, it is customary to ignore the nega-
tive sign in dealing with isotropic solids. In erystals Poisson’s ratio has
different values depending on the directions of stress and strain. In the
case considered above the values may be denoted by eq1 = 812/8: and
¢31 = 813/811, the second suffix in each case specifying the stress. In
general, gxx = 8u;/8m, and the numerical value may be of either sign.
Tourmaline has the smallest numerical value of ¢ on record (§100) and
Rochelle salt the largest (§79).

In contrast to compliance coefficients of types L and 8 in Fig. 15,
symbolized by s, all the remaining compliance coefficients, of form sy,
express a mufual relation between two different types of deformation. It
iz for this reason that such coefficients oceur in expressions for the coupling
between different modes of mechanical vibration, just as in magnetic
coupling between oscillating circuits the mutual inductances play a part.
The smaller Poisson’s ratio is, the weaker are coupling effects and the
more nearly do the overtones of thickness and lengthwise vibrations
approach to a harmonic ratio. By taking advantage of the faet that for
certain orientations of quartz plates Poisson’s ratio vanishes, it is pos-
sible to eliminate certain undesired coupled vibrational modes from
quartz resonators (§358).

Coefficients of the form su or cu(h # &) are often called elastic cross
constants.

33. Elastic constants of crystals of types L and 8, mentioned in §30,
can now be further interpreted. Compliance coefficients of the L-type,
vi2., 811, 832, And gy, are reciprocals of Young’s modulus ¥ in the X-, ¥-,
and Z-directions. This becomes evident if, for example, it is assumed
that 2 single stress X, is applied to a parallelepiped, as when a bar with
length parallel to X is compressed endwise. Then z; = —$,: X, is the
compressional strain, while the other five strain components derived

c=A+2n s 82-'_—% (9
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from Eqs. (5) represent the other deformations eaused by X, on the
sssumption that no constraints are present. The usual stress-strain
relation gives at once Y = 1/8; = —X./z.. In the equations for
longitudinal vibrations of rods, the stiffness factor is 1/s, the length of
the rod lying in the A-direction. This factor holds also with close approx-
imation for relatively thin plates vibrating longitudinally, even when the
breadth ie greater than the length.

On the other hand, if the parallelepiped were confined in a box with
unyielding sides and bottom and then comptessed from above by the
stress X, the only possible strain would be —z., but in addition to X,
there would, in the general case, be five other stress components exerted
by the box. From Eqgs. (6) we find 2, = —(1/¢11)X.. In general, each
cxe 18 the measure of the resistance offered by the crystal to a stress Xy,
when all other strain components are prohibited, while 1/s) is a measure of
the resistance when these other components are permitted.

The same constraints as those !
imposed by a rigid box would also

? ./ = ’
be present il the parallelepiped A._‘ . —---*:"-‘!'" SR 7_.5:
were in the form of a flat plate of p : __fj c
infinite area, having its thickness y/4 | Pad
in the h-direction, and subjected Fic. 16.—A rectangular plate ABCD bent

R . by flexure into the form A'B'C'T¥. The
to pressure X; It is for this plane of the figure is the plane of flexura.

reason that ¢ appears as the The surfuce through EF normal to the plane
stiffness factor for a thin pieso- of the figure is the neutral surface.
clectric plate vibrating in the direction of its thickness h.

With regard to coefficients of type S it need only be pointed out that,
a8 with isotropic solids, the constants sa, 855, and s¢ are the reciprocals of
the moduli of torsion about the respective axes.

34. Flexure of Crystalline Plates. First we consider an isotropic plate
in the form of a flat parallelepiped, bent as shown in Fig. 16. Before
bending, the length { = AB, thickness ¢ = AD, while the breadth b is
perpendicular to the plane of the diagram.* If only such forces are
applied as are required to cause bending in the le-plane, the deformation
is a pure flexure, every section normal to b being bent in its own plane into
s form like A’B'C'D’. The surface intersecting the paper in EF (or
E'F'), midway between the top and bottom surfaces of the plate, is the
neutral surface. This surface suffers neither elongation nor contraction.
Above this surface (for the case shown in the figure), all linear elements
parallel to I are elongated, by amounts proportional to their distances
from the neutral surface; below it, they are compressed by like amounts.

* For simplicity of treatment we are assuming here that [ >> e. The theory is

more complicated when e is of the same order of magnitude as I, as will be seen in §73.
There is no restriction on the ratio b/e.
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All cross sections normal to I, except that through the center of the plate,
become rotated without change in shape or size. It is owing to this
rotation that the expression for the frequency of flexural vibrations, given
in §73, contains as a factor the moment of inertia of the section perpen-
dicular to I. From the relation between extensional forces and shears
explained in §27 it is evident that the deformation represented in Fig.
16 can also be produced by suitably applied shearing stresses. This fact
iz important in the piezoelectric production of flexural vibrations, as will
be seen in §179. '

Complications arise when the plate is of crystalline material. In
general, crystals have elastic cross constants not present in isotropie
solids. Except in special cases these constants couple the compressional
strain that characterizes the flexure with a shearing stress capable of
causing torsion about the length dimension.

Ag an example we consider & quartz plate with its I-, b-, e~dimensions
parallel to the Y-, Z-; X-axes, respectively. When the plate is flexed in
the le-plane, as in Fig. 16, the strain -+, is present in the upper half, —y,
in the lower. Then, by virtue of the relation ¥, = —euny, = ey, there
is & stress +Y¥, in the upper half, —Y, in the lower, and the combined
effect of the two is to twist the plate about the Z-axis.

On the other hand, if the same guartz plate is flexed in the b-plane,
similar reasoning shows that there is no cross constant leading to torsion.
This orientation is one of the special cases mentioned above.

The applieation of a bending moment, whether accomplished mechan-
ically or piezoelectrically, results in a flexure accompanied by a twiat,
except when either (1) the length [ is parallel to an axis of erystallographic
symmetry or {2} the plane parallel to I and to a principal axis of the
geometrical cross section (for a rectangular cross seetion this is the bi-
or the be-plane) coincides with a plane of crystallographic summetry.
This rule can also be put compactly by saying that torsion-free flexure is
possible with a transformed axial system sueh that

T
s = S = 0

the length I of the plate being parallel to Z'.

A quartz bar or plate can be flexed without torsion if its length [ lies
anywhere in the YZ-plane,

A plate so oriented as to bend without torsion is also free from flexure
when twisted about the same axis.

Static flexural effects in crystals have been used chiefly in the meas-
urement of elastic constants* and in the Curie electrometer deseribed in
§122,

* The theory of flexure in crystals and ite use in measurements are treated more
fully in Voigt’s “Lehrbuch,” pp. 634, 725, 731, 751 and elsewhere,
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Of greater concern in this book are flexural wibrations, which are
treated in §§73, 179, 354, 359, 380, 396, and 503.

306. Torsion of Crystalline Prisms and Cylinders. The well-known
facts for homogeneous isotropie materials will first be summarized.
When equal and opposite torques +Q are applied at the ends of a solid
cylinder whose circular eross section has the radius a, the torsional strain
in radians per unit length is

where 7 is the rigidity.

¥ar a cireular ¢ylinder, solid or hollow, the velocity of propagation of
torsional waves is v = +/n/p, where p is the density.

When in a state of torsion, each cross section of a circular cylinder
rotates without deformation in its own plane. If the gection is not cir-
cular, it becomes warped by torsion.

For the piezoelectric production of torsion or of torsional vibrations
it is important to note that, when a solid of any material and cross
section is subjected to torsion, all planes parallel to the axis of torque are
in a state of shear. The manner in which advantage is taken of this fact
is explained in §180.

With crystals the theory is complicated except in the case of & circular
eylinder, for which the forsional compliance T is (344 + 835) when the
cylindrical axis is in the Z-direction; or, in general, when the axis iz
parallel to , the eompliance i8 T% = #(ss + &), b, ¢, and j signifying the
X-, Y-, Z-axes taken in any order. This expression reduces to

T=2s8=1/n

for isotropic cylinders. For oblique directions transformed axes are used.
For any given h-direction the - and j-axes may have any two mutually
perpendicular directions in the plane normal to h. Henee it is possible
to express the torsional compliance in terms of the fundamental constants
and the direction cosines I, m, n of & alone.*

27, = &% + & = P(ses + 8ea) + M4 (860 + 842) + 2(50s + s55)

4 m2n2(4dsgs + 4835 — 880z 4 856 + 800 — 2844)

+ 024 (4553 + 4811 — 8831 + Fee + 80 — 2850)

+ 2m(4s11 + 4829 — 8812 -+ 814 + 855 — 2840)

o+ 202mn(2ses + 2854 — 4814 — 38ss) + 2m2nl(235s -+ 2815 — 482 — 39u)
+ 21’?.%17%(2310 + 2825 haad 4833 - 3845)

+ 214n (2815 — 2835 + 864) + m(2814 — 2836 + su5)]

+ 2m{I(2820 — 2816 + 8s) -+ (2824 — 2824 + 856)]

+ 2nYm(2ssy — 2824 + 856} + 12835 — 2515 + Sas)] (10)

* Voiar, p. 735.
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This formula, which becomes greatly simplified for the groups of higher
gymmetry, plays an important part in the measurement of elastic coeffi-
cients by static methods. If, according to Voigt's usage, the h-direction
is taken as that of the Z’-axis, the expression above gives 2T = &y 4 sis.

In the following equations r is the rotational (torsional) strain in
radians per unit length of the cylinder or prism, @ the torque, ¢ and b the
major and minor semiaxes of the elliptical section, 2b and 2¢ the breadth
and thickness of the rectangular section. Tor rotated axes the coefli-
cients are to be primed. *

For a eylinder of elliptical section, axis parallel to Z,

I TR
"= rab\a? + [ (11)
On setting @ = b this becomes the equation for a eylinder with cireular

section of radius a-
Q 2QT
T = 'n? (544 + 355) = W (12)

If the material is isotropic, one has the familiar equation r = 2@ /rna*.

The general equation for a prismatic erystal bar of rectangular section,
in any orientation, is given in Voigt.* The expression is greatly simpli-
fied when the length ! (axis of torsion) is parallel to Z and the crystal
symmetry is such that 8,5 = 0. Under these conditions, taking [, b, and
the thickness e as parallel to the Z-, X-, and Y-axes, respectively, we
have for the torsional strain approximately

. 3855Q
- Athe’ (13)
where, as long as b > 3¢, A% = 1 — 0.630(e/b) (544/555)%.

If the axis of torsion is in a direction of three-, four-, or sixfold sym-
metry, $a = $s5, and the formula becomes identical with that for an
isotropic prism of the same dimensions, in which case sg becomes 1/n for
isotropic solids. In this case the coefficient A may be found approxi-
mately from A2 = 1 — 0.630e/b when b > 3¢. For larger ratios of eto b,
A may be obtained from the following values, which we have computed
from data in Geiger and Scheel.t :

T

g =1 05 025 0125
A =08095 0926 0947 0.968
These values of A are for isotropic solids, but the order of magnitude
is the same for crystals.

* P, 644. See also ref. B19, vol. 8, p. 194,
f Vol. §, p. 195
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In general, any cylinder or prism under a static torque Q may be said
to possess a certain sialic torsional stiffness N, = Q/r, which is a more or
less complicated function of the cross section and the elastic constants.
Only with isotropic solids, and in certain special cases with crystals, as
exemplified by Eq. (12), do the elastic constants appear as & separate
factor (modulus of rigidity). ‘Tle relation of N, to the dynamic torsional
stiffness of vibrating rods is pointed out in §74.

The subject of torsion in erystals is more fully discussed in Voigt, in
Auerbach-Hort,* and in Geiger and Scheal. T

For the treatment of torsional vibrations see §§74, 180, 356, 380, and
503.

36. Compressibility of Crystals. In general, uniform hydrostatic
pressure causes both the volume and the angles of a erystal to change.
Nevertheless, there is always o certain orientation in which a parallele-
piped can be cut so that no angular distortion oceurs. In all systems
except triclinic and monoclinic the edges of this parallelepiped are
parallel to the crystallographic axes.

In all cases the compressibility s, is given by the equation

-8y = vATvp = 811 + 822 -+ 823 + 2(323 + 831 4 812) em? dyne"‘ (14)
where A2 is the change in volume caused by a change Ap in pressure.

The linear compressibility 8, = —al/l Ap depends on the direction
of I. For the threc principal directions the formulas] are

8: = 811+ 812 + 813 8y = 821 + 522 + 513
8. = sy + 83 + &, (15)

87. The Adiabatic Elastic Constants. As a rule, erystal vibrations
are of such high frequency that the adiabatic rather than the isothermal
values of the elastic constants should be used in calculations. Most of
the numerical data for the fundamental constants at present avail-
able were obtained by static measurements, in which the temperature
remained practically constant. The derivation of the adiabatic from
the isothermal values requires a knowledge of the specific heat, which in
solids may with sufficient accuracy be considered as approximately the
game at constant volume as at constant pressure, and of the cocficients
of expansion parallel to the three axes.

The following formulas have been derived by Voigt;§ the superseript
@ denotes the adiabatic constants, T is the absolute temperature, ¢ the

* Vol. 3.

i Vol. 8.

t “Lehrbuch,” p. 722.

§ “Lehrbuch,” pp. T79f.
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specific heat in ergs em—3 deg~1, and g, and @, are coefficients of thermal
pressure and expansion:

4
|

= Cm + q—'"%kT ‘ (16)

#2017 T

She c

Sk (17)
The adiabatic correction thus causes a slight increase in the stiffness
of a crystal. ‘
The quantity ¢ is a thermo-elastic coefficient (§23) representing the
increment of & component of stress exerted by the crystal when heated 1°
at constant strain. Its value may be calculated from the equation

qr = 2 cixe; dyne cm—? deg™!

For all ¢lastic groups except I and II the summation extends only over
i = 1,2 3, because a4 = a; = as = 0.



CHAPTER IV

ROTATED AXES AND TRANSFORMATION
OF ELASTIC CONSTANTS

Omnia mutaniur, nihil fnieril. —Qvip,

More often than not, the crystal plates and bars in technical appli-
cations have orientations that are rotated with respect to the crystallo~
graphic axes. Special formulas are therefore required by which the
elastic properties of an oblique cut from any crystal can be expressed in
terms of the fundamental elastic constants discussed in Chap. III.

The general transformation equations for the components of strain
and stress will be given first. They will be followed by the equations
for transformation of the elastic constants, including the specialization
of these equations with reference to those crystal groups with which we
shall be most concerned.

This chapter contains also a short account of the geometrical repre-
sentation of elastic propertics, the terminology for erystal cuts, and the
conventions for specifying the orientation of oblique axes.

38. Transformation of Components of Strain and Stress. The
process of determining which of the 21 possible elastic coefficients vanish
for a erystal of given symmetry involves a rotation of the crystallo-
graphic axes through certain angles. Angular transformations of axes
also play an important part in the measurement of elastic constants,
in the theory and design of piezoelectric devices, and in many other
problems.

The basic equations for the components z}, ete., of strain with respect
to an axial system X', ¥', Z’, in terms of the components with respect to
the original system X, ¥, Z, are now given, with direction cosines accord-
ing to the adjoining matrix.

\x vz
X|h 4 &L
Y |mi m: m
Z n na na

z = Bz, + miyy + nlzs + miny. + mbze + houz,
¥, = Bz, + miy, + nize + manay,s - nolaze + Lmaz,
2, = Bx, + miyy + niz. + manays + nalazs + Lmazy
iyl = 2lyza + 2mamygyy b 2nangz; + (mans + mama)y.

+ (nels + nale)zs + (lama -+ lama)z, »  (18)
2z, = 2hlx, + 2mamayy + 2ngmize + (man + mana)ys
4 (nals 4 nla)zs + (e + Lima) 2,
al = 2lzs + 2mumay, + 2nansze + (Mana -+ Mman)ys
+ (nals + nalidzs + (Lima + lLami)x,
65



66 PIEZOELECTRICITY [§38

It is sometimes necessary to express the unprimed components of
strain or stress in terms of a given set of primed components. Following
are the strain equations, in which the direction cosines are still defined
sccording to the matrix above:

= Bz + l”y{, + B, + Ll + Llel + Ll
y,, = mﬁz + m,y,, + m";zf, + mzmay; + m,mlz; + mum.z,
2 = nizl + nly, + iz + nangyl + nanazl + ningl
Yo = 2mamazl + 2Zmangy), + 2manaz) + (mans + mang)y)
-+ (mgm + mlna)z’ + (m:_n:g + M2ﬂ1)$ (19)

2??4!135:, + 2nglzy:, + 2n3l32' + (ngla + ﬂalz)y

X + (naly + mla)z; + (s + nzll)-’t;
xy = 2hmary + 2hmay, + 2lmaz, + (lma + Lama)y,

+ (lamy + Lima)2l 4+ (fime 4 Lmy)z)

The corresponding equations for transformation of stresses, using
the same direction cosines, are

&z

X! = BX, + mi¥, + niZ. 4 2mn,Y, + 20,2, + 2im X,
Y;. = PX + ng + Ny 7 + 2mgn2Y + 21’12122 + 212M3Xy
Z, = BX, + miY, + niZ, + 2munasY, + 2n4lZ, 4+ 2im X,
Y) = bliX. + mamsYy 4 nansZ, + (mang + mans) ¥,

+ (nzla + nalﬂ)zz + (Izma + lam) X, (20)
Z; = LD X: 4+ memi Yy + nannZ, + (manty + mna) ¥,

+ (el + nida)Z: + (fomy + Limg) X,
X:, = Ll.X: + m1m2Yy + ninZ, + (mmz + ‘mzn1) Y.

+ (nla 4+ nali) 2. + (himy + Lomi) X,

The unprimed components of stress in terms of the primed com-
ponents are given in Egs. (21).

X, = BX! + Y, + BZ, + 20lLY" + 2442, + 2LL.X)
Yy = miX, + mi¥, + miZ; 4 2mmsY, + 2mamiZ,, + 2mm.X,
Z. = niX, + niY] + niZ, 4+ 2nanaY, + 2naniZl + 2nn.X)
Y, = mmX; + mom ¥y + mansZ; + (mang + myns) Y,
+ (many + mma)Z + (mane + mana) X (21)
Zw = ‘fhl]X; -+ ﬂgzgY"’ + ﬂalg;Z: + (’ﬂzl. + ’nalz) Y;
+ (nahs + mil) 2] + (mile + May) X

Xy = l;m;X,’, + IgMgY:, + laMaZ; + (lg”l; + laﬂ‘bg) Y:

+ (lsmy + l;m,)Z; + (lim, + Izml)X;,

We shall also have occasion to express the unprimed stress com-
ponents in terms of the primed, using the matrix of direction cosines
ai . .. vs shown in §41, instead of I; . . . 7. In place of Egs. (21)
we then write
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X, =adX. + Y, 4+ 432, + 28111 Y. + ZvimZl + 281X,
Yy = adX. + B3Y, + v3Z) + 28xv:Y) + 2v:00Z] + 20:8: X,
Zy = o3X} + BYY, + viZi + 2BsvsY. + 2vsasZ + 2asfsX]
Y, = asas X + BsB:Yy + vovsZ! + (Brys + Bava) Y

+ ('Yzaa + ‘rsaz)Zi -+ (ﬂzﬁa + G&BH)X; (22)
Z; = marX; + BsB1Y, + vaviZi + (Byv1 + Bivs) Y

+ (yao + i) Z; + (@b + o)X
Xy = ainX; + 818.Y, + vivaZl + (Brys + Bay1) Y,

+ (vies + yea}Z; + (@182 + ) X,

In most of the uses to which these formulas will be put, the trans-
formation consists in a rotation about only one of the axes. In such a
case one primed axis is identical with the corresponding unprimed, and
the calculation is eonsiderably simplified.

The angle 8 through which the rotation takes place is to be taken as
positive when counderclockwise as seen by an observer looking back toward
the origin from the positive end of the axis of rotation.

The only exception to this rule occurs with the levo (left) types of
enantiomorphous crystals, in which the rotation is positive when elockwise.
Since, according to our convention (see §327 for quartz), one of the axes
is then also reversed, a single rule for the sign of # may be stated thus:

The angle @ through which any rotation lakes place 13 fo be taken as
positive when laid off from the positive direclion of one axis to the positive
dircction of the olher, in this order: for rolations about the X- , Y- , or
Z-azes, 0 15 positive when counted from +Y lo +Z, +Z to +X, or +X to
+ ¥, respectively.

Sometimes, as in the description of certain oblique cuts, all three
axes agsume new directions. Although such transformations may be
made in a single step, it is often advantageous to make first a rotation
about one axis to the X,-, ¥~ , Z-system (direction cosines I; . . . n3),
and then by rotation about one of the primed axes to reach the final
system Xi, Yo, Z2. If I} . . . n} are the direction cosines of the final
system with respect to the primed axes and i’ . . . ny’ those of the
final with respect to the original system, the following relations hold:

1’1’ = l;_ll + m{l, + ﬂila mi’ = I'lﬂh -+ m"mg -+ n{ma
I = Ul + mils 4 nils my = lomy + mpmy + nimy
Wo=Uh+mls+nily  mi = Lmy + mymg -+ ngma (23)
ny = lin + mn, + nins
ny = lny + mane + nins
ngy = lny + myng + ning

‘When the matrix of direction cosines given in §41 is used instead of
that in §38, Figs. (23) become
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of = djoy + aify + by of = ales + aifs + aiye
BY = Blea + BiB1 + Bimi By = Plas + BiBs + Bive
W=ratvhtym  WEviemtnhtrml gy
of = dfas + oifs + ofrva
y = Bioz 4+ Bifs + Biva
7i = vias + ¥iBs + vivs

39. The use of the foregoing equations will now be illustrated by a few
simple types of transformation, application of which is to be made in
Iater sections.

First, assume the only strain to be y, and that its components are
sought with respect to axes X' parallel to X, Y' bisecting the angle
between the positive directions of the ¥- and Z-axes, and Z’ making a
right-handed system with X' and ¥'. We have ¢ =45 I =1,
lh=li=m=mn=0m =ns=ny= —mg = 08 45° = 1/4/2. Then,
from Eq. (18), all components vanish execept y, = —2, = y.,/2. The
shear has been transformed into a positive and s negative extensional
strain, each equal to half the original shear in magnitude. The applica-
tion of this transformation in piezoelectric problems will appear
Iater.

Second, let the only stress be ¥,. By substitution in Tqa. (20}, it is
found that after rotating the coordinate axes 45° about the X-axis the
stress components equivalent to ¥, are Y, = =2, = V..

Third, still considering a rotation of § = 45° about the X-axis, assume
compressional stresses ¥, and Z; applied parallel to the Y'- and Z’-axes.
With respect to the original axes the equivalent stress components are
Yo=2,= (Y} +2)/2, ¥, = (¥ — Z))/2. I Z,=0, then

If Z] = Y}, Y, vanishes and the body is compressed on four sides without
being sheared. If Z; = —¥, (equal compressional and extensional
stresses at right angles), there is neither compression nor extension with
respect to the unprimed axes, but only a shear ¥, = Y.

40, Transformation Equations for the Elastic Constants. When it is
recalled that the vanishing of certain of the elastic coefficients for any
particular crystal class is due to the fact that the coefficients are defined
with respect to the crystallographic axes of symmetry, it becomes evident
that with respect to any other axial system all the coefficients will assume
values different from zero except in certain special cases in which some
degree of axial symmetry is still present. Hence, in the general {rans-
formation, however small the amount of rotation may be, all erystal
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classes, even the most symmetrical, assume the elastic properties of the
triclinic system. .

On the other hand, it is often possible to find a new set of axes X’,
¥’, Z' with respect to which some one of the coefficients vanishes, although
it does not do so with respect to the crystallographic X-, Y-, Z-axes.
Advantage of this fact ia taken in certain oblique cuts of quartz in order
to eliminate undesired coupling effects.

The complete theory, which is rather complicated, is given in Voigt
and elsewhere. For only a few of the constants have the transformation
equations been worked out for rotation about all three axes. For
rotation about a single axis the equations for a considerable number of
constants, both general and specialized for various crystal classes, have
been derived by various authors.

While the technique described by Voigt* when once mastered leads
most readily to the transformed equations; the following method is in
principle simpler: Let 1t be required, for example, to derive sj, with
respect to axes X', ¥’, Z', according to the equation z; = —si, X We
assume the single stress component X} impressed and write the six
fundamental stress components X, . . . X, in terms of it, from Eqgs.
(21). These values are substituted on the right side of Eqgs. (5), giving
2z . . . %, in terms of fundamental elastic constants, direction cosines,
and X]/. The values of z. . . . 2, in turn are substituted on the right
side of the expression for z; in Eqs. (18); for example, if h = 5, the
proper expressicn is that for .. The coefficient of X}, which in the gen-
eral case has 21 independent terms, is the desired quantity 8j;.

Similarly, any coefficient ¢y, can be derived by assuming a single
strain z; impressed, substituting in Egs. (19), and then using Eqs. (6)
and (20). The process becomes greatly simplified when the rotation is
about & single axis and when for the crystal in question some of the
fundamental elastic constants are equal to zero.

41, General Equations, Applicable to All Crystal Classes. Direction
cosines are according to the adjoining table. When the rotation takes

Xy z
Xls 81 m
Yies B2 m
Zlas B2 s

place about a single axis through the angle 6, the positive sign of @ is
to be taken as indicated in §38. All direction cosines then reduce to 1,
0, + cos 8, or * sinf For brevity we shall write ¢ for cos & and s for

gin 8.

* Pp. B36/f.
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ROTATION ABOUT ALL TEREE AXES.

81y = aisy - alse + oiss
+ oded(285; + su) + afal(@ss + s56) + alof (2915 + 860
+ 20-?0!26\!3(814 + Sso) + 2a§aaal(855 -+ 364) + 2a§¢¥1a=(sas + 8(5)
+ 2ed(as1s + aasis) + 2ad(matas - or826) + 2ed{ovisas + ansas)  (25)

The equation for s}, is derived by substituting 8 for « everywhere in
Eq. (25); in the equation for si;, v replaces . In both cases all spbseripts
are left unaltered.

sy = Blyisi + Bivisss + Birises
+ (B3vi 4 Bivilsss 4+ -+ + BaveBavssaa + - -
+ Bivi(Bays + Byya)sss + ¢ - + (Biyavs + ¥iBuBe)su + - -
+ Brvi(Brrs + Bavi)sis + (Brve + Bovi)sie + - ¢ (26)

Esach missing term indicated by a dot is obtained from the term imme-
diately preceding by raising all suffixes of both direction cosines and
gompliances by one step: write 2, 3, 1, 5, 6, 4in place of 1, 2, 3, 4, 5, 6,
respectively.

The equation for &3, differs from Eq. (26) only in the substitution
of 8, v, a for a, 8, ¥, respectively. For s}, substitute v, «, 8 for , 8, v,
respectively, leaving subscripts unchanged in both cases.

s = 48%yisy 4 46%vises + 48%visa
+ 88yysBrvsses + - - + (Bavs + Byye)sa -+ - -
+ 2(Bryz + Bry)(Brvs + Bari)ses + ¢ ¢
+ 48:1vi(Brys -+ Beya)su + - -
+ 4817 (Byys + Bavi)sis + (Brya 4+ Bryi)sud + ¢ - (27N

Missing terms are to be filled in as in Eq. (26). Equations for sf, and
74, are formed from Eq. (27) according to the rule given above for
deriving s}, and 8}, from Eq. (26).

Cil = ¢cnat + sza; + ess0}
+ 2[odof(ces + 2c4) 4 adaiess + 2e55) + afed{ers + 2ce6)]
+ 4{afesas(ciq + 2e58) + afosar{css + 2¢is) + adanos{ess + 2ei)]
+ daf(ascrs + astre) + od(aices + @sczs) + of(oaca + aica)]  (28)

Bquations for ¢}, and ¢j; are obtained from (28) by the rules given
above for &}, and sg,.

Ci = cufiyi 4+ - ¢+ + 2eaBrviBavs + ¢ -
+ caulBryvs + Beva)? + - ¢+ 2eea(Bryz + Beyt) (Brys + Bavi) + - -
+ 2¢1.8vv1(Bays 4 Bayr) + - -
+ 2817ilers(Brys 4 Bav1) + crelBrvs + Bav)l + - - (29
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Missing terms are supplied according to the rule following Eq. (26).
For ci; and ¢, write 8, v, « and v, «, 8 for a, 8, v, respectively, leaving all
subseripts unchanged. For example, the factor Byy, in the equation for
¢4« becomes a,8; in that for ¢},

c;; =efiyi + -+ + Czs(ﬂf‘)"s‘ + 843 + - -
+ 2e4(B2ys + B2} + - ¢+ deseBryi{Boeys + Barye) + - -
-+ 2014(.3%721'3 + 7{32433) + -
+ 281viless(Brys + Bavr) + c1alBrye + Bav)] + - - (30)

The missing terms in this equation, as well as the cyclical changes for
obtaining expressions for ¢35, and cf,, are the same as with Eq. (29).

42, Rotation through Angle 6 about the Z-axis. The direction
cosines become reduced to oy = 8y = cos 0 = ¢, ap = —§; = sin § = s,
ag=fs=qy1=713=0,9y:= L*

8'11 = 64811 + 3262(2813 + sﬂ) 4 84823 o+ 2083815 - 28’0835
81, = 8811+ 8%2(2812 + 8ae) 1 80 — 2s%css — 2etseng
835 = Sz

85 = c%8aa — 250845 + %855
8hs = s*8u + 230845 4 c8us
&y = 4c29%(3yy + 832 — 2815) — dsc(c? ~ 8% (818 — 8126)

+ (c? — 3%) %4
sty = %8%(s11 + 820} + (¢* + #4512 + 80(0® — 93 {816 — 9u4)
— 284
8ha = s%8s5 + 8835 + Cl8a
8'14 %1 — c2s(s15 — 840) + 8’0(824 — 8g5) — 838p5

shy == 8%g1 + 8%(82s + 854) + c28(814 + S5s) + %515 >
(B1)

]

&g = —2sc(c?s1y — #%802) + e5(c? — §7){(2s12 + 346)

+ e2(c? — 35%)s16 1 $2(Bc? — 82)81s
83 = %823 — 8838 + 8%m
8hy = g5 — c%(825 + 364) + s%e(s1s + 850) — 8%s1s
8hy = sio1a + 8%(81s — 84e) + €8(s24 — 85a) + C2s

I

she = —2sc(s%ey — €%x) — cs(c® — 5%) (2812 + 85e)
+ 82(3¢? — %516 + e — 39)sg0
Sy = €834 — Sz5
S35 = 8834 - €835
shy = c3{8gy — 8a1) + (2 — §%)83s
8 = c3(8es — 8ss) + (¢ — $Dsus
Sie = —2s2%¢(825 — 815) + 2628(334 — s} + (c’ — 8% (caus — 335&)
shy = 20%8(325 — 816) + 26%(821 ~ 814) + (¢ — sT)(s540 + €840)

* Equations (31) are taken from Voigt’s “Lehrbuch.” In the expression for s,
two misprints have been corrected. The author has noted also a number of other
minor misprints at various points in the “Lehrbuch.”
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For a rotation about the X- or ¥-axis the equations are exactly as in
(81), except that sl digits in suffixes on both sides of the equations are
raised by one and two points, respectively, as shown in the following
table, in which the first column indicates the axis of rotation. For
example, wherever suffix 5 cccurs in Egs. (31}, 6 is to be written for
rotation about the X-axis, and 4 for rotation about the ¥-axis.

1(2]3[4]5)6

X|2(3)1)8}6/[4

3(112(6)4]5

Nowhere does a complete set of equations for ¢, for rotated axes
seem to have been worked out, except in specialized form for certain
crystal systems. Below is given the equation for ct; for rotation about
the X-axis. It is obtained from Eqs. (28) by first substituting v for «
and then setting y; = 0, ya = —sind = —s, yy = cos § = ¢:

C;x = 3‘622 + 04053 + 28’62(323 + 2644) - 4836024 - 4038014\ (32)

43. Young’s Modulus for a Crystal Bar in Any Orientation. In
§33 we saw that 1/sy, 1/8s, and 1/s3 represent Young's modulus for
bars parallel to X, ¥, and Z. BSimilarly, by suitable choice of axes
Eq. (25) gives the reciprocal of Young’s modulus ¥ for any erystal in
any direction. Owing to the importance of this constant we now write
the same equation in another form, due to Koga?®"®, which is perhaps more
convenient for caloulation. For any direction having the direction

cosines [, m, n,

% = Py + mIs1z + %8s + mnsu 4 nlss + Imae)

+ m*(*s12 + M2z - 1282z + MmN + nlsss 4- lmsso)

+ n3(I%8y; + m2s2s + 1853 + mnsss + nlsgs + lmsse)

+ mn(i®sq + misa + nissy + mnsy, + niss + Imsy)

+ ni(l%s;s + m?ss + nlsss + mnss + nlse + Imss)

+ Im(l2s16 + m3s2s -+ n285s + Mnsss + nlsse + Imsss) (33)

For exsmple, parallel to the Y-axis, =2 =0, m =1, and 1/¥
reduces to sy Equation (33) is easily specialized for any crystal group.
When Young’s modulus is expressed in terms of transformed axes, it is
customary to take the Z'-axis as the direction of stress and strain, giving
the equation

2, = —8nl, (34)

»
where Young's modulus is 1/s};.
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SPECIALIZATION OF AXIAL TRANSFORMATIONS FOR CERTAIN
GROUPS OF CRYSTALS

With the groups here considered many of the coefficients vanish, so that
the general expressions are greatly simplified. The following equations
are obtained from the foregoing general equations, the subscripts of the
various coefficients being taken from the tables in §20. The table of
direction cosines is the same as in §41.

Group JII, Rhombic System

44, All elastic parameters in this group are symmetrieal with respect
to the crystallographic axes. For example, in all polar diagrams (§49)
representing the elastic properties in the principal planes (planes normal
to the three crystallographic axes), the same values are repeated in all
four quadrants. Of course, this is not true of planes that are oblique to
all three axes. ’

Thiz group includes Rochelle salt and its isomorphic relatives, The
procedure for deriving the stiffness coefficients from the observed com-
pliance coefficients according to the method outlined in §26 is especially
simple for this group and will serve as an example of the general method.
The L- and T-coefficients (§30) are found from the determinant

811 812 S
S21 832 a3

D =

84485558

831 a3z Saz

together with the various cofactors. Thus,

Js22  Ses

Dey; = 3448558%' A
83z Sua
831 832

Deag = 844855846 '
S11 819

The S-coefficients (§30)} are simply s = 1/844, 55 = 1/555, and ces = 1/50s.
Elastic Constanis for Azes in Any Orientation. Direction cosines are
as tabulated in §41.

8 = visn + 78822 + visss 1+ ¥3vH(2sa + sad)
+ 34 28a1 + 265) + YHE(281: + 5e5)  (35)

For s}; and s}, substitute « and 8, respectively, for v.

sh = 4(Flylsn + Biviea + Bivises)
+ 8(BsvaBryssu + Brysfivisn + BryBayasia)
+ (Brys + Brva)isu + (Bava + Brya)isss + (Brva + Bav1)®ses  (36)
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For si;, change 8 to «; for sg,, change v to .

ey, = ajen + adcsr + ales

4+ 2[oded(css + 2044) 4 afad(en + 26} + afaf(ers + 2c0e)] (37)
For ¢}, and ¢}, permute a to 8 and v, respectively.

ﬂ:; = Cuﬁﬂl + CZLBzTE + Caaﬁﬂa
+ 2co382yaBays + 2enbavsbryr + 2e18rvifuys
+ culBeya + Bay2)? + ess(Bryr + Brys)? + coalBrye + ﬁz‘)’i)! (38)

The rules for ¢f; and ¢}, are the same as for si; and sy, above.

45. Rotation about a Single Axis. All expressions for rotation about
a single axis are found from the more general equations for axes in any
direction, by assigning proper values to the direction cosines according
to §41. Bome of the following are derived more simply from Egs. (35)
to (38). In all cases the suffixes are determined by the rules following
the respective equations.

Data for rolation ehout the X-azis (¥Y'-cut) are furnished by Mason. 338

§ = 8n 835 = €829 + 3%53 + €%5%(2823 - 8ud)

cleas + 8820 + %% 2sas + 5ud)

S;; (62 —_ 82)844 + 40282(322 + 833 — 2323)

sy = 2855 + $284g

€280 -+ 57855 §1: = c1g + 8%

sty = ¢813 + s%y2 8fy = 2c8(s33 — 812) 39)
84y = (e* 4+ $%)823 + ¢%%(802 + %32 — S44)

825 = 2¢%8%c*(283s + Sug — 2820) + 8*(2853 — 2893 — 544)]

’
833

Il
I

by = 2028Yc?*(28a3 — 283 — 844) + 8%(2523 — 2850 + 814))
8y = ©8(Sss — 8gs) .
Sty = 816 = 25=3;0=3’36=3%&=315'—"8;e=0

Of the corresponding stiffness cdefficients we give only the following,
derived from Eq. (38):

cf“ = (c’ — S’)Cu "‘ 6’82(623 + Cga — 2023) 40

625 = ¢Zeps + 826“ G;s = 626“ -I- 82655 ( )

For both compliance and stiffness coefficients the equations for rota-

tion about the ¥- and Z-axes are derived from the above by permutation

of subseripts according to the rule and table following Eqs. {(31), Among
the more important examples are the following:
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About the ¥-axis,

J
Cia = it 1 8%Ces Cha = CPcas + sas

c;ﬁ = (62 - 32)055 + 028!(611 + €33 — 2013) (41)
About the Z-axis,

811 = %1y + $45m + %2512 + Ses)

Cia = €% + 8%s5 Cts = Cless + S%Cu (42)

Coa = (¢* — 8Nees + 25 e & a2 —~ 2e10)

When 8 = 45°, the foregoing equations become, for rotation about the
X-axis,

8, = 8u 8hy = 8%y = (52 + 8as
+ 841 + 2825)
85 = 822 -+ 833 — 2oy 85 = by = ¥(s5s -+ 845
8§12 = 835 = $(812 + 813) $14 = 813 — 812 {43)
Sps = H3es + S35 — 844 + 2829) S3¢ = &5y = $(8g3 — 822

850 = ¥(5s6 — S46)
K .
816 = 810 = S35 = 83 = 835 = 84y = 835 = s = 0
The corresponding stiffness coefficients, complete with the exception
of ¢}, are as follows:

cn=cu - Cog = iy = Feer + caa
+ 2¢23 4+ 4"-‘44)
024 = i(cnz + ¢33 — 233} i = c:,, = f(ess + Cos) (44)
€1a = €13 = ${cu + ¢1) ci4 = e — o)
e = +(Cas + cas + 2028 — 4cud) c4 = ¢34 = $(tss — c21)

’ T L I L I
Cls = Ciy = €y = C3p = Cy5 = C3g = Cg5 = Cyp = 0

The reciprocals of i, and sj; are Young's modulus for directions in the
¥ Z-plane at +45° with the Y-axis. Analogous expressions for rotation
about the Y- and Z-axes are obtained by the rule given above.

For any arbitrary direction baving direction cosines ai, as, as;, the
following equation for Young’s modulus is derived from Eq. (33):

= alsyy + aise + alss + afod(sa + 280)

+ adad(ses + 283) + afef(ses + 2342) (45)
For a direction X’ making equal angles with all three axes, the stiffness
coefficient ¢}, is

¢y = 0.111[{ens + €22 + €30) + 2(eaa + o1 + o)
+ 4(cw + cos + ces)]  (46)

This equation is used in ¢aleulating the frequency for thickness vibrations
of the L-cut (§140).

1
Y
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. Group VII, Trigonal System

46. This is the trigonal group that includes quartz and tourmaline,
Direction cosines are as tabulated in §41. Although both right and left
forms of erystals may oecuyr in this group, there is no difference in the
equations (see §327).

For this group, the compliance and stiffness coefficients are related
by the following equations:

-

a = sga(31y + s12) — 28h B = 844(s11 — 812) — 2si,
o = egfen + ¢a) — 2k, B = caalen — c1a) — 26,
833 | 844 813 a1+ 812 ci1— Ciz
Zey=—=+4+ 45 cu=——- C3g = ————— Ces = — 5=
a B o 2
a3 844 814 811 — 812 Su
Zepp=———7 cCu=——F% cu=—p— Cos =5
a 8 8 8 <] (47)
Cay | €t Cia €1+ C1o
2511 =5 47 B1gmm oot Sgg = 8gs = 2(8, — 8
u=-z + 7 13 o 33 o 86 (211 12)
Caz  Cus €14 C13 = C1z2 Cq4
28 =5 — =% 814 = — o5 8= = Ses = 2
12 a.o ﬁ; 1 ,6’ ,B’ ﬁ’

General Formulas for Rotated Axes. For orthogomal axes in any
arbitrary orientation only a few equations are found in the literature.
Expressions for the remaining coefficients can be derived by the methods
deseribed in §40 and 41. Equations (48) and (49) are from Voigt.

gh = (1 — ¥8)%n + v3sss + vl — ¥5 (2512 + s44)
+ 28y — ¥Hyevssu (48)

For s}, and s}y, v is changed t0 « and B, respectively.

s’“ = 8§44 + 05%(2311 — 2812 — 8«) + 4.63‘73(811 + 833 — 2815 — 344)
+ 4[(8Brys — Bry2)(Bavz -t Buys) — onoalsis (49}

For sf; and sg;, permute o, 8, v t0 B, v, « and v, &, 8, respectively.

47. Elastic Coefficients for Rotation about a Single Axis. The trans-
formation of axes is given in terms of cos # = ¢ and sin # = s, where 8
is the angle of rotation of two of the axes about the third axis. 8 is
positive when counterclockwise as seen from the positive end of the axis
of rotation. In all cases the table of direction cosines in §41 is employed.

These equations*® result from retaining in the general equations of
§42 the special coefficients for Group VII (§29). Bome of them are
found in Voigt and in later publications, for example, those of Mason3?
and of Hight and Willard.?*”

* The full set of equations was furnished to the author through the courtesy of the
American Telephone and Telegraph Company. In cenformity with our convention
respecting the definition of the positive sense of rotation, the signs of certain of the
terms have been changed.
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Rotation about the X-axis (¥'-eut). oy =1, 8, = y1 = az = az =0,
Br=v1=¢P1= —y2 =
2, = sn
8k = c'su + 853 + c292(2s15 + 844) — 2ctesyy
Sas = &' + *8a3 + €79 (281s + 844) + 2c8%8;, = (6 + 00°]*
815 = 4c%8%(511 + 330 — 2813) + (¢ — 8% %4 + des(c? — sy
g5y = €8s + 28%(syy — 812) — 4essu

8gg = 26%(811 ~ 310) + 87840 + dcssp = 400 + 907

r

i

813 = €12 - 8815 -+ 8514

81y = %12 + c¥o13 — css14 = 5[0 + 907

814 = 2c5(81a — 812) + (¢ — 8Nayy

$ig =8y =0 > (50)

$h = (€% + %812 + €3%(8n1 + 535 — a0} + sc{c® — sV5ya
854 = —2¢%s1) + 208%83; + c8(e? — $2)(2815 + Sad)
— ¢¥e? — 3851y

7 U
Sap = 8§y = 0

8:;4 = —2c8%; + 2683333 -—- CS(C! - 32) (2813 ~+ 344)

+ 8%(s? — 3c¥sia = —sh,J0 £ 907
8 =83 =0 Sz =8,4=0 }
she = 2(c® — 87814 — sc(8g5 — 84a)

z
= tn

Che = oy + S%cas + 2c%5%(c13 + 2e44) — 4cPsey
¢ = 8% + clcas + 2¢%%(os + 2c0) + desers = ey[8 + 90°)
€1y = £%%(Ca2 + a3 — 2e1a) + (¢* — 8% 'cus + 20s{c? — 82)crq

Chy = ¢ + 3%eq — 2e5014

Chs = 8248 + Cqs + 20861 = cfs[0 £ 907

clp = c%cyp + 821 + 205014

¢y = 8%z + oy — 2cs014 = [0 & 907

¢l = (c® — 8%)e1 — st — e1) (51)

cs=1Cu=0

chs = (¢ + 8%c1s + s (en + cas — dews) + 2e3(c? — %)

e = e*(4s? — 1)ew + esle®enn — s%as + (6® — 81)(2eus + €32))

e =Chy =0

chy = —52(4e? — e + cs[s%n — c%as — (€2 — s9)(2044 + c13)}
= — e5[8 3 907

Cip = Cgg = €45 = Cag = 0

€3 (e — 8%ery — cs(can — Cua)

When 8 = 0, so that ¢ = 1, 3 = 0, the foregoing equations apply to
the Y-cut.

* The expression ¢, [0 + 90°] means that the equation for &, for an axial rotation
of # & 90°, in identical with the equation for s, for a rotation of 8. A similar meaning
iz to be attached to all bracketed angles in equations for rotated axes, whether the
transformed quantities are elastic or piezoelectric coeflicients.
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Rotation about the Y-axis (X'-cut).

PIEZOELECTRICITY

ay = Yy =€, —ag = YL = 8.

8y = etsu + 3% + s%62(sn + 2513)

S
85
844
855
54
8
83
8
815
&1
Ss
824
855
826
2
S35
836
#ls
Sis
85s

S

8513 + o858 + 8262 (84 + 2819) = 3[90° — 6]
¢2544 -+ 8508

4s%?(811 + 853 — 28is) + (¢ — s%)%sy

82840 + %858 = 83,[00° — 4]

cls12 + 8%s51s

{c* + 89813 + 8%2(s11 + 835 — 844

C(]. - 332)814 .
c8[2(c%s1, — 8%33) — (¢® — %) (804t 2313)]
—3862814

82510 + e%8y5 = 81,{90° — 6]

—C814

268(312 - 813)

88, = —s5,[00° — ¢]

Bestayg = —sl,[00° — 6]

esf2(s%sy1 — ¢¥sga) + (¢ — 8% (542 + 2813)] = 57,[90° — 6]
—38(1 — 3¢Ws1y = —53,[90° — 6]

—2s(1 — 3e%)s1 = 285,

¢3(865 — Saa)

2c(l — 35%s14 = 28},

= cley; + s'cas + 28% (e + c1v)

€11

= s'tn + e'cas + 25%*(2c44 + €13) = ¢},[90° — 4]
= ¢4 + 8%es

= 8% + ca3 — 2018} + (¢ — N%a

= 3% -+ e = c';‘[90° - 3]

= cPe1n + 5%y

= (¢t 4 s%)e1s + s%en + cas — dca)

= 0(1 hand 382)611.

= csfclen — 8%ss — (€8 = 8% (2e4q T £13)]
= —3sc%en

= 8%13 + ¢%1a = ¢} [00° — 6]

= —CC14 C;E = 03(012 -— Cla)

= 8614 = —¢5,[00° — ]

= 3esers = —cl,[00° — 6]

= oss*crs — cPess + (¢ — $%)(2e4 + €15)] = ¢}:[90° — 6]
= —g(l — 3ce1 = —f,[90° ~— 6]

= C3g = —c;.;[goo - 6]

= c8{ces — C10)

= ¢y,

[§47

Br=lLfh=PF=cac=7rv21=0,

|
> (52)
|

> (53}
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Rotation about the Z-axis, Ys = 1, L= = ag = 3 = 0:

0!1“.32=c,a= —B =8
3;;1 = 8 € = en
sfﬁ = 821 = 813 6;2 = C33 = €101 \
B33 = 8a2 C;a = C33
s = 3 € = Cu
8t = Ss5 = Su ey = Cos = cu
3;5 = 844 Cis = Ces
3’12 = 812 G;g = Ciz
sia = 812 Ci; = L2
8;4 = C(l — 482)8“ ci. = 0(1 — 482)614
s’;;, = —g(1 - 4c¥syy el = —3(1 — 4c%)ey > (64)
fg=10 ¢y =0
85y = &1 Cis = C13
S4 = —'B’!.G C’“ = _6;‘
3;5 = "8 C;E = "“C';.E
s =0 e =0
S = 835 = 83 = 0 Coa = €3 = €y =
8§55 =0 Cis = 0
$ip = —28; Cis = —Ci; )
8ig = 28]y che = ¢4

48. Young's modulus for a quartz bar in any orientation, the length
having direction cosines I, m, n, from Eq. (33), is

% = (1 —~ n?)2y; + nis + 02l — (s + 2513)
+ 2mn(3l* — m¥)syy (55)

For any direction in the Y Z-plane making an angle # with the Z-axis
(cos @ = ¢ = m, sin § = 5 = —m), this expression is identical with s},
in Eqgs. (50); similarly, in the ZX-plane it becomes sj; from Eqgs. (52);
in the XY¥-plane it is simply s;; in all directions. These relations are
shown graphically in Fig. 38,

Other formulas, involving different angular parameters, are found
in the literature.*

49, Geometrical Representation of Elastic Properties., I'rom the
foregoing sections it is clear that each elastic constant has a definite
meaning and a definite numerical value only with respect to a specific
frame of reference within the erystal. If the frame of reference coincides
with the three conventionally adopted orthogonal erystallographic axes,
one has the “fundamental” constants.

* See, for example, Wright and Stuart*** and Bechmann.??
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In order to present to the eye the dependence of the elastic constants
of any given crystal upon the orientation of the axial system, it is cus-
tomary to make use of certain geometrical surfaces or of diagrammatie
intersections of such surfaces with certain planes.

The most general elastic surface is represented by an equation of the
fourth degree, in which the 21 parameters are either the stiffness or the
compliance constants.* Such surfaces are of greater theoretical than
practical value,

More useful are surfaces representing the magnitudes of individual
constants or funetions of constants in their dependence upon the orienta-
tion of the axial system. An example of considerable importance is
the surface for which the radius vector in any direction is proportional
to the value of Young's modulus 1/si; in that direction. A model of
such & surface, for quartsz, is shown in Fig. 37,

The construction of surfaces to represent the elastic cross constants,
of types T, L/, 8', or T (§30), would not be quite so simple. As can be
seen from equations such as (26), these constants cannot be expressed
in terms of a single direction in space. For any arbitrary direction of the
Z'-axis the value of any such constant depends algo on the choice of the
X'~ and ¥'-axes. A surface representing any cross constant could be
constructed, however, by laying off, for any given Z’-direction, the
computed value of the cross constant in a direction parallel, say, to the
X’-axis. Buch a surface would be somewhat analogous to the optical
index ellipsoid (§528), in which the refractive indices corresponding to
waves in any direction are proportional to radius vectors perpendicular
to this direction.

Owing to the difficulty in the actual construction of elastic surfaces,
it is customary, and for most purposes sufficient, fo prepare polar or
Cartesian graphs showing the various elastic constants for rotation
about a single crystallographic axis. For this purpose the equations in
preceding sections for rotation about a single axis are employed. Exam-
ples of this sort, for individual crystals, are given in Chap. VI,

B0. Terminology for Crystal Cuts. When a flat parallel-faced plate
or bar is cut from a erystal, the term “cut’ is used to designate the
direction of the normal to the major faces. Thus an X-cut has the normal
to its major faces parallel to the X-axiz of the crystal. Similarly, ¥-
and Z-cuts have their faces perpendicular to the ¥- and Z-axes.

Obligue Culs. While in the earlier investigations plates and bars
were usually cut with their edges parallel to the crystal axes, vartous
oblique cuts, especially of quartz crystals, are in common use. It must
be recognized first of all that the choice of crystal axes is arbitrary, so
that there is no reason a priori why the physical performance of crystal

* Yoar, p. 736.
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preparations may not for many purposes be better when they are cut so
that the electric field will lie in some oblique direction. Mathematically,
the problem consists in carrying out a transformation of axes, resulting
in an entirely different set of values of the elastic and piezoelectric con-
stants. With respect to the new axes piezoelectric effects can be created
that were not present in the original system; conversely, by suitable
choice of axes certain elastic or piezoelectric effects may be eliminated.
For example, Mason®? sueceeded in getting rid of an undesired mode
of vibration in quartz by rofating the ¥- and Z-axes through a certain
angle while leaving the X-axis unchanged; several investigators have
found that the frequency of vibrating quarts plates, such as are used for
standards of {requency, can be made practically independent of tempera-
ture by orienting the plates in certain directions; and the author has
made use of the longitudinal effect that can be realized in obliquely cut
Rochelle-salt plates. As early as 1894 Pockels showed that the trans-
verse effect can be obtained in Rochelle salt by cutting bars with their
lengths at 45° with two of the crystal
axes. The Ilast-mentioned fact has
found wide application.

Oblique cuts may be specified in
terms of the transformed axes X', ¥, or
Z'; for example, an X'-cut has its normal
parallel to the X’'-axis. Special designa-
tions are considered in later chapters.
We now give the rules for the specifi-
cation of oblique cuts that will be used
in this book.

b1. NotaﬁonforOrientaﬁonofoﬁnS' Fig. 17.—An arbitrary direction
formed Axes. M any ‘transformation OP represented in terins of azimuth ¢

. . and polar angle 8.
formulas involve rotation about a single
axis. In such cases, as in §47, we shall use ¢ to denote the angle of
rotation and assipn to it the positive sign when the rotation is counter-
clockwise as seen from the positive end of the axis about which the rotation
takes place (except with lefi-crystals, as indicated below).

When a single direction in space is to be specified, as, for example,
in equations for Young's modulus or in defining the normal to a given
cut, we shall use as parameters the azimuth ¢ and the colatitude (polar
angle) 8. They are illustrated in Fig. 17, in which OP is the specified
direction. In all cases ¢ is positive when laid off from 4-X toward 4+ 7.
The rotation ¢ about the Z-axis transforms the X-, Y-axes to new axes,
which in Fig. 17 are called X’ and ¥’. The angle # may be regarded as
the result of a rotation of the Z- and X’-axes about ¥’. 8 is positive when
the rotation is from +Z toward --X'; if the crystal is enantiomorphous,
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this statement is valid for both the right and the left forms. From the
rules for right- and left-erystals given in §7, it is evidént that Fig. 17
applies to a righl-crystal, since the axial system is here right-handed;
in this case # is positive when counterclockwise as seen from the + end
of the Y-axijs. The diagram for a lefi-crystal would be the mirror image of
Fig. 17, and ¢ would be positive when clockwise as seen from the + end of
the ¥Y-axis,

The direction defined by ¢ and @ is that of the Z'-axis, and with
suitable values of ¢ and @ it may assume any orientation in space. This
choice of the Z’-axis to represent a given direction explains why, for
example, Young’s modulus is often denoted as 1/s5,.

52. While s single direction can be specified by ¢ and 8 without men-
tion of transformed axes, it is necessary to make explicit use of the latter

Zz ’Zj

(a) ()] )
Fia. 18.—An oblique plate 0'A’, derived by three rotations from a Z-cut 04,

when a third angular parameter is required. Thus, for specifying com-
pletely the orientation of a rectangular plate, we perform first a rotation
of the X- and Y-axes about the Z-axis through the angle ¢, as indicated
in Fig. 18; the resulting axial system is X,, ¥, Z, = Z. A second rota-
tion, about the ¥,-axis through the angle 6, gives the axial system X,
¥: =Y, Z;. The Zs,axis is thus defined in terms of ¢ and © and is
taken as the direction of one edge of the plate. The orientation of the
plate at this stage can be visualized by considering first a Z-cut plate 04
with its Jength [ and breadth b parallel, respectively, to X and ¥. The
first rotation, about the Z-axis, turns the plate to the position OA,,
while the second, about the Y;-axis, brings it into the position OA..
The thickness dimension ! is now parallel te the Zyaxis. The final
orientation is brought about by a rotation around the Zz-axis through the
“angle of skew” ¢, yielding the axial system X*, ¥', Z' = Z,.
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The full specifications for an oblique plate may be given by writing
the values of ¢, ©, and ¢ in this order, together with the dimensions
parallel to the X'-, ¥'-, and Z’-axes: for example, an X-cut bar with its
length parallel to the direction of maximum Young’s modulus may be
denoted by X’40 mm(0°), ¥'10 mm (90°), Z’'1 mm (48°36').*

Direction Cosines. The direction cosines of the XY Z,-axial system
with respect to the XYZ.axes, defined according to the aceompanying
matrix, are as follows:

Iy = cos pcos © lp = —gin g
Is = cos ¢ sin 6 m; = 8in ¢ cos O (56)
My = COS ¢ my = gin ¢ sin O
ny = — ginQ ng = 0 ng = cos 0
X, Y2 7,

Xi{h b L
Y imi ma ma
Z | Ty Ny

For the final X’Y'Z"-axes with respect to the XY Z-axes the values are

1% == cos ¢ cos @ cos Y — 8in ¢ sin ¢

I8 = — cos ¢ cos O sin — sin ¢ cos ¢
13 = cos @ 8in O
m] = sin ¢ cos O cos ¢ + cos ¢ sin ¢ (57)

m) = — sin @ cos O sin ¢ + cos ¢ cos ¥
mj = sin ¢ sin O
n) = — sin O cos ¥ nd = gin O sin ¢ ng = cos O
X Y zZ
X B
Y |m! m) md
Z [n} nY =

REFERENCES

Aversact and Hort, B! GeigeERr and ScrEeLBE? Love, B BoNp.8
T El

* The rules given above are in agreement with the conventions recently approved
by the Institute of Radio Engineers (I.LR.E.). 'The institute has recommended fur-
ther that such values be assigned to ¢, 0, and ¢ as will cause the orientations of the
X, Y-, and Z'-axes to be parallel, respectively, to the length, breadth, and thickness
of the plate. For the application of this I.R.1. axial system to quartz see §327.
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63. Introduction. Voigt in his *Lehrbuch” gave the fundamental
‘equations for vibrations in erystals, but they received no further attention
until the 1920’s, when the advent of the crystal resonator revived interest
in the elastic properties of crystals. The author’s paper in 1921 on the
theory of longitudinal vibrations in damped isotropic rods was followed
by another the next year on the application of this theory to the first
piezoelectric resonators. The same problem was subjected to more
precise analysis by Laue in 1925. Soon many other papers on erystal
vibrations appeared, both theoretical and experimental, dealing with rods,
plates, and rings cut from various piezoelectric erystals.

More recently much attention has been given to the theory of
vibrations in quartz plates cut at various oblique angles with respect
to the erystallographic axes, for the purpose of eliminating the effects of
temperature on frequency or of avoiding coupling effects between differ-
ent types of vibration. New methods for measuring elastic constants
have been developed, of which one of the most important and interesting
makes use of optical effects due to ultrasonic waves. In all this work
it is important to observe the distinetion between the isothermal elastie
constants derived from static observations and the adiabatic constants
that play a part in all vibratory phenomenas.

Although the effect of piezoelectric reactions upon the elastic constants
is touched upon only briefly in this chapter, mention should be made of
the fact that recent measurements of the adiabatic elastic constants of
Rochelle salt have led to a changed opinion as 1o the conditions under
which the “‘pure” elastic constants of piezoelectric crystals, uncontami-
nated by piezoelectric reaction, should be measured. 'This consideration
in turn demands a new formulation of fundamental piezo-electric theory,
differing in important respects from that of Voigt. These matters are
discussed in Chap. XI.

An idea of the complexity in the theory of vibrations can be gained
by considering the various modes in which a parallelepiped is capable of

84
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vibrating. To the six possible components of strain correspond six
degrees of freedom, hence six of the simpler modes of vibration, the
frequency for each depending on the elastic constants, density, and
dimensions, The possible modes are

1. Those corresponding to one of the six strains by itself. These
modes comprise compressional and shear, with their overtones.

2, Flexural (fundamental or overtone), with strains in different parts
of the parallelepiped opposing each other.

3. Torsional, including overtones.

4. Coupled modes, in which two or more of the foregoing simpler
modes become interlocked to form a more complex vibration. As in the
analogous electric case, the coupling may be due to frictional forees, to
inertia, or to elastic coupling through the elastic cross constants. The
latter type of coupling is of chief importance in crystal resonators. Either
fundamental or overtone frequencies may take part in the coupling.
As in electrical networks, the relative importance of each of the com-
ponent modes at any resonant frequency for the coupled vibration
depends on the closeness of coupling and on the natural frequencies of
the component modes.

No complete and rigorous theory of vibrations in solids, even for
the simpler forms of isotropic bodies, has ever been formulated. A full
ireatment of all coupling effects and boundary conditions defies analysis.
Nevertheless, the difficulties have been sufficiently overcome so that a
fairly precise description can be given of compressional, shear, flexural,
and torsional vibrations in ecrystal preparations of simple geometrical
shape. For the fundamental theory the references at the end of this
chapter may be consulted. We must confine ourselves mainly to the
results, although the equations for rods and thin plates will be developed
in some detail. Most of the expressions are basically those for isotropic
solide, with such modifications as are needed to adapt them to crystals.
In many important cases, especially those having to do with com-
pressional waves, the isotropic equations can be used without
alteration.

We shall give attention chiefly to two important forms of crystal
vibrator, for which the theory is fortunately fairly amenable to analysis.

The first of these is the elongated rod. The theory of lengthwise
compressional waves, including the effects of damping, is quite simple.
The vibrations associated with the other five modes of strain, if excited
at all, are of such relatively high natural frequency that coupling can be
ignored; these strains are then in phase with the longitudinal strain.
For vibrations of this type the effective stiffness is Young's modulus.
As the order of overtones becomes high, or the length is no longer great
in comparison with the other dimensions, complicated stages of coupling
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are encountered, until the comparatively simple theory of thickness
vibrations of & thin plate is reached.*

The second form to consider is that of a thin plate of large area.
Here again, only this time for thickness vibrations (compressional or
shear), there is no appreciable coupling with lateral effects except with
high overtones of the latter—and in practice these are troublesome
enough. The simple theory considers a plate of infinite lateral extent,
in which case the plate may be regarded as completely constrained later-
ally (see §33), exeept that, for shear vibrations, freedom for small tan-
gential displacements has to be allowed.

b4. Nermal Modes of Vibration. In general, when an elastic solid
body is set into a state of free vibration, as by being suddenly struck,
its motion, if of small amplitude, can theoretically be analyzed into a
large number of “‘normal” vibrational modes. The number of these
modes is the same as the number of degrees of freedom, which is theo-
retically infinite even for the simplest geometrical forms of solids. To
each normal mode corresponds a ‘“normal frequency,” which, however,
is abnormal in one particular, viz., that it is usually taken as the value in
absence of darmping.

For any normal frequency the necessary characteristics are that all
particles move in phase with simple harmonie motion and with ampli-
tudes in constant ratios to one another. This criterion is very closely
fulfilled when the viscosity is small.

The chief types of vibration, for each of which an indefinitely large
number of normal frequencies (overtones) is possible, are compressional
{called also *“‘longitudinal” or ‘‘extensional”), shear (“‘transverse’),
flezural, and torsional.

In compressional vibrations the motion of the vibrating particles is
parallel to the direction of propagation of the wave.

In shear vibrations the particles move in a direction normal to the
direction of propagation, i.e., parallel to the wave front.

Flexural vibretions involve a bending of the speeimen in a certain plane.
They are sometimes, though ambignously, called “transverse” or “lat-
eral” vibrations. Although they are most prominent in elongated bars
or in thin plates, they may be present in solids of almost any form.

Torsional vibrations are those in which a relative angular displacement
about a certain axis takes place between adjacent eross sections. The
direction of wave propagation is along this axis.

* The theory of elastic vibrations in the piezoelectric resonator is a little more
complicated when the rod is in a state of forced vibration due to the piezoelectric
effects of an impressed alternating electric field, if, ag is ususlly the case, the feld

eauses other components of atress than that tending to change the length of the rod,
The method of dealing with this complication is given in Chap. XTIL
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When the “natural frequency” for any mode of vibration is messured,
the observed value is always less than the theoretical “normal value”
by an amount depending on the damping to which the resonating body is
subject. The observed frequency also depends somewhat upon the
method of observation: it is slightly greater for free vibrations (those
vibrations which, onee excited, die awsy at a rate depending on the
decrement) than for forced vibrations in which the frequency of maximum
veloeity of the particles in the resonator is observed; and this in turn is
slightly greater than the frequency for maximum emplitude of vibration.
All these observed frequencies are lower than the ideal normal frequency
in absence of damping. This subject is discussed further in §58.

B5. Vibrations of Crystals. In most cases here considercd the vibra-
tions can be expressed in terms of wave velocity. The fundamentsl
equation for velocity in abgence of damping is

= \/,&, (58)

where g is the stiffness factor, which assumes different forms for different
types of vibration, and p is the density. 'The problem then resolves
itself into finding the proper expression for ¢ for each type of vibration,
due heed being paid to the dimensions of the vibrator. In the case of an
unconstrained rectangular parallelepiped in which the direction of wave
propagation is parallel to one of the edges it is permissible, to a certain
degree of approximation, to consider the vibration as due to a system of
stationary waves, reflection taking place at two opposite faces. To fix
the ideas we assume the parallelepiped to have dimensions X, ¥, Z and
the wave propagation to be in the Z-direction. Then for the wave
velocity and frequency of free undamped vibrations we may write

_ = 24
(TR (59)
he h g

hh=3z =322\,
where A is the order of the overtone, which is approximately harmonic;
for the fundamentsl frequency, b = 1.

Leaving flexural and torsional vibrations for later consideration, we
regard for the present two extreme cases that are often approximated
in practice. The first is that of thin rods, the sccond that of extended
media, exemplified by thickness vibrations in plates of relatively large
area. In general we shall be concerned only with steady-state solutions,
in homogeneous rods of unvarying cross section.*

* The theory for isotropic rods of varying cross section znd of varying material was
given long ago by J. Stefan, in Sitsber. Akad. Wiss, Wien., Math.-naturw, Klasse,
vol. 55, part 2, pp. 597f., 1867; vol, 57, part 2, pp. 617f., 1868. Recently the theory of
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B8. Longitudinal Vibrations of Rods. Most of the theoretical and
experimental investigations with which we are concerned have to do with
steady-state forced vibrations. Space permits only a statement of the
principal results, with references to original papers in which & fuller
treatment can be found. The discussion will be confined to rods in
which both ends are free, since this iz the case usually occurring with
piezoelectric resonators.

In the ideal case of an infinitely thin frictionless rod, Eq. (59) may be

written in the form
1
f= 21 =2 \[ (60)

where [ is the length of the rod and g=1/sis Young’s modulus. Asa
first approximation (lateral inertia being ignored) this equation is often
very useful, especially for predetermining the length of a resonator.

‘We now turn to the problem of vibrations in a thin rod subject to fric-
tional losses. Concerning these losses nothing further need be assumed
than that there is a frictional foree proportional to the velocity.* The
following treatment is essentially that which was first given by the
author,” starting with the differential wave equation and leading to
gimple expressions in which the resonator is regarded as having con-
centrated mass and elasticity, vibrating with a single degree of freedom.
The method will be recognized as analogous to that used in the problem
of the electric transmission line.

The well-known equation for waves in one dimension ig

&2 63E fikd
rar gt M o (61)
where £ is the displacement at time ¢ of that cross section whose undis-
turbed coordinate is 2.1 p, ¢, and F are depsity, Young’s modulus,

vibrations in composite rods driven piezoelectrically has received much attention,
especially in connection with the measurement of the dynamic elastic characteristics
of metals and other non-piezoelectric solids, References will be found at the end of
this chapter and of the next.

* Voigt (“Lehrbuch,” p. 792) discusses the coefficients of internal friction of
erystals, by, and their relation to the elastic constants, In most practical cases the
internal friction is small in comparison with that due to external causes. The by,
could be measured only with erystals mounted with extreme care and vibrated in
vacuum. As will be seen in §242, they were introduced by Laue in his theory, The
internal losses in Rochelle salt are treated in Chaps. XVIIT and XX to XXV,

t In the case of longitudinal vibrations, § is parallel to the direction of wave
propagation. Equation (61}, however, holds for displacements in any direction, as
long as this direction is the same for all particles in the same plane normsl to the
direction of propegation. This equation i3 therefore applicable to all modes of thick-
ness vibration of plales as well as to longitudinal vibrations of rods.
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and frictional factor. The possible dependence of g and F upon tempera-
ture, frequency, and various electrical and mechanical cireumstances, is
for the present left in abeyance. F is here regarded sa a constant, with
dimensions (ML-'T-!). In most practical cases F depends much more
on losses due to mounting and to surrounding air than on the losses
inherent in the crystal. The theory is in no way contingent on any
assumption as to the origin of F or its constancy, except that at any fre-
quency it must be independent of the amplitude of vibration. In general,
in place of F, we shall use the logarithmic decrement 8, the quality factor
@Q, or the damping factor a, which are quantities related to F that can be
determined at any frequeney.

We first write the solution of Eq. (61) in the form appropriate for
progressive waves of any wavelength ), subject to attenuation with time.
No term representing attenuation in space need be ineluded. The solu-
tion 1s

b= Aeattitaten (62)
where A is the amplitude, « and k are constants, and w = 2xf.

The following relations are found by substituting Eq. (62) in (61)
and equating real and imaginary parts:

E=Z 83)
Fk* 2%
a=g- = %? (64)

k is sometimes called the “wavelength constant” and « the ‘‘attenuation
constant” or “damping constant.”
The velocity of progressive waves, including the effect of damping, is

_e_, fi_®r_ Q—T!Fx"\/é( —5—’)
G—E_i\/ﬁ oIV, T L\ e

- i -a) @

where & is the logarithmic decrement and @ is the quality factor, given
by Eq. (67). The dependence of ¢ upon X, and therefore on the fre-
quency, may be called a ‘“dispersion,” analogous to optical dispersion.
In most cases the second term in the expressions above is negligible in
comparison with the first, so that the velocity given by Eq. (65) is
practically identical with that in Eq. (58).

The instantaneous displacement at any point then becomes

2x1F¢

Ea) = AP 0o 2 (z + ) (66)
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This is the equation for the displacement at any distance x from an
arbitrary origin, for progressive sinusoidal waves of length A, traveling
with velocity c in a rod of indefinite length. If free, they die away at a
rate given by the exponential factor. The logarithmic decrement per
period is

2«

6_pc)\_7_0 ©7)
b7. Forced Vibrations. A flat bar of relatively small ctoss section
with its length ! in the X-direction is excited piezoelectrically by a uni-
forin alternating electric field parallel to the thickness of the bar. A
uniform alternating stress system is thus produced. As will be seen when
specific cases are encountered, this complex of stress components can be
resolved into an equivalent uniformly distributed longitudinal driving
stress X. The problem before us is to express the instantanecous dis-
placement £(x) at any point in terms of X and of any prescribed fre-

quency. The origin of coordinates is taken at the center of the rod.

For the steady-state solution, Eqg. (62) is replaced by

£ = Alz)e (68)

in which 4 is now a complex function of z, involving amplitude, fre-
quency, and phase.
Upon substituting Fg. (68) in (61) it is found that

a? A(:c)

T = 1@ (69)
'
where ¥ = 7 F joF (70)

The only simplifying assumption inherent in these expressions, beyond
the disregard of cross section, is the same as in Iig. (62), namely, that the
frictional coefficient is so small that its effect upon the dlstributwn of
straln along the }ength of the rod caun be ignored.

If X, is the maximum value of the impressed stress, we may assume
the instantaneous impressed stress to be

X = Xyelot n

This equation gives also the folal stress at the ends of the rod, where
z = 41/2, so that the strain at the ends is

(2),, = @ = - % @2

In order to find A{z) and £, we solve Eq. (69) for A(z). The constants
of integration are determined from the boundary conditions that when
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z=0 §=0, and when z = 1/2, 9¢/dz = ¢34 (z)/3z = —eX,/q,
from Egs. (71) and (72). It can then be proved that

A) = ~ Xosinhor (73)
gy cosh v 3

The solution obtained from this assumption of a uniformly dis-
tributed periodic driving stress is the same that would be reached if one
supposed & pair of equal and opposite periodic forces to be applied at the
ends of the rod, the force per unit area being numerically equal to the
stress X. Although the author used the latter method in his first papers
on the regonator,®* a method that has since been followed by others,
still the treatment now considered is to be preferred, since it represents
the facts more directly; moreover, ag will be seen when the theory is
specialized for particular crystals, it facilitates the inclusion in the
theory of all the piezoelectric effects that contribute to the vibration and
to the electrical characteristics of the resonator.

Equation (73) can be thrown into a more workable form, which retains
high precision even for a degree of damping greatly in excess of any
commonly encountered in resonators, by writing, from Eqs. (64) and (70),

[+ . G
~ct+a; (74)

On substituting this value of v in Eq. (73) and making obvious
reductions one finds

XnC
- 4@ = 22
. W wl oz wr ol Wz _l 2!_.! o tol
(Sln 7 Cco8 % - .2?‘ c08 — gin — ) ( co% COS 96 + 5 §1n — P ~ $i = o
l wl
z 2 W
+ sin 2c

(75)

The modulus of A{x) is the amplitude of £ at any z, while the argument
is the phase angle. In most cases it suffices to express the amplitude and
phase of the vibration af the ends of the rod; we therefore set z = /2 in
Eq. (75) and find, after making trigonometrical reductions and rejecting
as negligible the term in «? in the numerator (the e?-term in the denomina-
tor must be retained owing to the vanishing of the cos?® term at resonance)

~gin 2~ ;%
—4 (Ql‘) S — (76)
Gy 2@_+a 2“’
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At frequencies close to resonance all terms in Eq. (76) have to be

retained.
From Egs. (68) and (76) the longitudinal displacement at the end of
the rod is found to be

a, e —~ 4 sin? )
E(é) = X"c - — sin (ut — 6) an

gt wl a’l?

5ot i .
where tan & = —[sin {wl/c}]/ (al/c). £(1/2) leads X, by the angle
90° — 4.

Equations (76) and (77) hold with high precision at all frequencies,
including zero. At zero frequency a and » vanizh, and the amplitude
becomes the static elongation

N Xd
~¥ (ﬁ)m_a =~ (78)

58. In most practical cases interest is confined to frequencies close fo
resonance. For generality we give the equation in a form applicable to
overfones 88 well as to the fundamental frequency. The overtone fre-
quencies, in the ideal ease of an infinitely thin rod here considered, are
almost exactly integral multiples of the fundamental, the departure
from true harmonic relation being due to the slight variation of veloeity
with frequency expressed in Eq. (65). This departure is so small in
comparison with that due to the effect of cross section (§65) that it can
usually be ignored. The resonant harmonic frequencies are then
fro = kfo, where fo = ¢/20 is the fundamental frequency (A = 1) of the
undamped bar and h is the order of the harmonje. As will be seen, fio
is the frequency at which the velocily of particles in the rod is a maxi-
mum under forced vibrations, We have, from Eq. (65),

ke
21

fho = ‘E—n = hfn = hc (79)

Under our present sssumption that the rod is driven by a uniformiy
distributed stress, it is to be anticipated that large amplitudes at the
ends can cccur only for odd integral values of h.

For all values of k, the attenuation constant and logarithmic decre-
ment may be written, from Eq. (87), as

an = &ifa (80)
Close to resonance we may write
Wy = Who — A (81)
where n, is 2 measure of the dissonance and wpy = 2xfr0 = hwo.
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The longitudinal displacement at the end of the bar has large maxima
at frequencies very close to odd integral values of h and is extremely
small at even integral values of A. This fact is implicit in Eq. (77) and
is brought eclearly to light by making the following substitutions, valid
in the neighborhood of all harmonic frequencies. We write

@ == hwo — Tiny
wo = 2nfo = me/l, sin wlfc = (~ 1) nu/2fd,

sin wl/c
a,.l/c

and after the customary approximations for trigonometrical functions
we find

tan fh = — e (—1)"?21
[27}

For h odd,
AN 1 .
—f (5) T ged el m ot ot = ) 2
For h even,
! X o
—tl=2] = 7— o + ni sin (wt — 6) (83)
2 2quwa

In writing the marimum values at frequencies close to harmonics,
we may with sufficient aceuracy set hwo in place of wa in the denominators
of the equations above:

bofs5) = —2Xe =2t o p = —;'—?—[X—o cos 6, [hodd] (84)
2} qhwd Vi + np  Fheda phwolos
! ~XdA o Fnl  —Xdaw _ —mXem -
o (5) - 2qhen " 2ghwg cos 6 2phlwf cos 6y (% oven] (85)

In the absence of damping, the amplitude when ny = 0 would become
infinite for odd values of & and zero for even values, as is further explained
in §61.

§When k is odd, the amplitude £(I/2) has its greatest value at a fre-
quency fra = waa/2%, obtained by minimizing the product wa{af + ni}
in Eq. (82), it being remembered that w, = hwg — ny and that o = &fs.
To = high order of precision the result is

2 62
ny = h%o and  whe = hao (1 - ﬁ (86)

Af the fundamental frequency, w. = wo{l — 52/4x2), This exp‘ress%on
for w, is similar to that for electric displacement-resonance in an oscillating
electric eireuit with L, ¢, and B in series, measured in terms of maximum
voltage across the condenser as the frequency is varied.
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The »elocily of a particle at the end of the bar, for odd values of &,
is the time derivative of Eq. (82):

v (ﬁl) = wrto (é) cos (wrt — B} = v (é) cos (ol — 6)  (87)

where vo | 5) = -—2X___gc’ = —2X 22X cos 6 = wnbo{ =
"\2 dvei+ni plvVeal +n} ploy 2
(88)

The velocity has its maximum value when n; = 0. The angular
veloeity is then wy, = wso, the same as for free vibrations in the absence
of damping. Velocity resonance corresponds to current resonance in an
oscillating circuit (§234).

When % is even, one finds from Eq. (83) for the maximum velocity in o
cycle

The mechanical impedances for & odd and even, as well as further
analogies with electric resonance, are treated in §62.

For damped free vibralions at any harmonic frequency, the angular
veloeity way is found from Eq. (65):

62
“”\/%(1“3?2)

Then
: 3
hy = “E,,?f = Wk (1 - &) {90)

This expression is similar to that for free oscillations in a series electric
circuit with L, €, and R. ‘

B9. Summary of the Criticel Frequencies of @ Thin Bar. From the foregoing equa-
tions it is seen that the frequency fi. of free vibrations in the absence of damping is
the same as f\. for velocity resonance. The expressions for the frequency fia for
amplitude resonance and for fi; in the cage of free damped vibrations are given below.

Iro = faw =g—§ = 2'-’; E o1)
fia = fro (1 - 41:,) (92)
fr = g0 (1 - g) ©3)

These expressions are applicable to all types of vibration in which the frequency is
assooiated with a definite wave velocity. fis and fis converge upon fi, &5 the damping
approaches zero.
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1t will be observed that these three frequencies are approximately equally spaced:

oo = for = for — faa = g, = §22_’ (94}

For all resonators of low damping these differences are extremely small, measurahle
only by methods of high precision. The frequency usuaily observed by electrical
measurements on piezoelectric resonators is fy {or fi), modified somewhat by the
parallel capacitance of the resonator, as explained in §275.

60. Relation between Mechanical Wavelength and Length of Bar. It is
characteristic of longitudinal vibrations in bars, as in the analogous elec-
trical cage of transmigsion lines containing uniformly distributed resist-
ance, inductance, and capacitance, that with forced vibrations at any
given frequency the distributions of displacement and of strain along the
rod at any given instant are very nearly sinusoidal, becoming strictly
sinusoidal in the absence of damping. This fact is readily shown for the
case of negligible damping by setting @ = 0 in Eq. (75). This equation
then gives the amplitude of mechanical displacement at any z directly:

_ _ X . e iy . 2xx
_Eﬂ(x) - “"A(J:) = m 2104 -é_ = Eu (E) sin T (95)
9@ 2¢
where the mechanical wavelength is A = ¢/f and £{1/2) is the amplitude
at the ends of the bar.
The amplitude of the strain at any « is found from Eq. (95):

At the fundamental resonant frequency, A = 2l, so that the last
equation may be written

‘ Zxolx) = lﬂ: & (21) cos wa (97)

This expression gives the sinusoidal distribution of strain at resonance
in the absence of damping. For the strain in a damped bar see §230.

According to Eq. (96) the strain at the ends of the rod vanishes at the
frequency of resonance, i.e., when [ is an integral multiple of »/2. This
is for zero damping; if the damping terms in Eq. (75) were retained it
would be found that £({{/2) remained slways different from zero and
that there was no frequency at which the strain at the ends of the rod
quite vanished.

The relation between the displacement ¢ and length of rod [ is shown
in Fig. 19, in which a fixed frequency is assumed, corresponding to a
fixed wavelength A along the X-axis, Rods are pictured having the
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lengths aa’ and bb’. In the case of aa’ the length is so short in com-
parison with A/2 that the distribution of displacement is almost linear,
showing that at relatively low frequencies the deformation of the rod
approximates that caused by a static stress. On the other hand, rod
bb’ is considerably longer than A/2, and the displacement has & maximum
value at a certain distance from each end.

When the length of the rod is an odd multiple of A/2, the condition
is that of resonance. Since the amplitude then depends primarily on the
damping, Eqs. (85) and (96) are no longer valid. Nevertheless, when the
damping iz small the strain at the ends of the rod is exceedingly small,
and the form of the displacement curve is almost exactly that of a sine
wave, with greatest value at the ends of the rod, diminishing sinuscidally
to zero at the center, as represented, for the fundamental frequency, by

$

'% b c ?_.._.
\ ;

|

|

Fia. 19—Relation between length of rod and distribution of mechaniecal displacement.

the range from ¢ to ¢/ in Fig. 19. In most piezoelectric resonators the
resonance is so sharp and the variation in frequency that ordinarily need
be considered is so small that within this range, so far as the distribution
of displacement and strain is concerned, we may write A =~ 2I, or, for
overtone h, A =~ 2I/h. From this it follows that, close to resonance, the
sinusoidal distribution represented by the equation

Hz) = s( ) sin T2 (98)

holds to & high degree of precision. We shall make use of this relation in
later paragraphs.

61. Resonator Amplitudes for Wide Ranges of Frequency. It is some-
times desirable to study the reaction of a piezoelectric resonator upon the
electric circuit over a range of frequencies too wide for sufficiently
accurate calculation in terms of the simple equivalent electrical network
discussed in Chap, XIV. We therefore require a formula that is at least
approximately correct over any desired range. So far as the purely
elastic side of the problem is concerned, such a formula is given in Eq. (77),
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but this is foo cumbersome to be used conveniently. For most purposes
the problem is treated with sufficient accuracy by solving for the resonant
and non-resonant conditions separately. We first solve Eq. (77) for
frequencies well removed from resonance, the damping terms being
ignored [or we may set z = [/2 in Eq. (95)]; and second we solve Eq.
(84) for the resonance frequencies themselves (cos 6, = 1). We write
w = hwo, Where wo refers to the fundamental frequency and where h
may have fractional as well as odd or even integral values. Then,
noting that wl/e = rh, and that sin (wl/c) = 2 sin (wl/2c) cos (wl/2c), we
find for the maximum value of the displacement in the first case (non-
integral values of k)

PN IA VY EATP.C h
and in the second case (h = 1,3, 5, . . .)
AN 1\ _ 4Xor _ 2X,
—h (ﬁ) =4 (ﬁ) T wF T wpchay, (100)

If the frictional coefficient ¥ were a constant independent of frequency
the amplitude at harmonie A would be only 1/4% as great as for the funda-
mental. In practical resonators the
damping may be due to so many #
causes that it is better to use the last
expression in Xq. (100), in which the
darmping factor o can be found experi-
mentally at any frequency. Since
there is experimental evidence (§296)
that e« increases with frequency, it
can at least be said that with increas-
ing order of harmonic the amplitude ‘

decreases proportionally to a power of
k greater than unity. /

In schematic form the maximum
displacements at 1/2 are shown in Fig. 0 i 7 3 4 5
20 as functions of k, the driving force A

. . F1a. 20.~~Maximum displacement at
having constant amplitude. The ineend of s longitudinally vibrating rod,
exact form of the curve and, in par- in termsof frequency. dh ff:;{{:,fwhdera
ticular, the height and sharpness of {;;:&T’;,iﬁf;f:;y' and fi ie the funda-
the resonance peaks depend of course
upon the values of [, ¢, g, and F. The value at @ = 0 can be calculated
from Eq. (78). In Fig. 20, F is considered constant.

Tt remains to add & word concerning even values of & (see also §63).

From Eq. (85) or (99) it is found that the amplitude A ({/2) is zero when w
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is an even multiple of wy, 88 long as damping is neglected. By symmetry
there are also k& — 1 nodes of motion at intermediate points, between
which the rod is in a gtate of forced vibration when periodic forees are
applied at the ends. For example, the amplitude of the second harmonic
is found by setting 2 = l/4and w = 2wein Eq. (758); A{(l/4) = — Xoc/qu.
There is no resonance, since the strain at each end is limited, the value
being .{l/2) = —X/q. There is also no external piezoelectric reaction
due to longitudinal deformations when rods with full-length electrodes
are excited at an even multiple of the fundamental frequendy, since the
effects of compressions and extensions in the various segments cancel
exactly.*

62. Equivalent Resonating System with a Single Degree of Freedom.
When any feebly damped mechanical system that has many degrees of
freedom vibrates at or near one of its normal modes, it is sometimes
advantageous to deal with vibrational problems in terms of an equivalent
system having a single degree of freedom.®? One may, for example,
visualize as the equivalent system a mass at the end of a weightless spring,
subject to a small frictional drag. It was the device of & simplified
equivalent vibrating system that led the way to the representation of
the piezoelectric resonator by certain equivalent electrical constants.

Whatever the type of vibrator may be, the selection of the three
equivalent constants for the single-degree system is determined by the
condition that at every instant the kinetic energies of the two systems
must be the same. That is, the systems must agree in amplitude, phase,
and decrement. This condition leaves us free to choose arbitrarily either
the equivalent mass M, assumed concentrated at a point (or more gen-
erally the equivalent coefficient of inertia), or the coordinate that deter-
mines the motion of M. Usually the motion of the concentrated mass
is taken as identical with the motion of that region on the boundary of
the actual vibrator where the driving mechanical force is assumed to be
applied. By this convention the value of M then becomes determined.

The present problem is to determine the cquivalent mass, stiffness,
and frictional coefficient for the case of a longitudinally vibrating rod.
The fundamental frequency will be considered first. The concentrated
mass M is assumed to undergo the same motion as a point at the end of
the rod. The condition of equality of kinetic energies leads to the
agsignment to M of half the actual mass of the rod, or M = }pble, where
b, 1, e are, respectively, the breath, length, and thickness.t The equivalent
stiffness is defined by G = Mul = w2beq/2!, and the frictional coefficient

* Nevertheless, if the impressed frequency is lower than the resonant frequencies
of lateral vibrational modes, there can still be o piezoelectric contribution to the
polarization, as explained in §229.

t Bee, for example, H. Lamb, ref. B33, p. 13.
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W, from Eqs. (64) and (67), by & = 2«2F /o) = W/2fM. M, W,and G
correspond to L, R, and 1/C in & series electric circuit having lumped,
as contrasted with distributed, constants.

The equation of motion is

ME+ WE + Gt = @ cos ol (101)

where £ is written for £(I/2), the displacement at the end of the rod, and
&, i3 the maximum value of the force that acts on the equivalent mass M.
The steady-state solution of (101) is

£t = §£sin (wf — 6) (102)
in which the maximum displacement is
- P =B
E = i =T oW cos 8 (103)
wa W4 (wM e —)
_ oM ~-Gfw 2 n
and tan 0 = — = ot = T m (104)

As previously, n = wo — w, and § = W/2fM ~ W/2feM. The mechani-
cal reactance is

Xo=alf - = —23m (105)

From the foregoing equation for W, together with Iiq. (67), the
mechanical resistance may be expressed as
_ pbecd _ mpbec

The mechanical impedance is given by
2
Z1= W4 XE= Wt (wM - g‘) = AMa? + 1Y) (107)

On comparing Eq. (84) with (103) one secs that the conditions for
identity of the distributed-constant systera with its equivalent lumped-
constant system are fulfilled. quality of damping is ensured through
the definition of W, and identity of phase from the definition of tan 6.
Equality of amplitude is attained by setting ®o = —2Xcbe.

Derivations of equations for the longitudinal vibrations of damped
rods, leading to results similar to the foregoing, have also been given by
Vigoureux®s0.2515¢7 and by Laue®® (see §242).

83, Equivalent Lumped Mechanicol Constants for a Bar Vibrating in Harmonies.
We consider first the case in which the periodic driving stress is uniform throughout the
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bar. For all values of k the effective driving force is & = --2X be, just as at the
fundamental frequency. The bar may be treated as consisting of & segments in series,
for each of which we may write M, = plbe/2h, Gh = M wih* = kG, where G has the
value given above for the fundamental frequency of the entire bar. W = 2},
where oy is the damping constant for & single segment.

As in §58, the solutions for odd and even valuea of h must be treated separately.
When h 18 odd, the effective mass for the complete bar is My = hMy = plbe/2 = M;
Gﬁ - w:MJ. = hGl = h’G = r’qbeh'/ﬂ; ap =W;./2M§, whence W}. = 2Mc!;.. The
mechanical impedance is

Zy = (WE 4 X = 2M(a} + nD} T o)
where Xy = only — %’: r 2Mp(on ~ hooe) = —2Mmy (109)

By analogy with the alternating-current (a-c) equation 7 = ¥/Z, one would
expect to find for the velocity at 1/2 the value vo(l/2) = &/Z,. In fact, Eq. (88) for v,
ean be reduced to exactly this form through the use of the foregoing expressions. As
in the case of a series resonant electric cireuit, Z, has its minimum value at the resonant
frequency for which n, = 0.

The situation is quite different when k is even. There is then destructive inter-
ference (180° phase difference) between adjacent segments of the bar, An clectrieal
snalogy is the 180° phase difference between the inductive and espacitive branches of
a parallel (antiresonant) circuit. The current has a minimum value at resonance,
analogous to the minimum in ve({/2) according to Fa. (89).

In the foregoing discussion it has been agsumed that the mechanical driving stress
waa applied uniformly throughout the rod, from —1/2 to +I/2. We may anticipate
the results of the following section by remarking that, if the stress is applied from
({/2 — 1/h} to /2 (or if it is applied to any other single one of the A segments), then
when h is even the destructive interference between segments is eliminated and a
maximum in velocity oceurs at resonance. Tor application to the piezo resonator
gee §238.

64. Rods Driven by Forces Applied Locally. Rod-shaped piezoelectric
resonators are sometimes excited by the use of electrodes covering only
& portion of the length, as indi-

—_— cated in Fig. 21. The purely

[ 1 elastic part of the problem of
I g ¢ .

~% x4 X; £ determining the amplitude at any

F14. 21.—Rod maintained in longitudingl  iTequency can be solved approxi-
vibration by equal snd opposite periodic mately by assuming a uniformly
forces at x1 and z3. .y
distributed stress from z; to x»
or its equivalent, #iz., a force X = X, cos wf per unit area of cross
section, applied at z,, and an equal and opposite foree at z,. We consider
first only the frequency region close to the fundamental and omit the sub-
seript h. The excitation of overtone frequencies is discussed in §238.
Az approximate solution can be reached by several routes:
1. By first deriving an expression for {(1/2) when the applied forces
are symmetrically situated at +1I'/2, where I' <. The solution for
I = 4x, is then subtracted from that for I = %z, The final value of
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£(1/2) is half of this difference and is identical with that derived by
method 2.

2. On the assumption that I = /2 and that the strain. is sinusoidally
distributed, an expression can be derived for the average input of power
to the rod in terms of X, and £,(I/2),,; where the latter quantity denotes
the maximum displacement at 2 = I/2 when the forces are applied at
z; and 3. ‘The average power is found to be P = w§o(1/2)1,2 X oSz 008 8,

where 82 = 3 (sin ";" — gin TX2 ; ) and & has the value in §57. A second

expression for P is then derived representing the expenditure of energy
in the rod, wiz., P = wflFE3(1/2)1,2/4c®. Upon equating these values of P
one obtaing £o(7/2)1,e = 41XeS1s cos 8/x%F. If, as formerly, £f(1/2)
denotes the displacement at I/2 when the driving forces are at the ends,
we find for the instantaneous displacement at I/2 with forces at z; and
&2 the equation
f(l/2)1,z = Eu(l/2h.z gin (Wt — 0) = Slzfu(l/z) gin (wt - 8) (110)
The reduction in amplitude eaused by driving the rod at points not
at the ends is thus expressed by the factor S;2. When z; and z; are at
the ends, Si2 = 1 and the equation becomes identical with (82). When
x, and &, are symmetrically placed, so that z; = —z;, 812 = sin 7z, /1
3. A more rigorous treatment takes account of the fact that in a piezo-
electric resonator the wave velocity in the portion of the rod between
the electrodes is less than in the exposed parts (§241). Two different
values of Young’s modulus must therefore be included in the correspond-
ing elastic problem. The rod has to be divided into three regimes,
viz., from —I/2 to z,, from x; to s, and from 2 to +1/2. At 2, and z;
the medium undergoes a discontinuous change in elastic constant and in
strain, but the stress is continuous. The method of attack is analogous
to that discussed by Mason,B%.3% by Quimby,* and by Crandall®®
The author has derived the equation for the motion of the rod, but the
form is too complicated to make the plotting of a resonance curve at all
convenient. Moreover, the velocities in the three regimes are so nearly
equal, at least in the case of quartz, that the result differs but little
numerically from that given in Eq. (110). It need only be stated that
the resonance frequency, defined for a homogeneous rod by 1/f, = 2i/c,
is given by the following equation when account is taken of the ¢hange in
elasticity at z, and x,:
1 I-r
7y + — (111)
where I’ = z; — x;, ¢ = velocity between z; and z;, and ¢; = velocity
outside of this region,
* 8. L. Quimpy, Pkys. Rer., vol. 25, pp. 538-573, 1925.
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66. Effect of Cross Section on Frequency of Rods. Rayleigh’s well-
known equation for the frequency of longitudinal vibration of an iso-
tropic cylindrical rod of length [, radius r(r < <1}, Poisson’s ratio o,
gives, to the first approximation,

Rirtri\ !
h= Qli\/% (1 + ”4721’) (112)

h being the order of the overtone. For cxample, if ¢ = § and | = 4r,
the frequency is about 2 per cent less than if the radius were negligible.

With other than circular cross sections and with anisotropic mediums
the obstacles in the way of theoretical formulation multiply, but the
order of magnitude of the correction is not very different from that
indicated above. For isotropic bars of rectangular section (length I,
breadth b, thickness ), the following equation is given by Giebe and
Scheibe:'7!

hfy hf
fh = ) 3 = 7 hig (bt + ¢t (113)
\jH"i (bic)tg e

where f; is the fundamental frequency. These authors find that (113)
fails to give values in agrecment with experiment for quartz bars. Their
oxperimental and theoretical investigations are treated in Chap, XVII.

The effect of cross section on longitudinal vibrations has also been
treated by Ruedy.*

The basic equations from which the effect of lateral inertia on the
lengitudinal frequency of rectangular crystal bars in any orientation ean
be found have been derived by R. M. Davies.!? The only application
made by Davies is to bars from crystals of Group III (Rochelle salt),
the length I of any given bar bisecting the angle between two of the crystal
axes and the dimension ¢ being perpendicular to both these axes. He
finds the corrected frequency fi for overtone h to be given (in the notation
of the present section) by an equation of the form

(fedo —Fn _
h(}ﬁ)o 4 248’212 [(8

sHb? + size?] (114)

where (f3)o is the frequency for a bar of negligible cross section and b
is the third dimension of the bar, which may be greater or less than e.
The subsecripts in Eq. (114) are for a bar having its b, 1, and e dimensions

* B, Ruzpy, Can. Jour. Research, A, vol. 14, pp. 66-70, 1936,
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parallel, respectively, to the Z’-, ¥'-, and X-axes. Bars of this type are
called elsewhere in this book the ‘‘X45°cut.” The transformed axes
are obtained from the matrix in §41 by setting o, = 1,

Br=rq = = a3 =0, Be = By = 3 = 1/4/2, ve = —1/4/2.

The expressions for the elastic coefficients are given in Eqs. (43).

By analogous axinl transformations the equations for Y45° and
Z45°%bars may be obtained. More simply, they are derived directly
from (114) by permuting the subsecripts according to the rule following
Egs. (31) in §42.

For an X45°bar of square cross section, with b = ¢ = /4, the cor-
rection given by Eq. (114) amounts to sbout 2 percent. Ifb = e = 1/6,
the correetions for k = 1, 2, 3, and 4 are roughly 1, 4, 8, and 14 per cent.

For the effect of cross section on quartz resonators, in which there
are pronounced departures from the Rayleigh correction, sce §3-19.

66. Thickness Vibrations in Crystal Plates. The general theory
will now be outlined. Later, in §§93 and 253, the application of the
theory to special problems will be considered.

The following paragraphs have to do primarily with plates of infinite
area, in which the same motions are shared by all particles having the
same eoordinate in the direction of the normal. It is strictly not enough
to specify that the lateral dimensions shall be greaf in comparison with
the thickness. When the plate is finite, coupling effects between various
vibrational modes distort the wave front. Aditention will be paid in
Chap. XVII to these coupling effects. In any event it is important to
study the nature of the vibrations in the ideal ease. For the application
to the piczo resonator see §243.

For isotropic solids the velocity of compressional waves is

the elastic constants A, n, and ¢ having the meaning indicated in §31.
The velocity of transverse waves (waves of distortion) is 4/n/p. From
the matrices of the crystal groups in §29 one might infer that the same
equations held for erystals, on substituting the appropriate ex for ¢ and =,
This statement is hardly a rigorous proof, and indeed it is not generally
true; moreover it fails to indicate the direetion of vibration for trans-
Verse waves.

The general theory of the propagation of plane waves in anisotropie
mediums, of which the foregoing equations are particular cases, was
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first given by Green.* He showed that for any direction of propagation
there are in general three possible types of wave, each with s different
velocity, the three vibration directions being mutually perpendicular.

87. The form of the theory now 1o be considered is due to Christoffel. T
Calling I, m, n the direction cosines of the normal to the plane wave
surface and s the distance of this surface from an arbitrary origin, we
have & = Iz 4 my + nz. The displacement of a point on the surface
from its normal position is £, with components u, v, w and du‘ectmn cosines
a, B, v, 50 that £ = au + Bv + ~yw.

The general equations of motion, analogous to (61} in the absence of
damping, are

TP T oz

(115)

with similar expressions for v and w.

Christoffel shows that these equations can be written in terms of v,
v, w, and s instead of stress, by introducing new moduli Ty, + + - Ty, which
are functions of the elastic constants ¢y and of [, m, n. Eguation (115)
then becomes

e 92w
Pﬁzr‘laﬂ+r1”an+r"ass
aty 02w

PiE = P12 63“ Lyt stasg t Tugg

0w O
PE = Fxsa 3 +r“6s’ T+ Taos 35t

where} T3 = T'sy, Tis = Iy, Tas = gz, and

* G. GrerN, “Mathematical Papers,” London, 1871. See also Lord Kelvin's
“Baltimore Lectures,” London, 1904.

t E. W. CHRisTOFFEL, Annali di mafematica pura ed applicata, series 11, vol. 8, p.
103, 1877. Christoffel’s method was applied to the piezo resomator by Kogat?e:m
and later by Magon,3%* Bechmann, %9 and Atanasoff and Hart.12 See alao Love, ref.
B34, p. 298,

t The six moduli Ty . . . Tz correspond to the six types of strain that can be
present in thickness vibrations. They are as follows: one strain of type I shown in
Fig. 15 (p. 56), viz., o compression normal to the surface of the plate; two strains of
type I"; two of type S; and one of type S’, All other strain components are pro-
hibited by lateral inertia. As an illustration consider an X-cut, for which I = 1,
m = 7 = 0, The I"are then reduced to the six fundamental constants ey, ceq, €55, Coey
615, and ¢1, which will be recognized as belonging to the types mentioned above. The
last three of these ¢ are the cross constants corresponding to the firgt three. TFor an
X-cut these are the only fundamental constants that play a part in thickness vibra-
tions, Analogous statements may be mede concerning other cuts, including these in
oblique directions,
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Ty = Ly -+ mcss + nlcss + 2mnces + 2nles, 4 2Imess
T2 = IPces + mPcay 4 niou + 2mneo + 2nlcis + 2imess
Tys = less + mPus 4 n2cas -+ 2mney + 2nless + 2imeys
Tas = Pese + MPezs + nlens + mn(csa + c4) + nllcus + £34)
+ Imlewe + ¢35) 5 (116)
Ty = Pews -+ micqs + nPess + muless + cae) + nllcas -+ ss)
+ tmicss + €14)
Ty = L1 + Mmices + nleas + mnless + c26) + nl(2se + €14)
+ im(e1s 4+ ¢so)

The quantity sought is the stifiness factor ¢ for insertion in Eq. (59).
Tt enters the scene in the following secular equations, which, as shown by
Christofiel, give the relations between stiffness, direction cosines, and Ty:

al'ip 4 AT 4 T = ag
al'yz 4 BTas + T2 = By
al'ys + Bl'% + ¥1'az = g

{117

The values of g for quartz and Rochelle salt, derived from the solution
of (117), are treated later.

There are three possible values of g, all of which are real; they are the
roots ¢, gz, gs of the cubic equation, expressed in terms of known quanti-
ties:

Ty —¢q T T
I‘u I‘n - q Pza = 0 (118)
T3 T2 T — ¢

To each of these roots corresponds a different set of values for «, 8, v,
and hence a different direction for the displacement £ The three
vibration directions are found from Eqg. (117).

When plane waves corresponding to one of the roots of Eq. (118) are
propagated at a resonant frequency in a plane-parallel crystal plate of
infinite ares, in the direction of the normal to the plate, a condition to be
satisfied at the surfaces is that the strain 8£/6s = 0. For each root a
system of stationary waves is theoretically possible for a erystal plate
in any orientation, at a fundamental thickness frequency or at any
overtone. Such vibrations can be realized in those cases where the piezo-
electric properties of the erystal are such that the strain 4£/0s can be
piezoelectrically produced.

Any one of the three roots of Eq. (118), say gm, can be used in the
fundamental wave equation

at o
P In g (119)
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from which follows, in the usual manner, for the normal frequencies of a
plane-parallel plate, with vibrations propagated in the direction of the
thickness e, the formula
=r igm
Jim =5, = (120)
where & is the order of the harmonie.

When Eqgs. (117) are solved for a, 8, and v, it is found in the general
case that each of the three displacements, which we shall ¢all &, &, &,
has components both normal and parallel to the surfaces of the plate, so
that no one of the waves is purely compressional or purely transverse.
It is only in isotropic eclids and in certain special cases in erystals that
one of the three waves is strictly longitudinal and the other two strictly
transverse. If the substance is isotropic, the velocities of the two trans-
verse waves coincide and the transverse vibratory motion can have
any direction whatever in the wave front, while the third wave is com-
pressional, with displacements normal to the wave front. The general
condition that one vibration direction shall be normal to the surface (com-
pressional wave) is that « = [, 8 = m, ¥ = n. For a vibration direction
to lie in the surface the condition to be satisfied is of 4+ m + yn = 0.

Elastic vibrations of the transverse type in solids are often called shear
vibrations.

68, The Christoffel theory has been applied in the determination of
vibration directions and frequencies, as well as of elastic constants, in
plates of quartz, tourmaline, and Rochelle salt, The excitation takes
place piczoelectrically, the plate being placed between planc-parallel
electrodes that are connected to a source of alternating current of the
right frequency for producing resonant vibrations. It is possible to
excite any one of the three vibration modes that involves o strain capable
of being caused piezoelectrically by an electric field; the latter is usually
normal to the plate, The criterion can also be expressed thus: The
vibrational deformation must be such as to produce a piezoelectric
polarization in the direction of the driving field. Obviously, the essential
question in any particular instance is whether there is a piczoclectric
coefficient satisfying this condition. Examples are considered in §§351
following and §378.

In the precise measurement of elastic constants by means of thickness
vibrations it is desirable to use h-f evertones rather than the fundamental
vibration. This fact has recently been made evident in the case of quartz
by Atanasoff and Hart,'? who point out that at high harmonic frequencies
the effects of gap, boundary conditions, and coupling hetween different
modes are eliminated. The procedure for deriving the elastic constants
from observational data is described in §§93 and 252,
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The elastic properties of & non-piezoelectric solid can be studied experi-
nentally by cementing to a flat face of the solid a plate of piezoelectric
erystal. High-frequency compressional or transverse waves generated
in the erystal can then be propagated in the solid, as described in §512
below.*

69. In the days when light was treated a8 waves in an elastic solid, the two trans-
verse waves mentioned above became the two waves of polarized light in erystals.
In isotropic media the two waves had the same veloeity, the vibration direction could
have any orientation in the wave front, and hence the medinm exerted no polarizing
cffect. Compressional waves were removed from the discussion by conferring on the
ether such properties that their velocity was either infinite or zero.

Even with the acceptance of the electromagnetic theory of light, the analogy with
elestic waves atill remaing valid. It is not inappropriate, for example, to regard the
two tranaverse waves in crystals, each with its own veloeity, as an instance of elastic
double refraction. Elastic wave propagation in erystals, however, is more compli-
eated than the propagation of optical waves. This is partly due to the presence of the
compressional wave, so that in all there are three wave surfaces to consider a8 against
two in optics; and in addition there is the fact that, while three parameters (the prinei-
pal refractive indices mentioned in §528) suffice to deseribe the aptical properties of
crystals, the number of elastic parameters in erystals, for the general cnse, is much
greater, That is, there ig in general no unique elastic ellipsoid in terms of which the
wave velocities in all directions can be expressedt (§527). All 21 clastic constants
play a part in determining the velocity. In all crystals except those of lowest sym-
metry, special wave directions can, however, be found for which certain constants or
groups of constants are zero; as has been stated, use i3 made of this fact in certain
oblique cuta in quarts.

One respect in which elastic waves are somewhat simpler than optical waves is
dispersion. ‘The only effect of frequency upon wave velocity, at least so far as mechan-
ical waves of ordinary frequencies are concerned, is an extremely small diminution
with increasing frequency due to friction, as indicated by Eq. (66). Molecular fric-
tion or viscosity plays a part in optics, but in a quite different manner, namely, in
causing anomalous dispersion.

70. Damped Thickness Vibrations. The theory of the piezoelectrically
driven resonator vibrating in a thickness mode, with due regard to damp-
ing, overtones, space between crystal and electrodes, and the effect of
piezoclectric reaction on the elastic constant, is given in Chap. XIIIL
For the present it is necessary only to indicate briefly how the equations

* The fact that elastic waves in erystals can be propagated in a given direction
with any one of three different velocities finds an interesting application in explaining
the modified lines that are observed in the spectrum of light scattered while passing
through a quartz erystal. This effect was found by E. Gross (Compi. rend. acad. sci.
U.R.8.8., vol. 18, p. 93, 1938), who thinks it due to local variations in the index of
refraction caused by strains accompanying heat waves, according to the theory of
Debye.

1yNeverthela, corresponding to any given direction of the wave normal there is a
certain ellipsoid, the principal axes of which give the vibration directions and velocities
of the three elastic waves (3. Green, reference on p, 104; Love, ref. B34, p. 269).
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for longitudinal vibrations in damped bars may be adapted to the freat-
ment of thickness vibrations of plates. This purely elastic theory will
then serve ag the basis for the later discussion.

When applied to thickness vibrations, Eq. (61} assumes the form

2 2 3
e = (121)
in which the displacement £ may make any angle with the plane of the
plate and x represents the distance parallel to the thickness dimension e
(the s-direction in §67) from the nodal plane at the center of the plate.
gw 18 the stiffness coefficient corresponding to the particular type of thick-
ness vibration [see Eq. (118)].

Bince the theory of thickness vibrations in damped plates runs exactly
parallel to that for lengthwise vibrations in rods, it is unnecessary to
repeat it. Just as in our theory of rods we have disregarded
the effects of cross section, so here the assumption of plates of infinite area
disposes of the complication due to boundary conditions. When applied to
actual plates of rclatively large area, the theory is still accurate enough to
be of great usefulness, yielding frequencies that agree with observation
to the order of 1 per cent.

Most of the equations and discussion in §§56 to 63 apply equally to
plates, provided that the symbols [ and e (length and thickness) are inter-
changed (see, for example, §254).

When thickness vibrations are used for the stabilization of radio
frequencies, the lowest, or fundamental, mode is commonly used. Plates
vibrating in high overtones have also recently found an important
applieation as h-f oscillators. In crystal oscillators for the preduction
of ultrasonic waves it is common practice to employ high overtones of
compressional thickness vibrations. In the case of piezoelectrically
driven plates only odd harmenies can be excited.

Ti. Conservation of Angular Momenium in Shear Vibrations. ‘The
following remarks are applicable to all shear vibrations, whether of the
thickness type, in which the plane of shear is at right angles to the major
surfaces of the plate, or of the “contour” type, in which the shear is in
the plane of the plate.

A gircumstance that must not be overlooked when plates of finite
area are vibrating in a shear mode is the principle of conservation of
angular momenfum. A shearing strain involves rotation of linear ele-
ments in the crystal about a certain axis. If the vibrating plate is free,
& ecompensating periodic rotation of the body as a whole must take place,
in order to keep the total angular momentum zero. With increasing
lateral dimensions the moment of inertia of the plate increases; hence,
the amplitude of angular movement of the plate as & whole diminishes,
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approaches zero as the area becomes indefinitely large. Thus, it is only
with plates of relatively great area (if vibrating with perfect freedom)
that the two major surfaces remain so fixed in orientation that the
instantaneous deformation is a simple shear.

Under a static shearing stress the rectangular section ABCD of a
fiat plate, shown in Fig. 220, would become deformed into the parallelo-

gram A'B'C'D' or A”B"C"D", . D C ..
If the stress alternated at very &[5 o c
low frequency, these two configur- ¥ 1

ations would take place alter- 4q//1%A" B’jéB’

nately, the nodal plane EF A (a)

remaining approximately fixed.

But if the frequency had the value r .

for the fundamental thickness gl Y
)

vibration in direction e = BC, i “

the distribution of strain and of A / B

displacement would be sinusoidal, 2

as indicated in Fig. 22b, provided D —

that the dimension AB was so A \

great that the rotation of the plate \ - Y

as a whole about an axis per- \ \\

pendicular to the paper at O could x =S\

beignored. One may also assume )

that the plate is so mounted that Tie. 22.—Deformation of & plate by a
shearing atress: (2) statie, (b) in resonent

the nodal plane EF is fixed in  vibration with nodal plane EF fixed, (¢) in
space. The sinusoidal distriby- vibretion without constraiut.

tion is exactly analogous to that described in §60 for extensional
vibrations.

The rotation of the body as a whole that fends to accompany the
alternating shearing strain is represented in Fig. 22¢, where for simplicity
the strained figure is shown as a parallelogram. If the unstrained figure
were a square, the strain would be “pure.”

The effect of this pericdic rotation of the body as a whole is to make
the frequency of shear vibration higher than it would be if there were no
rotation, <.e., if the nodal plane EF remained invariant. Considering
only the case of the fundamental shear mode in a rectangular plate of
length @ and breadth b, it can be proved from simple dynamic principles
that, when the hody vibrates freely, the diagonals of the rectangle remain
invariant in direction and also that the frequency is higher by the factor
1/co8 « than it would be if the median line EF remained fixed. Since
1/cos a = {(a? 4 b®%/a, it is evident that the increase in frequency
approaches zero when a >>> b, as is usually the case with thickness
vibrations, where the dimension called b here is the thicknese.
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If ¢ = (g/p)}, where ¢ is the stiffness constant for the shear mode and
p is the density, the frequency is
= = C L SuEF b
/= 2bcosa 20b Vait+b (122)
This formula can be extended to overtone frequencies, where frac-
tional parts of @ and b have to be taken. By a different method Mason**?
derived an approximate equation, which as modified by Sykes**® has the

following form:
=354 /m— + k5 (123)

where g, b, and ¢ are as in Eq. (122) and m and » are positive integers.
k is an experimental constant dependent on m and n, with value unity
when m = n.  In the latter case

10 (123) reduces to (122).
} Shear vibrations of the type
8 we have just discussed, as well ag
( _"/ other vibrational modes in finite
& crystal plates, have recently been

treated theoretically by H.
Ekstein,'*! who compares caleu-
4 S lations based on his theoretical

/ ( g—f_ / formulas with the experimental

results of Mason and others.

2 e
| J &/ 72. Comparison of Wave Velocities
05 for Various Types of Vibration. This
0 0.1 02 03 04 05 comparison has a bearing on the dimen-
T sioning of resonators. The velocities

. Fie. 23.—Dependence of ratios of veloe-  gopeerned are ¢ in a thin rod, ¢ and ¢
1;’::?:5 ofr compressnonnl and shear waves on (compressional and shear) in a plate of
on's ratio. . i
large aren. The ratios e./¢ and o/er
are not the same for all materials, even isotropie, but depend on the relations between
the elastic constants.
For isotropic solids, damping being ignored, the velocities as given in §§56 and 66
can be expressed by means of the equations in §§24 and 31 in the form

"’@ cc=\/p(1+i(_1"_2,, 6-—\f,,2(1+,, (124)

The ratios between the velocities are thua expressible as functions of Poisson’s ratio .
It will be noted that this quantity does not affect ., gince the rod is assumed extremely
thin. The ratios have been computed for various values of & by F. Auerbach,* and
the results are shown graphically in Fig. 23. Following are the main conclusions:

1. The smaller ¢ is, the more nearly does the velocity of compressionel waves in
an extended medium approach that for a thin rod. With increasing «, ¢ increases;

* Ref. B1, p. 289,
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this may be interpreted as due to the fact that in an extended medium lateral expan-
sions and contractions are inhibited, so that the effective stiffness coefficient becomes
greater.

2. As ¢ approaches zero, ¢, approaches ¢/+/2; with increasing o, ¢, decreases
somewhat.

3. ¢. has & value approaching ¢, 4/2 as ¢ approaches zero, end the ratio c./c, rises
rapidly with increasing o.

Qualitatively, similar relations may be expected in crystals. It has not been
found feasible to express wave velocities in erystals quantitatively in terms of Poisson’s
ratio, since in the general case this quantity is anisotropic and its introduction into
the equations would present grave difficultics, In a few special cases, s, for cxample,
with quartz bars or eylinders parallel to the Z-axis, s single value cun be assigned to .
Such “quasi-isotropic ” vibrational conditions are considered in §§382 and 400, The
bearing of Poisson’s ratio on the coupling between different vibrational modes is men-
tioned in §§349, 357, and elsewhere.

73. Flexural Vibrations. Just as the compressional vibrations of rods
and the compressional or transverse thickness vibrations of thin plates
may be regarded as systems of stationary waves with characteristic
velocities, so the subject of flexural vibrations may he approached by
first considering the velocity of propagation of flexural waves. In con-
trast to the wave types previously considered, pure floxural waves have
velocities proporticnal to the square root of the frequency [Eq. (128)
below], as long as the thickness of the plate is small compared with the
wavelength. With increasing frequency, as was shown by Doerfiler,1%
there is a gradual transition from pure flexural waves to transverse waves
of constant velocity, Purc flexural waves bear a certain analogy to
ripples on the free surface of a liquid.

The simplest equation for the velocity of a flexural wave in an indefi-
nitely long rectangular bar of solid isotropic material of breadth b, the
vibratory motion taking place in the direction of thickness ¢ {Fig. 24), is

cﬂk%ﬁqﬂr\/{f (125)

where A = wavelength, ¥ = Young’s modulus, p = density, k = wave-
length constant = 2r/A, and r = /(2 4/3) = radius of gyration of the
cross section be with respect to an axis through its center, normal to the
plane of flexure (Fig. 24). This equation takes no aceount of rofational
ot compressional inertia. Nevertheless, it is fairly precise as long as
e < < x and was used by Doerfller'® in experiments on quartz bars.
In terms of frequency, since ¢ = fi, Eq. (125) becomes

o [
v3N»

In the foregoing equations, as also in all the following expressions for
flexural vibrations, the breadth b does not appear, as its effect is negligible.

(126)

¢! =
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A somewhat more aceurate expression, including the effect of rota-
tional inertia, is given by Lamb:®3

kr Y
°= T w\ﬁ (127)
Further equations for velocity are given in Geiger and Scheel. *
Coming now to flexural vibrations in bars of finite length, we are con-
fronted first with the fact that the terminal effects are very large, so that
it is not permissible to assume that the length of the bar is even approxi-
mately equal to an integral number of half waves, except for flexural
modes of high order. Only vibrations in bars free at both ends are here
considered. The equation commonly employed is

m¥ur ¥ -
f= 2—1&5.\]; (128)

in which [ is the length of the bar and m a coefficient depending on the
order n of the mode. For rela-

e tively thin bars, m = (2n + 1)x/2
/‘__.__?—&\ L2 approximately, where n may be
T R any positive integer. The num-

F1a. 2¢.—Flexural vibration of a bar of her of nodes isn + 1, as shown in
Tt overtone, n = 5. Ate plane of the Tig. 24 for n =2 The funda-
diangram is the “plane of flexure.” mental mode n = 1 is shown in

Fig. 47 (page 239).

For the first three modes of thin bars, the values of m, together with

the theoretical distances d of the first nodes from the ends of the bar,

expressed as fractions of I, and the relative frequencies, are:

n m d Fa/h

Fundamental. ...... ... iiiiiniiiniiiannenin. 1| 4.73)0.2242 | 1
Lot OVErtOBE. . .o i e it e e 2| 7.85 | 0.1321 | 2.756
2nd overtone............. e e 3] 11.00 ) 0.0044 | 5.404

Doerfller'®® recorded flexural vibrations in quartsz plates with orders
as high as n = 32.

A small ratio of ¢ to ! is by no means a requirement for the existence
of flexural vibrations. They have been observed when e was of the order
of magnitude of /. A more vomplete theory, taking account of both
rotational and compressional inertia, has been developed by Mason,?
who gives equations and curves (Fig. 25) from which the coefficient m,

* Vol. 8, p. 195.
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for insertion in Eq. (128}, can be precisely found for any ratio of e to { up
to 1. The only point at which the special properties of crystals enter
isin the expression for Poisson’s ratio, Mason shows that, as e approaches
I, the flexural frequency gradually merges into that for compressional
vibrations,

Still another formulation of the theory for isotropic materials, in
which Mason’s expressions are simplified and extended, with curves to
aid in calculations, has been made by Thomson,*

74. Torsional Vibrations.

Torsional vibrations are encoun- 48 [
tered, not only in rods of small 47 N
cross section, but also in reso- 46 N
nators of many shapes. Likeflex- 4.5 \\
ural vibrations they are frequently 44 N First Fexure
present in experiments with vi- 43 N _rmode a0
brating plates, and they contribute 4, s, ‘ 18
both to the complexity of the 4 \ h 16
experiment and the perplexity of \ \ ’
. . 40 14
the experimenter. Owing to the \\ \\
presence of cross constants con- 39 \ \ 1.2
necting extensions with shears, 38 \ \\ 0
coupling is likely to oceur between 3.7 \ 658
flexural and torsional modes. In 35 \ N 66
the following equations ceupling 35 \\ \ 64
effects are disregarded, as are also 3, 62
the second-order effects of warp- 5., %”fmgg"”’e \ 60
. - N
ing of transverse planes. \ N
. .. . 3.2 54
In investigations on torsional 3 \r.s
vibrations, end effects are less ~ 0 0J 02 03 04 05 06 07 0809 10
serious than with flexural vibra- F1g, 25.—Curves for computing flexural

: : : _  frequencies of bars, from Mason, Abscissns
tions, so that with sufficient pre are the thickness: length ratio e/l. Upper

cision the frequency can be curve (ordinate scale at the left) gives m for
expressed simply in terms of .W&VB ;: r=n,1 '= lg?ver curve (scale at right) gives m
velocity and length of specimen,
the latter being assumed eylindrical or prismatic in form, In general,
the theory of longitudinal vibrations in rods can be applied directly
to torsional vibrations.

Calling N the dynamic forsional stiffness {corresponding to ¢ in Eq.
{58)] we have for the torsional wave velocity

N N,
\ c=\/-;— T;‘ (129)

* W. T. Tuouson, Jour. Acoustical Soc. Am., vol. 11, pp. 198-204,.1930,
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where N, is the sfallc torsional stiffness as defined in §35 and I, is the
moment of inertia about the axis of torsion for unit length of the resona-
tor. For s cireular cylinder of radius », J1 = wxpr¥/2; for a rectangular
bar of breadth b and thickness e, I; = pbe(d® + ¢%)/12. In the case of a
circular cylinder, solid or hollow, N = 1/T (§35).

For s eylinder or prism of length I, the fundamental frequency is
fi = ¢/2l. The overtones stand very closely in harmonic relation to the
fundamental as long as the cross-sectional dimensions are not t.oo large. 192
Hence, for the harmonie of order A,

h IN,
Jn= ANT, =123, ) (130)
Two expressions for the static torsional stiffness N, = Q/r can be
obtained from Egs. (11} and (12), for the special cases represented by
these equations. For a discussion of the more general eage in which the
axis of torsion may have any orientation the reader is referred to Voigt.*
In the case of bars of rectangular section the general expression for the
static torsional stiffness is

Athedn
3

where A is a funetion of ¢/b as defined in §35 and n is the effective rigidity
(reciprocal of the torsional compliance). For an isotropic solid n is
the ordinary rigidity; for crystals it is a function of certain of the funda-
mental elastic constants.

The torsional frequency equation for a rectangular bar of any ¢ and [
is found from Eqs. (130) and (131) to be

_ Ach n
I =1veTa \/; (152)

To & degree of approximation sufficient for the identification of the
torsional mode, n may be taken as the reciprocal of §(si, -+ sf;), the
primed compliances referring to transformed axes and the length [ lying
in the Z'-directicn. For example, if the specimen has its length parallel
to Z, nis 2/(s4s + 8x5); for length parallel to X, n = 2/(sy; + 8as).

For still other vibrational modes see §§359, 360, and 379.

N, =

(131)
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CHAPTER VI
ELASTIC CONSTANTS OF CRYSTALS

And oft in the hills of Habersham,
And oft in the valleys of Hall,
The white quartz shone, and the smooth brook-stone
Did bar mo of pasage with friendly brawl,
And many s luminous jewel lone
—Crystals clear or a-cloud with mist,
Ruby, garnet and amethyst—
Made lures with the lights of streaming stone
In the clefts of the hills of Habersham,
In the heds of the valleys of Hall. ~—LANIER.

In this chapter will be given the results of observations of the funda-
mental elastic constants of those piezoelectric crystals for which data
are available, arranged according to the elastic groups. Other elastic
properties of interest are included, although some matters having to
do with elasticity are so closely related to the piezoelectric properties
that they must be reserved for later chapters.

It is impossible, however, to avoid some reference in the present
chapter to the influence of piezoelectric reactions upon the observed
elastic constants, For a fuller understanding of these reactions Chap.
X117 should be consulted.

75. The Measurement of Elastic Constants. In general, three differ-
ent methods may be used for measuring the elastic constants of solids:

1. By static deformations of specimens eut in various orientations,
employing a mechanical or optical technigue or a combination of the
two. TFor details the original papers must be consulted. The results
when reduced by means of the transformation equations given in Chap. V
yield the isothermal values, and they are assumed to be for zero electric
field (of significance only with piezoelectric materials). There is reason
to suspect that in some ecases, notably with Rochelle salt, insufficient
precautions were taken to ensure this condition. By making the cor-
rections noted in §37, the adiabatic can be computed from the isothermal
values.

2. From observations of frequency, dimensions, and density of
resonating devices made of or containing the material to be tested. Fre-
quencies are usually so high that the elastic conditions are essentially
adiabatic. Care must be taken to avoid or allow for coupling between

118
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various vibrational modes. With piezoelectric resonators, the electrical
state {dependence of elastic coefficients upon piezoelectric reaction) is
dependent on the air gap, as explained in §§235 and 248, and also on the
relative dimensions and orientation of the specimen. The effect of a
gap on the piezoelectric reactions is always to increase the effective
stiffness. It is therefore to be expected that dynmamic values of the
compliances, uncorrected for such reactions, will never be greater than
the static values, and the dynamic values of the ¢'s never less than the
static values.

3. From the optical effects of ultrasonic waves, as described in Chap.
XXX. Although the method is indirect and complicated, it appears
to be capable of yielding results of precision comparable with those
mentioned above. Not enough precise data on piezoelectric orystals
have thus far been obtained to warrant inclusion here.

Method 1, the stafic method, gives primarily the s constants, since
they occur in the equations relating 4 single component of stress with the
resulting strain. From them the cn'’s are computed as explained in §28.
By method 2, whether the quantity derived from observation is a com-
pliance or a stiffness constant depends on the form of the resonator.
Methods 2 and 3 are called wibrational or dynamic methods,

Considering not only observational errors and limitations imposed
by methods of measurement but also the impossibility of preparing test
pieces in exactly the right orientation, possible defects in test picces, and
variability of different crystals, there is probably some uncertainty in
the third significant figure, at least in most cases. 'Where more than three
significant figures are given in the following paragraphs, it is mainly to
focus attention on the differences between isothermal and adiabsatie
values. Room temperature is to be understood unless otherwise stated.

76. In anticipation of the discussion in §199 a word should be said at
this point concerning the “electrical state’ of erystals. To a greater
or lesser extent this must be taken into account in expressing the elastic
constants of all piezoclectric crystals. While with most crystals, for
example quartz and tourmaline, the influence of the electrical state on
the elastic constants is a second-order effect that need be regarded only
in work of precision, it becomes an effect of first order when the pieszo-
electric reactions are abnormally strong, as is the case with Rochelle
galt. Hence, the following precautions become less urgent as the mag-
nitude of the piezoelectrie constants diminishes.

A definite physical meaning can be attached to the elastic constants
when

1. The electric field is held constant when a stress is applied. In
static observations this condition is usually sufficiently met by allowing
a short time to elapse for the neutralization of surfaco polarizgation charges
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of piezoelectric origin. With Rochelle salt, owing to the magnitude of
the plezoelectric effect and the great relaxation time, many minutes
may elapse after the application of stress before the final steady state of
strain, with all charges neutralized, is reacbed. The time can be short-
ened by costing the entire specimen with a conducting film so thin as
not to have an appreciable stiffness of its own.

In dynamic messurements, the field may be regarded as virtually
constant when the electrodes by which the resonator is driven from an
external source are in immediate contact with the surfaces of the erystal.

2. The electrie displacemend is held constant when a stress is applied
(see §199).

In order to prevent the displacement from varying, there must also
be provided an electric field in the erystal of the right strength and in
the right direction. With relatively thin bars and plates the field is
parallel to the thickness; and if the polarization also is in this direction
and no conductors are in the neighborhood, the displacement remains
practically zero. Under these conditions’ constant-displacement coeffi-
cients of elasticity can be measured, both statically and dynamically.
If the polarization is not parallel to the field, only the component of dis-
placement parallel to the field remains constant. The observed elastic
constant is then 8% or ¢, given by Eq. (273) or (272). From these
values the isagrie, constant-potential, and constant-displacement values
can be calculated. For the procedure in the case of thickness vibrations
seo §252. It would be exeessively difficult to apply fo the erystal a
compensating field such as to hold the total displacement constant in
the general case when the polarization was not paralle! to the field.

3. The electric polarization is held constant when the crystal is under
gtress. The constant-polarization elastic constants are used according to
the polarization theory discussed in Chap. XI. They are of practical
importance chiefly in the treatment of the Seignette-clectrics. As is
pointed out in §§200 and 211, their numerical values agree with those at
constant displacement, within the usual limits of experimental precision.

In estimating the precision with which a specimen should be oriented
in order that its elastic constants may be measured with a desired
accuracy, account must be taken of the fact that the variation of any
given constant with angle of eut may depend greatly upon the axis about
which the rotation is considered. For quartz, this variation is illustrated
in Figs. 81 to 36 and in Fig. 38. In measuring Young’s modulus parallel
to the Y-axis of quartz by measurements on a bar, the error due to
incorrect orientation of the length of the bar in the ¥Z-plane is much
greater than that inecurred, when the modulus parallel to X is to be deter-
mined with & bar parallel to X, by incorrect crientation in the XZ-plane.
This gubject ix treated more fully by Gishe and Scheibe.’” Calculations
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for all rotations and all erystals can be made with the aid of the trans-
formations treated in Chap. IV.

The effects due to coupling between different modes will be considered
later, in varicus special cases.

In general, the values of compliance cocfficients si: are expressed in
aquare centimeters per dyne, those of stiffness coefficients i in dynes
per square cenfimeter. In the reduction of all static measurements to
cgs units it does not matter appreciably whether g be taken 2s 980 or
981 cm/sec.? As a rule the value adopted is 981.

Among piezoelectric crystals complete elastic data are available only
for Rochelle salt, sodium ammonium tartrate, quartz, tourmaline, and
sodium chlorate.

Unless otherwise stated, all numerical data in this chapter are for
constani-field eonditions.

GROUP III (REOMBIC)

As may be seen from the table in §29, this group has nine of the pos-
sible 21 fundamental elastic constants, each independent of the rest.
The rules for the axes in Class 6, to which the crystals here discussed
belong, are given in §5. Unlike quarte, the erystals in Group IIT have
qualitatively similar elastic properties with respect to all three crystal-
lographic axes. 'This symmetry is already apparcent in the array of con-
stants in the table in §29. Equations for transformed axes are in §§44
and 43.

77. Rochelle Salt (Class 6, symmetry V). It is with Rochelle salt
that consideration of the electrical state of the crystal becomes of prime
importance in elastic measurements. It is stated in §76 that values of
the elastic constants having a definite physical meaning can be obtained
only when one of the following quantities is maintained constant when
strain is applied: either the electric field, or else the electric displacement,
or, 59 is nearly the same, the electric polarization. In the case of Rochelle
galt this precaution is particularly important in all measurements
involving 8ss, s, and especially sy, since these are the guantities that
occur in the expressions for piezoelectric deformations. The elastic
“constant” associsted with the piezoelectric cocfficient d,, and the
dielectric constant 7, in the description of the much-discussed anomalies
is 8. or its reciprocal c.. The observed isagric values of these two
quantities depend to a very marked degree on temperature and electric
field (§8466 and 474).

The first measurements of all nine constants were made by Mandeil, ¢ by » atatic
method, in which the bending or torsion of bars cut in various orientations was
observed The constants were caieulated from upproprmw transformation equatlons
such as are given in §44. Unfortunately no information is given concerning either
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the temperature (except that it was held constant) or the completeness with which
disturbing effects of electric fields caused by the applied stresses were eliminated.
One can only assume thet these very eareful and painstaking observations were mada
at room temperature, a few degrees below the upper Curie point, and hope that suffi-
cient opportunity was given for the piezoelectric surface charges to become neutralized
by leskage. Doubt on this score has been expressed by Mueller.’”™ Mandell’s
original results, together with the adiabatic values based on them, are given in Table
IV {page 122).

Statie messurements of the elastic complisncea have been made more recently by
Hinz,** whose method differed from that of Mandell in that by means of compres-
sion apparatus (optical lever) he observed the shortening of rods subjected to endwise
pressures, at room tempersture, stress about 30 kg/em.* Rods were cut paraliel to
the erystal axes and also in directions bisecting the angles between pairs of axes. Cars
wag taken to prevent disturbing electrie fields of piezoelectric origin; hence, Hinz's
values may be considered rs isagric. For the theory of this method the original paper
should be consulted. Hinz claims a precision of +2.6 per cent.

Davies'® derived equations for Young’s modulus for bars in lengthwise vibration
in the ¥Z-plane at 45° with the Y- and Z-axes, the applied alternating field being
perallel to X, and also for bars similarly oriented in the ZX- and X ¥V-planes with felds
parallel to Y and Z, respectively. We designate these as X45°-, Y45°-, and Z45°-bars,
and the corresponding values of Young's modulus 88 Y, Yiue, and Y. The
formulas will be found in Eqs. (45).

Unfortunately, Davies's metallic electrodes made only light contact with the
erystals, so that the effective gap was pretty certainly not zero {§214). His valuses of
¥ would therefore be expected to lic between those at constant displacement and those
at constant field, approximating somewhat more closely to the latter. His final
results are corrected both for adinbatic conditions and for lateral inertia (§65). Tha
values at 15°C are entered in Table VI {page 125}.

Frequency measurements on s large number of Y45°rods have been made by
Mattint ;%5 the frequencies were corrected for lateral inertia, but the nature of the
electrodes is not mentioned. From his data, presumably at room temperature,
Young’s modulus for this direction (in the ZX-plane at 45° to the Z-axis) is found
to be 10.4(20'") dyne/ecm? (see Table VI). His curves show the depondence of
frequency on the b:{ ratio and also the variation with orientation of the bar in the
ZX-plane.

The most rcliable dynamic measurements of elastic constants of Rochelle salt, and
indeed the only ones hitherto made that give all nine constants, are those of Mason, !
His data are obtained from obgervations at 30°C of resonant frequencies of lengthwise
compressional vibrations of rods and of thickness vibrations of plates in a shear mode,
piesoelectrically excited in both cases. For the former observations, the rods had
lengths lying in the three principal planes, at angles of 22.5% 45°, and 67.5° with the
axes, the field in each case being normal to the principal plane; these measurements
yielded 811, 822, 843, and three relations among the remaining six constants. From the
thickness vibrations (page 127) were derived g4 = 1/6u, %55 = 1/cs, and 845 = 1/Ce;
thus all nine compliances were evaluated and also the nine s,  All these are “‘con-
stant-charge” values {§190), since the gap was large.

Following are the formulas for the stiffness coefficients Im in the thickness-vibration
experiments, derived by means of the theory outlined in §67. For each of the particu-
lar obligue cuts employed, certain of the moduli T vanish, whence it can be shown that
the vibration which is piezoelectrically excited has a vibration direction in the plane
of the plate. ‘The electric field was normal to the plate in all cases. For a plate one
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edge of which is parallel to X, the normal to its surface making an angle 8 with the
¥-axis, we shall call the stiffness coefficient g.4; when one edge is parallel to ¥ and the
normal is at an angle & with the X-axis, the coefficient is ¢,6; and when one edge is
parallel to Z, the normal making an angle § with the X-axis, gq.6. The formulas as
derived by Mason are then

gyo = Cy, Sint 8 4 gy cos® @ = ¢t for rotation about ¥

g4 = €y c08? 8 + c}; Bin? @ = ¢} for rotation about X
(133)
g = ¢y, coa? & + ¢}, sin® § = ¢r for rotation about Z

The values of § used were 22.5, 45, and 67.5. From the observations of frequency,
the values of the ¢’s are found by means of Eq. (120), letting & = 1.

‘The asterisks in Eqg. (133) indieate values at infinite gap, according to §207. In
solving for cf;, cf, and ¢f,, Mason assumed these quantities to have the same values
at each value of 8 and also for rotation about each axis. We shall ahow in §207 that
this procedure is not rigorously correct. Nevertheless, since the dependence of these
quantities on orientation is not known, Mason’s values at constant charge, indicated
by “constant ¢, are included without correction in Table IV, but they werce not used
in calculating the values for Table V.

Two years after the appearance of Mason’s paper it was shown by Atanasoff and
Hart!? that precise values of the elastic constants of quertz, and hence presumably of
other crystals, from thickness vibrations, can be obtained only by the use of high
harmenic frequencies (§250). With Rochelle aalt Mason observed only at the funda-
mental frequency, and it is imposgible to say how different the elastic constants
€4, E36, AN £56 Would have been if derived from the frequencies of high overtone vibra-
tions. This circumstance is disecussed further in §79.

78. The compliance and stiffness constants ag determined by Mandell,
Hinz, and Mason by the methods outlined above are assembled in Table
IV. Mandell's and Hinz's isothermal values are taken from their
papers, and from them the author has calculated the adiabatic values
(at room temperature} from Eq. (17), taking data from §§407 and 409,
The values cbtained by Mandell and Hinz may be assumed to be approxi-
mately at zero field.

The first prominent feature in this table is the *“softness’ of Rochelle
salt as compared with quartz (Table IX). Next we notice that the
magnitude of the important constant 8, is not cutstanding as being either
very great or very small {see §474).

Owing to the peculiar nature of Rochelle salt it is impossible to make
a complete comparison of the values without knowledge in every case of
the age and previous condition of servitude of the crystals used. The
results may be influenced also by faulty crientation and, especially in
Mandell’s measurements, by the sources of error mentioned above.

Hinz’s static compliances agree better with Mason’s dynamic than
with Mandell’s static values. This fact cannot be ascribed to tempera-
ture differences, for Hinz and Mandell must have observed at nearly the
same temperature, a few degrees below the upper Curie point, while
Mason worked at 30°C, several degrees above this point. From ali
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Tasre IV.—EvrasTic CoNsTANTS OF ROCHELLE SALT
Static Dynamie
Mandell, room temp. Hing, roem temp. Mason, 30°C
Tsagric Isagric const. ¢
Obs'd Cale. Obs'd Cale. Obs'd
isothermal adinbatic isothermal adiabatic [ adiabatic
cm? dyne™! X 101z X 10712 ®x 107w X 10712 X 10™\2
811 4.69 4.65 5.23 5.19 5.18
832 3.20 3.18 3.43 3.41 3.49
LT 2.82 2.80 3.24 3.22 3.34
Su 6.09 6.09 8.63 8.63 7 98
855 3n.g 30.6 33.7 33.7 328
Ses 8.02 8.02 11.8 11.8 10.1
813 —0.80 —0.82 —2.18 —2.20 ~1 53
&1z -~2.18 -2.21 ~1.69 -1.72 —2.11
823 +1.68 +1.66 —1.34 —1.36 —-1.03
dyne cm™? b 11 2 1010
€11 34.7 .................. 42. 5
€2z [ 7% T O O 51.5
Ca g0.6 | ...... | ... ... 62.9
fud wa | oo 125
(7 3.24 v ..., 0 ... | Lo 3.04
Cag 12,4 | ...... 1 ... | ... 9.96
(51 —804 | ...... 0 ... | ... +296
€13 4316 | . ... 1 ... ... +35.7
Cza 344 + ... .1 L +34.2

available published data it appears that all the compliances except 844
decrease by an amount of the order of 0.2 per cent for each degree rise in
temperature over the range from 0 to 40°C (for 844, see §86). About half
of the difference between Mandell’'s and Mason’s values can thus be
accounted for. On the other hand, one would expect the static values
of the compliances to be greater than the dynamie, owing to the greater
opportunity given the crystal to relax (§428). Smallest of all should be
the dynamic values at constant electric charge, such as those of Mason,
This relatively low value of compliance is especially to be looked for in
the case of s, and indeed Mason’s value is very considerably less than
Hing’'s. 'Why Mandell found sy, still smaller must remain a mystery.

It will be observed that Mandell's 853 does not agree even in sign with
the other values. This fact is probably related to his small value of s4,
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since these two constants oceur together in the equations from which the
final values are derived.

All things considered, we are inelined to prefer Hinz’s static values to
Mandell's, partly because of his greater attention to the elimination of
disturbing electric fields and partly owing to his better agreement with
Mason’s results.

79. Best Values of the Elastic Constants of Rochelle Salt. All the
constants except Su, Sk;, and §s vary but little with temperature, and
their variation with stress is probably also small. They are also subject
to no piezoelectric correction; hence, no distinction need be made between
their values at constant field, constant polarization, and constant dis-
placement. Since, as is shown in §211, the values at constant normal
displacement (which are practically the same as the constant-polarization
values &f,) of 844, 855, and 8¢ are less dependent on temperature than the
isagric values, the values given below are those at constant normal
displacermnent.

For 841, 812, and 8ss we adopt the average of the adisbatic values of
Hinz and those of Mason, from Table IV.

Mason derived his 53, sf, and s3; from thickness vibrations and
therefrom obtained $.5, 831, and &2 by means of the experimentally deter-
mined compliances (2525 + s5,) = 5.93(1071%), (285, + s35) = 28.6(10~12),
(2852 + s§;) = 7.02(10-1?), These three numerical values come from
measurements of frequency of lengthwise vibrations of bars in different
planes and different orientations, as stated in §77. The compliances of
the bars are s, from Fgs. (39) for rotation about X, with analogous
expressions for rotations about the other two axes. Since, for the reason
stated in §§77 and 207, Mason’s values of cf, cf, and cfs from his observa-
tions of thickness vibrations are subject to correction of unknown amount,
his values of 8,3, #31, and 82 cannot be accepted. Instead, we follow
Mueller’s procedure™ and adopt Hinz's values of ses, sz, 8nd s12.  Then
from Mason's values of (28, 4 53), ete., given above, the constants
5%, s%, and s% are caleulated, all at 30°C. Their reciprocals give cfy,
cs;, and cg;.  These starred values hold only for X-, Y-, and Z-cuts,
respectively. For the reason given in §207 they cannot be used accu-
rately in equations involving other orientations.

We thus arrive at the following set of values at room temperature:

TasrLe V
Compliance Constants of Rochelle Salt, X 101*
8, = 5.1(8) $g3 = 8.4(B) S35 = 3.2(8) S5 = —1.3(8)
50 o= —1.7(2) 513 = —2.2{0)
s* =8.6(8) s =82.(0) s =1L(4)
Stifiness Constants, X 1020
¢l =11.(8) ck =81@) cf =8.(8)
* Ref. 378, footnotes 25 and 26.
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The numbers in parentheses are of uncertain magnitude. Future experi-
mentation mey show that in some cases even the digits preceding the
parentheses should be changed. The value of ¢f,, at constant polariza-
tion, is of importance in the polarization theory. Within the limits of
experimental error (see §211) we may write

¢, =~ ¢ty = 11.(6)(10'%) dyne cm—? (134)

The variation of ¢y with temperature can be caleulated from the
data in Table I of Mason?8 (a portion of which is given in Table XXXII,
page 478) or from Fig. 28. From the values of frequency the author
finds, using the values of 8z, 813, and sys from Table V, a fairly uniform
decrease in ¢¥, from 12.5(10%) at — 12°C to 11.0(10™) at 47.5°C. Curve
Hx in Fig. 94 indicates that there is & very slight discontinuity in cf,
at the upper Curie point.

The isagric compliance s§, and its dependence on temperature can be
derived from sf; by means of Eq. (273). If the calculation is made by
the use of di and &} from Figs. 145 and 146, values of sf; in agreement
with Fig. 148 are obtained. For s%; and s§; see §141.

Our knowledge of the elastic constants of Rochelle salt, even at small field
strengths, ia still in an unsatisfactory state. There is need of more experimental data,
on many plates and bars in different orientations, with strong a8 well as weak felds
and over a wide range of temperatures including both Curie points. The resonant
and antiresonant frequencies with zero gap should be observed and also the frequencies
with infinite gap, together with the dielectric constants, Due attention should be
given to the piezoclectric terms in the stiffness equations. In observing thicknesa
vibrations of plates, high barmonies should be used. It is also desirable to make
static observations of the clastic and dielectric properties of the same specimens,
under carefully controlled conditions,

80. Young's Modulus for Bars in Various Orientetions. Data for
Table VI are taken chiefly from the papers cited above. All values
were obtained from the resonant frequencies of lengthwise vibrations
except those of Hinz, who observed the moduli directly by his static
method, and of Mandell, whose values are derived from his fundamental
constants, Davies observed at 15°C, Mason at 30°C, Mikhailov at
15 to 19°C, the others at room temperature.

The errors in the observed values of ¥ due to an error of 1° in orienta-
tion for bars in the three principal planes, with lengths at 45° to the axes,
have been computed by Daviest®® as followe: in the X Y-plane about 1 per
cent, and in the YZ- and ZX-planes about 0.5 per cent.

Hiltscher used very short electrodes (§377) in his experiments, so
that his values, like Mason’s, may be regarded as practically at constant
displacement. The best constant-displacement values are probably
those of Mason, the best isagric values those of Hinz. Cady’s and
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TasLE VI.—Recirrocar or Youwne’s Mopurus or Rocherre Sant ror Bams AT
45° witH THE Axks INDICATED
(In ¢em* dyne™?)

Plane
Yz zZX Xy
X 10-18 X 1012 X 1012
Cady™™. . i e e 3.31 10.2 3.97
Davies!?®, .. .. e 3.29 11.0 a.07
Hiltseher22e, , ... .. .. .. .. o 3.19
Hinz®, e 3.41 9.70 4.02
Mandell®8_ . ... ... ... s 3.84 8.41 3.55
Magom® . . e 3.16 9.31 3.9
Mattint®®s, . ........... e e 9.64
Mikhailov® .. ... .. ... e 3.13 10.4 3 .Gq

Fie. 26.—Elastic constants of Rochelle salt R and sodium-ammonium tartrate ’A
(sec §88) from Mandell. Upper dingrams: radius vectors are 8}y, the reciprocals of _Young a
modulus; radius of cirele is 50(1071%) em? gm™! = 5.1(107%) om? dy_ne' 1, Lower dlnzram_a_:
radius vectors are the torsional compliance T; radius of circle is 125(1071% em? gm™!
= 12.74 ¢m? dyne.™?
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Davies’ dynamic measurements were made under conditions approxi-
mating those at constant field, so that their results might be expected to
agree with those of Hinz, as indeed they do fairly well accept in the case
of the ZX-plane, where Davies' value looks suspiciously large.

In the upper part of Fig. 26 are shown polar diagrams of the reciproecal
of Young’s modulus for all orientations in the three principal plancs.
They are taken from Mandell’s papers®**#* and are based on his measure-
ments. The curves may be tegarded as fairly representative, despite
such corrections as may have to be made to Mandel’s values of the
elastic constants. The minimum of Young's modulus comes at about
42° with the X-axis, the value of the reciprocal being 8.50(10~*%).

The diagrams in the lower part of Fig. 26 represent the modulus of
torsion T for circular cylinders with lengths lying in the three prineipal
planes. The values are derived from Eq. (10) after the latter has been
specialized for the rhombic group.*

The three stiffness coefficients corresponding to the three possible
modes of thickness vibrations in Rochelle-salt plates have been computed
by Takagi and Miyake.®*! Values are shown in the form of polar
disgrams, for plates whose normals are perpendicular to the Z-nxis, at
various angles with the X- and Y-axcs.

81. Crushing Sirength of Rocheile Salf. The only data at hand are from a single
test in this lnboratory. An X-cut 45° plate 8.6 by 2.5 by 0.6 cm with carefully
machined ends was stood on end while inereaging forces were applied from above.
Care was taken to distribute the stress as uniformly as possible. At about 130 kg /em?
the first erack appeared, running lengthwise. The plate was still standing up under
300 kg/cm? but fell apart in several picces when removed. Apparently 100 kg/om?
is a safe compressional stress for the direction bisecting the Y- and Z-axes.

82. Compressibility of Rochelle Salt. A check on the relative reason-
ableness of the elastic constants as given in Table IV is provided by a
caleulation of the linear compressibilities in the three principal directions
under uniform hydrostatic pressure, using Eqs. (15). These calcula-

TaprEe VIL—Lingan CoMPRESSIBILITIES
(In 1072 cm?® dyne™1)

Mandell _ Hinz Mason Bridgman
X:sn 4 812 + 813 1.71 1.36 1,54 1.36
¥: 823 4 831 +8u 408 ’ -0.09 +0.93 2.76
Z: 85t 812+ 2n 2.32 +0.21 +0.20 | 1.99
Sum 8.11 1.48 2.67 6.11

* The simplified expression is in Voigt, p. 760, and also in Mandell’s papers.
+ This test was mede by R. A. Richardson and M. C. Waltz.
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tions are given in Table VII. The values from Mandell*®® and Hinz?®®
are isothermal. The last column gives the initial compressibilities,
derived by extrapolation from the observations of Bridgman,* which
covered the range from 2,000 to 12,000 kg/cm?, at teraperature 30°C.

The curious discrepancies in Table VII are attributable largely to
differences in the value of 83, which as has previously been pointed out
is closely associated with the anomalous ““constant” s¢. On the whole,
Bridgman is found to be in best agreement with Mandell, although the
latter’s values are somewhat greater. On the other hand, Bridgman is
in good agreement with Mason, and especially with Hinz, in the X-direc-
tion. In the Y-direction Hinz's data predict a slight expansion under
uniform pressure.

The last line in the table gives the volume compressibilities. The
values of Hinz and of Mason appear very low. One is tempted to wonder
whether their values of the cross constants, particularly Hing’s values of
8§12 and 8.3, are not numerically too great,

83. Stiffness Coefficients for Thickness Vibrations. The following
values are from Mason,®® obtained directly from observed frequencies
of shear modes. These are the ¢’s which, by means of Eqs. (133), served
to determine his values of ¢y, ¢s5, 8nd ¢e and thence 844, 855, and seg in
Table IV. The symbol X22.5Y means a plate having one edge parallel
to X, its normal making an angle of 22.5° with the Y-axis, and similarly
for the remaining cuts. All values are in 101 dynes/cm?,

Cut Stiffness Cut Stifiness Cut Stiffness
X22.5Y 7.51 Y22.5X 10.18 Z22 85X 4.54
X45Y 6.384 Y45X 11.39 Z45X 7.87
X67.5Y 4.06 Y67.5X 11.99

With these may be compared the probably less reliable values (elec-
trodes and gap not specified) of Mikhailov:®" V45X, 12.3(10'%); Z45X,
6.83(10'%) dyne cm™2

Using Mandell’s data from Table IV the author has caleulated from
Fq. 37 the stiffness coefficient ¢}, for various directions of the X'-axis.
The maximum value $0.4{10'%) is in the Z-direction. The minimum
value is 27.5(101%), with direction cosines approximately a; = 0707
ay = 0,612, a; = 0.354.

An 1dea of the configuration of the ¢{,~surface may be gained from
Tig. 27. The model} shown here for viewing sterecscopically, has radius

* P. W. BrinaMax, Proc. Am. Acad. Arts 8ci., vol. 64, p. f38, 1029,
t This “pincushion” model, designed and constructed in Scott Laboratory, con-
aists of a carefully machined aluminum casting in the form of an octant, in which holes
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t, the ¥-axis to the right, and the Z-axis points vertically upward in

Frg, 27.—~8terecscopic view of an aluminum octant, illustrating the ei,-surface for Rochells salt.

The X-axis is toward tby fron
the plane of the paper.

vectors (distances of tips of rods from center of sphere) proportional
to the square root of ¢f,.

are drilled radislly for various latitudes and longitudes. Threaded steel rods are
screwed into these holes, each projecting outward se that the distance from the center
of the sphere to the tip of the rod is proportional to the esleulated value of the param-
eter in question. The rods are threaded and can be screwed in and out at will. The
apparatus is thus a universal confour model, capable of illustrating any phyaical prop-
erty of any crystal so far as is possible with a single octant.

The symmetry of Rochelle salt ia such that every elastic property can be com-
pletely represented by a single octant; three of the remaining octants are identical with
the first; the other four are mirror images.

If the model were set up to illustrate any elastic property of quarts, a range of
80° in azimuth (longitude) about the Z-axis would suffice, together with 90° in Iatitude.
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84. Variability of the Elastic Constanis of Rochelle Salt with Stress.
Almost the only experimental data seem to be those of Iseley,?* who
applied endwise compressions to a bar whose length bisected the angle
between the Y- and Z-axes. The stresses ¥ (§39) extended to 2.225
kg/em? [about 2(10°) dynes/em?). The strain is y} = —&,¥,; the
compliance s, from Eqs. (43), involves 8, 813, 613, and 8y The first
three of these coefficients should be sensibly constant; henée, any depar-
ture from strict proportionality between y. and Y. must be attributed
to 844, which shares in the anomalies discussed in Chap. XXIV. Iseley's
curves, for temperatures 20, 22.5, and 30°C, show a slight decrease in s},
with inereasing Y}, indieating a somewhat more marked decrease in
844. Although the interpretation of his data is difficult, still it can be
said that his results tend to confirm quantitatively the theoretical curves
in Fig. 142,

Hinz’s value of 8 in Table IV tends to confirm the view that this
quantity becomes smaller under large stresses. The value, obtained
presumably at zero field, is 9.63{10~22), the stress being about 30 kg/em?,
At small stresses, according to Fig. 146 the value is about 20(10-1%) at
room temperature. Unfortunately, Hinz does not record the dependence
of his elastic constants upon stress.

Mandell*?® states that he found it neccssary after each observation
on the elastic constants of a bar of Rochelle salt to wait for the recovery
from fatigue before using the same bar again (time not stated).

86. Temperature Coefficients of the Elastic Constants of Rochelle
Salt. The behavior of 844 with varying temperaturc and stress is dis-
cussed later.* Turther experimental results bearing on s4 will now be
given, together with data on the variation of the other elastic constants
with temperature.

Since the dielectric and piezoelectric anomalies of Rochelle salt are
confined to fields in the X-direction and since the only elastic constant
related piezoelectrically to E. is su, one would hardly expect to find
anomalies in §55 OF s¢s 8t any temperature. Nevertheless, the evidence is
quite convineing that s;s and sss (hence also ¢s; and cas) have anomalous
values in the neighborhood of the Curie points of the same order of
magnitude as that in sy, at infinite gap. The results of different observers
are in too good agreement, at least in order of magnitude, for the effect
to be attributed to faulty orientation of the ¥- and Z-cuts employed.

Owing to the large values of di and ey and their dependence on
temperature, the effect of the gap width w on 2, and on its temperature
coefficient is very pronounced.t For unambiguous results with X-cut

* See eapecially $§462 and 474 and Figs. 142 and 146.

t Formulas for the effect of the gap on the elastic constants or on vibrational
frequencies are given in Eqs. (284), (330), (3568}, (370), and (336),
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plates the gap should be zero (with due regard to the precautions noted in
§§415 and 416} or else infinitely great; spacing of a few millimeters
between erystal and electrodes usually makes the gap effectively equal to
infinity. It is when w = 0 that s, and hence the effective stiffness
&) of X45°-bars, shows very great dependence on frequency. The data
below are for bars with w large enough to give to s the value for constant
normal electric displacement.

With Y- and Z-cuts a consideration of the gap is not of much impor-
tance, since the piezoelectric correction is relatively small and inde-
pendent of temperature. The dependence on temperature of all elastic
constants except $44 = 1/¢4 should be substantially the same whatever
the gap may be.

All the available data on temperature coefficients are from ohserva-
tions of resonant frequencies of bars or plates. The earliest results of
this sort, obtained in Scott Laboratory at intervals from 1928 to 1933 but
not published, were confirmed by the publications of Davies'?® and
Mason®5:338  In all this work, lengthwise vibrations of 45° bars were
used, leading to values of Young's modulus along lines bisecting the
Y- and Z-, Z- and X-, and X- and Y-axes. The driving fields were
parallel to X, ¥, and Z, respectively. All these cuts yield negative tem-
perature coefficients of frequency, in most cases with larger values below
the upper Curie point 6, than above it. On each side of 4, the relation
between frequency f and temperature ¢ iz nearly linear. There is an
anomaly over a narrow region close to 8, for each cut, usually involving
a kink in the f:f curve, with a reversal of sign of the temperature coeffi-
cient. This anomaly may be seen in Davies’ diagrams and also in eurve
Hy of Fig. 94 taken from Mason’s paper.

At low lemperatures, observations made in this laboratory in 1929
by B. B. Doolittie, Jr.,, on an X-cut 45° bar, indicate & nearly eonstant
value of the temperature coefficient oy = Af/fAt from —44 to +15°C,
amounting to —920(10~%. This value agrees fairly well with fhat
calculated from unpublished data by W. P. Mason on a similarly oriented
bar (wide gap) over the range from —145 to +48°C: the average for the
entire range is —980(10~%), with a very slight increase between the Curie
points.* The values of the effective compliance found by Mason are
2.625(16%) at —145° and 3.225(10~%) at +48°, with a nearly linear
relation between. On the other hand, Doolittle observed a flat region
in the neighborhood of the lower Curie point, where a; became almost
constant. -

* The author’s thanks are due to Dr. Mason of the Bell Telephone Lahoratories
for these data and also for those on cu, ces and the temperature coefficiants of the
various elastic constants of Rochelle salt.
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For the regions adjacent to the upper Curie point, data are available
from Davies,?* Magson (unpublished), and Kent.* They are given in
Table VIIIL.

TasLy VIII.--TEMPERATURE CORFFICIENTS OF FREQUENCY For 45° ROCHELLE-SALT

Bars
—ay
Author Cut
Below 8, Above 8,
X 107# X 10
7 T X 957 967
MESON. ...t i e X 945 918
Average.. .. ..ooiii i .. 950 940
Davies. .. ... 0 v i e 14 1,500 410
Kent, .. ..ooooiiiii e anns Y 1,330 530
Average. ... ... ... . i .. 1,400 470
DaVIes. e e Z 485 485
Kent. ..o e i zZ 525 468
AVETaZE. . vttt i e .. 500 475

The averages, calculated in round numbers, are probably fairly
representative from 0 to 23°C and from 24 to 40°C. Most noteworthy
s the fact that below 8, an X-cut bar has a lower coefficient than a
Y-cut.

Reierence has been made to the rather sudden increase in frequency
as the temperature rises through the upper Curic point. This change,
which is least with the X-cut, amounts to a few tenths of 1 per cent in
frequency, in a temperature interval of about 1°

Mikhailov®®® has obtained values of ay of the same order of mag-
nitude as those reported above, for both lengthwise and shear vibrations.
Owing to uncertainty in the identification of his vibrational modes his
numerical values are not quoted here.

The only further data that we find arc from Mattiat,*** who found
for Y-cut 45° bars values of a, from —600(10°) at 14°C to —2,300(10~%)
at 35°C.

Most of the quantitative work on Rochelle salt, including the measure-
ments cited above, has been done with small fields (not over 10 volt/em)
and small stresses. It is shown in Chaps. XXIII and XXIV that
under these conditions s and dy4 are most dependent on temperature.
Although observational data are lacking, it is to be expected that in
vibrational observations on X-cut bars with large voltages, where

* G. H. XenT, M. A. thesis, Wesleyan University, 1033, unpublished.
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saturation conditions are approached, the temperature coeficients of
frequency will also diminish. Klein* has stated that he found no change
in wave velocity in X45°-bars from 15 to 28°C and no anomaly at the
Curie point. This finding, which is quite at variance with those of other
observers, is possibly due to the fact that his applied voltages were
relatively great.

86. From measurements of the frequencies of plates and bars with
large gap, Mason has obtained the following values of the temperature
coefficients, corrected for the effect of temperature on dimensions and
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Fig, 28— Variation of ¢ and ¢§y of Rochello salt with temperature, from Mason. Ordin-
ates are in dyne em™ X 1@,

density. They are valid from 24 to 48°C, the basic value of the elastic
constant being taken at 30° in each case. The temperature coeflicients
ate here designated by T'sy, etc., expressed, as usual, as parts per million

(ppm):

Tsy = 1,230 Tsu = —1,660 Tsyg = 5,240
T-?zz = 1,330 Tsu = 700 T31s = 2,710
Ts3 = 890 Tses = 1,830 T3 = "10,200

The curves in Fig. 28 show the measured values of ¢f; = 1/s};, and
¢t = 1/s3, derived from the frequencies of plates cut in various orienta-
tions. The asterisk indicates constant normal electric displacement,
as explained in §§207 and 253. Since the elastic constants under these
conditions vary from one orientation to another and are not corrected

* T, Kuev, The Velocity of Sound in Rochelle Salt Crystals, abatract in Phys,
Rev., vol. 38, p. 1096, 1920,
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for the piezoelectric term in Eq. (358), they have neither the isagric nor
the constant-displacement values, though they approximate more closely
to the latter. The cwrves are of value mainly in showing qualita-
tively the probable dependence of the constant-displacement values on
temperature.

With the exception of ¢, and cgq the temperature dependence of the
elastic constants has not been determined below the upper Curie point.
The peculiarity in s, for a Y45°-bar noted above is pretty certainly
attributable to an anomaly in css at 8. To account for the anomaly in
compliance for X45° and Z45%bars one would expect kinks at @, in the
curves in Fig, 28. Their absence may be due to the lack of sufficient
observations close to this temperature.

87. Heavy-water Rochelle Salt. The only published data are the
following, from Holden and Mason.?®! From observations of resonant
irequency on an X-cut 45° bar with wide gap, they find, for the reciprocal
& of Young’s modulus, a linear increase from 3.14(10-12) at —12°C to
8.21(10~12) at the Curie point, +35°. At this point oceurs a sudden drop
to 3.19(10%), followed by a linear increase to 3.26(10-1%) at 48°C,
This dependence on temperature is similar to that for ordinary Rochelle
salt shown in Fig. 94, and the numerical values are of the order of 1 per
cent less than those for the ordinary salt.

To the constant s}y is assigned the value 7.98(1%12), the same as that
given by Mason®*® for ordinary Rochelle salt, but the temperature and
method of measurement are not stated,

The reciprocal s of Young’s modulus was also determined from the
resonant frequencies of Y- and Z-ecut bars, at 30°C. For the Y-cut,
&Y = 9.93(101%); Z-cut, & = 4.2(10-1?). These values may be com-
pared with those for the same cuts in ordinary Rochelle salt at 30°,
from Mason ;3¢ §.31(10~1?) and 3.905{10—'%), respectively.

88, Sodium-ammonium Tartrate, This crystal, NaNH,CJO¢-
4H,0, is isomorphic with Rochelle salt, having the NH, group in place
of K. The density is 1.587, and the axial ratio is

a:b:c = 0.8233:1:0.4200.

The elastic properties have been investigated by Mandell,**? using
the same static method as for Rochelle salt. In the same paper are
comments on the method of growing these erystals; the process is more
difficult than with Rochelle salt. They have the same type of piezo-
electric constants as Rochelle salt, though of smaller magnitude. Piezo-
electric reactions are a less serious source of error in elastic measurements;
the long relaxation time and other anomalies characteristic of Rochelle
salt are absent. Following are Mandell's values, converted to cgs units:
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a11 LH 811 L 255 Bes 813 81z LE: ]

1013 X 5837 3.84 373 874 360 118 —087 -343 —0.50cm? dyne™?
€11 C13 Caa Cay €5 Cee C1z Ciz Ca3

1010 % 53.1 341 77.8 118 29 88 187 51.3 21.6 dyne cm™?

In Fig. 26 above are Mandell’s polar diagrams for the reciprocal of
Young's modulus and for the modulus of torsion in the three principal
planes.

In a later paper Mandell®® gives results of experimepts on the
resonant frequencies of 45° bars of this crystal in the three principal
planes. For the theory of these experiments and the effect of cross
section on frequency the original paper should be consulted. We give
here only the resulting adiabatic values of Young's modulus by this
dynamical method. In each case the direction is at 45° with the axes
named.

YZ, 27.90101) ZX, 9.54(101%) XYV, 22.8(10%°) dyne em™2
The corresponding values caleulated from the static measurements are
YZ, 26.2(10'%) ZX, 10.45(10%) XV, 20.6(10%°) dyne cm—?

89. GroupIV. Asshown in §29, this group has nine elastic constants,
as in the rhombie Group 111, but in the present case s1; = $az, 813 = 82,
and sis = 85, 50 that the number of independent constants is six, viz.,
S11, 819, S13, 833, Saa, and 6. The crystallographic axes are defined in §5.

The only representative of this group on which measuremente seem
to have been published is primary pofassium phosphate, KH.PO,. By a
dynamic method Liidy*® has found, at 20°C, the following values, in
square centimeters per dyne:

gy = 1.9(101%) 833 = 2.2(10'%)

No data for the other constants are at hand.

GROUP VII

According to the table in §29, this group has 12 of the 21 possible funda-
mental elastic constants, of which only 6 are independent. For the axes
see §5,

90. a-Quartz (Class 18, symmetry Ds). The crystallography of this,
the common form of quartz, as well as the conventions respecting axes
and angles for right- and left-quartz, are explained in Chaps. IT and XVI.

Bince quartz is piezoelectrie, the application of mechanical stress, at
least in certain directions, to a erystal that is not artificially short-cir-
cuited gives rise to an electric field, whieh, in turn, affects the strain
and thereby the apparent stiffness. This fact must be allowed for in
measuring the elastic constants by vibrational methods, as indicated
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below. In static measurements it can usually be assumed that enough
time elapees for surface leakage to neutralize the electric field, so that
static observations of the constants yield values that are appreciably at
constant field.

TasLE IX.—EvLasTic CONSTANTS OF QUARTZ.

. Atanasoff
Voigt and Hart Mason, 1943
. . Adiabatic Adiabatic
Isoth 1

sothermal Adiabatic at 35°C at 25°C

cm? dyne™? X 192 bl [) e I X 10712

831 = 81 1.298 1.295 | ..., 1.27¢
H33 0.990 098 | ...... 0.956
844 = u5 2.005 2005 | ...... 1.978

s ~0.1886 —0.160 | ... —0 1535
813 = 353 —0.152 -0.154 | ...... -0.110
N e -0.431 -0.481 | ... —0.446
856 = 2(811 — 812) 2.93 2903 | ...... 2.865
dyne em™? X 1040 ¥ 101 X 1010 x 1010
e = € 85.1 85.4 86 75 86.05

o 105.4 105.6 106.8 107.1
Cay = €pn 57. 1 57. 1 5786 58.65
Cia 6.96 7.26 6.87 5.05
G = G - 14.1 14.4 11.3 10.45
G4 = —1q = Cas 16.0 16.9 17.96 18.25
cop = M 39.1 31 [ ... 40.5

In Table IX the first column of figures is from Voigt's static (iso-
thermal) cbservations.* The second column gives the adiabatic values
computed from them sccording to §37, for 0°C; the same values hold
at all ordinary temperatures. The third column is from Atanasoff and
Hart,!? as corrected by Lawson.?? Mason’s values®” in the last eolumn
are also from resonant vibrations, both lengthwise and thickness.f

* “Lehrbuch,” pp. 752, 753.

t Atanasoff and Hart observed with high overtone frequencies, the advantages of
which are pointed out in §250. Overtones as high as the 87th harmonic were used.
Their quartz plates were earefully examined for twinning and otiented by meana of
X-rays. The plates included X-cut, ¥-cut (with which they obgerved all three of the
theoretically possible thickness modes), R-cut (» = 80°, 8 = —51°47"), and & cut
with ¢ = 0° 8 = 45°. The electric field was in some ¢ages in a direction paralle] to
the major faces of the plate. They used air-gap mountings, but the effect of the gap
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There is no way of knowing how much the values in the foregoing
table are influenced by systematic and observational errors and by
peculiarities in the crystal specimens. The digits recorded in the table

TastE X.~~Dynanic TEMPERATURE COEFFICIENTS OF ELASTIC CONSTANTS OF (JUARTZ

1 ds 1 dcne
*=mor - Cu @1
Elastic constant Bechmann Mason Koga Atanasoff
wnd Hart
x 10-¢ x 10-¢
g = 8as +11.5 +11.8
2 +180 +182
844 = By +175 +195
832 "‘1,125 —1,352
813 ™= 823 —148 —295
B4 = —3y = -"-2‘3 +113 +120
Ben +233* ~134
X 107 ¥ 107t » 1070 ® 10-¢
c11 = €13 —48 -46.5 —81 —49.7
tn 208 24 | ....... —213
Cu = Cak —151 —166 —199 - 189
€12 —2,116 —3,300 -2, 860 ~3,000
C1y = €23 —530 —6897 | ..l —b580
£14 ™= —Cix = Cne +82 +90.2 +110 +107
Las +144 +164 +199 , +170.1

* This value is for (244 + 2319), not #es.

are taken from the original sources. Since the diserepancies between
the results of the various investigators are of the order of 1 per cent, it ia
evident that in gencral the last significant figures are of little or no

was eliminated by restricting the observations to high harmonics. Their original
results give the elastic constents at constant normal displacement. By use of a
formuls similar to Eq. (272a) (p. 271), Lawson converted thom into the corresponding
isagric values, which are given in Table IX. Atanasoff and Hart's paper should be
consulted for their treatment of the theory of thickness vibrations as well as for
experimental detaila.

1In his determination of the elastic constanta of quartz given in Table IX, Magon
used A%, BT-, and Y-cuts for ¢4y, €as, 80d css. The fundamental thickness mode with
gero gap was employed, uncorrected for the piezoeleetric terms in Eq. (358} (p. 316).
These are the values in Teble IX. If they were reduced to isagric values by applying
the piezoelectric correction, they would be diminished in amount by 0.2 to 0.3 per cent.
Mason's data for 811, 843, and 814 Were obtained with plated bars, which give the isagric
values directly. The remaining s and £'s were ealeulated with the aid of ¢y, css, and
¢ss 60d hence should be subjected to a piezoelectric correction.
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importance. A similar remark may be made concerning Table X,
except that here the discrepancies are relatively large—as is to be expected
in the determination of quantities as small as temperature coeflicients,

Table X gives the temperature coefficients of the elastic constants in
ppm per degree centigrade, valid for temperatures from 20 to 70°C. In
all cases corrections were made for variation of density and dimensions
with temperature. The data are from Bechmann,®* Mason®® (claimed
to be accurate within about +2 per cent from 20 to 60°C), Koga,?? and
Atanasoff and Hart.®* These data are discussed in §91. For tempera-
ture coefficients of quartz resonators, see §92 and Chap. XVIL

Accepted Values of the Elastic Constants of Quartz. Beyond the
values given above, the most important elastic measurements are those
of 8;; and sy; by Perrier and de Mandrot, discussed in §95. They are
probably more precise than Voigt’s measurements of these constants.
Their isothermal values are 8, = 1.272(1071%), s3; = 0.972(1071%), from
which the adiabatic values are found to be

fi = 1.260(10-1) 85 = 0.971(1012)

In this book we shall in general use these values, together with Voigt's
for the remaining compliances, Ou this basis the values of the stiffness
constants have been calculated,* with the results shown in Table XI.

Tasrte XI.—AccErTED VALUES of THE Aptaparic Eprastic CoNsTANTS OF QUARTEZ

X 1012 emn? dyne-? X 10t dyne em-*
s = 1.96(8) ¢ = 87.(5)
83 = 0-97(1) €z = 107-(7)
Su = 2.00(5) Cyg = 57.(3)
$13 = —0.16{9) €12 = T.6(2)
sy = —0.15(4) e = 16.(1)
s14 = 0.43(1) o1 = 17.(2)
5o = 2.8(8) cen = 38.(9)

The values ahove are all based on static observations. The first
three values in each column are probably reliable within less than 1 per
cent; considerably less reliance can be placed on the remaining values.

iTow accurately the data in Table XI may be applied in vibrational
equations is not yet certain. As stated on page 138, it is not impossible
that the stiffness coefficients are inherently greater (and the compliance
coefficients correspondingly smaller) in the dynamic than in the static
case. If so, it may well be that the values obtained by Atanasoff and
Hart should be used in all h-f calculations.

Other Determinations of Elastic Constants of Quartz. In the exten-
sive literature on quartz resonators many more or less trustworthy
determinations of certain of the elastic coctficients, especially s, are

* The caleulations were carried out by M. E. White.
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found. Some of the more noteworthy results will now be summarized,
although they do not seem to warrant a revision of the values given
above.

Giebe and Scheibel™! determined 2;, from dynamic observations on guartz rods
having lengtha parallel to X or ¥. They found the measurements most trustworthy
when the reds were not too thin and when the elastic constant was cnleulated from
vibrations at the third or fourth overtone frequency. Their electrodes were so small
that the effcctive air gap was practically infinite, which necessitated, in the case of
rods parzllel to Y, applying a piczoelectrie correstion to the mepsured a1 (§235).
They computed, {for rods parallel to X, 51 X 1.277:(1072%) + 0.06 per cent; parallel
to Y (uncorrccted), si = 1,265,(1671%) + 0.06 per eccnt. After the piezoelectric
correction has been made, the latter value becomes 1.277. We may take sy, = 1.277
a8 their best value.

From an extensive study of the effecta of cross section the same investigators
derive for the ratio s:1/55 the value 1,149, in good agreement with Voigt's value of
1.145. By the usec of the value 1,149 they calculate ;5 = 0.968(1077%).

Giebe and Blechachmidt,¥! from the vibrations of a hollow quartsz cylinder with
length parallel to Z, found s;; = 1.256(1071%), 355 = 0.978(10°12), 8, = —0.130(10713).
In & later paper’s? on the lengthwise vibrations of bars, they give &1, = 1.278(10717),
844 = 2.016(1071), g3 = —0.167(10~1), These values are not corrected for the
piezoelcetric reaction discussed in §235. For the temperature coefficients they find,
for 315, —1,200(1078) and, for g4, 4-176{107%).

Osterberg and Cookson*®® excited compressional lengthwise vibrations in the
X-direction in a large number of plates of various shapes, Although some of the
plates had breadths comparable with the lengths, all calculated values of sy, for
“harmoenies”’ as well as for the fundamental frequency, lie within about + 1.5 per cent
of the mean, 1.27(1071%), From their observations on vibrations in the Z-direction
(excited through elagtic coupling) one finds 8y = 0.963(10752). In this latter work,
however, it scems doubtful whether g;; was actually the only elastic coefficient that
came into action,

In o comparison of Voigt's static values with the dynamic values of
the foregoing constants it is notcworthy that in almost all cases the
recoerded dynamic compliances are less than the static even after the
piezoelectric correction has been made. Whether the discrepancies are
due to the numerous sources of error or to something more deep-seated
cannot at present be determined. It should be noted that the dynamie
values of 8,; and 835 are in better agreement with those of Perrier and
De Mandrot than with those of Voigt.

91. We turn now to & discussion of the lemperature coefficients in
Table X.

Bechmann has made very thorough studies of the effect of temperature
on the adiabatic elastic constants of quartz, for which his papers* should
be consulted. Some of his results are shown in Fig. 30. He claims,
over a range from 20 to 70°C, a precision of 110 per cent in his measure-
ments of the temperature coefficients, in the reduction of which due

* Zas. Hochfrequensiech., 1934; Za, tech, Physik, 1935.
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allowance is made for the effects of temperature on dimensions and
density. One cannot be very confident that the same values would be
obtained from static observations at different temperatures, especially
sinee one cannot be certain that in each of his measurements of frequency
of plates in various orientations the effective elastic constant was of the
theoretical form, unaffected by coupling with other vibrational modes.

From measurements between 25 and 95°C of frequencies of shear
modes of thickness vibrations with plates in different orientations,
Koga®® derived the values given in Table X. These values are all
greater than those of Mason and of Bechmann,

As is explained in §90, Atanasoff and Hart derived their temperature-
coeflicients from observations of high overtone frequencies of thickness
vibrations. This procedure tends to minimize edge effects and coupling
with undesired vibrations, difficulties from which the meagurements of
the other observers were less likely to be free. This fact, together with
the high precision with which the observations of Atanasoff and Hart
were obtained, justifies one in regarding their results as the most reliable.

Koga calculated also the average rate of change of three of the tem-
perature coefficients over the range studied, by taking the sccond deriva-
tives of his frequency equations with respect to 7'

1 _(?ic_o_.s _ 5 iaEC“ _ 8
e 37T 6.1(107%) e 3TE 1.3(10-%)
i 6’61_4 . T
ST = —T7(107)

It is of the greatest significance that some of the temperature coeffi-
cients are positive, others negative. By cutting a plate in such an
orientation that the effective stiffness coefficient ¢ is a function of elastic
constants having temperature coefficients of opposite signs, it is possible
to obtain & resonator with frequency practically independent of tempera-
ture over a comparatively wide temperature range (§358).

A careful search for an elastic aftereffect in quartz was made by Joffé.»»
His results show that, after secondary effects due to heating of the
crystal have been eliminated, no true elastic aftereffect can be detected,

Measurements of the volume compressibility of quartz up to 12,000
kg/em? have been made by Bridgman.* Hydrostatie pressure produces
no piezoclectric polarization in quartz.

92, The Elastic Constants of Quartz at High Temperatures.
Although nearly constant at ordinary temperatures, the elastic coeffi-
cients underge very pronounced changes in the neighborhood of the
o8 inversion at 573°C. .The most complete data are those of Perrier

* P. BRipoMaN, Am. Jour. Sci., vol. 15, pp. 287-208, 1028,
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and De Mandrot,*¥® illustrated in Tig. 29. These observers, using &
static method, by flexure of thin bars, found Young's moduli 1/s;: and
1/333 to decrease rapidly to values near 3(10%%) dynes/cm? as the inversion
point was approached, after which in the 8-quartz state they rose rapidly.
Above 573° 1/s;; was found to be slightly smaller than at room tem-
perature, while 1/s;; became even greater than was 1/8s; at room tem-
perature. At ordinary temperatures they found s to increase by 0.02
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Iia. 20.—Dependence of clpatic constants of quarts on temperature. Curves 1/s11
and 1/zn are from Perrier and De Mandrot; 1/a’s from Lawseon, for the ZX.plans, at
45° to the Z- and X-axes; ¢u from Atanasofl and Hart, and Atanasoff and Kammer. The
crossens (1,/811} are from the observations by ¥réedericksz and Mikhailov.

per cent per degree rise in temperature, while for s,y the corresponding
change wag less than 0.001 per cent. A similarly small dependence of
#;; upon temperature was also recorded by Fréederieksz and Mikhailov,
who used a dynamic method.

In Fig. 29 is shown also a curve rolating 1/¢, with temperature, for a
Y-cut 45° quarts bar, from observations by Lawson.}1t The length of
the bar bisected the angle between the X- and Z-axes; in this plane, as is
clear from eurve C in Fig, 33, it is immaterial whether the angle (here
45° is taken as positive or negative. The bar was provided with
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“platinized electrodes and vibrated piezoelectrically at resonant lengthwise
frequency. The piezoelectric effect was that represented by the equation
7, = diyB, = ~d\E,/2. From the observed frequency at each tem-
perature, with due regard to the density and dimensions, Young's
modulue 1/}, was caleulated.

Included in Fig. 29 is also & curve for cu, from the observations of
Atanasoff and Hart and of Atanasoff and Kammer, obtained by the
method described in §80. The crosses in Fig. 29, representing 1/sp,
are from a few data by Fréedericksz and Mikhailov,® from resonant
observations on an X-cut bar in lengthwise vibration parallel to Y.

93. Stiffness Coeficients for Thickness Vibrations. We learned in
§66 that when plane waves are propagated in crystals, the three mechani-
cal displacements (vibration directions) corresponding to the three types
of wave are mutually perpendicular and that in the most general case
none of them is either normal or parallel to the wave front. The sym-
metry of quartz is such that for some types of orientation certain of the
Christoffel moduli I' disappear, so that the vibration directions for those
modes lie either in the plane of the plate (shear vibrations) or normal to
it (compressional vibrations).

As an example we consider the Y-cut, which, as is well known,
vibrates in & shear mode (§352), with field E,. In Egs. (116),l =2 =0,
m = 1, and certain of the ¢’s vanish for quartz, whence T'yy = cqg, I'na = €4y,
Ta = €u, Ths = —Cuyy Twe=T3=0, The three roots of Eq (118)
(the order of subscripts is arbitrary) are

gy = ces = F(en ~— c12) = 38.1(1019)
¢ = 4(cn + o) + vVien — ca)? + c?_._ == 93.3(10'") {135)
gs = #(en + ) — Ve — i) + ¢f, = 49.2(10%)
Voigt’s values of the fundamental constants, with the adiabatic cor-
rection, were used in this computation.
The vibration directions are found by solving Lqs. (117} for o, 8, v:*™°

]

ar = 1 B1=0 Y1 =
s o ar=0 B: = —0.907 vy = —0.422
3 = 1] ﬁa = 0422 Ya = ‘—0907

The first of these vibration directions is therefore parallel to X and
the wave is transverse, with wave front in the plane of the plate and the
vibration direction also in this plane. This is the mode that is usually
excited piezoelectrically; the driving stress is X, = —eB;,. For the
other two modes the vibration directions make angles of sbout 25°
and --85° with the normal to the wave front.

A similar analysis for the X.cut shows that one mode (that which is
commonly excited piezoelectricaily) has its vibration direction normal
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to the plate; the two theoretical transverse modes have vibration direc-
tions in the plane of the plate, making angles of about 31° and —59°
with the Y-axis.

For Y'-cuts (rotation about the X-axis) the direction of vibration that
is excited in piezoelectric resonators can be shown to be parallel to X,
ag in the ¥Y-cut. For this mode it is found that g is the same as I'yy,
which, for rotation about the X-axis (! = 0), and remembering that with
quartz ¢s; = ¢15 = 0, reduces from the form given in Eqgs. (116) to that in
Eqs. (51):

g = Chg = Ty = €oe €087 6 + ¢4y 8in® 8 + 2oy, 8in Becos 8§ (136)

Here we have written sin & for n, cos # for m, 8 being the angle (4 or —
according to the rule in §38) between the Y-axis and the normal to the
plate.

The numerical values of the three stiffness coefficients ¢, ¢a, 42 in
plates with zero gap, for a large number of orientations in a quartz
crystal, have been worked out by Koga®* and are shown in Table XTI
They are based on Voigt’s data, with the adiabatic correction. By sub-
stitution in Eq. (112) the three theoretically possible frequencies for all
these cuts can be found.  Which, if any, of the three frequencies for any
given cut can actually be realized must be determined by consideration
of the piczoelectric constants of quartz. The direction of the normal
to the plate is given in terms of ¢, the angle of azimuth meusured from
+4+X toward + ¥, and the colatitude 8, as shown in Fig. 17. In copying
the table from Koga’s paper we have changed the values of ¢ to conform
to the convention adopted in this book (§51).

In all cases the ¢’s repoat themselves every 120° in azimuth; that is,
+120° may be added to every value of o.

When values of ¢ at the foot of the table are used, the corresponding
values of @ are at the right.

The Y’'-cuts are those in the column for ¢ = 30°. When 8 = 90°,
we have the Y-cut, with g = ces = 39.1(10'%). The last of the three
values for each @ belongs to the mode commonly observed with ¥’'-cuts.
Tn order to correlate these values with those derived from Igs. (51) for
rotation about the X-axis we must et ¢ = 90° in Table XII. Since
00° = —30° 4+ 120°, we use the values of 8 at the right of the table.
6 is then the same as the angle of rotation ¢ in lgs. (51}, for which we
set cos 0 = ¢, sin ¢ = 8. The equation in (51) that applies in this case
is the one for ¢, which is the same ag Eq. (136).

The X’-cuts (rotation sbhout the Y-axis) are in the last column
(¢ = 0 and 60°). At 8 = 90° we find the X-cut, with

g = cu = 85.45(10).
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The compressiona] mode persists as 6 varies, at least for moderate
changes in 8.

In the same paper, Koga shows some of the numerical data from
Table XI1 in the form of polar diagrams.

For the X’-cuts a table has also been prepared by Bechmann,3*3

q q
125}+10"dynes per cm? 6=0° 125 [10'° dynes per cm?

@=/0°

0o

75;

(o

25 i [l 1 nt L L 1 1 25 L L1 L i 1 L i 1 -
0 60 g 120 180° 0 6 g 120 180*
Ty Tqp .
120 120f407¢ ¢=10°
80 80 ¥
40 40r
0 [ /-\
-40
-80
=120
-160 p
-200L
0
£
5 o
4r0* o
3k AN
2 -
1+ C
0 1 1 1 L 0 " ! : L N
0 60 g 120 180° 0 80 @ 120 180°

Fie. 30.—Elsstioc and piesoelectric constanta of quarts for thickness vibrations in
vibration-modes. To each g corresponds a temperature
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giving the three ¢’s for every 5° from 8 = 0° to § = 90°, thus filling some
of the gaps in Table XII.

In s later paper Bechmann?® published a series of curves for the three
Christoffel ¢'s, their temperature coefficients Ty, and the effective piezo-
electric constants ¢, as functions of the polar angle 0, for szimuth ¢ = 0,

q q

125 1251
100 100
5
50
25 C : t | ] L ] L L 25 T L L i | L ' .
0 0 o 120 180° 0 80 g i20 180
Tq Ty
120 |10 9=20° 120f-1078 $-30°
80
of /N
4]
-40
-80
-170
~160 §
_200 1 L 1 1 L H J 1
6 i20 180°
60 0 g g
5 - L
sl10% @=20° 210t c @=30
. C &
Ir 5 Ik
2F 21
1k a 1k
0 | L TS A 0 1 1 L L L s i
0 60 g I20 180° o 60 g 120 130°

various directions, from Bechmann. The three values of g are for the three possible
ooofficlent Tg, and an effective piesoelectric constant e,
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10, 20, and 30°. These curves* are reproduced in Fig. 30, in which ¢
and § specify the direction of the normal to the plate, as in Fig. 17.

The curves for g are caleulated from Voigt's adinbatic values of the fundamental
elastic constants, as given in Table IX, uncorrected for piezoelectrie reaction, but with
due allowance for linear and volume expansion. They will be found to agree approxi-
mately with the values in Table XII, except that in some cases the values for cnrves
b and ¢ arc interchanged.,  If the piesoelectric reaction were included, it would increase
the values, at scro gap, by an amount varying from zero to about 0.2 per eent, depend-
ing on the valueof e.  When ¢ = 0,8 = 90°, we have an X-cut, At ¢ = 30° 8 = 98°,
it is a ¥-cut. For most of tho possible orientations, all three vibration directions make
oblique angles with the surfaces of the plate. * In those cases, as in the X-cut, where
there is & pure compressional mode, the value of ¢ is given by eurve a.

Curve g for gat ¢ = 0i3 the seame as A in Fig. 34, Curves ¢, b, and ¢ for p = 30°
correspond to A, B, and Cin Fig. 32. 'The mode commonly employed for cuts of this
type is ¢ '

The curves for 7', were derived from Bechmann’s mcasurements of vibrational
frequencies at temnperatures from 20 to 60°C.  In partieular, they show the modes and
orientations at which T, = 0.

The curves for e show the values of the piezoelectric coefficients that are effcetive
in exeiting the various modes for any orientation. It will he noted that ¢ vanishes
for the Z-cut (¢ = 0 or 180°) and in certain other eases.

As an example may be mentioned the AT-cut, of which Bechmann was one of the
independent originators. The normal to the plate is given by o = 30°, # = 55°
for ¢ = §0°, 6 = —55°). At this crientation 7, = 0; {from the curve for ¢ = 30°,
¢ is found to be approximately 2.8(104), about half as great as for the Y-cut (for more
precise data on the A7-cut see §358).

94, Diagrams of the Elastic Constants of Quartz with Respect to
Rotated Axes. The variations in the elastic constants of quartz with
rotation of the axinl system about the X-, Y-, and Z-axes are shown in
the following polar diagramst (Figs. 31 to 36). The curves are plotted
from Eqs. (50) to (54), with Voigt's isothermal values of the fundamental
constants (Table IX).

In the polar diagrams the value of each sw, 1/sm, or cax is laid off as
radius vector eorresponding to the angle of rotation 8; where there are
negative a3 well as positive values, the magnitudes are measured from an
arbitrarily chosen zero cirele.

As an example of the use of the following diagrams we consider the
Y'-cut, obtained by rotating a ¥Y-cut about the X-axis through the
angle 8. For thickness vibrations the elastic coefficient, by §93, is ci.

* Bechmann’s values of the temperature coefficients of the fundamental elastic
constants in Table X are from the same cxperimental data as Fig. 30.

t These disgrams are made available through the courtesy of Dr. W, P, Mason of
the Bell Telophone Laboratories. In tlie present reproduction the sign of 8 follows
the convention adopted in §51. A few of the diagrams, necessary to complete the set,
were prepared by the author,
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Inpex ror Fies. 31 TO 36

Elastic constants of quartz for rotations about the X-, ¥-, and Z-axes.
Values of sy are to be multiplied by 1034 cm* dyne,
Values of eu and 1/8m are to be muitiplied by 10" dyne cm2

Fig Rotation Constants
’ about
31 X A, 1/3“, B, 1/3,2, 0 15 D, 1/’.»'2,:15‘. (2NN 0 WISRY (AT | B
I, su:J 323: K, 355/ Ls""u A, Bu
32 X A, chy; B, ¢y C, (:5,,1) c‘,.,h,(.n,[' RS CAPLICE § P n,f e, 4:“
33 Y A, 1/8”,3 l/s,._.,C 1/‘5‘,3 D, ]/s”.l,,l/ L I/*,,a,(r sy H, h’l,,

I, 3251'] S“,I\ 33011‘ Rlrn ” "cs
34 Y N,am() s”I s‘,Q,s,n,R s. N, 54,, 1, r“ B, ('“,(“’ ('M
35 Y D, r,.,E iy C”,(r c“,H egidy el e K, Craidiy €y
26 {Y M, cm V, r'l,() cm,P,c

Z U

A, sl B, sy, Ol Dy cly

It is shown in Liys. (51} that ¢y = el (@ £ 90°); we thercfore turn to
curve C for ¢f; in Fig. 32. For any value of 8, the value of ¢ is the
radius vector of curve C for 8 + 90°. Thus, if § = —50° the value for

= —50° -+ 90° on curve C shows that ¢fg is approximately 32(1(1%)
dynes/em?  For u more precise value the equabion should be used.
A glance at curve € shows the wide variation in the stifiness, and hence
in the frequency of Y’-cut quartz plates as the angle is varied.

If, as is preferable, the orientation of the plate is speeified in terms
of the normal to its major surfaces, we find 8 = 90° for the ¥-cul. A little
consideration shows that for any arbitrary angle & beween the normal
and the Z-axis, curve C for ¢f; may be used directly to give the sliffness
for thickness vibrations. By this convention the plate might more
properly be ealled a Z'-cut, with the field parallel to the Z'-axis. Whether
the Y'-cut is regarded as a Y-cut rotated 6° or as a Z-cut rotated 6° + 90°
is & matter of definition.

95. Young’s Modulus of Quartz. Approximate values for rotation
about X ean be obtained from Fig. 31, curves A, B, C, and for rotation
about Y in Fig. 33, curves A, B, C.

Yery careful static measurements of sy and ¢ have been made by
Perrier and De Mandrot, ¥ by means of the flexure of thin plates, They
observed Young's modulus [|Z, 1Z, also at +50° with Z in the Y Z-plane.
Their values at 15°C, in the units and terminology of Tuble IX (all X
10-1? ¢m?/dyne), are su = 1.272, 555 = 0.972, (s5g)100 = 0.781, (833) o =
1.30. These values of s;; and sgs are about 2 per cent lower than Voigt's
isothermal values in Table IX. On the other hand, their value of (s};)s0 is
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very close to that caleulated from Voigt's data. This fact would seem to
indicate that, if their s;; and sz are more nearly correct, Voigt’s values
of &4, 813, and 81, which enter into the calculation for oblique directions
{Eq. 55), are too small. Al things considered, Perrier and De Mandrot's
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Ii“m. 31 —FElastic constanta of quarts for rotation about the X-axis.

values of &;, and s are probably more reliable than Voigt's, and they
are used in Fig. 38 and Table IX.

Young’s modulus for various orientations is represented as a three-
dimensional model in the paper by Perrier and De Mandrot, here repro-
duced in Fig. 37. The topographical features of the model for 15°
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typical of all ordinary temperatures, have their counterparts in Fig, 38
below. The only geometrical feature common to all the models is the
fact that the equatorial section perpendicular to Z is circular. Below
573°C, sections normal to X have only a center of symmetry. There isa

Fig, 32.—KElastic constants of quarts for rotation about the X-axia.

pronounced maximum and minimum in each of these sections, as well
a3 8 less pronounced secondary maximum and minimum, the latter being
parallel 1o Z (see also the polar diagram in Fig. 31, curve C).

Starting at ordinary temperatures, the models contract in all direc-
tions with rising temperature, especially in the directions of the principal
maxima. The maxima disappear completely at the transition point to
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g-quartz. Above this point the surface dilates in all directions, but
chiefly in the directions perpendicular to Z,
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F1c. 33.-~Elastic constants of quartz for rotation about the ¥-axis,

96. From Tig. 38 the value of Young's modulus ¥ = 1/g}, for any
direction in space can be found.* Equation (55) was used for the com-
putation; for quartz it may be written in the form

833(10'?) = 1,269 — 841 cos® # 4+ 543 cos* § —~ 862 sin? # cosd sin3e

* The ealeulations for these eurves were made by M. E. White, using the funda-
mental constanta from Table XI.
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The azimuth ¢ and colatitude 8 are defined according to Fig. 17. In con-
jormity with the convention described in §327, Fig. 38 may be used with-
out change for either right- or left-quartz.

The threefold symmetry of quartz about the Z-axis is indicated by
the factor 3 in sin 3¢. It will be observed that, at 8 = £+90° Y has the
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Fig. 34.—Flastic constanta of quartz for rotation about the Y-axis.

same value for all azimuth angles: the clastic properties are the same for
all directions in the XY-plane. When ¢ = 0, ¥ lies in the ZX-plane,
and the ¥-tensor is symmetrical about the Z-axis (see curve C in Fig. 33).
On the other hand, when ¢ = 30° Y lies in the ¥ Z-plane and is not sym-
metrical about Z (see curve C in Fig. 31, also Fig. 76).
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In applying Fig. 38 to values of ¢ outside the range from 0 to 30°
the following rules may be found helpful for any given ¢ and @:

If —30° < ¢ < (°, use the ordinate for — ¢, with the sign of 8 reversed.

If 30° < ¢ < 60° use the ordinate for 60° — .

If —60° < ¢ < —30° use the ordinate for 60° + ¢ and reverse the
sign of 6.
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Fi1a. 36.—Elastio conatants of quarts for rotation about the ¥-axis.

If 80° < ¢ < 300°, make use of the fact that ¥ is the same for
¢ + 120° as for ¢. Hence, if 120° is added to or subtracted from ¢,
the azimuth is brought within the range of one of the foregoing rules.
In particular, if ¢ = 90°, the curve for 30° is used, with # reversed.
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As may be seen from Fig. 31 or 38, the largest and smallest values of ¥
fall in the ¥YZ-plane, There are in this plane two maxima and two

minima?
& = 48°38’ ] —9%457 ~-T1°4'
10¥Y = 130.8 103.0 103.2 70.3
; ¥
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3 COXXS
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T1a. 36.~-Elastic constants of quarts for rotation about the ¥- and Z-axes.

Measurements of the frequency of quartz bars have been published
by many observers. The most complete and trustworthy are those of
Bechmann®# and Mason, *? from which their values of Young’s modulus
can be obtained. Bechmann's papers include the temperature coeffi-
cients for bars in various orientations, as stated in §91.
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97. When a circular X-cut quartz disk is driven as a resonator, af rela-
tively low frequencies corresponding to compressional waves propagated
in the Y'Z-plane, it is found that for the lowest frequency there is a nodal
line across the disk {(revesaled by lycopodium powder, §366), making an
angle of about +419° with the Z.axis. ‘This angle indicates a direction of
propagation parallel to the direction of minemum ¥ (Straubeli®®), In
addition to more complex vibrational modes that need not be discussed
here, there is also a simple compressional vibration at somewhat higher

Fia, 37~—Models representing Young’s modulus of quarts for all directions in space and at
four different temperatures, from Perrier and De Mandrot.

frequency than that mentioned above, corresponding to mazimum Y,

with a nodal line about —42° from the Z-axis. No vibration can be

excited in the Y-direction in & circular plate.

These facts indicate that compressional waves tend to proceed in a
direction normal to either the maximum or the minimum value of Young’s
modulus. The effect was first observed by Meisaner3.260.361 with
rectangular plates having dimensions [, b, e parallel, respectively, to
Y, Z, and X. For the fundamental compressional frequency in the
Y-direction the nodal line across the center of the plate was not parallel
to the breadth b, but made with b {7.e., with the direction of the Z-axis)
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an angle that for broad plates approximated 19°, becoming less for nar-
rower plates. Correspondingly, the ocbserved frequency agreed with that
caleulated from Young's modulus in the Y-direction only when the
plate was in the form of a very narrow bar; with increasing breadth the
frequency as well as the nodal line gave evidence of wave propagation
that was no longer parallel to the length of the plate. This subject is
discussed further in §350.

98. Modulus of Rigidity of Quartz. The compliance s, for any
svatem of axes is given by Eq. (36). Its reciprocal is the rigidity, or
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¥r1a. 38 —Young's modulus ¥ = 1/s's3 for quarts, for azimuth ¢ from 0° to 30° and palar
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resistance against shear, with respect to the axes ¥’ and Z°. By using
the formula for #,, in a somewhat medified form, with conventions of their
own respecting angles, Wright and Stuart®™¢ have derived values for
the rigidity with respect to axes ¥’ and Z’ lying in planes containing the
Z-axis, Their Fig. 21 shows in the form of curves the rigidity for three
different azimuths about the Z-axis, in each case giving values for all
orientations in the plane containing this axis.

Polar diagrams of the modulus of torsion for rectangular bars in
different planes, with equations, are given by Voigt* and reproduced in
Auerbach and Hort®t,

* W. Voior, Wiedemann's Ann., vol. 31, pp. 474, 701, 1887,
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99, Poisson’s Ratio for Quartz. The general formula for Poisson’s
ratio, as stated in §32, is ope = sp/3i; it is & measure of the lateral con-
traction parallel to k accompanying an extension parallel to k. As long
as the directions h and %k are those of two of the erystallographic axes,
¢ is thus expressed directly in terms of fundamental constants, For
specimens in oblique directions the formula given above would require
a calculstion of the primed compliances for each particular direction.

The caleulation is simplified by the use of equations given by Wright
and Stuart.®™ Using Voigt's values for the fundamental constants, they
caleulated ¢ for axes lying in planes containing the Z-axis, making various
angles with this axis. Figure 22 in their paper shows the results, for
three different azimuths. They draw attention to the fact that some of
the more troublesome coupled vibrations can be avoided (for resonators
designed for compressional vibrations) by choosing an orientation for
which ¢ = 0. The absence of lateral motion also simplifies the problem
of clamping the resonator at a nodal region without hampering the
freedom of its vibrations,

From observations of frequencies of rods of varying relative dimen-
sions and in different orientations effeetive values of ¢ have been com-
puted by several writers. For example, Giebe and Scheibel’ find
$12/811 = 0.132, s13/81; = 0,120, Khol's value®® of s1./8: I8 0.135.
From Voigt’s data in Table IX one finds 8;5/811 = 0.130, 815/511 = 0.119,

Further consideration of Poisson’s ratio, in its relation to coupling
effects in piezoelectric resonators, will be found in Chap. XVII,

Other data on the elastic properties of quartz and of other forms of
silica are given in the bocks by Sosman®4? and Joff4.p30

100. Tourmaline (Class 19, symmetry Cy). The axes for this class
are defined in §5.

Below are the fundamental elastic constants, from static observations
recorded in Voigt.* The differcnce between adiabatic and isothermal
values is too small to change the last significant figure.

Dynamic values are available from various sources. For example,
the experiments of Osterberg and Cookson?®® on tourmaline rodst yield
233 = 38.6(1071%), 855 = 60.0(10~4),

Observations of radial vibrations in circular Z-cut disks have been
made by Xhol,2®® from which are derived the values

511 = 0,382(107'?) % 0.5 per cent, o = 812/811 = 0.323 % 3 per cent.

From similar observations by Petrzilka, Khol?®? calculates & =
0.383(1071%), 8:5/8:, = 0.327,
*P. 753.

t The quantities that they call ¢i: and ¢y for tourmaline rods parallel to X and Z
should be written as 1/s1; and 1 /55, respectively,
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Tapre XIIT
X% 10712 cm? dyne™! ¥ 10t dyne em™*
By ™ gy = 0.398 €y = Ly = 270
i = 0.625 £z ™ 16%
8= b&m= 1.51 . Cay = O = 67
81y = —0.103 C1y = 69
By = 833 = —(.018 C13 &= Cgz = 58
814 = Fag = 85./2 = 40,058 Cl4 = —Cgy = Cspg = -7.8

Several observers have measured the frequencies of compressional
thickness vibrations of Z-cut plates. The following values of the
wave constant (frequency in cycles) times (thickness in millimetera X 10™%)
were found: Petrzitka,*'® 3.75; Matsumura and Ishikawa,®® 3.97; Fox
and Underwood,!#® 3.77; Straubel,®? 3.52. Calling the average 3.75,
we find for the average dynamic stiffness coefficient e = 177(1019)
dynes/cm?,

Comparison with the static coeflicients in Table XIII shows that all
dynamic measurements recorded above yield greater stiffnesses and
smaller compliances than those ohserved statically, just as is the case
with quartz. The discrepancies are too great to be attributed to piezo-
electric reactions alone. )

Owing to the very small magnitudes of the cross constants, Poisson’s
ratio has extremely low values for tourmaline.  As a consequence almost
no cotrrection for eross seetion is required for frequency in the longitudinal
vibrations of bars. Giebe and Blechschmidt!®® found the overtone fre-
quencies of a bar paralle] to the Z-axis to stand in almost exact harmonie
relation to the fundamental,

The effect of temperature on vibrational frequencies is discussed in
§400.

In the “Lehrbuch’* are polar diagrams for s}, in the ¥Z- and X'Z-
planes, based on Voigt’s static measurements. The similarity to the C
curves in Figs. 31 and 33 for quartz is close, the only qualitative differ-
ence being that, since tourmaline is not enantiomorphous, the terms
“right”” and ‘“left’’ have no meaning.

101. Group VIII (Hexagonal). This group has nine constants, of
which five are independent. The axes are explained in §5.

B-guartz (Class 24, symmetry D) is stable from 573 to 870°C. The
only stresses that can be produced piezoelectrically are

Y= —enll. = ~cugs

and 2, = +e14Ey | = Cply Ol (§168)
The values at different temperatures of &, %, €4 = 1/84, and
8y (Y-cut 45° bar) have already been considered in §92. The first

* P. 755.
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measyrement of ¢4y was published in 1935 by Osterberg and Cookson,*™
who used shear vibrations of types y. = —suY.: and 2, = —spZ; in
rectangular X- and Y-cut plates, over the entire temperature range for
B-quartz. They gave as their best value, at 600°C, cu = 19.9(1019)
dynes/em?. The value diminished rapidly as the o-f transition point
was approached. The value at 600° is only about half as large as that
determined later by Atanasoff and Kammer.?® As is pointed out by
these authors, and also by Lawson,! neither the vibrational mode
used by Osterberg and Cockson nor their theoretical treatment is well
suited to a precise measurement of ¢. We therefore give preference to
the work of Atanasoff and Kammer, whose results for ¢,y have already
been shown in Fig. 29. These investigators found, at 600°C,

€y = 35.76(10'%) dynes/cm?,

by the method described in §90.- Recently, by a somewhat different
method, Kammer and Atanasoff?®! determined all the elastic constants
of g-quertz at 600°C, finding ¢y practically identical with their former
value.

In this last-named paper, Kammer and Atanasoff used high-harmonie
vibrations of four different cuts, involving six different vibrational modes.
The driving frequency was modulated at 60 cycles/sec. Each time the
modulated frequency passed through the crystal frequency the quartz
was set into vibration and continued for a small fraction of a second to
vibrate at its own frequeney while the driving frequency continued to
change (the method was thus in principle similar to the ““click ™ method
described in §308). The resulting wave form was recorded on an
oscillograph, and the resonant frequency thereby determined. Theijr
results (all adiabatic) are ¢;; = 118.4, 612 = 19.0, ¢1a = 32.0, ¢33 = 107.0,
Cyy = 358, 311 XIO“’; 811 = 0.926, 8yp = —0-0802, 83 = ""0252,
sgs = 1.085, 844 = 2.79, all X10-1%, In the ¥ Z-plane, 45 and 50° from
the Z-axis, 85, = 1.073(10—!?) and 1.057(10~'%), respectively.

Perrier and De Mandrot (§92) found, at 600°C, for &, at 50°
1.075(10~1%) and, for sy, 1.050(10~*2) (isothermal),

In the observations discussed in §92, Lawson found, at 600°C, &, at
45° to be 1.067(10~12) (adiabatic). In the same paper Lawson derives
for 815 the adishatic value —0.226(10-2%), Since Lawson’s method was
somewhat more direct than that of Kammer and Atanasoff, we are
inclined to consider his values of ;5 and of s}, at 45° to he somewhat more
reliable, while accepting the results of Kammer and Atanssoff for the
remaining constants.

102. Group IX (Cubic). The axes for the cubic system are described
in §5. Crystals in this group have nine fundamental elastic constants,
of which only three have independent values.
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Sodium Chlorate (Class 28, symmetry T). Voigt's static values,*
reduced to egs units, are

311 =% 833 == 833 = 246(10_11) S1z2 = 8§13 = 833 = 125(10—“)
84 = 85y = 8go = 8.36(10_") cm? dyne“
€11 = Caz = Cgg = 650(1010) Ciza = &13 = Cxp = ‘-21.0(1010)
gy = C55 = Cgg = 11.9(10”) dyne cm—2

Zinc Blende (Class 31, symmetry T4). One of Voigt's Iatest papers
was an account of his measurement} of the elastic constants of this
crystal. His values (static method), in ¢gs units, are
811 = 1-94(10—1") 3oy = ""7.30(10_“) S = 22.9(10"’“) em? dyne—‘
cu = 9.42(161) ¢y = -+5.68(101) ¢y = 4.36(101) dype cm™*

* “Lehrbuch,” p. 741,
t W. Voiet, Nackr, Ges. Wiss, Goitingen, Math.-physik. Klasse, 1918, pp. 424-450.



CHAPTER VII
DIELECTRIC PROPERTIES OF CRYSTALS

Ameongst the actions of different kinds into which electricity has conventionally
been subdivided, there is, I think, none which excels, or even equals in importance
that called Induction. —FARADAY,

We summarize here the basic equations, first for isotropic media
and then for crystals, including the case in which the crystal plate is
separated by a gap from the electrodes. A short discussion is given
of the molecular nature of polarization, dipole theory, and losses in
dielectrics.

103. When a flat slab of any solid dielectric of large area is placed in a
uniform electric field E,, with its normal parallel to the field, the basic
dielectric equations are

D = koEq = kE = E 4 4xP (137)

where D is the electric displacement, Eq and £ the field strengths outside
and in the dielectric (dynes per unit charge), & and & the permittivities
of the surrounding medium and of the dielectiie, and P the polarization
(electric moment per unit volume). E i3 also called the “potential
gradient” or in practieal units the “voltage gradient’ (volts per centi-
meter) The clectrostatic cgs system of units is used exeept where it is
otherwise specified.

Since the surrounding medium iz usually air or vacuum, %, may be
considered as having the numerical value unity. Except with reference
to the dimensions of piezoelectric coefficients (§128), we shall not be
concerned with the question of the dimensions of ks or %, and the terms
“permittivity " and “dielectric constant’ will be treated as synonymous

In isotropic materials the polarization is always parallel to the field;
all quantities in Bq. (137) may then be written as scalars. In crystals,
however, P and E may have different directions.

104. Tgnoring for the present spontaneous polarization (§115), we
have the general relation between E and P,

P = qF (138)

whers » is the dielectric susceptibility, analogous to the magnetic sus-
ceptibility (§547).
160
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From Eqgs. (137) and (138) follows the relation
k=14 dmy (139)

We have already seen in §21 that in piezoelectric erystals k& depends
on the state of mechanical constraint. In later sections we shall use the
symbols &' and »’ for crystals that are under constant stress, k" and 5"
for constant strain. So far as one can speak of the ‘““true” dielectric
constant of a piezoelectric crystal, the value & at constant strain is the
proper one to use. Strietly, both the constrained (constant-strain)
state and the state of constant stress, including the relazed state in which
all external stresses are removed, are idealized conditions, which cannot
be exactly realized in the laboratory. Rochelle salt is so extremely
strain-sensitive that an approximation to the relaxed state sufficient for
even roughly approximate results is difficult. Fortunately, with most
piezoclectrie crystals the values of &* and &' differ by a very small amount,
go that the distinetion is of small consequence. For quartz, in directions
perpendicular to the (optic) Z-axis, the difference amounts to about
2 per cent. For the present this distinction can be disregarded, since
the general relations hold whether the erystal is clamped or free. Except
in §114 it will be assumed that the dielectric cosfficients are independent
of the field. For a discussion of differential permiltivity see §430. The
quantities P and E, which are vectors, are related by the coefficient %,
just as in elastieity X, and =z are reloted by s and in thermodynamies
quantity of heat and temperature are related by the specific heat C
(§20). ’

At the surface of any dielectric, whether isotropic or nof, in an
electric field, the quantities that are the same on both sides of the bound-
ary are the normal component of displacement and the tangential com-
ponent of field strength. Nevertheless, when this law of electric refraction
is applied to ecrystals, it is found in general, even when the field is
normal to the crystal surface, that the polarization and hence the fotal
displacement are in some oblique direction.

106. The general relation between polarization and field in a erystal
may be found by taking the derivative of { with respect to , in Eq. (2},
letting the mechanical stresses and the temperature remain constant:

3

i) .
51%;=EWEJ==P;' (1=123)
k
When this expression is expanded we have the following equations
due to Kelvin:*

* Vorar, p. 415,
Tn these equations, &8 in most casea throughout this book, the vectors are not
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P; = nuE1 + 128 + nakn
Py = nully + 9By + 125k {140)
Py = iy + 1a2By 4 naslis

The subscripts 1, 2, 3 refer to the orthogonal crystallographic X-, ¥-,
Z-axes or, in transformed coordinates, to the X’-, ¥’-, Z’-axes. Such
quantities as mu(k = k) may be called cross susceptibilities, analogous
to the cross compliances su in elasticity; they relate a field along one
axis to a polarization parallel fo another axis. As will be seen, these
cross constants are present only in triclinic and monoclinic crystals. In
all cases nw = Y

Corresponding to Eqgs. (140) are the following equations for com-
ponents of displacement:

Dy = knEy + kB + kB
Dy = kn By + knBy + knls (141)
Da = k31E1 + kuEz + kssEs

The dielectric constants are related to the susceptibilities thus:*
kw = 1 4 4rgm Fai = ka = 4o (b 79} (142)

These equations make clear the distinction between the cross coefficients,
of form s or e, and those of form ky, or mus, which may be termed the
direct coefficients; any of the former may vanish for certain crystal
groups (as they do for isotropic substances), but the latter never. From
kx = kit is evident that the &'s and »’s are symmetric tensors.

The greatest possible number of independent #’s {or &’s) is gix, but in
all systems except triclinic the number is less, becoming one for cubie
erystals. By combining the ellipsoidal symmetry inherent in the #'s
(§112) with the erystslline symmetry, Voigt shows that the constants
may be classified according to the seven systems, as follows:

TasLe XIV
Systems Suaceptibilitiea
1 Nt M2z M Nea M1 M2
2 m1 % ms 0 0 ma
3 m oz oo 00 O
4,56 m o ome O 0 O
7 M 71 ML 0 0 0

printed in boldface type. There will be but little oceasion to use the methods of
vector analysis, and wherever directional properties are considered they will be made
clear by appropriate subscripts.

* Voior, p. 436.
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The same tabulation holds also for the &'s. The classification is
valid only with respect to the crystallographic axes: in general, when
rotated axes are used, the crystal loses some of its symmetry, and the
number of effective constants increases. TFormulas for transformation
are given in §107.

106. We shall have occasion to express the components of field
gtrength in the crystal in terms of those of polarization. If Egs. (140)
are solved for the E’s, a new set of constants appears, which are functions
of the »'s and may be termed the coefficients of dieleciric sliffness, x.
The three equations are

3
E; = EH#PI.:X:‘J.P:‘{"X:'J):"‘X;'&P; (i=1,2,3) (143)
¥

Here xi = x&. In order to express any x. in terms of the #’s, the method
outlined in §26 is used. The general formula is

Xin = %—l (144)

where D is the determinant of all the 5's and Si is the cofactor with
respect t0 1. For example, x13 = (namsz — 9a1922)/D. The vanishing
of any na does not necessarily imply the vanishing of the eorresponding
xi# Nevertheless, in systems of higher symmetry than monoclinic,
all cross susceptibilities (j # &) vanish, and x; = 1/n; 88 long as the
subscript refers to one of the crystallographic axes. With respect
to rotated axes, this simple relation no longer holds in general (see
§107). In an isotropic material there is but one 4, so that x = 1/ for
all orientations.

Equations analogous to (143) can be derived from Eqs. (141}, express-
ing the components of K in terms of those of the displacement D. The
coefficients 8 in this case are of the nature of reciprocal permittivities,
called by Kelvin the *dielectrie impermeability’’:*

3
E; =Y, 65Dy = 0yD1 + 02D + 6aDs  (j=1,2,8) (145)
A

Expressions for the 8; in terms of the E; will be needed for deriving
the equations for elastic coefficients at constant electric displacement.
They are found in the manner indicated above for the xa. The general
formuia is

o0 = 3 (146)

* Voier, p. 441.
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where D ig the determinant of all the &’s and 8,; is the cofactor with
respect to k.

For brevity, it is permissible to use a single subseript z, ¥, or z (or 1,
2, or 3) for k, 5, and 6 whenever there are no cross constants, so that both
field and polarization are parallel to the axis indicated (see §112 concern-
ing the *principal susceptibilities’ and footnote on page 44 for the use
of subseripts). Thus k., = ky,; and for a transformed axis X’ we may
write k!, etc. Where there is no ambiguity, the subscripts may be
omitted altogether,

107. Dielectric Constants with Respect to Rotated Axes. Since the
symmetry of crystals (excepting triclinie) is usually lowered when the
frame of reference is other than the fundamental erystallographic axes,
certain cross constants of form ky and g5 (§ # h) may be expected to be
present in the transformed system. In general, all coeflicients are
altered by the transformation.

The transformed coefficients occur in the expressions for the elastic
constants at constant displacement and at constant polarization (Chap.
XII}. They must also be taken into account when the resonator theory
is applied to oblique bars or plates,

By a mothod analogous to that outlined in §40, any #f, ean be derived.
The direction cosincs of the rotated axes are given in §38. In terms of
the fundamental susceptibilities, the value of 4}, in the most general form
is

nin = Ll 4 manie 4 nams) + mylnn 4 manze - nansg)
+ nillinn 4+ mana: + nanss) (147}
For quartz, the only fundamental susceptibilities are 91y = 7y == 73,
and s = m;, perpendicular and parallel, respectively, to the Z-axis.

thy = (L + mmadny + o (148)
For a quartz plate, rotated through the angle 8 about the X-axis, Iy = 1,
b=h=m=n=0m=ny=¢o8 8=¢, foa= —mM =8in § =3,

so that the only susceptibilities which contribute to the polarization when
the field is Ej in the Y’-direction (direction of thickness of plate) are

= ming -+ ninyp = cinu + s
T = mamany + nanany = es(nyg — 7.) (149)
sy = miny + ngny = s’ + ¢y

In quartz the difference (y — %.) is so small that the cross sus-
ceptibilities in oblique fields can usually be ignored.

Similarly, one finds for the permittivities that contribute to the total
polarization in a quartz plate rotated about the X-axis asindicated above,

the expressions
ki = %y + 8%y kss = stk + ¢y ki = es(ky — k1) (150)
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In general, any rotated permittivity kf, is expressed by an equation
similar to (147):

ki = (dakn + lmaks + Inakes) + (milakor + mmakag + mmakas)
+ (n,'lp.kn + ﬂjﬂlﬁkn + ﬂ,'n;.ksa) (151)

For quartz, the coefficient relating the polarization in any direction j
to an impressed field in the h-direction, or vice verss, is

kix = (L -+ mama)k L -+ naky) (152)

In most practical applications of quartz the effective dielectric con-
stant is expressed in terms of the constant &’ for the free erystal, taken in
a direction parallel to that of the field (§§235, 247). The expression
for &’ is found by setting j = k in Eq. (152), giving, for a field in the
h-direction,

r =k = (B miky b onfky =K+ nEEy - Fy)
= 4.5 + 0.1n} (153)

where 7y, 15 the cosine of the angle between the A-direction and the Z-axis.

108. For crystals of symmetry higher than monoclinic, the fotal
polarization P produced by a uniform field £ having direction cosines I,
m, n can be found from Eqgs. (140):

P = E ~+/(I11)? + (mnen)® + (nma)? (154)

In general, P is not parallel to E. The divergence is gieater the wider
the disparity between a1, f2s, and uz.  Equation (154) is applicable
also when the axes are rotated; in 1his case all electrical quantities should
be primed.

The dielectric constont in the direction parallel to the field is

kv = 1 4 4anw,
where, for crystals of any class,
v = Pypy b mpee - ntaay 4 2mnnes 4+ 2nlne + 2imae (155)

The subseript N denotes the direction of the normal to the plane-paraltel
plate to which the field E, with direction cosines I, m, n, is npplied.
Equation (155) ean be used for rotated axes hy priming all the #'s.
When the symmetry is higher than monoelinic, the polarization normal
to the plate is
Py =Pl + Pom + Py = (P + m¥nas + ninae) E = B

where nx = I*nyy -+ minea + nine (156)
Similarly, Ey = Iy -+ mikas 4 nkas (167)
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In order to caleulate the coefficients (xi)" or (6a) for rolaied azes,
it is usually necessary first to derive the entire matrix of transformed
susceptibilities (na)’ or (ka)’, respectively, as indicated above. The
desired coefficients are then found by means of equations analogous to
(144) ang (146).

For quartz the ealeulation is relatively simple. For example, with
plates rotated through the angle # about the X-axis (as in the 4 T-cut,
etc.), the only values that do not vanish are

s _ 1 r_(’T)’ r___(_ﬂl r__(ﬂzs)'
{xn)" = ﬂ—;(x:z) —-"Sai— (xsa)' = Sz’fl () = s (158)

where 8}, = (22)"(133)" — (nds)’.
The corresponding (8,:)’ may be reduced {o the form

- _1_ - (ka.‘!)’ - szkl + c’k"
(911) = k.]. (922) - klk“ - k,j_k"

(Bae)’ = (kas) _ ¢ty + 8%y (Ba3)’ = (kaay _ cs(hy — ki)
i k1 ky kyky # ko ky ki k)

(159

In Eqgs. {158} and (159) the primes refer to rotated axes and do not
indicate that the erystal is mechanically free. On the contrary, in some
of those elastic equations in which these coefficients occur the crystal is
free, and in others it is clamped (see §206).

As an example we consider the coefficients (6})' and (63 for a
clamped quartz plate rotated 45° about the X-axis. Coefficients of this
type, with differing degrees of rotation, are used in deriving the elastic
constants from thickness vibrations of cuts of AT-type. We have,
from §331, k¥''y = 4.41, K" = ky = 4.6, cs = 0.5, so that

(L) = 0226  (8%) = —0.00465 (160)

The cross constant (#%)" is small enough to be neglected in most
calculations. :

109. Expressions for Energy in a Dielecirie. In Eq. (1) we saw that
Voigt's expression for the energy per unit volume in terms of field com-

3 3
ponents was 4 E E MmBErEm, corresponding to 44E? for isotropic bodies.
E k om

It can be shown from Eqs. (140) and (143) that the energy in terms of
cotaponents of pelarizalion is

3 3
Energy = % 2 Z Xiomd 2P
k m

This expression corresponds to P3?/2y for isotropic bodies.
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110, Effect of an Air Gap on Polarization. A plane-parallel slab of
dielectric of permittivity k, thickness e, and infinite area is placed between
parallel electrodes spaced at a distance e + w apart, w being the gap
width, air or vacuum. It is immaterial whether the gap is all on one
side of the dielectric, ag shown in Fig. 39, or partly on
each side. Let E, be the field in the gap, E that in the
slab, V the potential difference between the electrodes, .

V1 the potential drop across the slab, and +o the charge
density on the electrodes. Vectors are positive when to
the right. F and P are assumed to be normal to the slab.

1. The following equativng hold universally, whether k
the slab is piezoelectric or not, provided that the polar-
ization is parallel to the field. If it is piezoelectric, the
golution given in (2} can be superposed on that now to V-
be congidered. As in Eq. (137), the electric displace-
ment, is

et 86—+

D=FkE =FE, =4re = (i61) T

7,
e w

For brevity, we let ¢’ stand for e + kw; ¢/ may be called

. . F . 39—
the “electric spacing™ between electrodes: Slab of dielectric

between parallel

¢ =e+ kw {162) electrodes,
The following relations are easily derived:
E, = ’%Z (163a)
14
= (163b)
Vi= f; (163¢c)
V k-1
P=lr="72=0 (163d)

It should be noted that whenw = =, ¢ = 0.

2. We now assume V = 0 and that the slab is of piezoelectric crystal,
so strained as to produce a uniform polarization P,, where the subseript
n denotes a polarization normal to the slab. It is obvious that there
will be polarization surface charges* + P, on the siab, equal and opposite
induced charges on the electrodes, a field E, in the gap in the same
direction as P,, and a depolarizing field E,, opposed to Py, in the slab.

* The effects of space charge in the crystal are treated in §249.
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The values are found to be

g, = 4Py

Py (1640-)

B, = =il (1645)

E, gives rige to a counterpolarization P! = 9E,, and the total polariza~
tion ia”

etwp " (165)

e =+ kw
When w = 0 (electrodes adherent), P, = P, and B, = 0. Whenw = »
(slab far removed from all conductors), P, = P,/k and D = 0; the dis-
placement vanishes both outside and inside the dielectrie.

If there iz a potentin]l difference V between the electrodes, its con-
tribution to the polarization, given by Eq. (163d), is added to that in
Eq. (165).

It should be noted that the field B, in the crystal stands in the ratio
—w/e 10 the field E. in the gap, independently of the dielectric constant.

111, I'mpurities on Surfaces of Crystal. The static measurement of
dielectric constants involves s measurement of the charge flowing to the
crystal condenser on application of & known potential difference ¥V to
the electrodes, or its removal. Tt is of the utmost importance that the
electrodes make immediafc contact with the substance of the crystal.
Loosely fitting electrodes must be avoided (or else the gap w accurately
measured), and layers of cement, if employed, must be exceedingly thin.
These precautions are especially urgent with crystals of high k&, as
Rochelle salt. With such crystals all surface impurities resulting from
the process of polishing or from dehydration must be removed (§415)
if accurate results are desired.

The magnitude of the error to be expected when the crystal slab is
separated from the electrodes by a thin layer of foreign material of per-
mittivity ko and thickness w can be deduced from the foregoing para-
graphs. Under these conditions Eq. (161) becomes

D = kE = kuBy = 4w = V1 _ KoV
[ 1w

P,=P,+P =

It follows that
14 __1__)
C = Tre \I F Fkw/Fue

If the ares of the condenser is A (assumed great enough for edge effects
to be disregarded), the observed charge is 0d. If the electrodes made
immediate contact with the crystal, the observed charge would be aod,
where 5o = EV/4we. The ratio ¢/oq is 8 measure of the error incurred by
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having the foreign layer present. Table XV gives approximate values
of o/e, for various ratios k/k, and w/e.

TasLE XV

X » L
kw ¢ (.4
10 0.01 0.9

10 0.001 0.99
100 0.01 0.5
100 0.001 0.9
1,000 0.01 0.1
1,000 0.001 0.5

Considering the extraordinarily large value of k. for Rochelle salt
in comparison with ordinary cements and with the dehydrated salt,
one seeg clearly from this table how important it is to make intimate
contact between crystal and electrodes. For example, under the con-
ditions assumed in the next to the last line—conditions quite likely to
occur when e is small—the observed permittivity would be only one-tenth
of the true value. ,

The subject of suitable electrodes for such measurements as these is
treated in §416. At present all that i3 necessary is to point out the
difficulty in having electrodes closely adherent while at the same time
allowing freedom for deformation of the crystal when s field is applied.
Very thin deposits of metal, such as gold foil or plated electrodes are
best for this purpose.

112. The Dielectric Ellipsoids, The lack of parailelism between E and P is
expressed mathematically by the fact that 4 ia not o sealar, but a symmetrical tensor.
Its magnitude varies with direction; it may be represented geometrically by an ellip-
soidal surface given by the following equation, which is written with respect to the
principal axes of the crystal:

nie? 4 nay? + na2® + 20napz 4 w2z + nuzy) = 1 (166)

Unless the cross constants vanish, the prineipal axes of this ellipsoid are not coinei-
dent with the principal (crystallographic) axes. By rotating the coordinate system
until it coincides with the principal ellipsoidal axes we obtain the equation

7.2 gyt + omeet = 1 (167)

where n., 9y, 7. are the principal susceplibilities. TFor all exeept triclinic and mono-
clinic erystals these 7's are the same as the direct coefficients mentioned above.

The ellipsoid represented by Eq. (167) has the following property: If & radius
veetor r is drawn parallel to E, then the polarization P sssocinted with E lies in the
direction of the normal to the tangential plane drawn at the point where r intersects
the ellipsoidal surface. Parallel to the principal axes of the ellipsoid, and only in these
directions, are polarization and displacement parallel to the field.
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The reader familiar with physical opties will notice analogies between the foregoing
ellipaoid and the optical ellipsoids discussed in Chap, XXX. Indeed, if instead of the
static or radio-frequency {r-f} values of & we were to consider those at oplical fre-
quencies, we should pass directly to the optical ellipaoids; an ellipsoid having & as
parameter would be the Fresnel ellipsoid. Furthermore, those crystals having the
three principal dielectric constants k,, k,, k, [corresponding to 1., n,, 7. in Eq. (167)3all
different (systemsa 1, 2, and 3 in Table X1V} are the optically biazial crystals; those
having two of these constants identical (systems 4, 5, 6) are uniazial,

The dielectric ellipsoid for quartz, from Eq. (167), would be slightly prolate, with
axia of revolution parallel to Z, and differing but little from a sphere. For Rgchelle
galt the ellipsoid would be a cigar-shaped figure with the long axis parallel to X,

113. The Molecular Nature of Polarization, The foregoing equa-
tions are perfectly general statistical descriptions of dielectric phencmena,
in terms of quantities that are observable outside of the dielectric. They
involve no hypothesis concerning the molecular nature of polarization.
We shall now summarize those statements concerning the internal field
and polarizability of which use will be made in the chapters on Rochelle
.salt and the other Seignette-electrics. For the remaining crystals, includ-
ing quartz and tourmaline, there are no dielectric anomalies; the per-
mittivities are so nearly constant over wide ranges of temperature, field,
and frequency that for practical purposes no appeal need be made to
molecular theory.

The actual field in a dielectric varies greatly from point to point, over
distances comparable with molecular dimensions. The internal field F
(also called the local or molecular field) is defined as that in a very small
spherical eavity from which the molecules have been removed,* according
to the Lorentz equation

F =F 4 ~P (168)

where F is the statistical field {as ordinarily defined) in the dielectric, P
the polarization, and ¥ the internal-field constant. If the medium is
isotropic or of cubic symmetry, ¥ has the value 4«/3. In crystals of
symmetry lower than cubie, ¥ has values differing from 4x/8, though
of the same order of magnitude; it is usually considered as independent
of temperature.

In the field F each molecule becomes polarized and assumes an clectric
moment p. If g is the average value of u in the direction of F and «
the molecular constant known as the total molecular polarizability, we
have the simple relation

fi=aoF (169)

This linear relation suffices in most cases; non-linear effects are considered

*,This definition of F, as applied to piezoelectric phenomena, is discussed in Chap.
XXVL
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later. Calling N the number of molecules per cubic centimeter, one has
also
P=Ng (170)

The quantity e is the sum of the constituents o, + o, + @, where
o, and o, are due to displacements of electrons and atoms, respectively.
The terms a, + a, may be abbreviated to a.;; they are called the induced
or lattice polarizability, Lorentz type of polarizability, or polarizability by
distortion. This type of polarizability, and hence the portion of the dielec-
tric constant dependent on it, is essentially independent. of temperature.

The contribution due to structural dipoles, when they are present
(i.e., permanent dipoles that are characteristic of the structure even in
the absence of external field, causing polarization by orienfation) is au.
Polar etructures of higher order than dipoles need not be considered here.
The constituents of u are fi.; = af and g = agF. Inthe second of these
cquations the bar is of special significance, since in general the directions
of the permanent dipole axes are widely distributed in space. The bar
in the first equation is in recognition of the fact that the polarization in a
crystal is not necessarily parallel to the impressed field.

In applying the foregoing expressions, especially in Chap. XXVI,
the only type of dipole that will be explicitly considered is the permanent
dipole, eapable of rotation in an electric field, and designated above by
pe.  We may therefore drop the subscript d and write simply u for the
moment of a permanent dipole.

The total polarization may now be expressed as

P =Nf=NoF =Py + Ps= Niea+ Nils = NaooF + NaF (171)

For those dielectrics in which v = 4x/3, the well-known Clausius-
Mosotti relation can be deduced from Eqgs. (168) and (171), upon setting
E = 4xP(k — 1), where k ia the dielectric constant:

k—1 4rx
FTsT Na (172)

Although in this equation « was originally meant to comprise only
the lattice polarization e, it has been extended by several writers to
include dipole polarization as well (§485).

The following relation between susceptibility and molecular polariza-
bility, derived from Egs. (170), {171), and P = nE, will be used later,
in §486:

Ne

Na ) whenee 1T T Na (173)

=
14

114. Polarization Due to Permaneni Dipoles. The theory is due to
Debye,B1581% who adapted to the study of dielectrics Langevin’s theory
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of paramagnetism. The latter is described in the Appendix, and the
application of the Langevin-Debye-Weiss theory to the Seignette-electrics
is considered in Chap. XXVI, We give here only those essential equa~
tions which are of a more general nature.

In brief, the theory postulates that a dielectric having a temperature-
dependent dielectric eonstant contains dipoles which normally are in a
state of disorder owing to thermal agitation. Upon application of an
clectric field the dipoles tend to rotate; the average rotation depends
on the amount of thermal agitation, being greater at lower temperatures.
A condition of statistical equilibrium is reached that determines the
dipole polarization as. The polarization under weak fields is approxi-
mately proportional to the field, but as the latter becomes large a state of
saturation is approached.

The Langevin function L{a), employed in the Appendix with respect to
phenomena involving magnetic dipoles, can be used also in the dielectric
case, by the substitution of electrical for magnetic quantities. It then
expresses the theoretical ratio of the average i [[q. (169)] to the moment u
of the individual dipole, the latter being regarded as constant and inde-
pendent of temperature. The parameter a is pF/KT, where K is the
Boltzmann constant and T the absolute temperature. In its original
form the Langevin funetion is

B _E_Pu_ -1
L{a) _LKT‘p c'—cotha p (174)

where Py is the polarization in infinile field, when the dipoles are com-
pletely aligned. The form of the L(a):a curve is shown in Fig. 165
(page 7438).

A useful approximate form of this equation, sufficiently accurate
ag long as F is small enough so that ¢ < < 1, is Eq. (556a), which we give
here as well as later; it is obtained by retaining the first two terms in the
expangion of (174) in powers of a.

g_14F 1 (,;F )‘ P

(175)

Equation (174), hence also the numerical coefficients in (175), is

based on the assumption that the orientation of the dipoles is unrestricted

in space (§652). In solids certain restrictions are present, but in all

cages as long as the field is not too great one can write a generalized
Langevin funetion in the following approximate form, from Eq. (562):

B_puf _ (#EY _ P

B KT KT Ny

For the original function, p and g assume the values $ and 2, respectively.

(1786)
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Equation (174) indicates that the polarization P, approaches satura-
tion at high fields, It follows that the dielectrie susceptibility is not a
constant but decreases with increasing field strength, In paramagnetism,
saturation is observable only in rare instances and with great difficulty
{§548); but it is an important characteristic of ferromagnetic substances.

As in the analogous magnetic case, the dielectric properties of the
Beignette-electrics in weak fields are of importance. In such cases the
first term or at most the first two terms of the expansion of L(a) in powers
of a suffice.

When F is small enough for the first term to be used alone, one may
write

N

b= P ET
where u?F/KT is the dipole contribution to the molecular polarizability..
The total polarizability may now be written as

f
2

a=am+p§T )

The contributions to the polarization made by the two terms are the
polarization by disiortion and polarization by orientaiion mentioned
above,

As a rule, dielectrics of large permittivity possess a structure contain-
ing dipoles. What confirms the diagnosis is the dependence on tempera-
ture shown in Eq. (177). Dipoles are aperiodically damped, and they
play no part in the permittivity or refractive index at frequencies as
high as in the infrared.

The following expression for polarization will be used in §484. Ao
F becomes indefinitely large, i approaches u, and from Eq. (174) L{a)
approaches unity. We then have, for the saturation value of the
polarization by orientation in an infinite field, Py = Np and, for the
total polarization at any F,

P = NayJ + Pol(a) (178)

Although most investigations on saturation effects have had to do
with freely rotating dipoles, still saturation is also known to occur in
dielectrics containing no polar molecules (ref. Bi5, Chap. VI). We shall
encounter instances of this among the Seignette-electrics. In such
cases the Langevin function can be extended to include the oy, type of
polarization.*

In this chapter it is unnecessary to discuss further the effect of tem-
perature on polarizability. The subject will be taken up in connection

* For the most part we shall use the Langevin function in the generalized \form
[Eq. (176)).
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with the theory of Rochelle salt. It need be remarked here only that
any dielectric with a very large and temperature-dependent polariza-
bility may be suspected of having a Curie point like that of Rochelle
salt.
115. Brief mention should be made in this chapter of sponfaneous
polarization, which is important in the theory of Rochelle salt. When &
spontaneous polarization P?is present, it is to be added to the polarization
P due to E. P'is associated with a spontaneous internal field Fp = yP0.
Calling Fz the term due to E, we have for the total internal field |

F=Fo+¥s=FE+ P+ P) =P+ E(1+ v7) (179)

In problems such as ordinarily arise in connection with dielectrics
the only polarization is that due to E, viz., P = 9E. On the other hand,
pyroelectric crystals may have a spontaneous polarization P¢, and piezo-
electric crystals when in a state of strain have a polarization that we shall
call P5. Both P?® and P, (disregarding Seignette-electric anomalies) are
independent of E; in any case they differ from zero even when E = 0.

Piezoelectric crystals may be either polar or non-polar, In the
former case the application of a suitable strain preduces a polarization
both by distorting the lattice and by rotating the dipoles: both e,, and
o, are affected. 1f the crystal is non-polar, only lattice distortion takes
place.

‘When an electric field is.applied to a clamped crystal, in which all
externally observable deformation is prevented, one may assume that
both types of polarization are present, though to 2 reduced degree. We
shall see in §468 that reasons have been advanced by Mueller for believing
that a clamped crystal of Rochelle salt shows no observable *ferro-
electric”’ properties.

116. Disstpation of Energy in Dielectries. A condenser may be repre-
sented as a pure capacitance in series with a small resistance, or in parallel
with n large resistance, or both together. The materials selecied as
dielectrics for condensers usually provide a ecapacitance that is nearly
constant over wide ranges of frequency and temperature. On the other
hand, the resistance is often found to depend greatly upon these two
quantities.

While the permittivities of a considerable number of piezoelectrie
orystals have been mesasured, in most cases no special need has arisen for
the measurement of their dielectric losses. The only examples with which
we ghall have to deal are quartz and Rochelle salt. In quartz, the inher-
ent losses, chiefly elastic, set the ultimate limit in the construction
of resonators of low damping. Usually the damping introduced by
mounting, air friction, etc., is greater than that cheracteristic of the
quartz itself.
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In the case of Rochelle salt both the permittivity and the internal
losses vary greatly with field, temperature, frequency, and other factors
as well. Rochelle salt belongs among those substances for which the
relazation times have been investigated. The effect is usually found
among materials containing polar molecules. Although a full discussion
of relaxation times lies outside the scope of this book, the following
features may be briefly summarized. ¥

If an alternating field of constant amplitude is applied to a substance
containing dipoles, as the frequency is gradually increased, certain absorp-
tion bands in the frequency spectrum are traversed, within which, owing
to something of the nature of molecular friction, the polarization and
hence also the permittivity decreases, remaining relatively low on the
h-f side. TFor each of these regions there is a certain characteristic fre-
quency oo/2w, defined by the equation wy = 2KT/b = 1/r, where K
18 Boltzmann's constant, 7 the absolute temperature, b a frictional
constant, and 7 the relaxation time.t The permittivity begins to
diminish at the beginning of the absorption band, at which point the
frequency may be only a fraction of we/2r. For Rochelle salt, absorption
bands in the infrared have been dealt with by Valasek. %

Several observers claim to have found cerfain characteristic relaxation
times for Rochelle salt, in some cases at extremely low frequencies.
References to their work will be found in §428.

*Another type of absorption of energy, closely analogous to that
encountered in the piezoelectric resonator, is found in the infrared and
in the optical spectrum. This type is due to natural vibrational periods
associated with electrons, molecules, or the crystal lattice, and is sccom-
panied by anomalous dispersion (in the range of optical frequencies the
refractive index, and hence the dielectric constant, normally increases
with increasing frequency).

Ii all types of absorption are taken into aceount, the result is a progres-
sive diminution in permittivity with increasing frequency, with the excep-
tion of rapid increases as the frequencies of natural vibrational modes
are approached. If the dielectric is & preparation from a piezoelectric
crystal, mounted without too much mechanical constraint, it will have a
large number of natural vibrational frequencies depending on its dimen-
sions, in the neighborhood of each of which it will react upon the driving
cireuit. The variations in electric current in such a region are exactly
as if the dielectric possessed a permittivity and absorption that varied

* Bee refs. at the end of thig chapter.

1 In terms of static fields one may say that, when a constant field is impressed on
the dielectric, the dipoles are held in a certain statistical state of order. Upon the
sudden removal of the field it can be proved that this state of order sinks to 1/¢ of ita
initial value in a time equal to the relaxation time.
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with frequency. As will be shown below, it is possible to represent
the behavior of & piezo resonator in terms of a complex permittivity,
just as is customarily done in the case of molecular vibrations. In each
cage the phenomenon may be described as “anomalous dispersion.”

Whatever the nature of the energy absorption may be, unless the
loss is small it has a perceptible effect upon the measured permittivity.

117. From observations made with a bridge, the permittivity of any
dielectric can be deduced from the equation C = kA/4re (A = area,
¢ = geparation of electrodes, which are assumed to be in contact with
the dielectric); and the equivalent parallel resistance R can be caleulated
and thence the equivalent conduetivity of the material. If the observa-
tions are such that the measured quantity is the admitiance, erroneous
values of & may result if it is assumed that the losses can be neglected.
In such cases the observed permittivity is the quantity known as the
complex permittivity, whieh we shall designate as k. and which is a function
of k, R, and frequency.

The equation for complex permittivity may be derived thus: If the
“ecomplex capacitance” C, is defined in terms of the observed admittance
by the equation ¥ = juC, = ¢ — jb, we have

Com 22 = — 2 (b + ) (180)

where k. is the complex permittivity, & the susceptance, and g the con-
ductance. Hence

Rom =T b gy b — § (181)
where, when the losses are small, k is the ordinary permittivity, given
by the equation €' == kA/4we = —b/w. The dissipation term appears
here as an imaginary quantity, instead of occupying its conventional
place as the real part as in a-¢ theory.

Since for any network the resultant values of g and b can always be
derived at any given frequency, it follows that any network can be repre-
sented as a condenser with complex permittivity. If the network ig
inductive, the reactive part of the permittivity will appear as negative.
In particular, the equivalent network of a piezo resonator can be so
represented, as will be seen in §258.

The theory of losses in dielectrics has been treated most extensively
by Debye. His theory is used by Mason2 in the treatment of dielectrie
hysteresis in Rochelle salt.
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CHAPTER VIIX
PRINCIPLES OF PIEZOELECTRICITY

It would be interesting to know whether this development [of charges by stretching
rubber|, and that preduced by compression, is progressive or sudden, whether the
electrification produced by each of these operations i3 the same or different [in sign],
what part the molecules in the interior of the body and those on the surface take in
the total production; it would be espeeially eurious and perhapa rather easy to inveati-
gate in crystalline minerals, where the aggregation of the particles, however regular
in its nssembly, prosents in the differont directions in the erystal known differences
which can influence the ease, great or small, with which the clectricity is separated.

—A, C. BeEcqUEREL, 1820.

118. Introduction. The statements in Chap. I concerning the piezo-
electric effect may be summarized and extended in the following manner:

A piezoclectric crystal may be defined as a crystal in which ““elec-
trieity or electric polarity’ is produced by pressure; or, more briefly,
as one that becomes electrified on squeezing; or as one that becomes
deformed when in an electric ficld. The first two definitions express the
direct effect, while the third expresses the converse effect.

These definitions are correct as far as they go, but they require further
explanation. In the first place, if the pressure is replaced by a stretch
(i.e., a reversal in sign of the pressure) the sign of the electric polarity
becomes reversed, also. One may ask how the erystal knows which way
to become electrified. The answer is that a piezoelectric crystal must
have a certain one-wayness in its internal structure; in other words,
it must have a structural “bias’’ that determines whether a given region
on the surface shall show a positive or a negative charge on compression.
In the converse effect, the same one-waymness determines the sign of the
deformation when an electric field is applied to the crystal. It is this
reversal of sign of strain with sign of field that distinguishes piezoelec-
tricity from electrostrietion (§137).

Of the 32 crystal classes, there are 20 that possess this one-wayness.
With all the rest there is nothing to determine the direction of the
polarity on compression; hence they do not become polarized at all.*

The second consideration has to do with the relation between the
applied stress and the resulting polarization. The stress may be a com-
pression or an extension, as stated above; but it may also be a shearing
stress, which, as shown in §27, is closely related to a compression. There

* This statement ignores the fensorial piezoelectricity mentioned in §525, which is
too feeble to require consideration at this point,
177
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is one erystal class in which a random stress of any type will produce &
polarization, the direction and amount of which will, of course, vary with
the stress. ‘This is the asymmetric triclinic olass, the one of lowest
gymmetry, of which more will be said presently. With all other classes
it is only certain particular types of stress, standing in particular relations
to the crystal axes, that can produce a polarization. There is no elass
in which the piezoelectric polarization has one and only one direction,
but there are several classes in which the polarization is confined to a
certain plane. Conversely, an applied field must have at least a4 com-
ponent in this plane in order to produce any piczoelectric deformation.

Sinee there are six possﬂ)le components of stress and three of electric
polarization, it is evident that there are 18 possible relations between
the mechanical and electrical states of the erystal. These relations are
expressed by the 18 piezoeleciric constants, whose values are independent
and differ from zero except when {as is always the case outside of the
triclinic system) the symmetry of the class is such as to make some of the
constants have identical values, including zero. In some of the classes
of relatively high symmetry there is but one independent constant, but
it is associated with at least two types of siress and strain and with at
least two components of polarization and field. However high the sym-
metry, as long as a crystal is piezoelectric at all, there is wide latitude
in the choice of stresses, field directions, cuts, and vibrational modes.
The principles that underlie the production of various types of vibration
by piezoelectric exeitation are treated in Chap. X.

Although the foregoing statements refer mainly to the direct effect,
they can be equally well expressed in the language of the converse effect.
If in the direct effect & mechanical stress of type & produces an electrical
strain (polarization) in the m-direction, then by the converse effect an
electrical stress (applied field strength) in the m-direction will produce a
mechanical strain of type . For each crystal class there is complete
reciprocity between the two effects.

119. This chapter has to do chiefly with the presentation of Voigt's
phenomenological theory of piezoelectricity. It includes a tabulation
of the characteristic effects for the 20 piezoelectric classes of crystals
and the equations for the piezoelectric constants with respect to rotated
axes. The representation of piezoelectric properties by means of sur-
faces and diagrams is discussed, as an introduction to the graphical
methods employed in the next chapter for showing how particular erystals
vary as the axial gystem is rotated.

In the early part of the chapter is given a brief survey of the pioneer
researches of P. and J. Curie in this field, together with Lippmann’s
prediction of the converse effect.

At the cloge is a brief section on electrostriction.
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120. An Mlustration of Piezoelectric Effects and Reactions. If an
electric field in some arbitrary direction were applied to a hemihedral
triclinie crystal, 2 number of things would happen. Each of the three
components of field strength would excite six independent components of
internal stress, known as piezocleciric stress. The total stress system
would consist of 18 different terms, 3 terms for each of the six com-
ponents of stress. The resulting strain would involve all the possible
types of deformation; the lengths of all edges and all angles between
edges would be changed.

Yet even with this complex state of affairs the story would by no
means be at an end. On the surfaces of the crystal, if the latter were
not in contact with the electrodes, would appear polarization charges
due to the state of strain, from the direct piezoelectric effect, giving rise
to an additional set of field components whereby the entire stress and
strain gystems became altered, and this in turn would cause still other
polarization charges, and so on. The final configuration would depend
on all these circumstances.

Beyond this, since our crystal is also necessarily pyroelectric, the
electric field would cause certain thermal changes through the electro-
caloric effect, and these in turn would both alter the elastic constants
and thereby affect the deformation and alse, through the pyroelectric
effect, have an influence on the state of polarization. Lastly, the crystal
could not escape having its state of deformation still further altered
through the effect of clectrostriction; and through the converse electro-
strictive effect the polarization would undergo still further modification.
A complete description of the final state of the crystal would include these
thermal and electrostrictive effects. Fortunately they can usually be
ignored.

121. Tt is the object of piezoelectric theory to analyze such situations
38 that described in the foregoing section. The piezoelectric forces are
examples of the class of forces known as “body forces,” acting directly
on the entire substance, rather than applied mechanically to the bound-
aries from without. As will be seen, the problem can be solved com-
pletely when all conditions are homogeneous, 7.e.,, when all elements of
volume have exactly the same temperature and the same components of
field and of strain. Whenever boundary conditions have to be taken
into account, the problem becomes so complicated that solutions are
possible only in certain special cases.

The triclinic hemihedral class of crystals was chosen 28 an illustration
because it represents the lowest degree of crystalline symmetry, although
almost no experiroental work has been done on it. The other triclinic
class, having a center of symmetry, is not piezoelectrie.

For generality it is customary to write the fundamental piezoelectric
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equations in terms of all 18 possible coeflicients. Each of the 20 piezo-
electric classes is characterized, with respect to suitably chosen axes,
by & definite number of coefficients, which become fewer with increasing
gsymmetry, until in a few classes the number of independent constants is
reduced to one. Except for the triclinic hemihedral class, in which the
choice of axes is perfectly arbitrary, the fundamental piczoelectric coeffi-
cients for each class are expressed with reforence to a system of orthogonal
axes based upon the elements of symmetry present in that class; hence
they are fewer in number than they would be for any other axial system.
If, as often happens, a crystal specimen is eut in an obligue direction,
& new system of axes has to be adopted, involving usually a great increase
in the number of coefficients. That is, any transformation of axes
may be expected to reduee the crystal effectively to a position of lower
gymmetry.

122. The Researches of the Brothers Curie. As a prelude to Voigt’s
theory we shall survey briefly some of the principal piezoelectric researches
of Pierre and Jacques Curie.* In Chap. I an account has been given of
the discovery by the two brothers in 1880 of the direct piezoelectric
effect (electric polarization caused by mechanical deformation) and their
verification in 1881 of the converse effect, following Lippmann’s prediction.
They found that from quartz crystals it iz possible to cut plates
in such a way that the polarization in & certain direction can be produced
by & compression both parallel to this direction (the longitudinal effect)
and in a suitable direction perpendicular to it (the lransverse effect).

Their only quantitative results were on the constant d,; of quartz
and dy; of tourmaline. Only quartz will be considered in this brief sum-
mary. They applied pressure parallel to the thickness of an X-cut quartz
plate and measured the resulting charge with an electrometer, finding
dy = 6.32(10~%) esu, in close agreement with the best later values.
In measuring dy by the converse effect they applied to the electrodes
of an X-cut quartz plate a potential difference from an electrostatic
Holiz machine and observed the dilatation in the Y-direetion by means
of a delicate amplifying lever.t Considering that the voltage was
measured by means of a spark gap, it is remarkable that the value of
dy by this method agreed within 4 per cent with that determined by the
direct effect.

Among the quartz plates used in their various experiments were some
8 cm long and only v mm thick.

In the ‘‘(Euvres” are described several ingenious piezoelectric devices,
intended for various types of static measurement. One of them, the

* From ref. B10, *“(Euvres de Pierre Curie.” In the present section this book is

referred to as “ (Buvres.”
t “(Fuvres,’” p. 45.
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piezoelectric manometer,* employed the longitudinal effect: compression
of an X-cut quarts plate in the direetion of its thickness caused a deflec-
tion of the electrometer. This apparatus was intended for the measure-
ment of pressures {for example, the stresses due to magnetostriction)
and was the forerunner of some of the present-day applications mentioned
in Chap. XXVIII. When the pressure waas caused by the application
of a large potential difference to an auxiliary system of guartz plates in
contact with the one described above, the device could be used for the
measurement of large potential differences. The theory of this arrange-
ment is given in Voigt.}

A second device, which also finds occasional use today (§§354, 396),
was the quartz bilame, or double strip.I Two long narrow X-cut quartz
plates were cemented together like the bimetallic strips used for ther-
mostats. In one form, the X-axes of the two plates were opposed, so
that, when equal and opposite charges were placed on electrodes (films
of gilver) covering the outer faces of the double plate, one of the com-
ponents became elongated, the other contracted, and 2 flexure ensued.
In another form, the X-axes were not opposed, but between the two plates
was placed a third electrode connected to one terminal of the high
voltage to be measured, the other terminal being joined to the two outer
electrodes in parallel. This device could therefore serve as a piezoelectrie
electrometer.§ Voigt’s theory of its action is in the “Lehrbuch.”|)

The simplest and best known of these early devices, for which there
is still & field of usefulness, is the quartz piézoélectrique.y| It consists of a
single thin, elongated plate of quartz, which in the original design
measured 100 by 20 by 0.5 mm parallel to the Y-, Z-, and X-axes, with its
major faces silvered or coated with tin foil for electrodes. To each end
was attached a strip of metal, and it was suspended vertically in a
grounded metal box, with a scalepan fastened to the lower end on which
weights could be placed, for applying any desired degree of tension to the
quartz. The instrument thus utilized the transverse effect. The
electrodes were connected to an electrometer. The device has been used
for producing known charges, for the measurement of capacitances,
voltages, and pyro- and piezoelectric effects, and in radioactivity.**

* “(Euvres,” p. 38.

t P. 904.

t ‘(Buvres,”’ p. 49.

§ French patent No. 183,851, May 27, 1887,

[| . gos.

9 First described in Jacques Curie’s dootoral dissertation, Paris, 1889 (" (Buvres,"
p. 554).

*# Qop Mun. Curre, “Traité de Radioactivité,” Gauthiers-Villars & Cle, Paris,

1910.
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123. Fundamental Piezoelectric Theory. In the development of the
fundamental theory only isothermal processes will be considered. It is
assumed throughout that the state of the crystal is homogeneous, both
electrically and mechanically, and that the equations are linear. The
latter condition expresses a generalized Hooke's law, or a proportionality
between stress and strain for electromechanical as well as for purely
elastic phenomena. Under ordinary conditions this is found experi-
mentally to be the case with all crystals tested, with the important
exception of the Seignette-electrics.

The fundamental piezoelectric relations are derived from the third
term in Eq. (1). The genesig of this term is best understood in the light
of Lippmann’s theory. As we pointed out in Chap. I, Lippmann’s impor-
tant contribution to piezoelectricity was the prediction of the converse
effect.’* His papers, which were devoted to the application of ther-
modynamic methods to electrical phenomena, with special reference to
the problem of electrostriction and its converse, are remembered today
chiefly because of that portion in which he states that the same
ressoning, when applied to the direct piezoelectric effect discovered by
the Curies, leads to the conclusion that a piezoelectric crystal when
placed in an electric field must undergo a deformation. He predicted
the same numerical value of the coefficient for the converse as for the
direct effect.

As applied to piezoelectricity, Lippmann’s reasoning may be expressed
in the following manner: A piezoelectric crystal is placed in an clectric
field of strength K and at the same time subjected to & mechanical
stress X. There are then present in the crystal an electric polarization P
and a strain z. If now the field and the stress are varied by small
amounts dF and dX, the total change in energy dU/ may be expressed as
an exact differential, dUU = PdE — zdX. The effect of electrostriction
i8 considered in §137. Assuming the process to be reversible, we write

(see §187)
aP dr
(%), - - Ge). s
Since it 18 found, over wide ranges of pressure and with most crystals,
that the relation is linear, we may set dP/8X = —3, where § is the

piezoelectric strain constant. This represents the direct effect, and
the equation above says that there is & converse effect dz/9E, having
the same constant & with sign reversed. It is this prediction which was
promptly confirmed by the Curies,

Accepting Lippmenn's conclusions, Pockels, Duhem, and later, in
more precise and general form, Voigt formulated the thermodynamic
potentials for piezoelectricity. The physical meaning of the ther-
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modynamic potentials is that, when any one of the three components of
electric field strength is present simultaneously with any one of the six
components of strain or stress, there is, in the most general case, & new
contribution to the energy stored in the crystal, which is zero only when
the corresponding piezoelectric coefficient vanishes.

124, Fundamental Piezoelectric Equations. The method that will
now be employed for deriving the fundamental piezoelectric equations
makes use of all the first three terms in Egs. (1) and {2) (the remaining
terms are absent because the process is assumed to be isothermal).
This leads, in a more simple and perspicuous manner than that of Voigt,
not only to the important primary equations for the direct and converse
effects, but to the expressions for the secondary effects ag well. It thus
becomes easy to determine with full generality the effect of piezoelectric
reactions upon the elastic and dielectric constants. The axes are the
orthogonal crystallographic axes. Transformations to other axial sys-
tems are considered in §§134f.

From Eq. (1) are obtained the fundamental piezoelectric equations
in terms of strains. The derivatives with respect to strain and field
{at constant T') are

6 3

8E 2 ofx; + 2 emaBwm = —(X3) (converse effect) (183)

i

3

8
‘%,E; = 2 i Er + 2 ity = P (direct effect) (183a)
% )
The meaning of (X,) is explained in §126.
The 18 quantities e.. are the piezoclectric siress coefficients (Voigt's
“ piezoelectric constants™).
Similarly the derivatives of Eq. (2) lead to the fundamental equations
in terms of external stresses:
o a
5% = E s X — 2 dmnllw = —2n  (converse effect) (184)
13 m
3

i}
;3%5; - E o By — E dwXs = Pn  (dircct effect)  (184a)
& B

7" and 4 are the clamped and free susceptibilities (§204).

The 18 quantities dms are the piezoelectric strain coefficients (Voigt's
“piezoelectric moduli”’).* By analogy with 1’ they might well be called
the piezoeleciric susceptibilities.

* In English it is customary to define a modulus as the quotient of a atress by a
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In the foregoing equations, sf; and c¢f; are isagric elastic coefficients
(at constant E); this type of elastic coefficient is tacitly assumed by
Voigt and is required by the fact that E iy the independent variable in
the expressions for electrical energy.* The compliance sf; at constant &
is analogous to the susceptibility %}, at constant mechanical stress
(§204), while &f;, the isopolarization compliance, is analogous t0 7, the
susceptibility at constant mechanical strain.

For all crystals except the Seignette-electrics the values of ¢f; and sf;
may be regarded as practically independent of the magnitude of £, :

126. Interpretation of the Energy Eguations. It is desirable at this
point to show how the total energy becomes allocated among the terms of
Egs. (1) and (2). Only the first threc terms in each equation need be
considered, since thermal changes are here ignored. The principles
involved will stand out more ¢learly if subscripts and summations are
omitted; the same conclusions are reached when the expressions are
written in full. JTn this abbreviated form we have

g = §cf2? + I"'E* + Bz (185)
{ = $85X? 4 §7'E? — dEX (185a)

As was stated in §23, the erystal plate, with adherent electrodes con-
nected to & battery, is assumed to be subjected simultaneously to a stress
X of any type and to an electric field £ normal to the surface of the plate.
The total strain, due jointly to X and E, is . The two equations above
are alternative ways of cxpressing the energy stored in the plate by X
and E together. In the case of Eq. (185) we may suppose that z is

strain. Now from Eqs. (184) and (184a) it is evident that dns is of the nature of
& strain divided by s stress; hence it is ems rather than dms that should be called a
“modulus.”’ On the whole it scems most appropriate to call tho d's the piezoelectric
strain constanis (or sirafn coefficients) and the e's the piezoeleciric stress constants (or
stress coefficients), respectively. This terminology will be used throughout the book.
It is perhaps worth noting that ¢* has the dimensions of stress X permittivity.
Aeccording to systematic tensor notation the d's and ¢'s should be written with three
suffixes instead of two, since they express relations between vectors and second-rank
tensors and are therefore tensors of the third rank. Nevertheless, following Voigt’s
notation, which haa beeome almost universally adopted and is in alb cases sufhciently
explicit, we shall use only two suffixes. Wooster®® introduces the fundamental
piezoelectric equations in full tensor notation but later finds it expedient to abbreviate
the suffixes to two symbols. Unfortunately his abbreviated suffixes are not the same
as Voigt’s, In §26 we have already expluined the use of a single suffix instead of two
for the stress and strain tensors.
Racently a very compact matriz notation for piezoelestric and other constants of

crystals haa been introduced by W. L. Bond.*

*The use of the isopolarization coefficients is associated with the polarization
theory (§192). The relations between isagric and constant-polerization coefficients
are given in §208.
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produced by the application of X while E = 0, the plate being short-
circuited. The work done per cubic centimeter is represented by the
first term in Eq. (185). The application of X causes a polarization
P = ez, which persists after ¥ is impressed. We next clamp the plate
so that further deformation is prohibited, leaving x fixed ; since no motion
is involved, the clamping forces do no work. Now let the battery be
connected to the electrodes, producing a field E in the plate. The battery
does work per cubie centimeter equal to »'/E2/2 on the dielectric; and
since the field E is also associated with the polarization P = ez, there
is in the crystal an additional energy elz per cubic centimeter. The
second and third terms in Eq, (1) are thus accounted for.

For Eq. (185a) one may suppose a field F to be impressed at the start,
the crystal being mechanically free. A polarization Py = 5'FE is set up,
and the electrieal work done is ' E2/2. The mechanical stress X is then
applied, the mechanical work being §¥X2/2. This operation causes a
contribution P = —dX to the polarization, with a corresponding addi-
tional flow of charge from the battery, involving an additional expenditure
of electrical energy —~dEX. Thus the three terms in Lq. (185a) are
acecounted for.

In & non-piezoelectric crystal d and e vanish, 7’ = 5", and in Egs.
(185) and (185a) the two surviving terms represent mechanical and
clectrical energy, which are now entirely unrelated.

126. Interpretation of Egs. (183) fo (i84a). FKquation (183) states
that the total stress (X} is made up of two parts: first, the externally
applied stress that would produce the preseribed strain if B = 0; second,
the stress caused piezoelectrically by E (a body stress, as distinguished
from an external stress). That is, the second term is equal and opposite
to the external mechanical stress that would have to be added to the
mechanical stress responsible for the first term, in order to hold the strain
constant when the feld was applied. With both strain and field pre-
seribed, the total external mechanical stress component X}, is therefore

not the (X)) in Iiq. (188), but rather
L) L) 3
Xp= — D iz + Y easlim = (Xi) + 23, emBn (186)
1 m m

The fact that (Xs) is not the external stress, but the sum of two stresses,
one external and the other internal, must be kept in mind in all uses
that are made of Eq. (183). Failure to observe this distinetion has led to
discrepancies in the signs of certain terms in the various handbooks.
No such source of confusion exists in Eqs. (183a), (184}, and (1844}.

Equations occur frequently in which the only stress is the internal
(X,) caused by E. In such cases, where there can be no ambiguity, the
stress symbol will be written without parentbeses.
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Equation (183a) gives the polarization as the sum of two contribu-
tions, viz., dieleetrie {as for an unstrained or clamped erystal) and piezo-
electric (due to the strain). With most crystals, for which all relations
are practically linear, # is independent of the strain and of the field
strength. With the Seignette-electrics n” i3 itself a function of the
field strength as will be seen in §456. If there is no external stress, the
strain component x5 in Eq. (183a) is all piezoelectric, due to the electric
field, so that P, is then the polarization in the free crystal, as shown in
Eq. (260).

Similarly, Eq. (184) expresses the strain when an externally applied
stress X and field E are both present. In Eq. (184a) the first term is the
eontribution which the applied field E makes toward the polarization in
an unstressed (free) erystal; the second term is contributed by any stress
that may be impressed from without. In most crystals o’ is independent
of field and of external stress (as long as the latter is held constant when
the field is applied); in the Seignette-electrics thiy is not true (Chap.
XX17).

As will be seen later, in the case of such a crystal as Rochelle salt,
which has different symmetry elements at different temperatures, if the
game piezoelectric equations are to be used at all temperatures, it is
neeessary to speeify elearly the particular configuration of the crystal
at which the strain is taken as zero. With Rochelle salt this considera-
tion leads to the concepts of ‘‘rhombic” and *‘monoclinic”’ clamping
and to the proper introduction of the spontaneous polarization P° in the
equations. Although this distinction is first discussed in relation to the
polarization theory, it could alsc be made in Voigt’s formulation as
treated in the present chapter. Nevertheless, in all applications of
Voigt's formulation that we shall have occasion to make to the Seignette-
electrics, it will suffice to employ the ““ normal method " of §458, whereby,
at any temperature, the crystal is in a state of zero strain when it is in its
undisturbed configuration, free from all stress when in zero field. By
this means the Voigt equations ean, for example, be applied at onee to the
problem of the piezoelectric resonator, without explicit introduetion of
either the spontaneous strain or the spontaneous polarization in the
equations,

All the elastie, dielectric, and piezoelectric coefficients are more or
less variable with temperature. Formal recognition might be given to
this fact by retaining the fourth terms in Eqs, (1) and {2), but it is
gimpler to assume isothermal processes and to treat the temperature
variations separately. This method is the more justifiable since for most
crystals at all ordinary temperatures the piezoelectric coefficients are
nearly constant.
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127. We now write the piezoelectric relations in full, by expanding
the summations in the second terms of the four equations (183} to (184a)
and setting the first terms equal to zero. For the direct effect, the result-
ing expressions yield the polarization due to mechanical stress in the
absence of an electric field; for the converse effect, they give the con-~
tributions to the stress and strain due to an impressed field, on which
may, of course, be superposed the contributions due to mechanieal forces.
Since with most erystals the piezoelectric coefficients are independent of
field and stress, it follows that, when either or both of these latter effects
are present, the first terms in Eqa. (183) to (184a) can be retained without
affecting the values of the second terms. On the other hand, there are
erystals, notably Rochelle salt, in which the direct and converse piezo-
electric effects are non-linear in X and E. The theoretical treatment
of such cases demands the inclusion of terms of higher degree in the
expresgions for the free energy (§23); this procedure is indeed carried
out for Rochelle salt by Mueller (§448), but in the case of most crystals
it would only overcomplicate the treatment.

From Eqs. (183a) and (184¢) are obtained the principal equations
for the direct effect.

P, = eng: + ety + €192 + ey + e1s¥z + enely
P, = enz, + ealyy + eaz. F eaals + €22 + ey (187}
P, = eqnxs + easty T €as?: + esulfs + €3c2: + €asTy

_Py = dzs.Xz + dﬂ!Yy + dzszs + dan 4- dzazz + d:LsXy
""P: = dsan + ds:Yy -+ dsszs -+ dNY: + daazz + d.me

It will be observed that Eqgs. (187) and (188) express the electrical
strain induced by a mechanical strain or stress.

Similarly, the principal equations for the eonverse effect, gwmg the
mechanica) stress or strain caused by an electrical stress, are derived from
Eqs. (183) and (184).

~P, = duX, + di¥y + di1sZe + du¥s + diiZ: + dieX, ]
(188)

=X, = enk, + enEy + el
- Yy = ele;; + EzzEy + 682E:
—=Z; = eisBs + en:Ey + ensK. (189)
— Y. = enE; + exy + enk,
—Z, = ek, - eiEEv =+ e B,
=X, = ewslls + ewlly + e30E:

In these last equations the quantities on the left are the internal
stresses due to the E’s. Henceforth the parenthesis introduced in Eq.
(183) will in genersl be omitted, with the understanding that, inless
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otherwise specified, the stress symbols in piezoelectric equations like (189)
will signify internal stress components.
The equations for strain are

2z = dul, -+ dufly + dskE,
Yp = dlez + d22Ey + dnEs
2, = dul, + dnsEv + diaF,
Ya = duB; + dolly + douls
2y = d],ﬁEz -+ d:bEy + dﬂEEs
Ty = dloEs + d‘.’BEy -+ dSBEl

(190)

As one may infer from the equations above, the d's and ¢'s are related
by elastic constants. This relation is obtained by first expressing each
component of stress in Eq. (188) in terms of components of strain, by

8 6

Eqs. (6); the result is Pn, = E E dmtEzy.  This expression agrees with
Tk

Eq. (187) or Eq. (183a) if one writes

6
s = 3, GueChh (191)
Similarly, it is easily proved that
&
Gmp = E CmiSTy (191a}
{

In expanded form, Fqs. (191) and (191a) becomse

ot = OmiCin + dmacan + duscar + dustan + dnston + dmecar  {192)
duh = emSth + €m28sh + €mitus + €miSsn - €msSen + €meSen  (192a)

wherem =1,2,3;A=1,2,,..6.

In these equations all elastic coefficients are et constant field. In
general, whenever Voigt’s piezoelectric equations are used, isagric values
are assumed for the elastic constants.

128. From the foregoing equations it is seen that the dimensions of
das are polarization/stress, charge/force, or the reciprocal of electric-
field strength: in the electrostatic system of units this is [MTLITEY.
The dimensions of ¢, are those of a polarization, [MAL~T-%i]. It is
important to note that the only dimension of the product emidm is [%].
Using the practical system of units, we may express das in terms of cou-
lombs per kilogram weight and e.s in coulombs per square centimeter. *

* The conversion factors for passing from the electrostatic cgs sgystem to other
gystems are as follows: The parentheses indicate the units in which the guantities



§130] PRINCIPLES OF PIEZOELECTRICITY 189

It is more customary, however, to use the electrostatic cgs system, with
dws in statcoulombs per dyne and e in statcoulombs per square centi-
meter.

It will be observed, with both the d's and the ¢'s, that the first figure
in the subseript indicates the direetion of the field or polarization, while
the second expresses the type of stress or strain. Hence it is not true, a8
with the elastic constants, that dms = dam. For example, if das has a
value different from zero, this means that an electric polarization parallel
to Y is associated with a shear in the YZ-plane. Whenever any d equals
zero, the corresponding ¢ also necessarily vanishes and vice versa. In
the case of coefficients associated with shears (i.e., when the second
figure in the subseript is 4, 5, or 6), it is possible, owing to the presence
of both 4 and — signs in the ¢'s and #’s, for d,., and eq. to have opposite
signa.

129. From Eqs. (187) to (190) the following vsefvl qualitative rule
can be deduced. It holds universally for all piezoelectric crystals, irre-
spective of the signs of the d’s and ¢’s.

The direction of the polarization (i.e., the algebraic sign of P) assoctated
with a given sirain ¢s always the same, whether strain and polarization are
due to mechanical forces (direct effect) or o an impressed electric field
(converse effcet).

For example, if a tourmaline crystal is compressed in the X-direction,
T, = Z; is negative. Since for tourmaline ey and da are positive, it
follows from Eqs. (187) (P, = enx.} that the component of polarization
in the ¥Y-direction is negative. Now let a field E, in the negative ¥-direc-
tion be applied: again P,, which in this case is 1:,,E,, is negative, and from
Egs. (190) (z; = duE,) we see that z, is also negative. The rule can
also be verified for the Z-component of polarization (for a strain z.,
P, = ¢ in tourmaline); and the rule can be expressed in terms of stress
instead of strain.

1380, Effect of Sponfaneous Polarization on the Plezocléciric Constants.
A erystal belonging to any pyroelectric class has a single polar axis, which
implies the presence of a spontaneous, or permanent, polarization P°,
The question suggests itself whether, even in an isothermal process, an
alteration in the surface polarization charges may not take place when
the crystal is deformed, owing to a possible dependence of P° upon the

are expressed.

tateoul 1
dualesu] = dumn [%}’-] = 3(10%)dms [%:e ]

= 3(10%) du [%%%i—n] = 300dma [%] = 3,060dms [ﬁ:ﬂ?ﬁi]
eaufest] = emn I:Etzt;(:ﬂ] = 3(10%)ems [:"%u?l] = 3(10%emn [00“1}

mt
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gtrain. Such slteration would affect the value of one or more of the
piezoelectric coefficients. As ordinarily measured, the latter include
this effect whenever it is present.

The theory is discussed by Voigt,* with the conclusion that any
abnormally large piezoelectric coefficient may owe its magnitude to this
effect. The eriterion is whether P° is large in comparison with e. Data
for tourmaline indicate that spontaneous polarization does not have a
dominating effect on ity piezoelectric properties, In Rochelie salt P°,
while large, is small in comparison with ey, hence the hugeness of the
piezoelectric effect cannot even in this case be attributed solely to P°,
The part played by P° in Rochelle salt is treated in later chapters,

131. Specialization of the Constants for the Thirty-two Crystal
Classes. The twenty piezoelectric classes have already been indicated
in Table I, §6. As stated there, all are devoid of a eenter of symmetry
(hemimorphic); they are also all either hemihedral or tetartohedral.

The matrices of the piezoelectric coefficientst are shown in Table
XVI. It should be recalled that the first figure in the subseript indicates
the direction of the electric vector, the second the component of elastic
strain or stress. For all classes not listed below, all &’s and ¢'s are zero,
The coefficients are arranged in the same order as in Fgs. (187) and (188),
the subscripts indicating independent values, as in §29.

TasLe XVI
TRICLINIC SYSTEM
Class 1, Asymmetrie, Cy

er1 €13 €y € 6 € du diu din du dus du
en £31 L2 814 €35 (1] dn dz dax day dig dae
€1 e fm Eu € €nm da du da du di das

MorociiNic SysTEM
Claas 3, Digonal Polar, C;
0

0 Q0 [t} €14 €15 0 0 0 du d:a 0

0 ¢ 0 (27 121} 0 0 1] 0 du du 0

€1 e €3 O 0 exs dy dyy di O 0 das
Cless 4, Equatorial, Cy

en e e 0O 0 €8 dy da ds O 0 0

& enm én O 0 e dn dn dn 0 0 dea

0 [1] 0 €3 €35 L] (4] 1} 0 du du 1]

Ruompic SysTEM
Cless 6, Digonal Holoaxial, ¥
0 0

0 0 0 ey 0 0 0 dy 0 0
0 0 0 0 exs O 0 0 0 ] dg 0
¢ 0 0 0 0 e 0 0 0 o ) dus

* “Lehrbuch,” pp. 815, 842, 871.
t In Voigt’s tabulation in his “Lehrbuch” (p. 829), there are a few misprinta.
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€14
€1y

0

e

0
0

€14

0
0

€14
LT

&1
€15

€n

0
0

Class 7, Didigonal Polar, Cs,

€15 Q
0 0
0 0

0
)]
0

0
0
da

TrrraconaL SyaTem
Clags 9, Tctragonal Alternating, S,

HexagoNal SysTeEn
Class 21, Trigonal Equatorial, Ca

—éx
—én

0

0
0
day

ey 0O 0 1]
0 0 0 0
0 0 da  dn
Claas 10, Tetragonal Polar, C
ey O 0 0
—814 0 R 0 4]
0 0 dy  du
Clags 11, Ditetragonal Alternating, ¥4
0 0 0 0
e 0 0 0
0 Cas 1] 0
Clags 12, Tetragonal Holeaxial, D,
0 0 0 0
—en 0 0 0
0 0 0 0
Class 14, Ditetragonal Polar, Cy
e O 0 a0
ey 0 0 0
0 €36 dn —dn
TRIGONAL SYSTEM
Class 16, Trigonal Polar, C,
€15 —€n du —dn
—e14 —€n —dys  de
0 0 du du
Class 18, Trigonal Holoaxial, Dy
] 0 du —dn
814 =—€i11 1] 1]
0 0 0 0
Class 19, Ditrigonal Polar, (s,
€15 —6n 0 0
V] Q —dsx  dz
0 0 da  dn

dll —dll
—dy  dn
0 0

dll

(== -]

(== -]

dli

oo

oo

191
0 d).l 0
dy O 0
0 0 0
0 de 0
ds 0 0
0 0 L]
dy di O
dy —du, 0
0 0 0
du 0 0
0 dyy 0O
0 0 dss
diy 0 1]
0 —dy 0
0 0 0
dy dis O
wdis du O
1} 0 dis
die  diu—2dxn
0 0 0
diy O 0
0 —dy—2dn
0 0 L]
0 s ~2da
dys 0 1}
0 ] 0
0 0 —2ds
0 0 =2du
0 0 0
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Class 22, Ditrigonal Equatorial, Dy,

enn —en 0 0 0 o duy —du 0 0 0 0
0 0 0 0 0 =—en 0 0 0 (1} 0 ""Zdu
0 0 0 0 0 0 0 0 0 0 0 0
Class 23, Hexagonal Polar, C,
0 0 4] €14 (41 0 0 0 1] du du 0
0 0 ) €15 —E1y 0 1} 0 0 du —du 0
e €31 233 0 4] 0 du du. dn 0 Q 0
Class 24, Hexagonal Holoaxial, Dy
0 0 0 e 0 0 0 0 0 d O 0
1] 1] 0 0 —ee O 0 Q 0 O —du 0
0 Q 0 0 0 0 0 Q ¢ 0 G 0
Class 26, Dihexagonal Polar, Ces
0 0 0 0 e O 0 0 0 0 ds 0
0 0 0 e 0 0 0 0 0 dis 0 0
en eém ey 0 0 o dy du du 0 0 0
Copic SyaTEM
Class 28, Tesscral Polar, T'
0 0 0 e 0 0 0 0 0 dy 0 0
4] 4] 0 0 eny 0 0 0 0 0 dise 0
0 0 0 0 0 21 1] ¢ 0 0 4] du
Class 31, Ditesseral Polar, T4
0 0 0 e 0 [} 0 0 0 dig O 0
0 0 1] 0 ess O 0 Q 0 ¢ dy O
0 0 0 0 0 exy 0 0 0 0 0 dyy

Voigt’s method* for determining the matrices given above consists,
m brief, in writing the general equations for the piczoelectric surfaces
(§136) and then applying to them the various elements of symmetry
of the different classes; for example, if & erystal has an n-fold axis of
gymmetry, the equations must be invariant for a rotation of 2r/n of the
system of reference about this axis. Certain of the 18 parameters from
each class then vanish, excepting only Class 1. Owing to certain differ-
ences between the equations in terms of the ¢’s and those in terms of the
d's (involving the definitions of the components of strain and stress),
it turns out that, while in most cases the matrices for the d’s are exactly
similar to those for the e’s, exceptions occur in those classes having a
threefold cyclic axis of symmetry. These classes are Nos. 16, 18, 19, 21,
and 22; for each of them, in the last column of the d-matrix, 2d,; and 2d..
are the parameters corresponding to ey and ey in the e-matrix. It will
be recalled that an analogous situation exists with the &'s and the ¢’s
in the trigonal and hexagonal groups.

1382, Discussion of the Piezoelectric Effects. The general piezo-
electric matrix is shown in symbolic form in Fig. 40, in which L and T

» “Lehrbuch,” pp. 820833,
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stand for the longitudinal and transverse compressional effects, and
L, and T, may be termed the longitudinal and transverse shear effects.
This figure should be compared with the analogous one for the elastic
effects (Fig. 15, on page 56),

Strain 1 2 3 4 5 6

Polar- z
ization * Yy % Ye £ Ty
1 P, L T T L, 7, T,
2 Py T L T T, L, T,
3 P, T T L T, T, L.

F1a. 40.—The four types of piezoelectric effect.

In place of the strain components at the top of the figure, components
X, ... X, of stress might have been written; and E,, E,, E, (converse
effect) may replace the P’s, which signify the direct effect; L, T, ete.,
may thus represent either the e's .or the d’s. For example, in the upper
right-hand eorner of the figure, 7. may reprcsent either P, = ey,
P, = '—dlﬁXy, Xy = —emE,, or I, = dlsE,.

If the coefficient corresponding to any one of the L’s differs from zero,
then a compression in & direction corresponding to this I causes a polariza-
tion in the same dircction. This is the longitudinal effect, which is present
in all crystals having dys, das, or dss or the corresponding coefficients for
rotated axes.

In the fransverse effect T, the polarization is at right angles to the
associated compressional strain; these coefficients may be called the
iransverse piezoeleciric coefficients.

In effects of the type L, we have the polarization parallel to the axis
of shear (§27), 4.c., normal to the plane of shear; these may be termed
longitudinal shear effects.

Finally 7T, represents a polarization in the plane of shear (** transverse”
to the axis of shear).

Coefficients of types 7 and T, may appropriately be called the piezo-
electric “cross constants,” by analogy with the elastic and dielectric
cross susceptibilities (§§32, 105).

Among quartz resonators, ag well as in other piezoelectric applications,
are found examples of all four effects.

All classes have at least two constants; Classes 12 and 24 have only
two, both of the L-type, but they are numerically alike, so that they
have only one fndependent constant, Also, in Classes 22, 28, and 31 the
number of independent constants is one.

Four groups of classes have identical matrices (numerical values being
disregarded). They are Nos. 6, 11, 28, 31; 12, 24; 9, 26; 10, 23.
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133. Piezoelectric Effects Due fo Hydrostatic Pregsure, Tf & crystal
or crystal preparation, of any form, is under uniform hydrostatic pressure
11, it is easily proved that the components of piezoelectric polarization
are .

~Py = (dy + d1o + dis)1 ~P2 = (do1 + das + das)lI ] (193)
'-Pa = (du + da’.‘ + dﬂ!)H

The remaining d’s are absent, since uniform pressure introduces no shear-
ing stresses. Hence, crystals possessing only coefficients of the types
L, and T, shown in Fig. 40 do not become polarized under uniform pres-
sure. KEven with crystals having coeflicients represented in Egs. (193),
the d’s may have such values as to make all three parentheses vanish,

If for any erystal class the components of polarization do nof all
vanish under hydrostatic pressure, there is a resultant polarization in a
direction that Voigt calls the plezoeleciric axis of the crystal. Just half
the piezoelectric classes have such an agxis, viz., those which are also pyro-
electric. All other classes show no polarization under hydrostatic pres-
sure. For example, quartz does not show it, while tourmaline does
(piezoelectric axis parallel to the Z-axis; see the *‘Lehrbuch,*”’ and also
§165.) The case of Rochelle salt is considered in §483.

Piezoelectric Constants for Rotated Axes. The proeess of deriving
the piezoelectric constants for any system of rotated axes ig similar to
that for the elastic constants, as described in §40. Only the results
need be given. For convenience the scheme of direction cosines is here
repeated in Fig. 41.

J

¥

7 [ 33 :N 1

Yy s | Bz ]| 72

Zlas| BT

Fia. 41.

134, General Transformation fo Axes in Any Orienlation. The only
expressions that have been worked out in full appear to be those given in

Voigt.t

&y = afen + afess + ofess + affos(ear 4 2e4e) + as(ear + 2e14)]

+ ofaslesz -+ 2220) + ar{ers -+ 2e28)] + aflar(ers + 26a8) + o6z + 2e54)]
+ 2aiasaz(en 1+ eos + eae)  (194)

* P. 878.
t Pp. 838, 840.
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The equation for di; is obtained from that for ¢}, by substituting d
for e everywhere and omitting the factor 2 wherever it oceurs. From
the equations for e}, and dj;, expressions for e, and dj, or for ¢); and d},
are found by changing « to 8 or v, respectively, leaving all subscripts on
the right unaltered. The expression for d}; is given in Eq. (198).

Any transformed d}, may be derived by the following method (an
analogous treatment would give ¢},}: The transformed coefficient may be
defined Ly an equation of the form —P} = d}, X}

k=1,23h=12..-6)

The first step is to find the stresses X, . . . X, equivalent to X! from
Eqgs. (20). Then by means of Eqgs. (188) we express P,, P, and P,
in terms of X, . . . X, and the fundamental piezoelectric strain coeffi-
cients; this gives the components of the polarization, due to X}, parallel
to the original axes. From them are formed the expressions for the com-
ponents parallel to the rotated axes. Parallel to X' the component ig

P = a/P; + awPy + aPy = —diX] (195)

Sinee P,, P,, P, all contain X as a factor, d}, is thus expressed in terms of
direction cosines and fundamental piczoelectric constants, for any of the
six values of h.  Similarly, by writing the equations for P} and P}, expres-
sions for df, and df, are found. A simpler method for deriving the trans-
formed constants for h = 1, 2, or 3 is given in §136.

136. General T'ransformation about o Single Azis. Following are
Voigt's equations for the transformed piezoelectric stress constants,
for rotation through an angle ¢ about the Z-axis. The direction cosines
become reduced to a; = 82 = cos = ¢, az = —8;, =sin § = g,

a=f=r11=7:=0,

w3 = 1. The positive sense of ¢ follows the rules given in §38.

From Eqgs. (196), expressions for rotation about the X- or Y-axis are
obtained by cyclical changes in all suffixes on both sides of the equations
aceording to the following table, leaving all else unaltered. For example,
the suffix 24 for rotation about the Z-axis

123456

231(564

“TeTs

312|645

becomes 35 for rotation about the X-axis and 16 for rotation about the
Y-axis.
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ejl = c’d'u + 88612 + C’E(en + 2815) + 682(812 + 2825)

€ = c8%(e1 — 2ege) + 81 + Peys + c¥s{esr — 2e14)

e = ceny + seny €, = c8(eq = €15) + cler — SPess

&5 = cesc + steas + sclers + ez6)

e;_s - "'C!S(ﬂn - 813) + C(]. - 28!)810 - 8(1 b 262)325 + 032(622 - 821)
&y = —c28(en — 2ess) + e — S%e1s + ¢8%eny — 2e14)

e = =—8%y1 4 e + cad(en + 2618} — c¥s{ers + 2eas)

€hy = C€az — BEpp oy = C%yy + %15 — seen + e2s)

€y = €%z ~— 8%14 + €8(e2y — €15)

ehe = ¢(l — 28%)egs + 8(1 — 2c%ers + ¢2(eas — en) + es%en — e
& = cley + seay + 2scess ¢y = cley + s%y — 2scess

853 = €33 0’;4 = O35y — SL3a

ey = ceas + 8034 ehs = (c? — §%)eas + cs(em — €31)
(196)

The corresponding equations for the piezoelectric strain coefficients

"1 . . . dje for rotation about the Z-axis are obtained directly from Eqs.
(196) by simply writing dy: in place of e, whenever h =1, 2, 3 and
k=1,23;but whenk = 1,2, 3and k = 4, 5, 6, dn:/2 is to be written in
place of exs. This rule applies to both primed and unprimed coeflicients,
For example, d5,/2 = {c? — §9dse/2 + cs(dss — da1). The transition to
rotation about the X- or Y-axis is made in the same way as with the ¢'s.

When the general equation for any du; or e, has once been derived,
that for dynesn OF ey aey is found by changing a to 8, 8to v, v to «
leaving all subseripts on the right side of each equation unaltered. This
rule may be applied also to the equations for the general rotation spe-
cialized for any class, with the following important reservation: It is
not valid in those cases where two different constants have the same
numerical value and where for the sake of simplification a single symbol
is used for both. 'Thus, for example, in Eqs. (221) the rule is not appli-
cable because we have written —eyq for ex; and —ey; for esq; but it is
applicable to all equations for general rotation of axes in Class 6 or
indeed in any class where no two constants become identical.

The tule as stated is of eourse not applicable to the equations given
for retation about a single axis.

The specialization of the foregoing equations to the various crystal
clasges is given in later sections,

136. Piezoelectric Sutfaces and Diagrams. For the purpose of
determining which piezoelectric constants differ from zero in the various
crystal classes, Voigt made use of three relations between the eu, also
three between the dy., each of which could be represented by a certain
“piezoelectric surface.” One of them is a trivector (tensor of the third
rank) surface, involving all 18 constants; it is of the third degree and
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essentially the same as the expression for &), (or d},) given by Eq. (194)
or that for dj, that we derive below in Eq, (198). The other two surfaces
are represented by equations of the second and first degrees and need
not concern us further.*

The piezoelectric surfaces that are ususlly represented graphically,
83 intersections with the three principal planes, and as illustrated in
later paragraphs, are derived from Eqs. (197) and (198) below. If a
pressure Z; is applied, parallel to the Z'-axis of a rectangular system of
axes X', Y', Z’ in any orientation, it follows from Egs. (22) and (188) thai

=P, = Zi(div} + duievi + dirvd + dueveys + dusvay: + disrive) }
(1973

-—P,, Z:(du"f{ + dmf% + dna‘)‘§ + du‘}'ﬂs + dzwa'h + dzs’h‘h)
—P, Z:(dal’ﬁ + dsﬂ'% + dsa‘?i + dasyrys + dasysr 4+ datﬂfﬁz)

If the pressure is parallel to X’ or to Y, we write X] or Y in place of
Z; and « or 8 in place of ¥.
Next we find the component of polarization Pj parallel to Z;:

P: =P:‘Y:+P,,‘Tn+P,‘73
= *-Zi[dmr? + dayd + dsa'Yg
+ {(du + dieg)vs + (dar + dis)yslvi
+ {{da + da)ys + (diz + dee)ri}vi {198)
+ {{dis + das)y1 + (doa + dad)ya}vi
+ (dn + dos - dan)?x"fﬂs}
= "Z;dga

where dj,, given by the expression in braces, is the transformed piezo-
electric strain constant. The same equation can be used for d}, or di,
by changing v to « or §; P; then becomes P} or P, and for Z, we write
X! or Y}. Equation (198) expresses the longitudinal effect for rotated
axes. It gives the electrical strain in any direction due to a mechanical
stress in the same direction and is the piezoelectric analogue to Eq. (34)
for Young's modulus. P, is called the longitudinal polarization cor-
responding to a compression Z in the direction v1, vz, va.

Similar expressions may be written for the iransverse polarizations
P, and P:

I

P! = P,a; + P,y + Poas = —Zid), (199)
. P} = P+ Py + Puffs = —Z0dy, (198a)
If the applied stress is X}, the transverse polarizations are
Pl =Ppi+ .- = —Xidi,
P, =Py, + .. .= —X.d)y; similarly, in terms of ¥, we obtain the

expressions for 4}, and dj,.

* For a more complete discussion of piezoelectric surfaces see Voigt, pp. 8207 and
840, also ref. B20, vol. 1, pp. 3661,
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These expressions for the polarization produced by uniform com-
pression in various directions are of special importance. As has been
stated, the components of polarization parallel and perpendicular to the
direction of compression represent, respectively, the longitudinal and
the transverse effects. For the longitudinal effect with respect to
arbitrary axes the strain constants are djy, di,, and di;.  If we consistently
let the Z’-axis be the direction of compression, attention need be paid
only to dj;, the variation of which, as the Z’'-direction is allowed to vary,
will then completely describe the longitudinal effect for all orientations.
The constants d}; and dj; will then suffice for the transverse effect, since
they give the polarization components along the X'- and Y’-axes. Illus-
trations of the distribution of these quantities in space will be found
in the discussions of particular types of erystal.

For a given value of Z], if P, as given by Eq. (198) is plotted as &
radius vector with direction cosines vi, 2, s, the resulting surface is the
trivector surface mentioned above; and if Z; = 1 d#ne/cm? any radius
vector gives the numerical value of dj;. In this case we have, for any
given crystal, the characteristic piezoelectric surface for di;. A similar
surface could be constructed for dj,, and of course likewise for d};, di,,
d., and d};, It would not be convenient, however, to construct surfaces
for the remaining constants, since the polarization parallel to any radius
vector would then not have a value uniguely associated with that
direction.

Nevertheless, if the transformation of axes consists in a rotation
about a single axis, & polar diagram for any of the 18 constants can be
drawn in & plane perpendicular to this axis, in which the radius vector
gives uniquely the value of the constant for all orientations about the
axis. Such disgrams are shown later for some of the more important
crystals.

137. Electrostriction. In the most general sense, the term electro-
striction in dielectrics applies to any interaction between an electric
field and the deformation of a dielectric in the field. With this broad
interpretation, the word includes the phenomena of piezoelectricity, and
indeed some writers have called the converse effect “electrostriction.”
This usage can lead only to confusion and should not be encouraged.
Most authorities have adopted the wiser practice of reserving the term
for those phenomena in which the deformation is independent of the
direction of the field and proportional lo the square of the field. All
observed relations between field and deformation can be assigned either
to this type, which is properly called electrostriction, or to the type in
which the relations are lfnear, which includes the phenomensa of piezo-
electricity. In the former type the relation between field and deforma-
tion is centrosymmetrical; in the latter it is not.



§137] PRINCIPLES OF PIEZOELECTRICITY 199

In all references to electrostriction in this book the quadratic effect
is meant.

Quadratic electrostriction is the mechanical analogue of the Kerr
quadratic electro-optic effect. It is distinguished from the linear or
piezoelectric effect in two important respects. Firat, it is a common
property of all materials, whether gaseous, liquid, or solid. Second, the
effect is so minute that, although it is always present in piezoelectric
phenomena, it can usually be completely ignored. Only in fields stronger
than 20,000 volts/cm can it be comparable with the effects of piezo-
electricity. Its presence in quartz has been studied by Tsi-ze, as stated
in §159.

The deformation of a dielectric in an electric field, apart from the
piezoelectric effect, is determined partly by the Maxwell stresses, which
are the only ones mentioned in reference to electrostriction in many
textbooks, and partly by any dependence that the dielectric may have
upon the strain. In an electric field the dielectric tends to assume a
configuration such as to reduce the total energy to & minimum. If, as is
usually the case, the dieleciric constant decreases as the volume increases,
the Maxwell stresses and the varying dielectric constant conspire to
make the volume increase when a field is applied. With some substances,
however, the dielectric constant decreases with decreasing volume. In
such cases, the state of minimum energy may be accompanied by a
diminution in the volume despite the Maxwell stresses.*
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CHAPTER IX
SPECIAL PIEZOELECTRIC PROPERTIES OF CERTAIN CRYSTALS

Ich aber schneyd Edelgestein
Auff meiner scheiben grose und klein,
Als Granat, Rubin und Demut,
Schmarack, Saphyr, Jacinthn gut,
Aueh Caleidong und Perill,
Schreyd auch der Fiirsten Wapen viel,
Die man setzt in die Petlschafit Ring,
Sunst auch viel Wappen aller ding.
—Hans Bachs,

For those piezoelectric classes that include erystals on which quanti-
tative observations have been made, the general expressions given in the
last chapter will now be specialized and the outstanding piezoelectric
features described. Numerical values of the piezoelectric constants will
be given, so far as they are recorded in the literature and appear to be
trustworthy. For quartz and Rochelle salt, however, the data presented
in this chapter are supplemented by the more detailed discussion in
chapters devoted to those erystals.

For each class that is now to be considered, the characteristic piezo-
electric features, based on Table XVI, will be summarized. The equa-
tions for rotated axes are taken from various soufces; some of them
have been worked out by the author. Wherever necessary, these
equations have been modified to conform to our conventions respecting
the sense of rotation and the positive directions of axes, as shown in §51.
When any class is mentioned as being also pyreelectrie, the combined
effects of primary and secondary pyroelectricity are meant; all piezo-
eleetric crystals have tertiary pyroelectric properties (§515).

The piezoelectric properties of each class can be presented equally
well by Egs. (187), (188), (189), or (190), with the aid of the matrices
in Table XVI. IEquations 189, for the converse effect, have been chosen
here, owing to their importance in the theory of resonators.

The precision in the mesasurement of the piezoelectric constants
may be inferred from the number of significant figures. Hardly any
data are available concerning systematic errors and differences between
individual specimens. Measurements are so difficult, and the results
are so uncertain, that in many cases one cannot even be sure of the first

significant figure.
200
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For some of the classes a few crystals are named as examples, with
which positive results have been observed, though only qualitatively.
Reference to qualitative observations on a large number of crystals is
made in §172. All values are in electrostatic egs units (§128).

138. Class 3, Monoclinic Digonal Polar (Hemimerphic) (symmetry
C,). This class is also pyroelectric. There are eight independent piezo-
electric constants. The eguations for the converse effeet are

—X, = eang —Yy = GagE; ""Zn = GasEa
—~Y, = ellEr + ehEv ""Zz = enll; + 925E|f "_Xy = e-’ﬂiEl

Further data, including expressions for the components of polariza-
tion produced by pressure in various directions, are given in Voigt.*
Pavlik*'! shows how an orientation can be found for which certain
piezoelectric shearing stresses vanish; he also gives some transformation
equations for constants of Classes 3 and 4.

Tartaric Acid, C;HyO,s,  The following values are from Tamaru:5%

du = ""24 d15 = 28 dg.g = 28.5 dzs = —365
d31 = 1.95 d;-m = 5.95 d33 - 6.4:5 das = 3.8

Despite its strong plezoelectric propertics this crystal, perhaps on
account of its comparatively easy cleavage, has not found piczoclectrie
applications, beyond that suggested below.

Cane Sugar, Ci2H2.04. Holmann®? finds

du = 1.3 d15 = "'13 dm — —72 dzﬁ = _37
d31 +2.2 du = +4.4 d;;a = "_10 (f;;ﬁ -'2.6

By applying hydrostatic pressure to tartaric acid and cane sugar, Lawson
and Millerf have observed the quantity (dsi + dsr + das) for cach of
these crystals, finding good agreement with the values given above.

For resonator experiments with heet sugar see §381.

Terpstra} has recently found that crystals of brushite, CaIIPO,, are
piezoelectric and that they should be assigned to Class 3. Other exam-
ples of this elass are milk sugar, lithium sulphate, and the tartrates of
Ns, K, and NH,. ‘

139. Class 6, Rhombic Digonal Holoaxial (Hemihedral) (symmetry
V). This is the class to which Rochelle salt in the parelectric state {§434)
belongs. The class is not pyroelectric. There are three piezoclectric
constants, all independent. The three stresses associated with them are

—'-Y, = BuE; '—Zz = est" —Xy = e.uE.
* Pp. 873f.

t A. W. Lawsox and P. H. Mizen, Ji., Piezometer for Transient Pressure, Rev,
Sci. Instruments, vol. 13, pp. 297-208, 1942,
{ P. Tenesrna, Z. Krist., vol. 97, pp. 229-233, 1937.

(200)
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Whatever the direction of the electric field, the only strains that it
can cause, with respect to the X-, ¥-, Z-axes, are the three indicated
by the equations above. Similarly, only stresses that involve one or
more of these three components can produce an electric polarization.
In general, a compression in any obligue direction causes apolarization
having a component parallel to this direction (longitudinal effect).
Only in special cases can the fofal polarization be made parallel to the
direction of compression.

If ey4, €25, and ez (and hence dyu, das, and dzq) do not all have the same
sign, there is always a component of polarization at right angles'to the
compression; this fact was first pointed out by Pockels**® for Rochelle
galt. ‘That is, there is in this case no axial orientation for which both
d,, and d’, in Egs. (201) can be made to vanish.

Following are the equations for di, axes in any orientation (direc-
tion cosines as in Fig. 41):

d
3d,

erazas{di + dis + das)
(@fafs + 28381 + aafBs) (s -+ dis 4 dse)
+ Bivildas — das) + Brya{dss — dis) 4 Bavs{du — dag)
Bd; = (aryeys + eaveys + asviya)(du + dis + dae)
— Brvi(des — dss) — Brva(dss — das) — Bavs(du — des)
3d'u = [a1(Boys + Bxve) + 0!2(»33‘71 + B1ys) + oa(Bry: + Bay1)]
{d1s + das + dss) + (ef + 2v1){(das — dse)
+ (o + 293 (dse — dun) + (af + 273)(due — das)
dhy = B1BaBs(drs + das 1 dis) (201)
3y = 2(1Bef: + cxBoBr + asBiBs) (dus 4 das + dae)
— Birildas — dae) — Brya(dss — dus) — Brys(du — das)
dis = 11v2ys{dis + d2s + dse)
3y = 2(aryrys + aeyary + asyrya)(du + dos + dao)
+ Bryi{des — das} + Bave(das — dra) + Bavs(die — das)
3dss = [v1(eaBa + aaflz) + vo(asbs + aifs) + vs({@fz + aafy)]
(du + dzs + dan) + (’)’i’ + 2.35)(%5 - dsu)
+ (v + 2688)(dse — dia) + (vi + 289(dus — das)

[ |

By following the rule given in §135, one can obtain the equations for
all the remaining d}, directly from the expressions above. As an
example of this we have included the equation for dys, which is arrived
at by permutation from that for dj,.

The rule for writing the equation for any ¢}, from the corresponding
dy, in Eqgs. (201) is as follows: Substitute e for dw (both primed and
unprimed) when k= 1,2, or3and k=1, 2, or 3; when 4 =.1, 2, 0r 3
and k = 4, 5, or 6, substitute 2em for d:.k.
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Any one of the equations for d,,, d};, and d’, may be taken as an
expression for the longitudinal effect.* For example, d};, occurs in the
equation P, = —d}, X!, showing that & compression X! in any arbitrary
direction ai, a3, ez causes a polarization P/ in this same direction. Theo-
retically, the longitudinal effect vanishes only with the vanishing of at
least one of these direction cosines, i.e., when the direction of compression
is perpendicular to at least one of the crystallographic axes. Practically,
the effect is relatively small until a;, o, and a3 become approximately
equal (see §140),

Equations (201) and the corresponding equations for ey, hold also
for Classes 11, 12, 24, 28, and 31.

Equations for ¢, Rotation about the X-azxis. o = 1,

.31“71=052=0-!3=0,
B:s = vs = ¢ By = —v: = 8. The corresponding expressions for dj, are
obtained by writing dyx in place of e when A = 1,2, 3and k=1, 2, 8;
but when b = 1, 2, 3 and k = 4, 5, 6, dx/2 must be written in place of
exe. 'This rule applies to both primed and unprimed coefficients.

6{1 = 0 6"12 = Qcsey; Bia = —2cseyy

ey = (e* — s%en s =€l =0

hy = thy = €y = €, = 0 ¢hs = Clezs — 8%en (202)
€e = c8(eas + €36) €4y = € =€ = &y =0

&y = —cs(eas + €as) e = CPese — sens

By changing the suffixes cyclically according to the scheme in §135,
the equations for rotation about the Y- or Z-axis may be derived fromn
Egs. {202).

If the angle of rotation about the X-axis is 45° & = ¢ = 1/4/2, and
we have the transformed constants suitable for use, for example, in
problems desling with vibrations of X-cut 45° bars:

. _ o d
e’m = en eis = —én 12 = 'él'! ;.s == ?u (203)

For an electric field parallel to X these are the only constants. Similar
equations hold for 45° rotations about Y or Z,

The relations hetween the piezoelectric strain and stress coefficients
are especially simple for crystals of Class 6. Since cu = 1/844, €58 = 1/86s,
cos = 1/560, Egs. (192) and (192q) reduce to

* The existence of a longitudinal effect in crystals of this class seems to have been
generally overlooked, in spite of the fact that the Curiea probably employed it in their
diseovery of piezoelectricity in Rochelle salt; moreover, it is clearly implied in the
equations subsequently derived by Voigt. ‘The author was guilty of this oversight in
1930 (ref. 102), and it appears in the literature as late as 1937 (ref, 228).
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di = ensh day = ez53f dss = esast; (204)

There is nothing very critical in the orientation of X-cut 45° bars of
Rochelle salt. An error of a degree in any angular parameter reduces
the piezoelectric effect to an extent not over about half of 1 per cent.
On the other hand, ¥- and Z-cut plates should be oriented with great
care if effects due to di4 are to be excluded.

140. As an illustration of the use of formulas for rotated axes may be
mentioned the “L-cut,” in which the normal to the crystal plate makes
equal angles with all three cerystallographie axzes. The direction of the
normal is taken ag the X’-axis; the Y'-axis lies in the X Y-plane, at 45°
to the X- and Y-axes. According to Fig. 41 the direction cosines of the
normal are a; = @y = a3y = 0.5774. The general equation for the
longltudmal effect in this class is found, from Eqs. (201), to be

dly = cromas{die -+ das - dse) (205)
In the present case this reduccs to
diy = 0.192(dw + dos + da) (206)

Equation (206) shows that 2 longitudinal effect exists in Rochelle
salt for all orientations in which masas differs from zero, reaching a
maximum when o; = as = as. The same statement is true of all
crystals in Classes 6, 11 28, and 31; for Classes 12 and 24 the right side of
Eq. (206) vanishes.

Experiments with Rochelle-salt oblique cuts of this type are deseribed
in §§378 and 504.

141. Rochelle Salt, NaXCJ1,0,4H;0. Outside the two Curie
points (approximately —18 and +24°C), this crystal clearly belongs to
Cuass 6. Its monoclinic character (Class 3) between these points is
discussed in Chap. XXV. Ii possesses primary pyroelectricity in the
monoclini¢ form, but not in the rhombic. We consider first dss and das,
which show no anomalies.

dss and dse have been meagured by Pockels®® at room temperature,
by Valasek®® at 0°C (both used static compression of 45° bars), and by
Mason®®® at 30° by the antiresonance method* described in §311.

day dus

X 10~# X 10—

Pockels. ...l —165 -+356
Valaselk............... e —138 +28.3
Mason.......oovie it i i —169 +39.4

* Dr. Mason informas the author thet his latest observations give dy = —176{10™%),
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Valasek also observed the variation with temperature, finding an
ihcrease in the numerical values from —60 to -4-30°C amounting .to
0.68(10~%) per degree for dys and 0.031(10-%) for ds. These results,
together with the dependence of dy4 on temperature, are shown in Fig. 106.

When the foregoing results are reduced to 0°C by the use of Valasek's
temperature coefficients (assuming Pockels's data to be at 20°C), the
following values are found:

dli dlﬂ
¥ 1072 X 1078
Pockels.............. ..o, ~151 34.4
Valasek. .. ... ... ... ... i i, —138 28.3
Mason........... S .| —149 38.5 .,
Average valuesat 0°C................ —146(10-8) 34(10°%)

Again using Valasek's temperature coefficients, we find for the
average values at 20°C

dis = —160(10-%)  dy; = 35(10-7) (207)

in close agreement with Pockels’s original data.

Values of the piezoelectric stress coefficients es; and ey are obtained
from Egs. (204). We must first find the isagric values of sf and sf,
starting with sy, = 32.0(10-2%) and sj; = 11.4(10~*) from §79, Table V
(the asterisks indicate that the values are for infinite gap). From
Eqs. (273), (205), and (488), it is found that at room temperature

sE = 3b.3(10—17) sf = 11.6(107%)
From Eqg. (203) and (204) we obtain finully
€35 = —*4-5(10") €35 = 3.0(104)

The first measurement of dys was by Pockels,* who found values from
340(10-%) to 1,180(10-%). Further experimental data, obtained under
static and 1f conditions, are treated in Chaps. XXI and XXIV. The
theory is discussed in Chaps. XTI, XXIII, and XXIV, where it will be
shown that the piezoelectric constants according to the “‘polarization
theory” are nearly free from the variability with temperature and stress
{or which di, is notorious. The abnormal behavior of dyy is summarized

* Reof. 428. Pockels's results were obtained with three X45°-plates, each 6 by 6 by
8 mm, compressed by & foree of about 100 ¢ parallel to a long edge. The temperature
is not mentioned. Pockels attributed the wide range of values to lack of uniformity
in the stress, but variations in temperature may well have been a contributing cause.
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in §§370, 402, and 403 snd Chap. XXV. Although there is no such
thing as a “normal’’ or “standard” value for either dis or ey, fairly
definite values ecan be given to their counterparts by and ay, in the
polarization theory.

142. Piezoelectric Constants of Rochelle Sall Accordmg to the Polarizea-~
tion Theory. The constant by, is obtained from Eq. (4950), bis = di/4],
and ayy from Eq. (495), 014 = bueli. dis and 7} are known within per-
haps + 10 per cent for small fields and small stresses (initial values, with
linear relations), except elose to the Curie points. Information is still
lacking on their dependence on mechanical and electric stress, and under
large stresses their values between the Curie points are complicated by
hysteresis. From the parallelism between dyq and 7, by and a;, may
be expected to show but small dependence on Y, and E,. The values
given below are to be regarded as initiel values.

From his treatment of Mason’s vibrational éxperiments Mueller3’s
caleulates di, (see §474) and thence finds, from 24.7 to 47.5°C, values of
by from 5.7(1077) to 6.4(10~7), with an average of 6.2(10~%). Between
the Curie points, as is evident in Fig. 146, b1, rises to higher values; the
same applies to a;.  Provisionally, at least, the value of by4 given below
may be accepted. The values of bes and bz are calculated from Fgs.
(205) and (488q), by the use of Eq. (242): bas = das/nj, bas = dus/m;.

@14 is the same as Mueller's fi,. TFrom Mason’s experimental data
Mueller calculated ay from dys, %5, and c§y {or, in our notation, from by,
and cf,). The results are shown in Fig. 146, from which the average
value is seen to be around 7.5(10%). Mason’s fi. is expressed according
to his charge theory, as explained in §180. Mason’s value, which we shall
here call f5, (¢ = charge density), is 4 times the value f, according to
the displacement theory. From §189 it is seen that 7, = (k"' — Daw/k”,
where a4 is the constant according to the polarization theory, whence
a4 is about 1 per cent greater than f{,.

Now for f7, Mason gives the value 7.8(10%) in his first paper®® and
also in his book,®®® although in his second paper,®® by a method appar-
ently less open to criticism,* he finds the value 7.5(10%); this value
was found to show no measurable drift with temperature from —10 to
+450°C. Whatever value is adopted, it must satisfy the relation

. ) au = bucli.
If one accepts by = 6.4(1077) and ¢f;, = 11.6(10'%), one finds
hY q14 = 74(10‘) -

* Mason writes fT, = 4re./K,, where K, is the clamped dielectric constant. He
gets ero from ey = dui/s1, but apperently he uses sf, instead of sf, in thiz equation
[see Eq. (204)). As may be seen from his equations (54) and (55}, his K, is also in
ertor. The correct relation between Kp and K, [our &' and ¥"/; see Eqs. (621) and
(5215)] does not involve 8.
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In calculating ass and ass, we use the values of ces and ces from Table V,
which may be assumed to be approximately the constant-polarization
values. Then from Eq. (ix), Table XX, we have as = buel; and
g = basﬂ‘zg-

The final values are as follows, all with a probable precision of +10
per cent:

ay = 7.4(109) by = 6.4(10-7)
@y = —7.0(10%  bsy = —23(10°7)
aze = 4.7(107) bss = 5.4(10°7)

Not only are these constants nearly independent of temperature, but
all in the same column are of the same order of magnitude and, indeed,
of the same order as the corresponding constants for quartz. The close
relationship between piezoelectric and dielectric phenomena comes again
to light here: the b-constants are functions of quotients (Voigt piczo-
elegtric strain constant)/{susceptibility), and since large valucs of di
are agsociated with large n; the quotients are much more nearly alike
than are the dw for different erystals and for different effects in the
game crystal.

143. Heavy-waler Rochelle Salf. The properties of this crystal, includ-
ing dielectric and elastic, are deseribed in §444. The piezoelectric values
below are derived from observations by Holden and Mason?! on 45°
X-, Y-, and Z-cut hars vibrating in resonance.  d;4is ealculated by means
of Eq. {4562) (page 388);* similar formulas are used for dss and dys. The
coefficient ;4 of the polarization theory is derived from Eq. (495d).

Tenr:llzegragure, du e
X104 X 104

-~15 5.8 7.1

+ 4 4.2 7.0

34 84 7.2

48 6.4 7.8

The form of the curve relating d:, with temperature, show in Holden
and Mason’s paper, is similar to that for ordinary Rochelle salt. a4 is
neatly independent of temperature, with a mean value of about 7.3(10%),
approximately the same as for ordinary Rochelle salt.

* This formuls, is probably more sccurate than that used by Holden and Mason
and yields values somewhat different from theirs. Values of w. are from their Fig. 5,
in substantial agreement with Hablitzel's data, which are shown in Fig. 134,
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Holden and Mason find for das and dys:
dss = —220(10%) dys = 40(107%)

These two values are both somewhat greater than those for ordinary
Rochelle salt in §141. d.; shows a slight increase with temperature.

144. Sodium-ammenium Tartrate, NaNH,C,H,0,4H;0. FElastic
and other data for this erystal are given in §88. The following piezo-
electric constants were measured by Mandell,??* who also measured the
elastic constants:

o = 56(10%)  das = —140.5(10~%)  dss = 28.3(105)

This tartrate is isomorphic with Rochelle salt, but it shows none
of the piezoelectric anomalies of the latter, beyond a certain fatigue
effect and dependence on moisture in the surrounding air. Mandell
found no appreciable change in piezoelectric response from —17 to
+30°C. Above 30°C the crystal gradually becomes conducting. .

Mixed crystals of the Na(NH,) and NaK tartrates can be grown
in all proportions. Their properties are diseussed in Chap. XXVIL

146. Class 10, Tetragonal Polar (Tetartohedral) (symmetry Cy).
Not pyroelectric. There are seven piezoelectric constants, with four
independent values:

—.X: = GalEz _er = 952El = eﬂlE: "‘Zz = essz.l (208)
~¥, = e B + esEy —Z, = eyl + easBy = enll, — enlly

The only erystal in this class on which plezoelectric measurements have
been made is bartum aniimonyl larfrale, Ba(ShQ):(CH,0.):-H0.
Veen®® found dyz = 11(10-%).

146. Class 11, Diietragonal Alternating (Hemihedral with Inversion
Axis (symmetry Va). Not pyroelectric. There are three piezcelectric
constants, of the same types as those in Class 6, but two of them have
identical values:

Y, = eliEz "Zz = 914Ey "'Xy = essE: (209)

All the transformation equations given above for Class 6 hold for
Class 11 also.

At the present time the importance of this class, from the piezo-
electric viewpoint, lies in the fact that some of its representatives have
Seignette-electric properties related to those of Rochelle salt. As shown
by Busch®® these are the primary phosphates and arsenates of potassium
and ammonium. Their dielectric properties and the possible transitions
to other crystallographic classes at certain ternperatures are treated in
Chap, XXVIIL
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The piezoelectric constant dss of KH;PO, has been meansured statically
by Liidy?* by means of a string electrometer, and by Bantle and Caflisch,2*
who used a ballistic galvanometer. At the Curie point, 122°K (~-151°C),
a value as high as 60,000 (10~%) was determined. With increasing
temperature the value falls, very rapidly at first and then more slowly, to
50(10-%) at 20°C. Below 122°K the value decreases to 10,000 {10-%)
at the temperature of liquid air. It is in the region below 122°K that
KH.PO, takes on Seignette-electric properties, analogous to those of
Rochelle salt between the Curie points. In this region ds; depends
on stress as well as on temperature, as is shown by the fact that the
polarization: stress curve is non-linear, with an approach toward satura-
tion when the stress is around 40 kg/em?,

Similar results with the converse effect were obtained by Arx and
Bantle.'t They found that below the Curie point, exactly as with
Rochelle salt, an alternating electric field gave rise to a hysteresis loop.
From thig it appears that dss is not a single-valued quantity below 122°C,
except with very weak fields. As with Rochelle salt, there is a “Curle-
Weiss law" for dse in the neighborhood of the upper Curie point.?®* The
properties of KH,PO, are described further in Chap. XXVII.

147. Class 12, Tetragonal Holoaxial (Enantiomorphous Hemihedral)
(symmetry D,). Not pyroelectric. There is only one independent
piezoelectric constant, e14 = —e3;.  The transformation equations given
above for Class 6 become cspecially simple when applied to Class 12.

Classes 12 and 24 possess a unique piczoelectric property, which
follows from the fact that for both of them e = —ew and e = 0.
The result is that for these two classes there is no dircetion in which a
compression can be applied which will cause any component of polar-
ization parallel to the compression: there is no longitudinal cffcct in Classes
12 and 24. This conclusion follows at once from the equation for dY,,
dhy, Or dig in (201).  On the other hand, the transverse effect with respeet
to transformed axes does not vanish; this may be seen, for example,
from the equation for df, in (201).

The only representative of Class 12 that need be mentioned is nickel
sulphate, NiSO,6H.0. Its cleavage is so easy and its instability is such
that it cannot be recommended for piezoelectric applications.

148. Class 18, Trigonal Holoaxial (Enantiomorphous Hemihedral)
{symmetry D;). Not pyroelectric. The chief representative is a-quarta.
There are five piezoelectric constants, with only two independent values:

'_Xs = eHE:r - Yv = elﬂEz = "ellEz -Y, = BuE, (210)
"'_Za: = 825Ey = —B“Ey -"Xy = CZGEy = —eIlEy

Of these equations, the first represents the longitudinal effect, the
second the transverse effect, discovered in quartz by the Curie brothers,
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The first gives the driving stress for thickness vibrations, the second
that for lengthwise vibrations, in X-cut plates. The last equation plays
a part in thickness vibrations of Y-cut plates. In the theory of oblique
cuts various combinations of the constants oceur. The possible vibra-
tional modes that can be excited piezoelectrically in quartz are discussed
in Chap. XVII.

Following are the expressions relating the piezoelectric stress and
strain constants, specialized from Egs. (191) and (191a):

e1 = duleu — 12) + ducu (211)
en = 2ducrs + ducu (211a)
du = en{811 — 812) + ensu (211b)
g1y = 2e11814 + e14Sus (211¢)

Equations (188) become reduced to

""Pw = dll(Xm - y) + qu. . —Py = —(duzz 4 2d11Xy)
P,=0 (212)

For crystals in this class the summation in Eq. (265), for fields
parallel to either X or ¥ (m = 1 or 2), becomes reduced to

6
E emilln; = 2endy + eudu (213)

This expression occurs in the relation between the free and clamped
dielectric constants. For fields paralle! to Z the piezoelectric effect
vanishes, so that &, = k.

Let the dimensions of an X-cut plate be ¢, I, and b parallel to the
X-, Y-, and Zlaxes, ¢ being small in comparison with & and I. Then
if a compressional force F, = blX, is applied, the piezoelectric charge on
electrodes covering the major faces is

Q: = blP,,- = =y = ‘-"duF; (214)

If the applied compression is ¥, = be¥,, the charge is

biduF,  dufl
be e

Equations (214) and (215), which express the longitudinal and
transverse effects respectively, were verified by the Curie brothers.
It should be noted especially that in the longitudinal effect the charge is
independent of the area to which the force is applied, while in the trans-
verse effect the charge-is proportional to the ratio of length to thickness
of plate.

149. In the measurement of di; & question may arise concerning the
effect on the precision with which d;; is determined, when the pressure

Q. =blP. = (2153
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is applied to a smell portion only of the surface and also when the elec-
trodes do not cover the entire ¥Z-faces. So far as the longitudinal effect
is concerned, if the force F, and the total charge Q. are observed, the
constant du i8 given by Eq. (214): dy = —Q./F.. In order that all
of the piezoelectric charge may be observed, the electrodes must cover
at lenst as much of the erystal as is in a state of strain; but it is not neces-
sary to assume that all lines of elastic stress are paraliel to the X-axis.
Nevertheless, in order to minimize the danger of producing a flexure of
the plate, with the attendant polarization, it is better to distribute the
pressure uniformly over the entire surface and to let the electrodes
extend to the edges of the plate.

When, as is more common, dy; (= —dy2) is measured by the trans-
verse effect, it is customary to apply & pressure, parallel to ¥, to an
X-cut plate having ifs length and breadth parallel to ¥ and Z, and pro-
vided with electrodes in immediate contact with the two faces normal to
X. The pressure may, of course, be either a compression or an exten-
gion. The latter is preferable, since bending or buckling of the plate is
thereby avoided. In order to avoid troublesome edge corrections, the
electrodes should cover the entire breadth of the plate, parallel to Z, but
they need not extend to the ends: it is sufficient to lel the quantity ! in
Iiq. (215) represent the length of the electrodes.

Corresponding to Egs., (214) and (215), the following expressions
hold for the elongations produced when a potential difflerence V esu is
applied to an X-cut plate having a thickness ¢ parallel to X and length 1
parallel to ¥:

Be=duV  Ml=dulV=-dilV (216)

An expression for d4similar to Eq. (215) can be written if it is assumed
that the applied stress is ¥,. Such a stress could theoretically be
realized with an X-cut plate by impressing upon the two faces normal
to the Y-axis a pair of tangential tractive forces +F, = +beY,, the
directions of these forces being parallel to the Z-axis. From Egs. (212)
there would result

blduF, _

Q =t = -2 L4, (217)

The similarity of this expression to (215) is obvious. In practice, such g
shearing stress ag this is usually attained by applying a compression to
an obliquely cut plate. It was thus that Voigt determined dy4 for quartz,
using X-cut rectangular plates rotated 224 and 456° about the X-axis.
Calling Z! the impressed stress, we have for the resulting polarization,
from Egg. (221),

' —P, = & 2! = —Z!(s%dy + scdi)
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When d,; has been determined by means of Eq. (214) or (215), dis can
be calculated from the observed P and Z..

160. Piezoelectric Constants, Class 18, for Rotated Axes. T'or the
transformation to axes in any desired orientation the methods of §134
sre employed, retaining only those constants that are characteristic
of this class, For example, from Eq. (194) it follows that

e = v1{¥] — 3vden {218)

where v, and ¥; are direction cosines for the Z’-axis. In terms of azitnuth
» and colatitude ¢ of the Z’-axis, as defined in §51, this cquatior may be
written thus:

€y = €11 €08 3¢ 8in? @ (215:30)
Similarly, from Eq. (194) or (198),
s = 71(v1 — 3v))du = dy cos By sin? P (219)

Tor this class hardly any general transformation formulas for the
piezoetectric constants, applicable to axes in all orientations, are avail-
able. In a recent paper Mason and Sykes?® give the equation for dj,
for any axial system, the axial directions being specified in terms of the
angles ¢, 0, and ¢ according to §52;

d,; = dy; sin Ofcos Be(cos? O cos® p — sin? ) — sin 2¢ sin 3¢ cos 6]

- 55-21_‘! (sin? © sin 2¢) (220)

The relations between ¢, 9, ¥, and the direction cosines are given in §62,

161. The most useful transformation formulas are those for rotation

about a single aris. ‘They may be derived from Lqs. (196}, About the
X-axis, the direciion cosines defined in Fig. 41 become o = 1,

Br=m=a=a =0,

By = vs = ¢, B3 = —¥2 = 8. The transformed constants are
= G €y = én \
;.2 = _C!dll. + SCdu G;.g = ‘—‘6'2811 + 280814
s = —&%di — sedi = diy dy = —alery — 28ce1 = €,
[6 + 90°] g + 90°]
;‘ == 2(:.s‘du +‘ (Cz - Sz)du e‘;_‘ = C8€11 + (02 -_ 83)611
diy = dig =10 € =¢;, =0
n = dyy = diy = dpy =0 hy = € = ey = 4y = 0 901
dys = 2esdy; — oy & = csey — ey > (221}
’u = ~—2¢%dy — CSdu ese = —c;y — Cseuy
dy =dy =dyy =diu =0 ey =y =Gy =€y =0
di} = —2s%dy + cediy = dig s = —s%1 + cseu = €
[6 + 807 [¢ + 90°]
dis = 2esdyy + 8%di = —dy; & = cse1y + St = —thy
[6 + 90°] 6 £ 90°] }
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Rotation about the Y-axis.
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Rotation about the Z-axis.
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ﬂs=1,ﬂ1=ﬂs=az=73=0,

eil = 03811
€z = —ceu
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152. Polarization Produced in Crystals of Class 18 by Uniform Pres-
sure in Any Direction. Let the pressure be Z., parallel to a Z’-axis having
any direction cosines vy, s, 7vs; the result may also be expressed in terms
of azimuth ¢ and colatitude 8 (Fig. 17). It follows from Eqgs. (212) and
(22) or from Eq. (197) that the components of polarization are

P, = —[(v} — vhdu — vavadulZ,
= —[d; sin? #(cos? ¢ — sin® ¢) + dy4 sin § cos # sin @[ Z]

Py = v1(27v2du + vadi}Z; (224)
= sin § cos ¢(2d;; sin @ sin ¢ 4 dyy cos §)Z
P,=0

The total polarization, given by P2 = P} 4+ P}, lies always in the
X ¥Y-plane; it can be resolved into two components, parallel and perpen-
dicular to Z’. The former of these, which may be called P;, expresses
the longitudinal effect for oblique pressures in quartz or in other crystals
of Class 18,

P, =Py = v P+ v2Py = —dny8in® 0 cos B - 2, = —dp, 7, (225)
where di; = dy sin? 8 cos 3¢ (226)

a3 in Eq. (219).
When 8 = 90° and ¢ = 0, 120, or 240°% dj; = dy1, Z] becomes X,
parallel to one of the electric axes, P
zZ z' becomes P,. This is the maximum value
& 5 that P; can assume with given Z7; and in
these special orientations P; is also the
X total polarization, In general, there are
4 components of polarization both parallel
and perpendicular to Z}, except for certain
Fic. 42.—Longitudinal piosos- SP€cial orientations that will be considered
legtric effect for quarta in the in the following paragraphs.
fe{topl:':; o g:gg; ﬁf Jﬂﬁf)t'o (f.::’fh“s We pass now to the specialization of
Eq. (226) for the three principal planes.
For pressures in the Y Z-plane, ¢ = 90° and dj; = 0 for all values of 8;
no longitudinal pelarization P; is produced by pressures perpendicular
to the X-axis, but only P, as given by Eqs. (224). If the pressure is in
the ZX-plane, ¢ = 0 and

iy = dyy sin’ 8 (227)

The polar diagram representing dj, for quartz as a function of 8,
from Eq. (227), is chown in Fig. 42, in which the radius vector OP is
proportional to dj, and hence to P, = —dj;Z.. TFor negative values of
8, d3; becomes negative, but ite numerical value is still correctly given
in Fig. 42.
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The trigonal character of this crystal class is evident from the occur~
rence of the angle 3¢ in Eq. (226) and is nicely brought to light when we
consider the longitudinal effect in the X V-plane. Here 6 = 90°, so that

dis = di1 cos 3 (228)

The polar diagram (Fig. 43) is now in the form of a cloverleaf, with
di; = dyy when the pressure is parallel to one of the axes X,, X5, or X,.
‘With respect to any one of the three X
X-axes, say X,, d’; takes on both + 2
and — values as ¢ varies. These
changes in sign, as well as the
numerical values for quartz, are
shown in Fig. 44. If one were to
take X! or ¥ as the pressure in-
stead of Z7, Fig. 43 would of course
represent d}, or dj,.

One may imagine a model based
on Eq. (226) constructed to repre-
gent dj, in all orientations. Its
surface would be of the third degree,
viz., the trivector surface men- be
tloned_ln §13_6’ of which the in- Fu: 43.—Longitudinal piezoclectric ef-
tersections with the ZX- and fectfor quartz in the X Y-plane (from Voigt).
XY-planes are represented by Figs. Radiua vectors are proportional to d'ss.

42 and 43. Such a surface would be like three almonds placed with their
small ends in contact.*

An inferesting relation between polarization P and compressional
stress holds when the latter is normal o the Z-axis. Like the effects
described in the foregoing paragraphs, it depends on the fact that for this
class d],z = —du. By setting ¢ = 90°in E(]_S (224) we find

P, = —duZ, cos 2¢,

P, = duZ! sin 2¢, whence P* = P2 + P2 = d},Z;". From these expres-
sions it is seen at once thaf, when the pressure is parallel to either an
X- or a Y-axis (¢= 0), P is parallel to X; that, when the pressure is in &
direction +45° from an X-axis, P is parallel to ¥'; and hence that, as the
direction of the pressure varies in the X ¥-plane, P rotates in space while
maintaining always the same numerical value dy,Z;. It is easy to show
that P rotates fwice as rapidly as Z!, and in the oppostte direction. 'This
relation for the fotal polarization must not be confused with that for

* A photograph of the #almond " model is reproduced in a paper by Glinther.2*
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the longitudinal polarization depieted in Fig. 43, which shows that as the
pressure is rotated through 360° there are six positions in which the
component of P parallel to the pressure vanishes.

163. Polarization Produced by a Uniform Field Normal to the Z-axis.
In the last paragraph it was shown that a compressional stress normal
to the Z-axis produces a polarization that is constant in amount, but not
parallel to the stress except in certain special azimuths. On the other
hand, a uniform electric field normal to the Z-axis causes a polarization
not only constant in amount but also parallel fo the field. This fact
follows from the symmetry of this erystal class and is true whether the
crystal is clamped (constant strain) or free to deform itself in the field.
Hence a sphere of quartz or a circular cylinder with its axis parallel to Z,
mounted 50 as to rotate freely about the Z-axis and placed between
plane-parallel electrodes that are also parallel to the Z-axis and sufficiently
remote to ensure that the field is uniform, will show no tendency to
orient itself in any particular direction, except Insofar as its cross seetion
departs slightly from the circular form as a result of extension or com-
pression along an X-axis. Even with fields of several thousand voits per
centimeter, &, i3 only of the order of 10-%, If an orientation due to a
uniform field is ever observed, it is very much more likely to be caused
by some slight eccentricity in the mounting than to an increase in diam-
eter in the direction of one of the X-axes.

Since, according to most observers, the dielectric constant of quartz
is slightly greater along the Z-axis than at right angles to it, it follows
that s quartz sphere free to assurae any orientation in a uniform electric
field will tend to set itself with the Z-axis in the field direction.

The assertion has been made* that a circular Z-cut quartz disk in an
electrie field parallel to its plane tends to rotate so as to bring one of its
electric axes into parallelism with the field. Their explanation, based
on a hypothesis concerning the deformation of the unit cell in a uniform
field, is not valid. If experimental errors were eliminated in their
observations, one must attribute the rotation to non-uniformity in the
electric field. The electrodes were relatively small and close to the edge
of the plate on each side. The piezoelectric strain was small except
in the regions nearest the electrodes. The crystal was therefore effec-
tively in a state of partial constraint, neither uniformly clamped nor
entirely free. Near the electrodes the stresses are greatest, but they are
largely neutralized by elastic reaction from the neighboring regions.
The strain that may be expected to predominate is the extensional z;, the
extension being nearly radial, in the direction of the X-axis that happens
to be closest to the line joining the electrodes. According to §204, this
strain provides a slight inerement to the susceptibility in the X-direction,

* A. MemssneR and K. Becemann, Z. tech. Physik, vol. 9, pp. 430434, 1928,
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whereupon the disk tends to set itself with the direction of maximum
susceptibility parallel to the field.

154. Alpha-quartz, The crystallographic properties are described in
§11, and the definition of the I.R.E. axial system, adopted in this book
for enantiomorphous erystals, is to be found in §327. All values given
below are in terms of this system, according to which the signs of dy,
and dy are the same for a right- as for a Jeft-quartz, viz., the same signs .
that Yoigt would have assigned to a right-quartz according to his axial
convention.*

TaprLe XVII.—PezouLecTRIC STRAIN CONSTANT di; OF QUARTZ
(Static values)

No. Source Ref. du Effect
X 108

1 {P. and J. Curie, 1881 Bi0, 117 6.32 Direet, L, T

2 | Czermak, 1887 118 6.3 Direet, L

3 | Riecke and Voigt, 1892 435 6.45 Direct, L

4 | Pockels, 1894 428 6.27 Direct, T

5 | Nachtikal, 1809 386 6.54 Direct, L

6 | J. Curie, 1910 Bl1 6.90 Direct, T

7 | Veen, 1911 563 6.32 Direct, T

8 | Hayashi, 1912 210 6.31 Direct, L

9 | Réntgen and Joffé, 1913 440 6.94 Direct, T, L
10 | Twj-Ze, 1927 523 6.4 Converse, T, L
11 | Beid], 1932 456 6.90 Direct, T'
12 | Giinther, 1932 194 6.35 Converse, T'
13 | Knol, 1932 262 6.83 Direct, L
14 | Oslerberg and Cookson, 1035 407 6.22 Converse, T'
15 | Clay and Karper, 1937 112 6.80 Direct, L
16 | A. Langevin, 1939 305 7.10 Direct, T(?)
17 | Ludy, 1939 322 6.54 Dircet, T

In Tables XVII and XVIII are given those values of dy; and dy
found in the literature, measured by siatic methods, that can be regarded
88 representative. All are for room temperature. The fourth column
indicates whether the direct or the converse effect was employed and
also whether the impressed stress (or the observed strain) was parallel to
X (longitudinal effect L) or parallel to ¥ {transverse effect 7). It can
be assumed that in no case was the deformation great enough to show a
departure from linearity.

* That the signs of di; and dry, according to Voigl's conventions respecting axes, must
be reversed on passing from right- to left-quartz, is made clear on p. 861 of the *'Lehr-
buch.” Resders of the “Lehrbuch’’ have no way of knowing that the values of these
constants, given on p. 8G9, were obtained with lgft-quariz, unless they consult the
original paper of Riecke and Voigt.13*
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In sbout half the measurements listed in Table XVII the direct
longitudinal effect was used, with compression and polarization both
parallel to X. Where the transverse effect was employed, the polariza-
tion was produced in most cases by tension parallel to ¥, rather than by
compression, & procedure that is preferable in order to avoid bending
of the plate. The transverse effect gives dys; all experimental data
confirm the relation dy; = —di.  Osterberg and Cookson observed the
deformations under a 60-cycle alternating field; this frequency is so low
that their result may properly be included among the static values,

Most of the systematic sources of error, such as faulty orlentation
of the plate, twinning or other defects in the crystal, and imperfect
insulation, tend to make the observed values of d,; too small. It is quite
probable that the larger values recorded in Table XVII from 1910 on are
due to more successful attention to these matters. Of all the observations
recorded, none seem to exceed Nos. 6 and 9 in care and skill; it is probably
not by mere chance that these are also among the largest values. Lan-
gevin emphasizes the fact that his large value was obtained only with
very perfect plates. He states, for example, that on removal of a small
twinned region from one of his plates the value of d,, rose from 5.77(10-%)
to 6.83(10%). Though the details of his method are not given, his
results can be accepted as very reliable.

All things considered, the value d;; = 6.9(107%) seems a conservative
one to adopt, in agreement with the opinions of Sosman* and of Voigt
and Fréedericksz.5® More measurements of high preecision, with
accurately oriented plates of greatest perfection, are much to be desired;
it may well be that such measurements will confirm the large value
observed by Langevin.

A critical discussion of some of the papers cited in Table XVII is
given in Sosman’s book. In the “Lehrbuch”t Voigt scems to accept the
mean of the observations of Riecke and Voigt and of Pockels as the best
value of dy, namely, —6.36(10%).f Although still widely used, this
value should henceforth be superseded by that given above.

Measurements of i1 have also been published by a number of other
observers. Those of Dawson®?! and of Fox and Fink,™® while apparently

.less precise than those recorded in Table XVII, are of the same order of
magnitude. Gramont§ obtained 4y = 6.37, 6.37, and 6.40(10-%) with
three different samples, but experimental details are lacking.

156, Ezperimental Values of diy for Quartz by Static Mecthods. Values
from various sources are given in Table XVIII.

* Ref. B47, p. 559.

t P. 870.

t The negative sign, as used by Voigt, arose from his convention respecting axial
directions, for which see §327.

§ Ref. B21, p. 51.
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TasLE XVIII.—PiezoELECTRIC STRAIN CONSTANT d)y OF QUARTZ
(Static values)

No. Source Ref. —~du Method
x 10~

1 | Riecke and Voigt, 1892 435 1.45 X-cut plate

2 | Pockels, 1894 428 1.93 X-cut plate

3 | Voigt and Fréederickssz, 1915 576 2.25 Torsion

4 | Osterberg and Cookson, 1935 407 2.24 X-cut plate, 60~
5 |Langevin and Solomon, 1935 307 2.1 Torsion

& [ Gibbs and Tsicn, 1936 159 2.04 Torgion

Owing to the comparatively small magnitude of 4y, and to increased
experimental difficulties, less precision can be expected in the measure-
ment of this constant than in that of di1.  Observations 3, 5, and 6 were
made by applying torsion to quartz cylinders. Although less reliance
can be placed on such indirect data than on those obtained with flat
plates, still the unifermly high values are significant. On the one hand,
we have the fact pointed out above in connection with dy,, that most
sources of error tend to make the values t00 small. On the other hand,
observations 1 and 2, yielding the lowest values, were made with especial
care and skill. The mean of observations 1 and 2, 1.69(10~%), was
adopted by Voigt* and has been widely quoted. In view of the later
publications, however, it seems best to adopt for the present the value
diy = —2.0(10_8).

156. The following are to be recommended as the best values to date
for the piezoelectric strain constants of quarta:

diy = +6.9(10%)  dy = —2.0(10-%) (229)

The values according to the polarization theory are given in §158,

The piezoelectric stress constants of quartz are found from Egs. (211)
and (211a), using the values of dy; and di4 given above, together with the
elastic constants from Table X1:t

en = +52(109 ey = +1.2(109 (230)

157. The Piezoeleciric Constants by Dynamic Methods. Some of the
more important results are given in Table XIX. They are derived by
methods described in §310. The first two data are of relatively low

* “Lehrbuch,"” p. 870.
t In Voigt's “Lehrbuch” (p. 870), the values of ;3 and e, as ealculated from his
date are in error. They should read ¢,; = —4.69(10%), ey = —1,18(10%).
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precision and are included as of historieal interest. The most trust-
worthy values are probably those of Van Dyke and Mason.

TasLe XIX.—Dynamic VaLves oF THE Piezoerectric ConsTANTS OF QUARTE

No. Source Ref. e dig
x 10+ X 107¢
1 | Andreeff, Fréodericksz, and Kazarnowsky,
1929 4 $.51
2 | Fujimoto, 1929 152 6.1
3 | Fréedericksz and Mikhailov, 1932 150 5.55
4 | Nussbaumer, 1932 395 6.84
5 | Van Dyke, 1935 554 6.70
6 | Mason, 1943 [also dy( = —2.56(10"%) and
e = +0.97(109} 340 53.01 6.76

No theoretieal reason is known for any difference between static and
dynamic values of the piczoelectric comstants. Until the dynamie
methods have proved themseclves further and it is certain that possible
sources of error have been eliminated, it scems best to adopt the values
of the constants given in Eqs. (229} and (230).

168. Piezocleciric Constants of Quartz According to the Polarization
Theory. TFrom Eq. (242), together with the piczoclectric constants in
Eqgs. (229) and (230) and the dielectric constants from §331, one finds

an = 2 = 19(10%) au = 2 = 4.4(109
’12 nl
. 4 J (231)
'bn=;¥=2ﬂm4) bu=;¥=—&mam)
As in Voigt's theory, the other constants are @i = a4 = —@un, bz =

be/2 = —by, G35 = Gy b2y = —bus .

169, Dependence of di1 upon Stress. Under ordinary conditions this
effect is small. For larger stresses the results are conflicting. Nach-
tikal®® found that d,; was linear in X,

di = 6.54(10-%) — 1.05(10-16)X, (232)

where, 23 usual, X, is in dynes per square centimeter. According to this
equation, a load of 1 kg/cm? decreases di, by 0.16 per cent. The paper
by Clay and Karper'!? records dy; as constant up to 10 kg/em? but
slightly less at 15 kg/em®  Finally, Karcher?”* found dy; to be constant
to within 0.1 per cent for pressures up to 3,500 kg/cm®.

In experiments on the converse effect, Tei-Ze% found du. to decrease according to
an exponentiel law as E, incroased, being nearly constant until E; reached a value of
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about 40 esu. In experiments with the iransverse effect, at E, = 20 esu, du was
diminighed by about 9 per cent, and at 500 esu the diminution was about 40 per cent.*
Values of the same order of magnitude were obtained with the longitudinal effect,
indieating that in both cases the deformation approached o state of saturation as the
field became very great. If his duta are accepted, one must conclude that, for the same
deformation, the diminution in d); caused by the converse effect is very much greater
than that by the direct effect. For example, Tsi-Ze's Table V for the longitudinal
effect indicates, for a field strength of 268 esu, & strain z; = 10~% To produce thig
gtrain mechanically would require a stress X: = 8(10%) dynes/em?; and wheon this
value is inserted in Nachtikal’s Eq. (232), di is found to be diminished by only 1.2
per cent, whereas according to Tai-Ze's data the diminution corresponding to this
same strain is 43 per cent. Evidently the piezoelectric effect in quartz under large
mechanical and electrical stresses merits further investigation.
No data are at hand concerning the dependence of d14 upon stress.

160. Dependence of di, upon Temperature. Although the observations
are somewhat less discordant than those on the effect of pressure just
described, there is so much disagreement among authors as to lead one
to suspect that in many cases it was not only the temperature coefficient
of dyy that was being mcasured.

Qualitatively, most observers are agreed that dy, is greater at room
temperature than at very low or very high temperatures.t Below reom
temperalure Lissauer} found d;, to vary not over 2 per cent down to
—192°C (liquid air). Onnes and Beckman?®® found dy; to decrease about
1.2 per cent from room temperature to that of liquid air and 0.2 per cent
from that point to the temperature of liquid hydrogen. Langevin and
Moulin®® observed a greater rate of decrease, viz., a value of di; 5.8 per
cent, lower at —60 than at 0°C; these last figures indicate a temperature
coefficient & = 9.7(10—4).

Pitt and McKinley*?® observed the dependence of d1; on temperature
from 4 to 813°K by means of both a static and a dynamic method. In
the latter a quartz X-cut plate 24 by 24 by 0.81 mm was in a piezo-
oscillator circuit By the static method d;; was found to decrease by
1.3 per cent as the temperature fell from 296 to 83°K; there was a total
decrease of 12 pet cent in passing from 296 to 4.2°K. Observations by
the dynamic method were made all the way from 4.2°K to 540°C. On

* At the larger field strengths Tsi-Ze found the deformations to be due in part to
electrostriction (§137), the effect of which was climinated by reversing the field. His
general equation for deformation as a function of field strength is open to criticism,
since it proceeda from the theoretically insecure assureption that the variation of dyy
is proportional to the potential drop across the crysta! rather than to the field-strength
and that the constant of proportionality is independent of the thickness of the plate.

t OstERBERG (Phys. Rev., vol. 49, pp. 552-553, 1936) asserted that the piezo-
electric “activity ' increased as the temperature decreased from that of the room to
—175°C,

t Voiar, p. 862.
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cooling below 14°K there was no change in d,, down to 5.5°K, at which
point a sudden decrease occurred. dy; was nearly constant from 5.5°K
to 200°C, at which point a gradual decrease began, and the response
ceased at 540°C. The authors think it might be possible, however, to
detect an effect up to a-S-inversion temperature. On the return {rom
high to low temperature they found no trace of the lag in piczoelectrie
activity that had been reported by Dawson.!%,

Above room temperature, dy; was found by Perrier*?? to be nearly
constant to 200° and then to decrease until it disappeared at 579°C,
reappearing with decreasing temperature at 576° (579° is Perrief’s value
for the transition temperature from a~ to g-quartz; the value now usually
assigned is 573°). A similar hysteresis on cooling was also reported by
Dawson,?! who however recorded also a maximum in d;; at about 60°C,
followed by a rapid decrease, until the value became extremely amall
between 300 and 480° differing results being obtained with different
crystals. According to Andreeff, Fréedericksz, and Kazarnowsky,* dy;
decreases by 17 per cent as the temperature rises from 15 to 500°C;
Fréedericksz and Mikhailov1®® found dy; to be practically constant to
187°C, followed by a rapid decrease. A linear decrease of 10 per cent was
observed by A. Langevin®* ag the femperature increased from 20 to
200°C, beyond which his observations did not extend.* Langevin's
results yleld a temperature coefficient &« = —5.5(10~4), in fair agreement
with —3.5(10*%) computed from the data of Andreeff, Fréedericksz, and
Kazarnowsky quoted above. A still smaller temperature coeflicient was
measured by Clay and Karper,!'* who found, from 17 to 90°C,

a= —7(107%);

this result is in substantial agreement with Perrier’s observations and
those of Fréedericksz and Mikhailov. Roentgen and Joffé,*® whose
apparatus was capable of detecting a change as small as 0.1 per cent,
could observe no effect of temperature on d,, from 15 to 25°C.
Observations of the lengthwise frequency of an X-cut quartz bar
(length parallel to ¥} have been made by Van Dyke®™ at temperatures
from —80 to +40°C. He finds the effective piezoelectric coefficientt e
to decrease from 5.57(104) at —80° slowly at first, then more rapidly,
reaching the value 5.27(10%) at 40°. The temperature coefficient is ten

* Thiz result was obtained by a zcro-deflection ({constant-potential) method.
Langevin tried first a-deflection method, which yielded a maximum in di; at about
80°C. He attributes this maximum, as well 28 that recorded by Dawson, to erroras
introduced by deformation of the apparatus.

+ It followa from §228 that the effective piezoelectric coefficient for a quartz bar
in this'orientation is not ey, a8 stated by Scheibe (ref. B45, p. 70) but ¢ = dy3/81;. The
difference between e and ¢;;, though small, is not negligible.
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times as great at 40° ag at —80°, having the value a, = d¢/e 0t = 10104
at room temperature. From this and the relatively small temperature
coefficient of 8;; one finds for dj; a value of ay,, around 10{10-4).

On the whole, it seems probable that the piezoelectric constant d); of
quartz has a very flat maximal value around room temperature and that
the rate of decrease is of the order of magnitude of 0.1 per cent per degree
down to the lowest temperatures on the one hand and up to approximately
200° on the other. It is also certain that diy = 0 at the alpha-beta
transition point, 573°C.

As 10 dig, no observations on the temperature dependence seem to
have been made. One can be certain, however, that di4 does not vanish
at 573°C but carries on as the surviving coefficient of -quartz (§168).

161. Effect of Radiation from Radium on dn for Quarts. Laimbdck™
exposed a quartz plate to the beta and gamma rays from 94 mg of radium.
The value of d;; was found to increase at a rate roughly proportional
to the time, the total increase in 7 days amounting to about 12 per cent.
The constant gradually returned to its original value. The effect was
less pronounced after repeated radiation.

162, Piezoelectric Constants of Quartz for Rotation about the Three
Axes. The curves shown in the succeeding figures are calculated from
Egs. (221) to (223), with dy; = +6.9(107%), d1s = —2.0{107%),

Figure 44 gives di,, di,, dis, and di, for rotation about X, and dj, for

(8 + 180°)

rotation about Z. The following rules apply to this figure:
For rotation about X, the ordinate for any 8 is the same as for

(8 £ 180%).

For rotation about Z, the ordinate for any ¢ is the same as for (8 + 120°).
Of the constants dy;, for rotaiion abou! X not shown in Fig. 44, the
value of dl, for any 6 is the same as that for df, at (8 4 90%); similarly,
the values of di, and —dj, for any 4 are the same as those for d}; and di;,
respectively, at (8 + 90°). All the remaining dy, vanish except

d;l = du.

Of the constants for rotation about Z not shown in Fig. 44, all vanish
except diy = diy = —diy and dfy = d) = —diy = dyy cos 3(6 + 309,
That is, the value of dfs, di;, or —di, for any 8 is the same as that of df,
for (8 4+ 30%).

The curves for da for rolation about ¥ are given in Fig. 45. If the
desired angle of rotation lies outside the range from —90 to -+90°, the

* J, Lamuedicx, Milt. Inst, Radiumforschung, No. 221q, 1928,
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following rules are observed: For di,, di,, and dy;, the value for any 6 is
the negative of the value for (8 + 180°). For d,, di,, and dj; the ordinate
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for any 8 is the same as for (§ + 180°). For the remaining constants one

finds, for any given 4,

d};, twice the value of di; for (90° £ 6)
dy = —dip = dy, = ~diy dee =0
dys = 24}, dys = 2d,

d,, and d},, same a8 di, for (00° + 6)
d};, same as dj; for (90° % @)

d}s, same as d;, for (90° + 6)

dis, same as di, for (90° £ 6)
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Other Crystals in Class 18. Veen®®® measured d;; for the following
crystals in this class:

Benzil, CicH1o0s. . ..o e it e e 24107
Patchouli ¢camphor, CouHasO. ... ... L 0.14(10%)
Rubidium tartrate, szC|H(O| .......................... 8(10"’)

163. Class 19, Trigonal Ditrigonal Polar (Hemimorphic Hemihedral)
(symmetry Cy). The most important example is tourmaline. Crystals
in this class are pyroelectrie, the Z-axis being the polar axis. Table XVI
shows that there are eight piezoelectric constants, with four independent
values egs, €s2, €31, and eys:

-X, = 821Ey + enE, = “EzzEy + es B,

=Yy = enB, + enkE. = enl, + enk, (233)
_Zs = GSBEI _Yl = ezaEy = elﬁEu

—Z,; = exE; "Xv = e1gB; = —enk.

The large number of constants offers & wide sclection in the manner
of producing a desired deformation and in exciting the various vibrational
modes. Nevertheless, owing to the high cost of large specimens, the
only effect that has hitherto been put to practical use is the longitudinal
effect parallel to the Z-axis, since in this case only a small amount of
crystal material is required.

164. Piezoelectric Constants, Class 19, for Rotated Axes. All the
transformed constants can be derived by the methods described in §134.
Only a few of the results need be given here.

For a Z’'-axis in any direction, with direction cosines vy, vy, 73, the
constant for the longitudinal effect is

dis = ¥s(¥? + v (dss + dus) + valvi — 3D + vidas (234)

When expressed in terms of the colatitude @ and azimuth ¢, as in
Fig, 17, Eq. (234) becomes

di. = (da1 + dis) cos 0 gin? § — das sin® @ sin 3¢ + di cos® 8 (234a)

From this equation, for any erystal in this class a three-dimensional
model could be constructed, the surface of which would be the surface
of the third degree mentioned in §136. We shall consider only the
intersections of this surface with the three principal planes.

For pressures in the Y Z-plane, ¢ = 90°, and we have from Eq. (234a)

dys = s¥daz + c¥dss + c82{ds + dis) {235)

where ¢ = cos & and s = sin 6.
For pressures in the ZX-plane, ¢ = 0, whence

d'u = eidyy 4 es*(dn + du) (235&)
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If the pressure is in the X ¥-plane, 8 = 90°, so that
2 = — 5in Spds (235b)

Equations (235) and (235a) are shown graphically in Fig. 46.* It
will be observed that Eqgs. (235) and (235a) differ only in the term con-
taining ds., and this constant is so small that curves (o) and (b) in Fig. 46
are nearly alike. The presence of di2 makes curve (a) slightly unsym-
metrical, with a short segment below the ¥-axis,

In interpreting Fig. 48(a) it must be remembered that, since Z} is a
tensor, the polarization P; produced by Z; at any 6 has the samesign as
at 0 + 180°; that the Z’-axis is positive in the direction outward from the
\Z

a z

X

(a) ®)
F1e. 48.—Longitudinal piezoelactric effect for crystals of Class 19 (€5,). Radius vectors .
aré proportional 10 d's;.

origin O at any 8; and that P/ is positive when in the direction of +2Z’,
It thus becomes elear that Fig. 46(a) gives a complete picture of dj;, and
hence of P, = —dgZl, for all possible directions of pressure in the
¥ Z-plane and that {(for tourmaline) the positive direction of P} is always
loward the origin. Similar remarks are applicable to (b) and to the
diagram for the X ¥-plane.

The entire piezoelectric surface of tourmaline, of which Fig. 46 shows
two of the principal sections, would look like & slightly unsymmetrical
apple standing on its calyx end. Grouped around the calyx end would be
three very small bulges, with depressions between.

* The curves in this figure are based on Voigt’s diagrams for tourmaline. In order
to emphasize the asymmetry, the effects of the dsrterms have been purposely exag-
gerated by the author; hence the curves are only qualitatively eorrect. For other
crystals of this class, with constants of different signs and relative magnitudes, (a}
gnd (3) might present a quite different appearance. The diagram for the X ¥-plane
would always consist of threc lobes, like those for quartz (Fig. 43), but with the X-
and ¥Y-axes interchanged. The radius vectors in the X ¥-plane depend on dj; alone;
owing to the smallness of this constant, the diagram (for tourmaline) would be very
much smaller than {(a) and (b).
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165. Tourmaline. This crystal has already been briefly described
in §13.

In measuring the piezoelectric constants, Riecke and Voigt*%® applied
pressures in various directions to plates whose edges were parallel to the
X-, Y-, and Z-axes and also to plates having one edge parallel to X, the
other edges of the parallelepiped being at +45° to Z. They used
Brazilian tourmaline, as did also Réntgen,**® who made & similar deter-
mination some years later. Different specimens yielded values differing
by about 2 per cent. Réntgen's measurements, as i3 admitted by
Voigt,* are probably the more accurate.

Riecks and Voigt: Rdntgen

B X 1078 X 1078

dis 11.0 ——

du —0.69 —0.94

dn 0.74 0.9%
dra 5.8 5.4

Other observers have measured only dza. Nachtikal®®® found
dy; = 5.6(10%)
at small pressures, while at larger pressures he stated that
dsy = 5.60(10~%) + 1.77(10-%)Z,,

where Z, is in dynes per square centimeter. Not much importance can
be attached to this observation of the effect of pressure, in view of the
work of Keys,® who found dss to be only 5.4(10-%) at 100 atm pressure.
Veen® found an average of dys == 5.3(10~%) for different erystals, and
Fox and Fink!*? an average of 5.1(107%}; a recent measurement on black
California tourmaline by R. C. Cook* gives dss = 4.8(10-%). Consid-
eting the variability in the composition of tourmaline, these differences
are not surprising. For good erystals, there are probably no better data
at present than those of Rontgen.

In the paper referred to above, Cook also deseribes a determination
of the quantity {da + dsz + das) = (2ds1 + daz), which by FEq. (193)
is the coefficient in the expression for the polarization produced by
hydrostatic pressure. The messurement was made by a dynamic
method on a black California tourmaline, the hydrostatic pressure being
due to acoustic waves in the air surrounding the erystal. The resulting
value for (2ds + diss) was 6.7(10-%), in fair agreement with 7.3(10-%)

* . C. Coox, Bur. Standards Jour. Research, vol. 25, pp. 489-505, 1940.
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calculated from the data of Riecke and Voigt and 8.0(10-%) from Koch’s
observations.* Both Koch and Riecke and Voigt used green Brazilian
tourmaline.

Keys, in the paper cited above, also computed the pyroelectric polar~
ization due to adiabatic heating of the tourmaline crystal when hydro-
static pressure was suddenly applied and found it to be only ydv of the
piezoelectric polarization.

The coefficient ds; was found by Lissanert to be constant within 2 per
cent over a temperature range from +19 to —192°C.

166. Piezoelectric Stress Constants of Tourmaline. By spplying
Eq. (191) to tourmaline, with ¢ taken from Table X111 and d.,; from the
values of Riecke and Voigt above, we find}

g5 = d1sCas — 2dp0yy = +740(10‘)
ey = dzz(Cu - 612) —_ dlﬂﬂu = ""053(104)
€y = ds:(cu + Cu) + dascrs = +3-09(104)
ez = 2dgyicn + daseas = +9.60(104)

1687. Lithium Trisodium Molybdate. Veen®* found this crystal quite
strongly piezoelectric: dy; = 14(10-%),

168, Class 24, Hexagonal Holoaxial (Enantiomorphous Hemihedral)
(symmetry D). Not pyroelectric. There is only one independent
piezoelectric constant, diw = —das, 88 in Class 12. The absence of a
longitudinal effect in any direction for this class has already been men-
tioned under Clags 12 (§147).

The piezoelectric cquations are

—Y. = 614E= ‘““Z,, = EzaEv = -—-euE’,

The only representative of this class that need be considered is
B-quartz. The transition of quartz from the alpha to the beta form at
573°C has been discussed in §14. The atomic structure is treated in
Chap. XXXI.

The erronecous statement has sometimes been made that g-quartz
is not piezoelectric. Still, the fact that g-quartz belongs to this class is
enough to make it certain that shears in the YZ- and ZX-planes can be
produced piezoelectrically, provided that ey, is sufficiently large to give an
observable effect.

The effect has been observed by Osterberg and Cookson,'®* who
suceeeded in making resonators of S-quartz vibrate from the transition

* P. P. Koca, Ann. Physik, vol. 19, pp. 567-586, 1906,
t Voiar, p. B66.
$ “Lehrbuch,” p. 870,



§1701 PIBZOELECTRIC PROPERTIES OF CERTAIN CRYSTALS 229

temperature to 847°C. DBoth X-cut and Y-cut plates were made to
vibrate plezoelectrically, in y,- and z,-modes, respectively.

Lawson®? observed the piezoelectric effect in S-quartz qualitatively
by the powder method (§172). He also made use of the effect in his
determination of the elastic constant sys, described in §§92 and 101.

No measurements of the magnitude of di for p-quartz have been
published.

169. Class 28, Cubic Tesseral Polar (Tetartohedral) (symmetry 7).
Not pyroelectric. There are three piezoelectric constants, all of the
shear type and of the same numerical value,

—Y, = enk; —-Z; = GzaEy = 81AEV _Xv = egel, = ey,

The equations for rotated axes are the same as for Class 6.

Mention need be made here only of sodium chlorate, NaClQs, the
optical and piezoelectric properties of which were investigated by
Pockels.4?® His mesasurements gave

du = —4.8(1079)

170. Class 31, Cubic Ditesseral Polar (Hemimorphic Hemihedral)
{symmetry T';). Crystals in this class have no primary pyroelectricity,
but strong secondary effecte have been reported for boracite. The
piezoelectric constants are the same as for Class 28.

Zine blende, ZnS, is one of the forms of zine sulphide, known also as
sphalerite. Another form, wurtzile, belongs to Class 26 (see §522).

Two measurements of dy, for zinc blende have been made. The first
was by Veen, 8 who measured df, for compression in a direction normal
to (111}, that is, making equal angles with all three axes. His average
value for two specimens was —4.75(10-%). From Eq. (206) one finds
diy = —8.24(10-%). From the fact that his dy, for quartz recorded in
the same paper (see Table XVII) was very low, it seems probable that
his value of di4 for zine blende is also too small. The negative sign has
been verified by Coster, Knol, and Prins,' who also showed that the
polarity of the axis normal to (111) was indicated by differences in the
X-ray reflections at the opposite ends of this axis.

The second measurement of dis was by Knol,?%? who found the value
—0.8(10~%), Laying greater weight on this value we adopt for zine
blende

du = - 9.7(10_8)

From this value, together with the elastic constant c.s from §102, we
find by the use of Eq. (191)

e = dutu = —4.2(10‘)
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Zine blende has the distinction of being the first erystal for which a
value of &4 was predicted from the lattice theory (§546). Bom calculated
e1s = —2.3(10%}, about five times the observed value; to have arrived
at the same order of magnitude at all was an achievement.

Ammontum chloride, NH,Cl, which was known to have an anomaly
in the specific heat at —30.5°C, was found by Bahrs and Eng!'® to become
piezoelectric when the temperature was lowered to this point, the full
value of dyy = 0.337(10%) being attained at —32.5°C.

171, Boracite, B1030C1: Mg, is one of the crystals in which piezo-
electricity was first observed by the Curie brothers. No quahtitative
measurements of dy, seem to have been made.

The erystal boracite is usually assigned to the present class, Ty. In
fact, it has sometimes been given as the typical example of the class,
However, optical and pyroelectric investigation have revesled that
boracite crystals at ordinary temperatures really consist of rhombic
domains (Class Cs,)* with the polar axes parallel to any one of the four
space-diagonals of the umit cube of the apparent cubic symmetry.
Above 275°C the crystal is truly cubic. The indication is that all
apparently cubie crystals of boracite have developed above the tempera-
ture of 275°C. The analogy to the strietly hexagonal habit of quartz
erystals grown above 573°C is obvious.

The elastic and dielectric properties of boracite do not seem to have
been investigated hitherto. The transition from a pyroelectric to a non-
pyroelectric class at 275°C leads one to suspect the possibility of Seignette-
electric properties (§471). The preliminary search for such properties,
now to be described, has given negative resulfs.

Six horacite crystals, ali from S8ehnde near Hanover in Germany, were studied in
thig laboratory in 1937.1 The crystals showed the ecubic dodecahedron with an indica-
tion of one of the tetrahedra that reveal the symmetry T3, ‘Three of the crystals
were clear and free of any but minor surface intergrowth. The distance between
opposite dodecahedron faces was 5.1 mm in the smallest and 7.2 mm in the Iargest
crystal.

A plate was cut from one of the erystals with its major faces perpendicular to a
cube diagonal, and the dielectric constant of this plate determined as a function of
temperature from room temperature up to 315°C. The expectation of finding a
dielectric anomaly near the transformation point (275°C) was not fulfilled. The
dielectric constant was found to be about 6 at room temperature with an average
temperature coefficient, of +40.10 per cent per degree centigrade without any irregu-
larity near the transformation point. Ii did not seem necessary to repeat the experi-
ment on plates of different orientation, sinee, above the transformation point, the
erystal is truly cubic and should have the same dielectrie constant in all directions.

* GroTH B3, gee also the papers by Mehmel, Z. Krisi., vol. 87, pp. 239-263, vol. 88,
pp. 1-25, 1934
t These observations were made by Dr. H. Jaffe.
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The clear crystalg in an uncut state werc submitted to the *“click’ test for piezo-
electric resonances (§308). The “spectrum” of frequencies, in kilocycles per second,
for & crystal with a distance of 5.1 mm between opposite dodecahedron faces was as
follows: 841, strong; 1,050, several, weak; 1,358, strong; 1,442, strong; 1,670, several;
also 2,630 and other responses at higher frequencies. Change of orientation produced
only minor changes in the frequencies and some shift of relative intensity, The other
erystals gave very similar spectra, with the individual frequencies shifted inversely
proportional to the linear dimensions. If we regard the lowest strong resonance,
841 ke, as a fundamental resonance related to the thickness of the crystal, we obtain
a frequency constant of 4,250 ke'mm. The same value %1 per cent was found with
the other two crystals studied. From this value and the thickness of the crystal the
velocity of wave propagation is found to be around 8.5{10%em /sec, indicating an
clastic stiffness even greater than that of gquartz.

1t is unfortunate that clear erystals of boracite, larger than those described above,
are very rare.

172. Piezoelectric Investigations of Other Crystals. One of the
author’'s earliest observations on resonating crystals, in 1919, was that
of the click heard in a telephone receiver in an oscillating circuit of
variable frequency to which the crystal electrodes were connected,
whenever the frequency was tuned through a natural frequency of the
crystal.®® In these experiments it was found that clicks were heard
even when a small irregular fragment of quartz, of unknown orientation,
was placed between the electrodes. This click method (§308) was later
developed by Giebe and Scheibe!® into the “powder method” for
detecting piezoelectric properties in a large number of crystals of differ-
ent kinds. By using an oscillating circuit of sufficiently high variable
frequency, they were able to secure responses when very small granular
fragments of the erystals were placed between the electrodes.*

The wide applicability and simplicity of the powder method gave
great impetus to the search for piezoeleetric properties. Whenever
resonant responses are obtained, it can reasonably be assumed that the
crystal is piezoelectrie. Negative results may indicate that the crystal
in question belongs in a non-piezoelectric class; on the other hand, they
may be due to too great conduetivity of the crystal, to excessive damping,
or to the fact that piezoelectric properties, though present, are too weak
to be detectable. 'These uncertainties are doubtless responsible for most
of the discrepancies among the results of different observers. The
method of Giche and Scheibe has become of great value, on the one hand
for identifying the piezoelectric property in crystals already supposed
to belong to piezoelectric classes and for determining whether it is
“gtrong” or ‘‘weak,” and on the other hand, within limits, for determin-
ing the class to which a given crystal should be assigned; for example, the
existence of the piezoelectric property is & sure sign that a erystal hes no

* For a diseussion of apparatus and circuits see Scheibe B48



232 PIEZOELECTRICITY [§172

center of symmetry. The method has also been used to throw light
on the relation of piezoelectric properties to chemical constitution and
on the structural changes that take place at certain transitional tempera-
tures; for example, Hettich?*! found evidence of such transitional effects
with camphor, potassium iodate, and pentaerythritol. The last-named
erystal has been the object of much discussion, but it now seems clear
that it belongs in Class 14.*

Mention may also be made of iodyrite (silver iodide, Agl), which at
ordinary temperatures belongs in Class 26 (hexagonal, C4,); it becomes
cubie around 145°C and is also eubic “at low temperatures.”’t* Up to
145° it has a megative coeficient of expansion. In spite of the fact that
it is & semiconductor, Hettich and Steinmetz recorded s strong response
by the method of Giebe and Scheibe.

The class to which topaz iz usually assigned is not piezoelectric.
Yet Alston and West] have reported traces of piezoelectricity in this
erystal.

By the methods mentioned above the different kinds of crystals exam-
ined for piezoelectric effects are now numbered in the hundreds, including
many organic substances. A few examples have been mentioned in
previous paragraphs. A complete list would be of little value with-
out the accompanying discussion, for which reference must be made
to the original papers,§ to the book by Scheibe®® to various hand-
books Bl9B20.854 and to the “International Critical Tables,”|| in which
references to the literature are given.

The most recent addition to the list of piezoelectric erystals is that of
Bond,* who used the péwder method for testing several hundred differ-
ent minerals. Among those with which he obtained positive results, the

*8ee H. Mark and X, WussowsErae, Z. Krist, vol. 65, p. 499, 1927, and Z.
Physik., vol. 47, p. 301, 1928; H. Seirerr, Berl. Ber., vol. 34, pp. 280-203, 1927;
A. Scrreeps and A. HeTricn, Z. enorg. aligem. Chem., vol. 172, pp. 121-128, 1928
{etch figures on pentaerythritol crystala are shown in this paper); A, Herreon, 1,
and W. A. Wooster, Z. Krist,, vol, 74, Referatenteil, p. 105, 1930,

 Grori B2

1 N. A, Arstow and J. Wesr, Proc. Roy. Soc. (London) (4), vol. 121, pp. 358-267,
1028; see also WoosTex, ref. B56, p. 230.

§ Among the various investigations, in many of which use was made of the powder
method, are the following: E. Giees and A. Sonpiee;!¥ A, Herricn;®*.22 A, HeTTICH
and A. ScyLEEDE;#2.224 A HerricH and H. StemwveTrz, Z. Phyetk, vol. 76, pp. 688-706,
1932; 8. B. Euwos and P, Terestra, Z. Krist, vol. 07, pp. 279-284, 1928;
W. ScuNEIDER, Z. Physik, vol. 51, pp. 263-267, 1928; E.. Herrew and K. ScHNEIDER,
Z. physik. Chem. (B}, vol. 12, pp. 140-150, 1931; G. GaEenwoop and D. ToMBoULIAN,
Z. Krist., vol. 81, pp. 30-37, 1832; G. Greenwoop, Z. Krisi., vol. 91, pp. 235~
242, 1035; H. Sewrsrr, Z. Krist., vol. 81, pp. 306-468, 1932; W. A, WoosTER, Z.
Krist., vol. 74, Referatenteil, p. 105, 1930; A, L. W. E. vAN DER VEEN, thesis, Delft,
1911; R. Loucas, Compt. rend., vol. 178, p. 1890, 1924,

Il Vol. 8, p. 209, 1929,
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following do not appear to have been recorded hitherto as responding
piezoelectrically, although some are known to be pyroelectric: clino-
hedrite, cronstedtite, edingtonite, epistilbite, epsomite, langbeinite,
leucophanite, meliphanite, shortite, stibiotantalite, struvite, tieman-
nite, wurtzite, and zunyite, Bond recorded negative results with
iodyrite, which had been reported by Greenwood and Tomboulian (foot-
note, page 232) as active; and, contrary to the observations of Hettich
and Steinmetz and of Greenwood and Tomboulian, he found scolecite
to be active.

173. Somewhat similar to the method deseribed in §185, in which the
direct effect is used for the testing of small crystal fragments, is that of
Bergmann:5? a pericdic pressure at audio frequency is impressed upon &
single fragment or on a collection of fragments. The pressure is derived
from the stem of a tuning fork, either struck or electrically driven.
Electrodes placed above and below the erystal specimens are connected
to an amplifier, Observations on single fragments make a rough deter-
mination of the piezoelectric axes possible.

Still another variant of the powder methed is deseribed by Engl and
Leventer.’? Small crystal grains, screened to approximately the same
gize, were immersed in benzene in a small glass “calorimeter” with a
capillary tube in which the rise in height of the liquid indicated & rise in
temperature. An electric field of variable high frequency was impressed,
which caused a slight incresse in temperature when the grains vibrated in
resonance. The results are claimed to be of greater quantitative value
than those by the usual powder method.

174. Piezo- and Pyroelectric Effects from Non-crystals. A short
account will now be given of certain investigations with substances
which are commonly considered amorphous or which at least do not have
the structure of homogencous crystals, References, indicated by num-
bers in brackets, will be found at the end of this chapter.

Electrets. It was Heaviside who first suggested this term for materials
having a permanent electrie polarization, by analogy with “magnets.”
The word is now generally applied to certain waxes, solidified while
in a strong electric field (usually several thousand volts per centimeter),
the properties of which were first discovered by Eguchi.l¥! The material
is usually a mixture of carnauba wax and resin, sometimes with the
addition of beeswax. The preparations are usually in the form of flat
plates, having a permanent polarization in the direction of the thickness.
Unlike pyroelectric crystals, in which the permanent polarization is
normally screened by compensating charges on the surface, the electret
has uncompensated positive and negative surface charges on its opposite
faces that give rise to an external field persisting for years. If the charges
are annulled by short-circuited electrodes, recovery fakes place some
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hours after the removal of the electrodes. In a very moist atmosphere
the external field due to the electret is diminished, but it recovers in dry
air. The full charge density is of the order of 10 esu/cm?.  This is twice
as great as ean be produced by friction on hard rubber.[¢]

Uniform heating or ceoling causes a change in the polarization and
hence in the surface charges. This is a pyroelectric effect, the polariza-
tion in general becoming weaker with increasing temperature.[!  For the
effect of hydrostatic pressure, see ref. [14].

A piezoclectric effect has also been reported.") upon transverse pres-
sure or extension, a change takes place in the surface charges, dependent
on the sign of the atress. The order of magnitude of the effect is the same
as with erystals.l?]

X-ray studies of the structure of electrets have been made by Brain,®
Fwing,[® and Good and Stranathan.!®

The most commonly accepted theory of electrets is that molecular
dipoles in the molten wax become oriented by the electric field and hold
their parallel orientation after the wax sets. The experiments of Thies-~
sen, Winkel, and Herrmann,['8! however, indicate that the polarization
may be a space-charge effect due to the wandering of ions before solidifi-
cation of the wax. A serious problem is the explanation of the persistence
of an external field in spite of leakage and of ions in the surrounding air,
Adams!! suggested that this effect may be due to very slow decay in the
polarization. On reasonable assumptions he found that the presence of
uncompenssated surface charges and their recovery after removal eould
be accounted for if the decay amounted to only 1 per cent in a year,

Applications of Electrets, Gemant!}8 mentions possible applications
to electrometers and as a bias for the grids of clectron tubes. Nishikawa
and Nukiyamal't describe the use of an electret in a condenser transmitter.

176, Other “ Piezoelectric” Effects from Non-crystalline Materials.
Several observersi®:112:[t8 have noted that mechanical pressure causes
the appearance of electric charges on the surfaces of rubber,* paraffin,
glass, and other materials, including even wood. Considering the
erratic and qualitative character of most of this testimony and the
likelihood that the results were due largely to contact potentials, such
observations should not be taken too seriously as indieating anything
that can properly be called a piezoslectric effect. One reads even of
“muscular plegoelectricity,” with the suggestion that the closing of the
gensitive plant!¥ and the activity of the electric eell¥ may be manifosta-
tions of piezoelectricity!

It has been stated by Meissner and Bechmannt that electrets possess-

* A microphone made from frozen rubber is described by E. Getlash in U. 8. patent
2,231,159,
1 Bee footnote *, p. 216.
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ing marked piezoelectric and pyroeleciric properties can be made by
impregnating a wax (especially asphaltum) with powdered quartz and
letting it harden while in a strong electric field. Whatever eontribution
the quartz made to the pyroelectric effect in their experiments must
have been due to a temperature gradient. As for the piezoelectric effect,
these authors found that the presence of the guartz powder rendered
the electrets more permanent rather than more responsive to pressure,
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CHAPTER X

PRODUCTION AND MEASUREMENT OF
PIEZOELECTRIC EFFECTS

Es beruht also auch die durch Druckdnderungen erzeugte FElekirizildt duf einem
besonderen Vorgange, und ich habe siec deshalb als Plezoelektrizitdf unterschieden.
—HANEKRL.

The last two chapters have dealt with the general phenomena of
piezoelectricity. The basic equations and their specialization to some
of the crystal classes have been given, as well as the numerieal values of
piezoelectric constants.

We shall attempt in the present chapter to outline certain practical
considerations that may he of service to the experimenter, in the selection
and orientation of specimens and in the arrangement of electrodes,
for the production of piezoclectric dcformations of any desired type.
Although experimental details are outside the scope of this book, meth-
ods of measurement and qualitative testing are briefly treated at the
end of the chapter.

176. Orientation of Specimens and Location of Electrodes for Pro-
ducing Piezoelectric Deformations, The rules that will now be given
are stated from the point of view of the converse effect, whereby a
deformation is produced by applying an electric field to the crystal.
Whatever arrangement is effective for the converse effect is also equally
advantageous for the direct effect.

The deformations fall into two groups, resonant and non-resonant,
which require somewhat separate treatment, although the basic principles
are identical. In either case, when the kind of erystal, type of deforma-
tion, and size and shape of specimen have been chosen, the first consider-
ation is the orientation of the specimen with respect to the crystal axes,
i.e., the manner in which the specimen is to be cut from the available
parent crystal. The decision often depends on the size of the given
erystal, as well as on the available piezcelectric coefficients and on the
desirability of selecting a mode of excitation that permits the use of
electrodes spaced only a short distance apart, in order to produce as
strong a field as possible with a given voltage.

Usually the first step is to seek, in the table of piezoelectric coefficients
for the particular class (§131), a coefficient dj: such that a field Ey will

produce the desired strain z: (k = 1 to 6, Fig. 40). Oiten one must
238
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resort to oblique cuts, using the formulas for rotated axes given in §134
and elsewhere,

Non-resonant deformations include static deformations and alse those
vibrational devices in which the frequency is so far below the resonant
frequency of the specinien that the deformation is essentially the same
ag in the static ease. In simple extensions and shears, the strains are
go nearly uniform that they are most effectively produced by applying
electric fields that are uniform throughout the specimen, by the use of
electrodes that completely cover the faces normal to the field.

Resonant Deformations. For exciting vibrations in any desired mode,
the orientation of the specimen and direction of field are governed for
the most part by the same rules as those for non-resonant deformations.

Except for the purpose of generating ultrasonic acoustic waves or of
studying vibrational modes, piezoelectric resonators are designed for
producing certain electric reactions on the cireuif in which they are placed.
They function then purely as circuit elements, and the mode of vibration
is important only insofar as it affects the problem of mounting the
crystal in such a way as to secure the least frictional damping. Never-
theless, it 8 always true that the amount of reaction on the circuit is
proportional to the amplitude of vibration. Hence, in most cases
maximum effectiveness is secured when the electrodes cover as much as
possible of the area of the erystal. In general, the field is most effective
at an antinode of strain (node of vibrational motion).

For experimental rescarch and for other special purposes, although
not often in practical applications, very small electrodes are sometimes
used, eovering only a small portion of the erystal swface, In fact, if
full-sized electrodes are not used it is better to make them as small as
possible, for this reason: As has already been stated in §64, the elastic
stiffness is not the same in the region between electrodes as in the region
outside, a fact which complicates the relation between observed and
calculated frequencies unless the electrodes are so small—or else so
remote from the crystal—that the stiffness is essentially the same as
that of an electrodeless erystal.

In general, it may be said that any electrie ficld of suitable frequency,
of large or small extent, uniform or not (unless it happens to cause, in
different regions, piezoelectric stresscs that cancel one another), will
excite vibrations if there is a dy; relating a component Ej of the field to a
strain 2 characteristic of or bound by coupling to a possible vibrational
mode. The actual distribution of vibrational stresses and strains in all
cases is essentially that which i typically associated with the vibrational
mode, irrespective of the region where the field is applied.

177. Compressional Straing. These call for piezoelectric constants
of type L or T (Fig. 40); both types, of forms di and dy (hand & = 1, 2,
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or 3), are found in 12 classes of erystals; Class 14 has two constants of
type T but none of type L. Thus with 13 classes thefe is at least one
crystallographic axis parallel to which a field can be applied so as to
produce an extension at right angles to the field (transverse effeet), and
in all but one of these classes the same field produces also an extension
{+ or —) parallel to the field (longitudinal effect). Each of the remain-
ing seven piezoelectric classes has at least one constant of type L,; with
all, a transverse extensional effect (T-effect with transformed axes)
can be realized on application of an obligue field; with all but two (Classes
12 and 24, §147), the longitudinal effect can also be thus realized. The
corresponding constants are found by means of the transformation
formulas; examples will be found in §§184 and 139.*

Compressional vibrations can be produced with the field parallel
to the vibrational direction (L-effect), or perpendicular to it (T-effect).
The first of these arrangements is used for obtaining thickness vibrations
in plates of relatively large area, with electrodes covering the entire
major surfaces. It can also be used for generating lengthwise vibrations
in plates or rods, but it ig inefficient for this purpose owing to the large
separation between electrodes. For lengthwise vibrations it is customary
to use the T-effect, with the field parallel to the thickness of the specimen.
With either manner of exeiting lengthwise vibrations, overtone frequen-
cies a8 well as the fundamental can be produced; but here again the
T-effect is to be preferred, since the length of the electrodes can then be
made to fit the desired overtone. The latter type of excitation is
illustrated in Fig. 53.

Sometimes it is desired to excite compressional vibrations in crystals
such as Rochelle salt, which have neither an L-effect nor a T-effect with
respect to the crystallographic axes. In such cases, a8 has been stated
above, various obligue euts may be used, so oriented that with respect
to the transformed axes the original L. or T,-shearing effects give rise
to longitudinal or transverse compressional effects. The applieation of
this principle is made in §139 and elsewhere.

178. Shearing Strains. Shearing strains can be produced piezo-
electrically by the L,effect (Fig. 40), with field paralle! to the axis of
shear, or by the Teffect, with field parallel to the plane of shear.

Thirteen classes have at least one L,-coefficient with respect to the
erystallographic axes; for the remainder, an L.-effect can he secured by
rotating the axial system about one of the axes, except in Classes 9 and 26.

So far as mechanical effects are concerned, shearing strains are useful
chiefly for producing flexure and torsion iIn elongated crystal plates.

* It will be recalled from §27 that an extension can always be regarded as a com-

bination of two shears, and vice versa. Whether a piezoelectric deformation is repre-
sented in one way or the other is a matter of convenience.
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Examples are considered in §§354, 356, and 380. Among piezoelectric
resonators (Chap. XVII) those of the shear type are now of the greatest
importance.

179. Flexural Strains., It has been shown in §34 that the chief
elastic characteristics are a compression in one half of the specimen
(usually a plate or bar), an extension in the other half, and shearing
stresses in the plane of flexure. These features are shown in Fig. 47, in
which the plane of the diagram is the plane of flexure and also the plane
of shear. Flexure can be produced piezoelectrically by means of either
(1) compressional stresses in the I-direction, applied to the upper or the
lower portion of the plate (or to both, if one of the stresses is compressional
and the other extensional); or (2) two opposite shearing stresses applied
to the right and left halves of the plate shown in Fig. 47, the axes cor-
responding to the shear being parallel to [ and e.  If we assume that the
compressional strain, with respeet to the erystal axes, is of type 2 and

Fig. 47 —Plate in a state of flexure.

that the shear is of type ., then it is clear that flexure can be produced
by a field having a component in the direction A, if the piezoelectric
constant di or di; differs from zero. .

Non-resonant applications of flezure have to do chiefly with the con-
version of electrical impulses or I-f eurrents into mechanical movements,
or vice versa. Much greater movements are thus obtainable than by
the simple compressional effects. For this purpose, instead of producing
flexure piezoelectrically in a single plate, it is usually found more effective
to use a double plate of the type first introduced by the Curie brothers
{§122). The two thin crystal slabs are so oriented and the field in each
is so disposed that one slab becomes elongated while the other contracts,
thus meeting the requirements stated above for the production of flexure.
This device, called a ‘““bimorph,” now consists usually of two plates of
Rochelle salt and is described in §503.

Flezural Resonators. The flexural-vibration frequencies of thin plates
are far lower than those ordinarily obtainable by compressional or shear-
ing modes. Many different types of flexural resonators have been investi-
gated, of both quartz and Rochelle salt, and some have found practical
application in piezo oscillators of relatively low frequency and in the
production of acoustic waves (§3965).
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Flexural vibrations in quartz and Roehelle salt are treated in Chaps.
XVII and XVIII. The theory of these vibrations iz eonsidered in §73.

180. Torsional Strains. As we have seen in §35, when a solid is in a
state of torsion, the particles are displaced in planes normal to the axis
of torque, and shearing strains are set up; the plane of shear (Fig. 13)
at any point contains a line parallel to the axis of torque and the line
along which the particle maves; it is not the plane normal to the axis,
These two directions correspond to the axes of shear (§27). Since the
material iz sheared in opposite senses on opposite sides of the axis of
torsion, it is evident that, if a single piece of crystal is to be brought
piezoelectrically into a state of torque, the eleetric field producing the
shears must have opposite directions on these two gides; at least, the
field must not have the same direction and magnitude in both regions.
For piezoelectric excitation of torsion it is therefore necessary to choose
such a du that a field E, in the proper direction will produce the requisite
shearing strain z.. The desired end cannot be attained if Es is uniform
throughout the crystal or if it is directed uniformly through the specimen
in a direction normal to the axis of torsiop.

This difficulty ean be overcome in various ways. One method,
applicable at least to quartz and mentioned in §356, is to use a specimen
in the form of a hollow circular cylinder with cylindrical electrodes
inside and outside, so that the field is radial. Another expedient,
described in §356, is to apply oppositely directed fields to different
portions of the specimen.

A third method, which finds practical application in the Rochelle-salt
“twisters,” makes use of two elongated flat plates cemented together
with a common electrode of metal foil between (§503). The polarities
of the plates are both in the same direction; but since the electric fields
are in opposite directions, two opposing shears are produced, which result
in a torsion of the combination.

This third method is used in various I-f devices; the other two methods
bave been employed both statically and for resonant vibrations. As will
be seen in Chap. XVII, it is possible by suitable placing of electrodes to
excite avertone torsional vibrations as well as the fundamental mode.
The equations for torsional deformations and vibrations are given in
§§35 and 74.

181, Special Forms of Vibrating Devices, In addition to the crystal
plates, rods, and cylinders mentioned above, other forms have been
made to vibrate piezoelectrically. They include spheres (§360), tuning
forks (§385), and saucerlike shapes (§508).

The use of obliquely cut plates for special purposes has already been
referred to in §560. It need only be added at this point that the decrease
in the piezoelectric effect which often accompanies the use of oblique
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fields is much more than eompensated by the advantages offered by such
cuts. Moreover, the low decrements that can be attained by suitable
mounting of specimens, especially in the case of quartz, is of greater
importance in resonators than an especially large piezoelectric effect.

182, Disturbing Effects in Crystal Eesonators. At certain frequencies,
compressional, shearing, flexyral, and torsional vibrations, in fundamental
or overtone modes, singly or in combination, may be pregent in specimens
of almost any shape. For the production of any one type of vibration
it is by no means necessary that the electrodes be placed for most efficient
excitation. If the driving current is of the proper frequency, a siray
component of alternating field is likely to be present somewhere in
the specimen in such a direction as to cause a mechanical stress of the
type necessary to excite vibrations of any of the four types. Moreover,
through the presence of elastic eross constants (§32), purely mechanical
coupling effects exist between different types of vibration, so that modes
may occur that are not directly excited by piezoelectric action. An
example of such indirectly excited modes is the compressional vibrations
parallel to the Z-axis in quartz (§348).

Considering the multiplicity of possible vibrational modes, the variety
of ways in which they can be excited, and the fact that close coupling
between modes can affect the vibrations over a considerable range of
frequency, it i3 no wonder that very complicated vibrational patterns
have so often been observed by means of dust figures or otherwise and
that the frequency spectrum of & resonator is 80 complicated.

We leave this subject with two words of admonition to all who
attempt to identify vibrational modes in crystals. TFirst, when the
erystal is connected as a resonator, it is very important that the tube
generating circuit be so well filtered that only a voltage of a single fre-
queney is impressed on the crystal. Second, it is generally rash to assume
that a particular mode is presenf because a resonant frequency of the
right value has been observed. It is always desirable, and usually not
difficult, to locate the nodal regions by one or more of the methods
described in §§366 to 368 and thus to determine the mode in which the
crystal is vibrating and whether other modes are also present. In no
branch of crystal experimentation is self-criticism & more important
virtue than here,

183. The Measurement of Piezoelectric Constants. In §75 it is
stated that elastic constants can be measured by either a static or a
dynamic method. The same is true of the measurement of piezoelectric
constants, but there is a wider range of methods. For whereas in elas-
ticily thete are only mechanical stresses to be applied, in piezoelectricity
observations can be made by applying either a mechanical stress (direct
effect) or an electric stress (converse effect). For most crystals, with the



242 PIEZOELECTRICITY f§184

exception of quartz and Rochelle salt, the values were obtained only
by the static direct effect, yielding the piezoelectric strain coefficients
die.  As will be seen in Chap. XXI, the constant dy4 of Rochelle salt
has been observed both statically and in a 1 alternating electric field
by the converse effect. In Chaps. XV and XVIII we shall consider the
derivation of the piezoelectric constants of quartz and Rochelle salt from
observations on resonators, which involve a combination of the direct
and converse effects, and sometimes yield ey rather than du.

It is beyond the scope of this book to go into detail concerning the
experimental methods of measuring the piezoelectric constants sthtically,
although certain precautions, which to a large extent are applicable to
all crystals, are pointed out in §§411 and 417. Theoretical details are
given in Voigt’s “Lehrbuch,” and excellent accounts of experimental
methods, with diagrams of apparatus, will be found in references B45
and B51. Measurements are made by the use of a ballistic galvanometer,
electrometer, or thermionic voltmeter or, for the converse effect, by
observing the deformation of the specimen. Those who undertake the
precise determination of piezoelectric constants would do well to examine
a3 many ag possible of the original papers from which the values given
below are derived.*

184. A word should be said, however, concerning the measurement
of dy4, das, and dss, since reference will be made to it later, especially
in connection with Rochelle salt. 1t is enough to consider dy,, since the
treatment of dg; and dy is exactly analogous. The constant di; oceurs
in equations of the type P, = —duY, or y. = dyuF,, which means that in
order to observe dis a shearing stress ¥, or an electric field E, must be
applied to an X-cut plate, the resulting P. or y, being observed. The
second of these equations was used by Sawyer and Tower, ** who observed
the strain y. directly; the spontaneous y; in Rochelle salt has been
observed by Mueller,>™

In the main the direct effect has been utilized, with P, = —d,Y,.
Owing to the difficulty in applying a simple shear to a crystal plate it is
customary to apply an endwise compression to & rectangular plate, the
length of which bisects the angle between the positive senses of the
Y- and Z-axes. If this direction is called ¥’ and the compressional stress
Y,, one can easily prove by simple geometry that P, = —dyY}/2.
This equation also follows from §39, where it was shown that for 45°
cuts ¥, = ¥;/2. The same result is also reached by expressing the
piezoelectric constant in terms of transformed axes ¥’ and Z’, these axes
resulting from a rotation of 45° about the X-axis. We then write

* The reader is referred especially to the paper by Liidy,* for measurements by
the direct effect. For the converse effect, various techniques are described in the
references mentioned in Chap. XXI (see also L. M. Myers’®5).
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P, = —d,Y, and find from Eqs. (203) that di; = dy+/2. This equation
for P, expresses the fransverse eﬁ'ect in & 45° X-cut plate.

Yf the direction of pressure is rotated 90° in the ¥ Z-plane, so that the
compression is parallel to the breadth of the plate, the equation is

diZ,
2

by Eg. (203). The sign of the shearing strain y, is thereby reversed.
For the same pressure the same value of P, results, but with reversed
sign.

This simple method for measuring d1., ds, and dig is not in general
-applicable with crystals having still other piezoelectric constants, since,
as may be seen from Egs. (196), such constants may cause a further
contribution to the polarization.

In all measurements of piezoelectric coefficients by application of a
stress X,, it is essential that the ¢rystal be free from all other mechanical
constraints. According to Eq. (188), any such constraint may con-
tribute to the value of P, and therefore to the observed dus.

When the strain coefficients d: for any crystal have been determined,
it i3 necessary to know the values of the elastic constants before the
exe can be calculated, and viee versa. Equations (192) and (192a) are
t0 be used for this purpose. If these equations are applied to rotated
axial systems, the primed values of clastic as well as of piezoelectric
constants must of course be employed.

For dynamic methods for the determination of piezoelectric constants
are §§310 following.

185. Qualitative Tests of Piezoelectric Specimens. 1In the methods
now to be described the direct piezoelectric effect is used. The specimen
is subjected to compression, which may be either static or of low fre-
quency. In either case the crystal does not resonate. Methods making
use of the resonating property are described in §§172 and 308,

If the crystallographic class of the specimen is known, the specimen
can be so oriented and the electrodes so placed, in accordance with the
principles outlined earlier in this chapter, that a suitable compression
will liberate charges on the electrodes. In the absence of such knowledge,
various positions -of electrodes and directions of compression must be
tried until an arrangement is found that works. The compressional
method has been used mostly with X-cut plates of quartz, which can
by this means be explored for twinned regions and defects.

In the form most commonly adopted, the plate to be tested lies on a
large horizontal electrode, and pressure is applied locally on the upper
surface by means of a rod carrying at its lower end & metallic knob
that serves as the other electrode. This knob is connected either to &

P, = ~disZ, =




244 PIEZOEBLECTRICITY (§135

string electrometer, as in Dye’s arrangement™®, or to a sensitive electronic
voltmeter, in which case a stage of amplification can also be employed.
Due attention must be given to the problems of insulation and sereening.
Devices of this sort have been described by Dawson,!?! Meissner,?! and
Tai-Ze.52¢

If & pulsating pressure is applied to the plate, & vacuum-tube detector
and telephone receiver or loud-speaker can be substituted for the volt-
meter. This device was deseribed by the author® in 1922. The periodic
pressure was derived from a glass rod in contact with a small buzzer,
and it was shown that the device could be used for testing & single
plate, for comparing an unknown plate with a standard, or for match-
ing two plates with respect to polarity. Similar arrangements, using
s tuning fork or loud-speaker mechanism in place of the buzzer, were
later described by Bergmann® and by Rosani.t

* Vicovrrux, ref. B5l, p. 21.  See also ScHERE, ref. B45, p. 4.
t 8. Rosani, Alta Frequenza, vol. 3, pp. 643-649, 1834,



CHAPTER XI
ALTERNATIVE FORMULATIONS OF PIEZOELECTRIC THEORY

A theory of physics is not an explanation. It is a systern of mathematical propoasi-
tions, deduced from a small number of principles, which have for their aim to repre-
sent as simply, ag completely and aa exactly as possible, a group of experimental laws,

—P. Dunewm.

186. Voigt’s theory, while fully capable of giving a phenomenclogical
deseription of all piezoelectric effects, is not the only possible formulation.
It offers the advantage of mathematical simplicity, and for this reason,
as well as because of its almoest universal adoption in the literature, it is
employed throughout most of this book.

In recent years three suggestions have been made toward a new
formulation. In each case the purpose was to give a more reasonable
description of the anomalous behavior of Rochelle salt than was afforded
by Voigt’s theory. Mueller®®® in 1935 proposed that the piezoelectric
strain should be regarded as proportional to the molecular ficld F rather
than to the macroscopic field E, while later Mason® congidered the
piezoelectric stress proportional to the density of charge on the electrodes.
In view of the experimental results of Mason and others, both Muyellerd’s
and Mason?* have more recently treated the stress as proportional to the
polarization.

These hypotheses, caliing for a revision of the entire formulation of
piezoelectric theory, are so important as to require careful consideration,
For, however anomalous the behavior of Rochelle salt may be, it seems
most reasonable to assume that its fundamental piezoelectric properties
are of the same nature as those of other crystals. The fact that with
Rochelle salt these properties are so largely dependent on conditions
easily realized in the laborstory then serves to determine the most
reasonable form of theory, not slone for Rochelle salt, but for all other
piezoelectrie erystals as well.

No new form that may be given to the theory can be expected to
reveal new truths, so long as both forms are founded on the same funda-
menta] principles. One form differs from another only in the choice of
parameters, and they are mutually convertible. In each ecase the same
Taw materials go into the mill, and the only difference in the product
is that it appears in different packages. The criterion is to be sought in

experiment; that form of theory will survive which defines its piezo-
245
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electric, elastic, and dielectric coefficients in such s way that they are
found experimentally to be most nearly constant under varying eonditions,

187. The formulation of modifications of Voigt's theory can best be
introduced by means of the differential expressions for the thermodynamic
potentials involving elastic and electrical effects. The potentials them-
selves, which represent the free energy of the crystal in terms of strains
(£) or of stresses (}), were discussed in §23; use has been made of their
partial derivatives in §§26, 105, and 124

On the assumption that all processes are reversible and isothermal,
we may write the exact differentials in the following equations in terms
of the fundamental electrical and mechanical quantities:

dtex = PdE — X dz (236)
dts.x = EdP — X dz (236a)
dtz. = EdP — zdX (236b)
dtr. = PdE — zdX (236¢)

These four equations are analogous, respectively, to the well-known
thermodynamie expressions for the internal energy, the Helmholtz free
energy, the Gibbs free energy, and the enthalpy of a reversible system;
the quantities P, E, z, and X are analogous, respectively, to absolute
temperature, entropy, volume, and pressure in ordinary thermodynamics.

Although the foregoing equations are not written in vector notation,
it is of course understood that E and P are vectors, while X and z are
second-rank tensors. ‘The nature of these parameters is made explicit
when appropriste suffixes are introduced.

Since each of the equations (236) to (236¢), like Eqgs. (1) and (2),
is an exact differential, we may take derivatives and write a set of equa-
tions analogous to Maxwell’s relations. Just as each derivative in
Maxwell’s Telations represents & thermomechanical constant character-
istic of the material, so in Eqs. (237) to (237¢) each derivative represents
& characteristie electromechanical constant*:

R S
17 S
(g’%), = - (g—;)x = -3 (237¢)

* Equations (237) te (237c) express the differential values of ¢, 3, a, and b and are
valid whether the electromechanical relations are linear or not, as long as they are
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Equations (237) and (237c) express the converse and direct piezo-
electric effects according to Voigt's theory, with ¢ and § as the correspond-
ing coefficients (see also §123). In the other two equations the
foundation is laid for the polarization theory, with coefficients a and b,
which is further discussed in §192.

It must be emphasized that Eqs, (236) to (237¢) no more predict
a plezoelectric effect than the thermodynamic equations referred to
above predict the existence of a coefficient of thermal expansion. Their
service consists in giving expression to the relation between the effect,
when it exists, and its converse. The material world is so constituted
that the thermomechanical effects are universal, while a linear eleciro-
mechanical effect is & very special property. Nor do Egs. (237) to
(237¢) establish the low relating electrical to mechanical phenomena.
If the relations were quadratie, the equations would represent the clectro-
gtrictive effect and its converse (§137). This effect is so small that we
may disregard it. The assumption that we have to do only with a lZnear
effect is based on the experimental fact that, with almost all piezoelectric
crystals that have been tested, direct proportionality has been observed.
There is but little doubt of the general validity of this assumption except
among the ‘‘Seignette’ crystals.

The foregoing equations are special cases of a general reciprocity
theorem: among reversible processes, whenever there are two primary
effects m = a;M, n = b.N, together with a secondary effect m = a.N,
then there exists also the supplementary relationship (converse effect)
n = byM.#8 This thecrem can be further generalized te include any
number of primary effects.* SBome of its consequences have already
been considered in §20.

188. Still other formulations of piezoelectric theory are possible,
depending on the choice of parameters for the dielectric term. We make
use of the following relations:

F (238)

In the last of these expressions F is the molecular field and K is an abbrevi-

revergible. When the relations are linear, these four quantities are constant (at a
given temperature), For the linear case, the equations give relations identical with
those expressed in ¥qs. (183) to (184a) and (244) to (245a). The only difference is
that they are in abbreviated symbolic form, without explicit introduction of the
various components. Each subscript indicates the quantity that is held constant.

* “Lehrbuch,” p. 189. The special form assumed by this theorem in the plezo-
electric case is as follows: Welet m=P,n =X, M = E, N ==, a1 =9, by m —¢,
where ¢ is an elastic stifiness constant. Then the primary effects are P = yE and
X = —¢x; according fo the theorem, if there exists the relation P = ex(e = as), then
there exists also the converse relation X = ~¢F,
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ation for (1 4 ¥1), by analogy with k = 1 + 4 (see §113). D is the
electric displacement.

A few of the ways in which the thermodynamic potentials may be
expressed with the aid of Eq. (238) are now given. A single accent
(#', ¥, K") denotes the value at constant stress, a double accent the
value at constant strain.

ﬁm=%P@~Xa

4 (239)
d"p,x=;’7PdP—.’EdX -
dfos = 7 PdD — X dz
: (240)
dfpx = 3 P dD - zdX
ﬁm=%Pﬁ—XM
(241)

&rx =T{1—,PdF—-;ch

Equations {239) correspond to {2364) and (236b); they are basie for
the polarization theory. Equations (240) and (241) are the fundamental
expressions for two other possible modes of treatment, which may be
called the displacement theory (D-theory) and the molecular-field theory
(F-theory). .

189, The relative merits of the various formulations will be dis-
cussed below. Anticipating the conclusion that the polarization theory
(P-theory).is to be preferred on theoretical grounds (though not always
for practical use), we summarize its main equations, in parallel columns
with Voigt’s, in Table XX. For the P-theory a and b denote coefficients
corresponding to Voigt’s e and d, while the superscript P attached to the
elastic coefficients means at constant polarization.

For each crystal class the matrix of the ¢'s and b's i3 exactly the same
a8 for the ¢'s and d’s, as are also the equations for transfermation to
rotated axes; this fact is made evident in Eqgs. (xi) and (z7) of the table.
The meaning of the symbol {(Z,) is explained in §194.

The equations for the P-theory are based on Egs. (237a) and (237b).
Equation {xi) in Table XX is derived by equating the expressions for

3

X, in (iv) for the two theories and setting P, = ), #,Es. By an analo-
5

gous process Bq. (xii) is derived from (vii).
By the use of Eq. (143) it can also be shown that

) 3
Oy = 2 EXEXmhr and b = 2 drexn (242)
YR &
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TapLe XX.—Cumier EQUATIONS OF THE VoIGT AND POLARIZATION THEORIES

Voigt's theory Eqs. P-theory
(), - - (5. - 0 () - () -
3z e EY-) z)e ap/).
ab - (=Y - iy PRy _ a8y _
(zﬁ( g (aE x —# ) (c'JX P (ﬁ’ x b
3 6 3 61
F=2, 2 emailla (iii) £= 2 2, amitaPm
m k& m ok
< oF
rrae EemEu- = —(Xy) | (v} T Eamkpm = —(X»
P -,
at 8 )
= = 2, tmide = n v) =5 = ) amTs = (Ea)"
9En 2.; P %{
3 8 a B
t= =3 YdmXln | (vi) f= =3, 2 bmiXsPun
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2] 3 ar 3
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ar ﬂ‘ a a
3E. — ~ E’:dmkxb =DPn | (viil) F ol ;bmxk = (Ea)
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e = 2 drmCie {ix) e = 2 bimChm
m "
[ 3‘
dhg = E ermSE, (x) bpe = 2‘ CrmSig
m mw
3
{xi) ehy = Eam‘nm&"
m

3
xi) = 2 Bk’
m

It iz unnecessary to give the full tabulation for the other forms of
theory that have been mentioned. The equations for the D-theory are
obtained from those for the P-theory by writing &’ and %" in place of 4
and v”, and D in place of P; for the F-theory we substitute &’ = 1 + v¢’
foro’, k" = 1 + yy” forv”, and F for P. Otherwise, the equations are all
identical. For Mason’s charge theory®® 2% gne would substitute
k'/4x for o', &'’ /4x for 5", and the charge density o for P.
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Az was stated in §186, that form of theory is to be preferred which
defines its piezoelectric coefficients in such a way as to be the most nearly
constant under varying physical conditions. The principal clue to
the search is Mason’s observation®®® that the resonant frequency, and
hence the stiffness, of a 45° X-cut Rochelle-salt plate separated by a wide
gap from the electrodes is nearly independent of temperature, while
when the electrodes are adherent [so that no depolarizing field (§199)
can be built up] there is a very pronounced temperature dependence.
According to Voigt’s theory the piezoelectric reaction upon the stiffness
varies from zero at zero gap to a limiting value at infinite gap] Mason’s
result could then be explained only on the not too plausible assumption
that the temperature coeficient of stiffness was just such as to neutralize
that of the piezoelectric reaction with large gaps.

190. Abandoning Voigt's theory, Mason®* assumed that the true
stiffness, unaffected by piezoclectric reaction, was that observed with the
widest possible gap; the decrease in frequency with decreasing gap he
ascribed to piezoelectric reaction, 7.e., to a piczoelectric stress proportional
to the charge on the electrodes, since the charge increases (at the same
clectrode voltage) as the gap diminishes. He thus arrived at a new
definition of the piezoelectric stress coefficient, fis = — Y., replacing
Voigt’s €1y = — Y.E..

Although Mason’s original elaboration of his theory is open to serious
criticism,®'® one of his outstanding results consists in finding fi4, 23 he
defines it, practically independent of temperature. Taken together with
his results concerning the stiffness, this fact suggests very strongly that,
if the piezoelectric stress is not proportional to the charge on the elec-
trodes, it is at any rate proportional to some closely related quantity.
The employment of the charge or charge density ¢ as a parameter
geems unreasonable on theoretical grounds, because

g=D _ (E+4aP)
4w 4r
thus involving implicitly both E and P.

* (One must recognize, as is pointed out in §199, that, as the gap between
resonating crystal and electrodes increases indefinitely, the electrical
quantity that approaches zero is theoretically the displacement, so that
at wide gaps the observed stiffness is very approximately that at zero
electric displacemeni. From a purely pragmatic point of view this fact
points to the adoption of the charge theory or the equivalent displace-
ment theory, just as Voigt made the pragmatic assumption that stress
is proportional to field. Nevertheless, one should not confuse that
which is most easily measurable with that which is most fundamental;
and if the proportionality of stress with field has to be abandoned, it
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appears fundamentally more logical to assume proportionality with
polarization than with a parameter that involves both P and E. By the
same argument the use of the displacement D or of the internal field F
as parameter is ruled out. A step in the direction of the F-theory was
taken by Mueller?™® when he assumed the polarizability of Rochelle
salt to be due partly to piezoelectric strain and this in turn to be pro-
portional to F. Nevertheless, he did not develop this concept further.

191. We are thus left with the polarization theory as the one to be
preferred, as an alternative to Voigt’s theory. It has been put to experi-
mental test only with Rochelle salt, and here its fundamental hypothesis,
that stress is proportional to polarization, is almost identical with that
of the charge theory, according to which stress is proportional to charge.
For the charge is proportional to the electric displacement, and owing
to the very high susceptibility of Rochelle salt the displacement is very
nearly proportional to the polarization. Moreover, when the stiffness is
derived from the frequency of erystals vibrating with a wide gap, as in
Mason’s measurements, the depolarizing effect ig 80 strong that the net
polarization, like the displacement, is almost zero, so that both forms
of theory give practically identical values of the ‘‘true’” stiffness. The
small difference is discussed in §211;

We may therefore accept Mason’s dynamic measurements of the
elastic constants of Rochelle salt, use of which has been made in §79,
as being free from appreciable piezoelectric reaction. The advantages of
the P-theory over Voigt’s theory in the ecase of Rochelle salt are that the
coefficients @4 and by are more nearly independent than are Voigt’s
e and dy4 of both temperature and field (§474).

With normal piezoelectric crysials any -one of the foregoing forms of
theory could also be applied. For such erystals ¢, E, D, F, and P are
proportional, not because of lurge values of &, but because with them k
is practically constani. It is this constancy of k&, along with that of the
piezoelectric constants, and the very low piezoelectric reaction on the
gtiffness, that makes well-nigh futile any thought of using observations
on normal crystals to decide whether any alternative theory is preferable
to Voigt's. For such crystals it is more expedient to continue to employ
the Voigt theory. The special field in which the polarization theory is
appropriate is that where there is pronounced variability in at least one
of the coefficients d.x with temperature,

192. The Polarization Theory. It is an interesting historical fact
that in formulating for the firat time the general equations for the converse
effect, Pockels?” expressed the piezoelectric strains in terms of com-
ponents of polarization. Not until later did Duhem and Voigt come to
use the field instead of the polarization in their equations. At that
time, however, the reasons for advocating a general polarization theory
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were unknown. In his lattice theory, discussed in §548, Born expressed
the piezoelectric and elastic relations in terms of polarization.

When written in terms of polarization instead of field, the two thermo-
dynamic potentials for isothermal changes [Eqgs. (1) and (2)] become*

II

e N :-Ma
’M“ -

) 2 Gz + % 2‘,2 XimPPm + 22 GmiPuzsn  (243)

%

e
I

XX + 4 2 Z XymPsPrm — 2 2‘, buaPuXs  (2430)
E m m A »

These two expressions for the free energy contain only linear terms.
The non-linear term that describes saturation effects is introduced in
§451.

When the energy equations are applied to the Selgnette—electncs,
recognition must be given to the fact that between certain temperatures
there is a spontanecus polarization, nssociated with a spontanepus strain,
which makes a contribution to the energy. The introduction of this
contribution in the equations, as well as the inclusion of a term represent-
ing non-linear effects, can be presented most clearly in a specific case.
We therefore refer the reader to the treatment of Rochelle salt in Chaps.
XXIHI and XXIV and pass at once to the fundamental piezoelectric
equations of the polarization theory, anslogous to Eqs. (183) to (184a} in
Voigt's formulation. They are derived from Eqs. (243) and (243q).

&}

8

s E‘) e 4 2 amaPm = — (X) (244)

ﬂf 3 8

aP. = E X;;LPIe + E Amply = (Em)” (244a)
m k A

a‘_ i 3

X, = ,S;;s{..x. - %}b,,,.P,. = -z (245)

& _ o, < ,

3P, = & Xenlh ?” = (En) (2450)

* After the author had developed this general theory, Mueller’s 1940 papers, 378,330,831
appeared, introducing for Rochelle salt a coefficient fi4 identical with the author’s asa.
Mueller here adopts the principle of the polarization theory, but he does not gobeyond
the consideration of the special constants for Rochells salt with fields parallel to .
He recognizes the effect of piezoelectric reaction on 84 and ¢4, but his use of 544 for
eonstant field and of ¢y for constant polarization is confusing. As far as they go,
his results agree with the present freatment. Yollowing is the correlation between
Mueller's symbols and the author’s:

Mustler.................. Jul x| xn xl‘," sy |« @&, | s | cn
Thisbook................ au | x| 7 x| el [ e ]
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The piezoelectric terms in these equations are the same as in Table
XX, Eqs. (iv), (v), (vil), and (viii).

Equation (244) may be regarded as the basic equation of the polari-
zation theory. As Mueller has pointed out, it has a certain logical
superiority over Voigt's corresponding Eq. (183), in that it involves only
the internal parameters z; and P,

If there is no spontaneous polarization, the P’s in the foregoing equa-
tions are components of polarization due to the impressed field, at con-
stant strain in Eqs. (244) and (244a) and at constant stress in (245) and
(245a).

193, Dimensions of @ms and bm. These quantities correspond to
enn a0nd dm of Voigt's theory, the dimensions of which were given in §128,
The dimensions of @ are [MIL-2T-1k4], the same as for a field strength.
b is of the nature of field strength/atress, with dimensions [M—4LiTk—],
the same as for the reciprocal of a polarization, In the practical system
of electric units a,; may be expressed in volts per centimeter and b, in
volts ¢m dyne~'. In general, we shall use electrostatic cgs units, as
in the case of d.s and em.

Following are some of the conversion factors relating the piezoelectric
constants according to the Voigt theory (ema and dws), the polarization
theory (@m, and b,s), the displacement theory (aZ; and bg,), and Mason’s
charge theory (fus and gms) (see §189). Special conversion factors for the
Voigt constants are given in §128. For simplicity we confine the dis-
cussion to crystals that, like Rochelle salt, have ounly one piezoelectric
constant with respect to a field parallel to any one of the crystallographic
axes; cach summation in Table XX that concerns us here is thus reduced
to a single term.

With all quantities in electrostatic cgs units the following relations
hold:

1 1
Gmh = —75 Emh b = — dua
M Tm
4 o | 4 k! 1
1
ahs = 7= Jmr b = - Gt

Converting to practical electrical units,

volt statvolt
[ %% I:‘&“'-] = 300%};[—6 ——:|
volt rem | _ statvolt - cm
B [W] - 3006'“'[”TW yne:]

volt - em | statvolt -em | _ 113(10%) coul]
oo | ] = o0ae | M0G0 | < B a0
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194. Inferpretation of Egs. (244) to (245a). To Eq. (244) the same
reasoning applies as was used in §126 in explanation of Eq. (183); for
the present case it may he paraphrased as follows: In (244) the total
stress cornponent (X)) is made up of two parts: (1) the externally applied
stress that would produce the prescribed strain if P = 0; (2) the part
caused piezoelectrically by P. The latter is a body stress, as distin-
guished from an external stress. That is, the second term is equal and
opposite to the external mechanical stress that would have to be added
to the mechanical stress responsible for the first term, in order to hold
the strain constant when the polarization was applied. With both
strain and polarization prescribed, the total external mechanical stress
component is therefore, not the (X,) in Eq. (244), but rather

X, = = Zeba: + Z0aPm = (Xi) + 2ZauFPn (246)

We see also that, when (X,) = 0, there must be an external stress
Xy = 22a.4P,., with a strain given by —Zefx; = ZamPn The fact
that (X,) is not the external stress, but the sum of two stresses, one
external and the other internal, must be kept in mind in all uses that are
made of Hq. (244).

Just as in Eq. (244) (X)) is not an externally impressed stress com-
ponent, so in Eqs. (244e) and (245a} (E.)" and (E,)’ are not components
of the actual impressed field. In (24a) (E.)" is a component of the field
that would produce the same total polarization in a clamped crystal that
is given by the prescribed values of the P and x;. If all z, = 0 and
if there is no spontaneous polarization, we have simply the dielectric
equations (143} for a clamped crystal, and (E,)" = E., the actual field;
and if all P, =0, (E,)" is a component of the field that would cause
in a clamped crystal the polarization due to 2.

Tn Eqs. (245) and (2452), the X’3 are externsally applied stresses,
The interpretation of (E.)' is analogous to that of (£..)" above.

196. The following considerations will serve further to make clear the
relation between (E,)"’ and the actusl field E,. We restrict ourselves
to the case in which the only component of the sctual field is £, and
assume that there are no cross susceptibilities, so that in the unstrained
(clamped) erystal the only polarization is P, = 9;.E,. Then if an
arbitrary strain is also impressed, the total polarization, from Eq. (183a),
aceording to Voigt’s notation, is

] ;]
Pt = 1inBn + Y, emstn = P + 3, emin (247)
) A

] i
whence Bp = Xin(Prdt — Xotw Dy 6udZh = XmPm (248)
1Y
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On the polarization theory, the torresponding expression, from Table

XX, Eq. (xi), is
En = Xpn(Pra)e — %ﬁ: AmiTh = Xk = (248a)
Under the same conditions Eq. {244a) becomes
(B = XiuPu+ 3, st (248b)

Thern, since P, is the polarization due to E,, alone, we have x7.Pmn = En,
whence the following relation holds:

L]
(Em)" = Em + E Cmpln = x:r:m(Pm)l (2486)
&

The equivalent field (E.)" is thus seen to be the sum of the actual field
K. due to the potential difference between the erystal surfaces and the
quasi-field due to the deformation. It is also easily proved that

(B _ (P,
B, P

Analogous expressions are readily derived for the case where an
arbitrary siress system is impressed, the crystal being free to deform itself
when % is applied. Corresponding to Eqgs. (247), (248q), and (248¢), one
finds

b 3
(Po)t = NpmBn — 2, dunXn = P — 2, duaXn (249)
h A
[i]
By = Jdnm(Pm)t + E bkah = x:num (250)
h

]
(En) = Em — E buaXn = Xum(Pm)t
&k
L]
= X = 3, bus X (2502)
h

!
As before, we find also that (—g—'i = g;"’—)‘

From Eqgs. (248¢) and (250a) it is evident that (Ea.) = Ea in two
special cases: (1) when the crystal is clamped so that there is no strain,
.6, when a mechanieal stress system is applied such as to prevent
deformation when the field is applied; (2) when the crystal is entirely
free to deform itself in the field, i.e., when all impressed mechanical
stresses vanish,
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Equatians (247) and (250¢) give the actual field F,, in the erystal
when the strain (or stress) system and the total polarization are pre-
seribed. By introducing the cross susceptibilities these expressions can
be generalized to the following forms, supplementing Eqs. (244a) and
(2450):

3 4

En = 3, Xim(Pe)s = 2, Gmsn (251)
k A
3 o

En =3 %imPe) + 3, bunXs . (251q)
[ h

Since the foregoing equations are to be applied in §452 to Rochelle salt, with the
field in the X-direetion, we can set m = 1, h = 4, X, = ¥,, #» = ¢, and drop the
subscript m from P, F, 4, and x. The following expressions are valid only for small
stresses and fields. Otherwise, non-linear effects are present, for which see §452.
For & crystal under a prescribed strain y, and field E,

Py = y"'E 4 el (252)
E = x"Py — x"ern = x"Pr — awgn (253)
(B") = x"P + ouye = B + ange = x"Fs (253a)

where P ig the polarization due to E whon . = 0.
For a erystal under prescribed siress Y. and field E,

Py = 9'E — dy Y, (254)
E = x'Pt 4 x'dus¥ e = x'Pe -+ b1,Y, {255}
(BY =x'P —buY.=E —b,Y, =x'P, (255a)

where P is the polarization due to E when ¥, = 0.
‘Whether the crystal is clamped or free, (£) iz related to E by the equation

E) By
E~P

We can now dorive, in terms of the polarization theory, expressions
for the components of polarization in the direct effect, analogous to Eqs.
(187) and (188) according to Voigt. We assume zero field in the crystal
and also P° = 0* and therefore set Pi = 0 in (244a) and (245¢), then
multiply each of the three components (E,.) by the appropriate sus-
ceptibility and add them according to Eqgs. (140). The three components
of piezoelectric polarization P, (n = 1, 2, 3) are thus obtained:

3 8 8
P, = 2 T (B = 2 2 nlhaa2s  {constant strain) {256)
m m h

nhmbmaX) (constant stress) (256a)

e
:-Mg,

3
Py =Y (B = —

* The special expressiona when P° is present are worked out for Rochelle salt in
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From Eqgs. (xi) and (xii) in Table XX, these expressions can be
reduced to Eqs. (187) and (188). As always, n{,, and 4., denote suseepti-
bilities at constant strain and constant stress, respectively.

When there are no cross susceptibilities, n = m, and the field and
polarization are parallel. For given strain and given stress the polariza-
tions are then

[ g .
Po=1n auty 80d  Pu= =10, buXy (257
b h

The same expressions can also be derived by taking derivatives of
Eqs. (243) and (243a) with respect to E,. Equations (256), (256a), and
(257} give the actual polarizations when the electrodes are adherent to the
crystal and short-circuited (field = 0). Otherwise, the contributions
due to the field must be added.

196, Comparison of the Polarization Theory with Voigt's Theory.
From the point of view of the polarization theory, the positions of the
parameters “electric field” and ‘““polarization” in Figs. 1 and 48 would
have to be interchanged. Although this alteration would logically
lead to corresponding changes in the {ormulation of pyroelectric theory,
we need not concern ourselves with this problem, since Voigt's formula~
tion seems quite adequate for this purpose.

When an electric field is applied to a piezoelectrie erystal, it is in
general impossible to make direct measurements of both stress and polar-
ization. In observations of the direct effect, with electrodes closely
adherent to the crystal, this is possible, and here all forms of the theory
give identical results. With the converse effect, on the other hand, if we
attempt to measure the piezoelectric stress, as for example by observing
the externally applied stress necessary to reduce the strain to zero, we
thereby alter the polarization by an amount that cannot be measured
directly. Likewise, the polarization cannot be measured without
involving a change in stress. We are confronted with a sort of piezo-
electric “principle of uncertainty.”

At this point we must pause to consider what quantities can be
regarded as observable. There i3 first of all the mechanical strain,
which, on paper at least, is perfectly determinate and measurable under
all circumstances. Next the electric susceptibilities, 3" at constant
strain and 9" at constant stress, both of which are measurable (though
somewhat indirectly) and which have a perfectly definite meaning inde-
pendent of all theory. The field strength E iz directly measurable with
flat plates of sufficient ares and with adherent electrodes. The polariza-
tion, a8 has been stated, is directly measurable only with the direct
effect, using adherent electrodes.
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The piezoelectric stress has a value independent of theory only when
the crystal is so elamped that no deformation can take place. In this
case, for the same field, all equations of the type of (iv) in Table XX give
identical numerical values, and the components of stress are equal
and opposite to’those of the external constraint. The electrodes are
here assumed to be adherent and maintained at a fixed potential differ-
ence. If now the constraints are removed, the field remaing unchanged,
but the polarization, by Eq. (v), is increased. According to the Voigt
theory the stress remains unchanged and there is still ne piezoelectric
reaction, while the polarization theory asserts that there is a piezoelectric
reaction and that the stress is thereby increased. Now this increased
stress is that which would actually be observed if known forces could be
applied from without such ss to reduce the strain to zero atf constant
polarization. This particular effect, like all other piezoelectric phe-
nomena, can be described in terms of any of the alternative forms of
theory. Of itself it- furnishes no criterion whatever for choice between
the various forms.

The stress-strain relations according to the polarization theory may
be illustrated by a simple example, A stress Xy is applied to a piezo-
electric erystal, producing a certain strain .  If the fleld is held constant,
as for example by short-circuiting the erystal so that E = 0, the observed
stress Xy (at constant E} will be relatively amall.

If the experiment is repeated with the polarizaiion held at zero, the
observed stress X» will be greater. According to the Voigt theory this
fact is explainable thus: The strain gives rise to a polarization P, which is
present when E = 0 and which does not affect Xz, To make P =0 it
is necessary to apply a negaiive field — E’ sufficient to produce a counter-
polarization —P that will neutralize +P. This negative field also
causes a negalive stress, to overcome which a stress Xy greater than X,
must be applied externally to produce the same strain.

According to the polarization theory this negative piezoelectric stress,
being proportional to P, is present when F = 0 but not when P = 0.
Ity effect is, by Eq. (vii) in Table XX, to increase the strain; hence, for
the same strain, Xy is less than X by an amount equal to the piezo-
electric stress.

Equations for the elastic constants in terms of the polarization theory
are given in §208.

197. The following correlation between the Voigt and polarization
theories may be helpful. In comparing Eqs. (184) and (245), we may
assume that the crystal is subjected simuitaneously to a stress system X
and a field E in any direction. There is then a polarization P due partly
to X, partly to E. If the resulting strain z is to be expressed in terms of
X and E, the Voigt theory is used, with isagric compliances and with
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piezoelectric constants dmn. On the other hand, when X and P are
given it is simpler to use the polarization theory, with compliances s
and piezoelectric constants by,. The fact that, for the same stress, field,
and strain, the two theories require the use of different compliances
follows from the circumstance that z is due in part to F as well as to X
and that the former of these contributions has a different form according
to whether it is expressed in terms of E or of P.

The exact equivalence of Eqs. (184) and (245) can be shown in general
form from the relations already given between the various coefficients.
A simple example is efforded by Rochelle salt (or any erystal in Classes V,
Va, Dy, Dg, T, or Ty). If the field is E;, the only piezoelectric coefficients
to consider are di. and b = di/n’ [Eq. (242)]. Assuming the only
mechanically impressed stress to be ¥,, we have from Eq. (184), by
Voigt's theory,

—Us = 8484Yl - dllEz (258)
and from Jiq. (245), by the polarization theory,
—Y: = MYJ — bulP. (259)

On substituting die/4’ for by and making use of the relations s, = sfn"' /v’
from Eq. (620) and P, = v'E, — d,,Y, from Eq. (184a), we find
rH dz
—Ys = sf, ('?7 + 's?:;—;) Y, — duk.
Then since du/sf = e from Egs. (204) and % = 4" + endys from
Tq. (264), the expression for y. is easily reduced to the form given in
(258). For simplicity, these expressions have been written without
regard to the phenomenon of saturation in Rochelle salt. The complica~
tions that arise from this cause are treated in Chaps. XXIII and XXIV.



CHAPTER XII
SECONDARY PIEZOELECTRIC EFFECTS

Primary causes are unknown to us; but are subject to simple and comstant Iaws,
which may be discovered by observation, the study of them being the object of natural
philosophy. —FoURIER.

‘Whenever a piezoelectric erystal is under mechanical stress, an electrie
polarization is produced by the direct effect, which, except under special
boundary conditions, gives rise to an electric field. According te Voigt's
theory, this field, through the action of the converse effect, causes certain
components of strain in addition to those due to the mechanical stress.
Similarly, an impressed electric field causes a primary polarization, super-
posed on which is a secondary polarization due to the state of strain
produced piezoelectrically by the field. The siate of affairs is fur-
ther complicated when eleetric and mechanical stresses are impressed
simultancously.

These sccondary effects are sometimes sources of great annoyance.
On the other hand, they can also be turned to good account, as for exam-
ple in the piezoelectric resonator, a device in which they play a very
essential part. Whether for good or ill, they are usually present, so
that it becomes important to examine somewhat closely their general
theory, as well as their operation under certain special conditions.

198. Correlation between Elastic and Dielectric Phenomena. In
the formulation of physieal laws, close similarities between the state-
ments expressing widely differing phenomena are of very frequent oceur-
rence. The correspondences are sometimes chiefly in form, as when
Ohm's law is compared with its magnetic analogy; and sometimes they
express identity of underlying principles, an illustration of which is found
in the application of eleetric-circuit theory to acoustic problems.

There are some interesting analogies between mechanical phenomena
in elastic bodies and the electrical effects in dielectrics. Since piezo-
electricity deals with a system of relations between these two domains,
it is worth while to inquire to what extent the relations can be made
symmetrical in form and also in how far the correspondences thus dis-
closed may be regarded as of more than merely formal significance. 1t
can be foreseen at the outeet that full symmetry in the mathematical
formulation is impossible, for the following reasona:

: 200
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1. Elastic stresses and strains are tensors, while electric fields* and
polarizations are vectors, the field being characterized by a potential
gradient.

2. Across the boundary between two media it is the normal elastic
stress that is continuous, while in the electric cagse the continuity is in the
electric displacement and not in the field. Furthermore, an elastic stress
is defined as force per unit area, while the electric stress, or field strength,
ig foree per unit charge.

3. An elastic stress exists only in & material medium; there is no
“elastic field” in a vacuum corresponding to the electric field. On the
other hand, an electric field can act directly on a charge without an inter-
vening material medium.

According to molecular theory, when a mechanical pressure is applied
to the plate, the outer electrons of adjacent atoms become crowded
together, and the thickness of the plate is decreased, while at the same
time certain other related deformations take place. The latter depend
on the form of the unit cell, i.e., on the crystal structure. In an ordinary
dieleetric no polarization results. Equilibrium is reached when the
interatomic forces become equal and opposite to those caused by the
pressure. ‘This complex of short-range, highly divergent inner fields
constitutes the elastic reacting stress and determines the compliance s.
In & piezoelectric plate, a polurization is caused by the deformation; the
resultant electric field depends upon conditions at the boundaries. It
is for this reason that the fundamental piezoelectric equations in Table
XXI (page 265) express the polarization, rather than the field, as a fune-
tion of impressed mechanical stress. )

If now instead of a mechanical stress we impress upon the plate an
electric stress, in the form of a uniform field, this field, which may
originate in distant charges, acts at long range upon the charges in the
dielectric, giving rise to & polarization P = pE. The quantities y and P
may be regarded as the diclectric “compliance” and “strain,” respec-
tively, analogous to s and z in the equationz = —sX. Asin the mechan-
ical case, equilibrium is attained when the forces of restitution between
the displaced charges have become sufficiently great. If the plate is not
piczoelectrie, no mechanical deformation takes place; we are here ignoring
the electrostrictive effect, which depends on the square of the field and is
usually negligible in comparison with the piezoelectric effect.

In a piezoelectric plate thus stressed electrically, the particles become
systematically displaced, in a manner depending on the crystal symmetry,
80 a8 to deform the crystal. Equilibrium is reached when the restoring
clastic stress X' = —cx balances the piezoelectric stress X = —eF
{c and ¢ are elastic and piezoelectric stress coefficients).

* The terma electric field, or field sirength, and electric siress are used synonymously.
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199. Mechanical and Electrical Boundary Conditions. In piezo-
electric problems, the elastic boundary conditions are of importance when
an electric field is impressed, and the electrical boundary conditions when
a mechanical stress is impressed. Conditions are here assumed iso-
thermal throughout the present discussion. Just as an applied electric
field produces in & piezoelectric erystal a polarization that depends on the
state of mechanical relaxation, so when mechanical stress is applied the
amount of yield depends on the state of electrical relaxation; the anal-
ogous quantities in the erystal are the dielectric susceptibilities and the
elastic constants, f.e., the electrical and mechanical compliances.

With respect to elastic conditions the two standard states may be
defined as clamped and free. In the clamped state, whenever an electric
field is impressed a system of mechanical stresses is postulated such as
to prevent all alterations in strains (§216). The crystal may then be
regarded as having all its surfaces firmly attached to a surrounding
medium of infinite rigidity. In the free stale the surrounding medium
has infinite compliance (air or vacuum), a condition that can be approxi-
mately realized with suitable mounting; the erystal is then free from
external stress, and the piezoelectric atrain z = 8E can assume its full
theoretical- value. Measurements of dielectric constant are ordinarily
made with the dielectric approximately in this state. If all relations are
linear, the same value of the dielectric constant will be obhserved if the
mechanical stress system is not zero but maintained constant during the
experiment.

Electrically, by analogy, the crystal should be considered clamped
when conditions are such that there is no polarization or, more generally,
when the polarization is constant. This state can be brought about by
providing a counter-field of such intensity as to neutralize the polariza-
tion caused by mechanical stress [Eq. (200)]. To a certain degree of
approximation a crystal may be considered as elecirically clamped when
it 18 isolated, i.e., 80 remote from all conductors that the depolarizing field
due to polarization charges on the surface reduces the net polarization
to & small value. In the case of such a crystal as Rochelle salt, in which
the dielectric constant i1s very large, this depolarizing effect reduces the
polarization almost to the vanishing point (§211). An isolated crystal is
then practically in the “electrically clamped” state.

Of great importance is the elecirieally free state, in which the sur-
rounding medium has infinite dielectric susceptibility. This condition
is realized very simply by making the entire surface equipotential, as
by providing short-circuited electrodes or by allowing time for surface
charges to be neutralized by leakage. There is then no field in the
crystal; and if the crystal is piezoelectric and is mechanically stressed,
the piezoelectric polarization is not diminished by counter-polarization.
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Static measurements of elastic constants of crystals are customarily
made with the specimens in the electrically free state. The same values
would be observed (if all relations were linear) if the electric field were
different from zero but maintained constant throughout the experiment.
The values of elastic constants under constant-field conditions may be
called isegric values, with symbols ¢f, and ¢f, when it is necessary to be
specific,

Under certain experimental conditions the crystal when deformed by
a mechanical stress is in a state of consiant electric displacement. This
situation is encountered, for example, when the stress is applied to &
relatively thin plate cut in such an orientation that the piezoelectric
polarization is parallel to the thickness, the plate being far removed from
all conductors. From the principle of continuity of displacement normal
to the boundary between two media, it is clear that in the crystal, as at
infinity, the displacement is zero. According to $214, there is still a
polarization in the crystal, which causes a contribution to the displace-
ment, but this contribution is neutralized by the depolarizing field,
Even in a thin crystal, however, the displacement never vanishes at the
edges. Fortunately, in most crystals, including quartz, the dielectric
constant is large enough so that edge corrections do not have to be made
with bars or plates that are reasensably thin in the field direction.

200. A serious complication arises from the fact that in erystals of
low symmetry and in oblique cuts from crystals of high symmetry the
polarization is in general not parallel to the field. In such cases an
impressed stress may cause a polarization, and hence a displacement,
with components at right angles to the field.  If the specimen is in the form
of a thin bar or plate, the component of displacement paraliel to the field
and to the thickness can become neutralized by the depolarizing field
when the crystal is sufficiently far from conductors. If the lateral dimen-
sions are relatively large, the other components are not neutralized but
are almost as great as in a short-circuited erystal. That is, while short-
circuiting makes the field zero, absence of electrodes does not ensure that
the displacement will be zero.

The foregoing remarks apply particularly to the determination of
elastic constants from observations of resonant frequencies. If, as is
often the ease in such observations, the gap between crystal and elec-
trodes is zero, the deformation of the specimen is without influence on
the field in the thickness direction; for this is the driving field, impressed
from without. There is no lateral field except one of negligible mag-
nitude due to polarization charges at the edges. Henee no component
of the piezoelectric polarization is neutralized, and there is no depolarizing
field o contribute to the total stress or strain. That is, from observa-
tions at zero gap the fsagric elastic constants are determined. As will
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be shown in Chap. XIII, their derivation from lengthwise vibrations of
bars is quite simple; on the other hand, certain piezoelectric corrections
have to be applied in the case of thickness vibrations.

When observations are made with a very wide gap, the effective elastic
constanta as deduced from the resonant frequencies are essentially those
at constant displacement, if field and polarization are parallel. When the
polarization is not parallel to the field, the effective constants are those
for a constant-displacement component normal to the surfaces of the
plate; their value is then intermediate between the constanf-displace-
ment and the constant-field values. Formulas for the latter type of
elagtic constant, which should be used whenever the fundamental
(isagric) constants are to be derived from vibrational data, are given
below.

Numerically, the elastic constants at constant displacement are very
cloge to those at constant polarization (see the comparisons for Rochelle
salt and quartz in §211). Since, as we have seen, they cannot in general
be observed directly, it is advisable to consider the isagric values as
standard, as has indeed been the practice in the past. The only excep-
tions are the Seignette-electrics, for which there are good reasons for
considering the values at constant polarization as more fundamental
(§191).

The formulas in the following pages are based on the assumption
that the area of the crystal plate is infinite. With finite plates, owing
to the lack of uniformity in field, polarization, and displacement near
the edges, the formulas offer only & more or less close approximation.
The greater the dielectric constant, the smaller can the lateral dimen-
sions be without introducing serious errors.

In summary, it may be said that the two principal mechanical states
are clamped {constant strain) and free (constant external stress, usually
zero) and that the two principsl electrical states are tsolated (subject to
depolarizing field) and electrically free (short-circuited, or electric field
held constant). Static measurements of dielectric and elastie constants
are usually made respectively with external mechanical stresses and
internal {macroscopic) electrie fields aa near zero as possible. Ina vibrat-
ing resonator, the erystal is usvally mechanically free with respect to
certain stresses but not to cthers.

201. Bearing in mind the genera! considerations that have just been
discussed, we turn to their mathematical formulation. The chief rela-
tions between electrostatic and mechanical phenomena for piezoelectric
crystals, so far as our present needs are concerned, are grouped together
in Table XXI. On the right side of each equation is the independent
variable in terms of which that on the left side is expressed, For the
sake of simplicity summations and subseripts are omitted, and all effects
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are assumed to be linear. The basic piezoelectric equations are (g),
(d), (¢}, and (), the direct and converse effects being at the right and
left, respeectively. Each equation in the table, including these four,
holds rigorously only for a specified state of the erystal. Thus the
familiar elastic equations (a) and (b}, ag well as {¢') and (¢'), assume the
crystal fo be electrically free, so that the elastic constants s and ¢ have
their isagric values. In (e), {f), and {a") the crystal is mechanically free,
so that 7 and k are identical with the 4" and ¥ of Eqs. (264) and (265),
while ('), (d'), and (f'} are for a completely isolated plate of large area.
Beside each equation in one column is placed its counterpart in the other
column, with electric strain substituted for mechanical strain, ete. The
limitations of each equation, together with the effect of secondary reac-
tions, will be discussed below. In general, whenever a departure is made
from the standard state for each equation, piezoelectric reactions enter
in (secondary effects) that depend on boundary conditions, often adding
serious complications to the problem. The equations that may best be
regarded as fundamental are (a), (a’), {c), and (c’), all the rest being
derivabie from them.

Voigt treats numerous spccml praoblems in which boundary conditions
are considered; but, except for a brief discussion of a plate under com-
bined electric and mechanical stresses (“Lehrbuch,” pages 915-920), he
does not introduce secondary effects into his theory, although on pages
817 and 920 he recognizes that they weculd have o quantitative effect
on his results. In most of the special cases that he treats, secondary
effects are absent.

TasLe XXI.—ELECTROMECHANICAL RELATIONS

Mechanicnl Effcets Electrical Effcets
z = —sX {a) P =3 (a”)
X = —cz ® p=-2rp "
z = dE @ P = —dX )
X = —¢E @ B = i*—zi‘x @)
T = gP {&) P =ce¢x (e
X=-tp 0 p=-, %)

Egs. (¢) and (b), in which s and ¢ are isagric, symbolize the funda-
mental stress-strain elastic relations at constant field. Corresponding
to (a) is Eq. (¢") for dielectric stress and strain in a mechanically free
crystal,

Although Eqg. (b') is of a more specla.l character than (e}, it is included
in Table XXI, partly for the sake of the symmetrical relationships and
partly because we shall have occasion to refer to it later (§214). In
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(v} the eryatal is isolated and in zero external field, and hence the total
electric displacement must be zero; P is an impressed polarization, which
may be due to a mechanicsal strain (piezoelectric effect) or to a change in
temperature (pyroelectric effect), or the substance may be an electret
(§174).

Equations (¢}, (d), (¢’), and (¢’) are abbreviated forms of the funda-
mental piezoelectric equations (187) to (190). The fact that (d) and (¢")
are not symmetrical, one being in terms of stress and the other of strain,
testifies to the lack of complete correspondence. Equation, (d') bears
the same relation to (d) that (b") does to (b). It holds for an isolated
piezoelectric crystal subjected to stress X and ig derived from (b") and ().
1t is expressed more specifically in §§207, 212, and 214, Equation (e)
is the complement to (¢'), expressing strain in terms of polarization
(¢f. §189). It is derived from (c¢) and () and is used in Chap. XXIII.
Equations (f) and (f) are included to complete the symmetry in Table
X & F XXI. Equation (), which is the basic
\ equation of the polarization theory, is
‘\\ derived from (d) and (¢"), and Eq. ()

kY from (') and (¢).
‘o 202, The effects represented in
! Table XXI are shown graphically in
¥  Fig. 48, taken from the upper portion
/ of Fig. 10, in which the arrowsindicate
/ the usual sequence from cause to effect.
s The arrows X — P and z— P repre-
x € r sent the direct piezoelectric effect, from
Fig. 48.—-Interaction between elastic Kqs, (f) and (¢), Table XXI, E — =z
and electric effects. and E — X the converse effect, from
{c) and {d). The arrows E — P, from (a"), and X — z, from (a), apply
normally to the electrically and mechanically free states, respectively.

Figure 48 shows also the genesis of the secondary effects. For exam-
ple, when the crystal is mechanically clamped and & field F is applied,
the resultant X and z are both zero and we have simply Eq. (2. If
the crystal is mechanically free, the arrows £ — z and z — P indicate
a piezoelectric contribution to the total polarization [Eq. (263)]. The
surface charge « due to P, or in some cases the space charge p, gives rise
to an additional component of & (or, if E is held constant, te an additional
charge on the electrodes), as indicated by the curved arrow, leading to
a change in the effective value of the dielectric cunstant (§204). The
curved arrow corresponds to Eq. (b").

Similarly, when the crystal is electrically free (electrodes short-
circuited), the resultant field is zero and Eq. (¢) remsins unmodified.
On the other hand, if the crystal is isolated, the arrows X — P, P— E,

]
1
)
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E — 2z indicate the process whereby the strain, and thence the effective
elastic compliance, is influenced by secondary piezoelectric action.
The theory of these reactions, which are of great importance in the
piezoelectric resonator, will now be considered.

203. Theory of Isothermal Piezoelectric Reactions. ‘The following
treatment corresponds in part to the paragraphs on secondary effects
in Voigt’s “Lehrbuch,”* with certain changes in notation. It is assumed,
a8 is approximately the case except with the Seignette-electries, that the
susceptibility and the piezoelectric coefficients d and e are constant, i.e.,
that all relations are linear. The peculiar characteristics of the Seignette-
electrics are considered in Chaps. XXIIT and XXIV. In order to
minimize boundary effects, a plane-parallel piezoelectric plate of thick-
ness small in comparison with its other dimensions is assumed, the
electric field and polarization being normal to the large surfaces. A more
general solution would invelve very grave complications, tending to
obscure the physical significance. So far as first-order effects are
coneerncd, the present treatment is applicable to most experimental situa-
tions. The equations are sufficiently general to apply under the condi-
tions specified above to a plate in any orientation, in any non-conducting
piezoelectric crystal, so long as linear relations between siress and strain
hold in both the electric and the elastic equations.

A gystem of orthogonal axes X, ¥, Z in any orientation is assumed.
All elastic and electric coefficients are expressed with respect to these
axes. Therixstresscomponents X, . . . X,aredenotedby X, . . . X,
and the strain components by 2, . . . T

204, The Piezoelectric Contribution to the Dielectric Constant,
Mention has already been made in §§104 and 124 of the distinction
between the dielectric constant k” of a clamped crystal, and & of the
crystal when mechanically free or under constant stress. The effective
k of vibrating plates usually lies somewhere between these two limiting
values. The unaccented symbols k& and 5 are used in this book where
there can be no ambiguity or where no special distinction is needed.
This was also the practice of Voigt, who used a primed symbol for the
dielectrie constant of the free crystal in his brief treatment of secondary
effects. T

The very important relation between &' and &' is found by eombining
Eqs. (183a) and (184) for the direct and converse effects. We assume
the fields to be in the A-direction and seek an expression, in terms of the
clamped susceptibility, for the polarization in the m-direction due to the
joint action of E» and a stress X;. On substituting z; from (184) in

* Pp. 916-919.
t “Lehrbuch,” p. 917.
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(183a) and making appropriate changes in subscripts, one finds, by
mesans of Eq. (191a),

[] 8
P, =FE, (1;1'.,. -+ E e,..adu.') - 2 emsE X

[}
=B ('q;,:.. + Z 8m'dm) — dwXs (260)

Now, from Eq. (184a),
Pu = By ~ dwXs * (281

From these two equations the desired result follows:
6
Y = Wi + 3, Emshas (262)
T
In most practical cases the polarization is exactly or very nearly

parallel to the field, so that A = m, and for brevity a single subscript m
may be written in place of mm:

Pm. = "J:uEm - dkak (263)
O

U = 1l + ), Crsthmi (264)
' 4

Ky = 1+ dmnh = K2+ 4r Y, emitlmi (265)

b =1+ dun, (266)

Equations (264) and (265} when applied to Rochelle salt for fields in
the X-direction take the following form, of which frequent use will be
made:

1 =1 + endu (267)
E =1+ dmml =k -+ dreudu (267a)

According to Eqs. (260) and (261), the value of 9}, is independent
of the stress X,. This independence holds whenever, as in the cases
here considered, all relations are linear. Then, and only then, can one
call %' the susceptibility at constant stress, as in §124. In Rochelle sslt,
for example, the relations are non-linear, and it is necessary to specify
the value of the stress—usually zero—in order to give #' a definite meaning
(see §450).

If some, but not all, of the components of strain are prohibited,
a3 happens in certain vibrational problems to be considered later, the
corresponding terms in the summation disappear. The susceptibility
then has a value socmewhere between %' for a free crystal and 4’ for a
clamped crystal. )



$206] SECONDARY PIEZOELECTRIC EFFECTS 269

2056. The Piezoelectric Contribution to the Elastic Constants, This
effect has already been mentioned repeatedly. As we have seen, the
elastic coefficients depend on the electrical state of the erystal, which in
turn is conditioned by the polarization due to the deformation.

The relations between the elastic compliance and stiffness coefficients
under conditions of constant field, econstant electric displacement, and
constant polarization will now be derived in general form. The isagric
coeflicients sf. and cf, relate strain to stress when there is no potential
gradient in the erystdl. Their values are commonly measured by static
methods, or by lengthwise vibrations when the field is perpendicular to
the direction of vibration, with full-sized electrodes closely adherent to
the crystal. The constant-displacement coefficients s, and cf, hold in
certain cases for a completely isolated crystal®*, while the constant-
polarization coefficients sf, and cf}, play an important part in the polariza~-
tion theory (Chaps, XT and XXIIT).

The constant-displacement and censtant-polarization tensors have
the same form as the isagric tensor, with the same number of elastic
constants for a given crystal class. They transform to rotated axes in
the same way, permitting the use of the transformation equations in
Chap. 1V.

206. Elastic Coefficients at Consiant Electric Displacement. We con-
gider a plece of crystal of any form, subjected to a homogeneous stress
system in which all six components X; . . . X¢ may be present. If the
entire surface of the specimen is kept at a fixed potential, for example
by a grounded metallic coating, the constants relating strain components
with stress components are the isagric s§, . .. sf. Although the
field in the crystal is zero, there is present a polarization with components
given by Eq. (183a).

The following equations can be applied to a rotated axial system by
expressing all parameters with respect to the rotated axes. In order
to obtain the coefficients sZ, one may in theory impress upon the crystal,
while it is thus stressed, a field in the proper direction and of such strength
as to maintain the electric displacement at the value zero. If the stress
system is left constant, this field will change the strain components
aceording to Eq. (184), and from the new strains the s, can be caleulated.

* The crystal may be bare and far removed from all conductors, or it may have
adherent coatings that are disconnected from the circuit and free from stray capacitive
effects. In the latter case one may say that the adherent electrodes are connected
to an infinite impedance, Thus, in a static fieid or with thicknese vibrations, a crystal
plate may be plated on both sides and stiil be “isolated,” with s compliance s5,. The
plated bar in lengthwise vibration requires a special treatment, as will be seen in §286.
The terms “plated’’ and “unplated” are, however, sometimes employed to denote
zero gap and infinite gap.
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The equations are derived most conveniently by assuming a single
stress component Xy, which gives rise to three components of piezoelectric
displacement of form D, = 4nP, = —4xd,: X, by Eq. (184a). To
neutralize D, we need Df, = —D,, = 4xdmXi. To each D!, there cor~
respond three components of the requisite field £’:

3 3
= 2 D = 4w Xy, E &
m - ™

by Eq. (145). The accented & signifies a free crystal (constant stress).
Each Ej causes a strain component =z = du &} Hence for all three
components of £’ we have

3 3
7} = 4rXe 3, Y, dndmsbi
im
This strain is to be added to that due to X; at zero field, giving for the
total strain component of type z; at constant displacement the expression

3 3
= —afXe = —Xulsh — 47 Y)Y, dndoibln) (268)
iom

3 3
Hence, sf, = sf — 4o E 2 im0, (269)
im
An analogous expression for ¢f, is found by starting with the strain
given, in which case we use ¢ to represent the dielectric impermeability
of a clamped crystal:

3 3
o = cf + 4r E E €nCmiOim (270)
i m

Ii the crystal has no dielectric cross constants, all 8, vanish except
those for which j = m. Then, as in the analogous case of the suscepti-
bilities (§106), 8am = 1/km, g0 that

3
Aonilm
—4wz-ﬁ—-"‘£ 5 M—cu+41r26'“£imk (271)
"

Finally, if the only component of displacement is that in the m~direc-
tion,

D o oF Mmhdmk

S = S = o = o + heme,.;. (271a)

207, Elastic Coefficiends at Constant Normal Displacement. These are
the effective constants for a resonator in thickness vibration with infinite
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gap. From §199 it follows that, as the gap approaches infinity, the
component of displacement normal to the plate, which will be called D*,
approaches zero at all points in the crystal (thin bar or plate) and at
every instant during the cycle. The vanishing of D* in the crystal is
brought about by the fact that the piezoeleciric polarization due to the
strain gives rise to polarization charges, from which all lines of force
turn back through the erystal, producing a depolarizing field of the right
magnitude to make the normal displacement zero both inside and outside
the crystal. Whatever the strain may be, there is no polarization charge
“free” (as there iz when the gap w < =) to send lines of force across
toward the electrodes. For this reason Mason®##? ugeg the superscript
€ to designate the elastic coefficients at ‘ constant charge,’” when the gap
iy infinite. We shall follow Lawson®?® in writing sy, and ¢ for the
elastic constants at infinite gap, corresponding to constant (usually zero)
D* The significance of i as the effective stiffness in thickness vibra-
tions is treated in §§248 and 253.

¥or ¢}, we seek tho total stress X, corresponding to a given strain .
Letting the thickness direction be m, we are concerned only with the
polarization component Pa = e¢mar. Pn causes a depolarizing field

F, = —d4xP,/Kj = —4weasts/kn, and E), gives rise to a stress com-
ponent X = —emBy, = dmememitn/k,. ki iz the clamped dielectric

constant (see §204). Xj tends to diminish z;; hence, to hold z, constant,
we must write

A Cmremp

X}; = "'ckak - """ku* Iy = "c:kz]ﬂ
4 "
where o = o + T (272)

It may be noted that if & # & and if em: and ey have opposite signs,
¢, is numerieally smaller than cf,.
When h = k, we find
4dxel,

oh = o + T (2720)

For the application of this equation to thickness vibrations see §250.
By an analogous method one finds, for the compliance coefficient
(for k!, see §204),

8 = ofy — 2nile L@
m
When & = k, this expression becomes

]
o = of, — = (2730)
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+ Eguations (273) and (273a) are identical with (298z) and (298) when
in the latter equations the gap w becomes infinite. cy, and sy, are identi-
cal with ¢ and s& in the special case where the piezoelectric polarization
is parallel to the thickness, and there are no cross constants. This
statement can be verified by letting m have a single value in Eqgs. (269)
and (270), with j = m.

When the foregoing equations are applied to an oblique bar or plate,
all symbols for physica.l quantities are to be primed For example,
Eqg. (272) becomes ¢y = cf + 4weld/(k2)', where, as in the most general
ease of thickness vibrations, » may specify a direction that is obhque with
respect to the rotated axes, while m specifies the direction normal to the
plate. This fact leads to a complicated expression for the effective ¢,
[see Eq. (344), page 311]. Fortunately, for most oblique cuts in com-
mon use b lies in the plane of the plate, at right angles to m, so that the
transformation equations for the piezoelectric constant given in Chaps.
VIII and IX ean be used directly.

It is important to consider whether the elastic coefficients at constant
normal displacement constitute a transformable fensor system. For
example, one may ask whether it is correct, for rotation of a Y-cut
Rochelle-salt plate about the X-axis, to write according to Eq. (410)

¥ = ¢ cos? 8 + ¢y sin? @ (274)

The answer is yes, provided that cj;, ¢, and cfy are all at constant dis-
placement with respect to a field making the same angle 0 wzth the Y—axts
This condition would require special expressions for cgy and cg;, and
these expressions would vary with 8. No fixed values independent of 4
can be assigned to ¢, and cfy such that these quantities can be used in
equations for rotated axes. The same is true of all the other stiffness
and compliance constants that involve a piezoelectric term.
From what has been said it is evident that it is impossible to derive
a set of single-valued elastic constants ¢y from observations of the
frequency of thickness vibrations of plates cut in different orientaiions
and driven by means of remote electrodes (as in Mason’s experiments
with Rochelle salt, deseribed in §77), unless suitable piezoelectric cor-
rections are applied, and even then each ¢y, would have a value depending
on whether the field direction m in Eq. (272a) was parallel to X, to ¥,
or to Z. Observations made with a wide gap can be used to determine
the ésagric constants by one of the methods described in §252; for the
reduction of such observations the formulas in this chapter are suitable.
. Blastic Coefficients at Constant Polanza.twn The derivation is

exactly similar to that in §206, using Pm mstead of Dy, and E; = E XimEom
from Eq. (143). The result is
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Bfk = ka s dz’mdmkx;'m (275)

Ve I

ch, = ¢ + ea'memkxgn (276)

""M o e

Corresponding to Eqs. (271a) one has, for a single direction j = m,

s, = of, — Szt (277)
b =, + E"t;’;i"ﬂ (278)

If b = F, these equations reduce fo

P . oF dgmk P u nF et?mk
S < 8 — Y = ¢ + ?7 (279)
The constant-polarizalion cocflicients in terms of those at constant normal
displacement. From Eqgs. (272), (273), (277), and {278),

* Bt n EmhEmk
s = &y — —k;—:l o = €t T (280)
miim m’?m

The two terms on the right in such equations as (273) or (277) cor-
respond, respectively, to the arrows X - and X 5P > E—>g in
Fig. 48. The latter path indicates the process of piezoelectric reaction
mentioned at the end of §202. There is an obvious analogy between the
effect of piezoelectric reactions on the elastic compliance in (273} or (277)
and its effect on the dielectric compliance (susceptibility) expressed in
Eq. (262). In each case there is a term arising from the combined
action of the direct and converse piezoelectric effects. The influence
of a depolarizing field on the elastic constants is analogous to that of
mechanical constraint on the dielectric constants. In the first case the
crystal becomes stiffer mechanically; in the second case it becomes
stiffer electrically.

A crystal of large k is electrically soft, just as large ¢ means mechanical
goftnens,

209. An Important Special Case. If the deformation is of the type
L or 8in Fig. 15, so that b = &, and if the plezoelectric class is such that
Eq. (191¢) has but s single term, with ¢ = &, then duy = duir = emsh,
and, from Eq. (191), eéms = dmach. Hence cf, = 1/sf, and Eq. (271)
reduces to

k, — dzdn
INCETIR
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Hence, from Eq. (265), we find

3 ek, kI
ok ks (281)

Under the same conditions and by use of Eqs. (277) and (262), we obtain

L Bh W
o O T 282
rANE A (282)
210. Relations between the Elastic Coefficients According to the Polariza-
tion Theory. All the foregoing expressions can be written th terms of
the polarization theory, by applying the same reasoning to the equations
in §192. Only the following need be given here:

3 8
5 = sfk(l + 2 E amkbikﬂ;ui) (283)
m

Equations (521) and (521a), specialized for Rochelle salt, can be derived
from Eq. (283).

211, Specialization to Rochelle Salt and Quartz. In later chapters we shall have
to do with Rochelle-salt X-cut plates subjected to a stress ¥,, producing a strain
#» = —suY. It is therefore of interest at this point to compare the values of a5, sb,
and 8%, for this crystal. A similar comparigon will also be made for su'in quartz.*

For Rochelle salt, one finds, from Eqs. (271} and (279),

4rd} d!
o = &b, - __k'u o = s — 'ﬁ (284)

That these two values are practically identical is seen by writing

1 1 d}
2 — o = dpd (ﬂ____)=—7‘* 2844,
44 4l 14 4 ’ k; ﬂ"k, ( )
At all temperatures this difference is of the order of 0.03(1071%), as may be verified

from Figs. 145 and 146. Bince &l is of the order of 107", it is evident that s§, does

not differ from s, by more than about 0.35 per eent, an amount too small to distin-
guish experimentally. It is this fact which justifies us in accepting for ch = 1/35,
in §79, the value derived from observations on an isolaed erystal. On the other hand,
the difference % — s5{=~ &, — 25} is very large, as may be seen by substituiing
values from Figs. 145 and 146 in Eq. {(279) or (283). For Rochelle salt, Eq. {(283)
reduces to 8% = #f{1 + a1dim.). The smallest value of &5, at 47.5°C, is greater
than sf, by a factor of 1.35, and it approaches infinity (for small stresscs) at the Curie
points,

Following is the relation between ¢f; and ¢f, for Rochelle salt according to the
polarization theory:

ﬂhﬂf
c?t =ch— 5 (285)
£

* For the cases considered here the constant-displacement values are the same as
those at constant normal displacement, aceording to §207.
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where 5 and k. are the values for a clamped erystal, Similarly,
cfs = oy~ (G:w;.'/k:,'),

and cgy ~ cfy — (adem) /K.

In quartz, the piezoelectric effect is so small that 5%, s7, and sF, are identical within
about 1 per cent. Thus, from Eqgs. (271a), s}, is about 1.03 per cent less than &%,
and ¢l is 0.87 per cent greater than ¢, On the other hand, owing to the low dielectrie
constant of quartz, the difference s, — %) is not, as with Rochelle salt, negligible in
comparison with 2, — s¥. That is, to the degree of precision attainable in quartz,
the compliance at constant polarization cannot be regarded as practieally identical
with that at constant displacement (isolated crystal). This fact is, however, of little
practical consequence, since the equationa of the polarization theory are not com-
monly spplied to quartz.

Neglecting edge effects, it follows from §169 that for an X-cut Rochelle-salt plate
the coefficient s¥, is observed when the gap w is zero, while 3, is observed when the
plate is isolated (w = ). The fact that &%, is practically identical with 2, is a conse-
quence of the large value of k., which causes the depolarization to be practically com-
plete when w = =. How nearly complete the depolarization is ean be seen from
Eq. (264), sceording to which the net polarization in an isolated stressed plate is only
1/k, of the full value attained when w = 0.

212. Illustrations of Piezoelectric Reactions. As a background for
the treatment of various piezoelectric applications in later chapters,
the secondary effects present in some special cases will now be considered.
As before, we have to do with a flat plate of relatively large area. If the
electrodes are parallel to the plate, the field is normal to the plate, i.e.,
parallel to the thickness dimension e, which we have assumed to be in
the m-direction. In general, the polarization is not parallel to e, partly
because the material is anisotropic with dielectric cross constants ky
[z #= j, Eq. (141), page 162] and partly because any mechanical stress
causes a piezoelectric polarization with components perpendicular to e.
As a first approximation we regard the area of the plate as infinite, so
that the lateral components of polarization can be ignored. Throughout
the present discussion we need consider only the component P,

Inside the plate the field is E.; outside, where the medium has a
dielectric constant k° = 1, the field is E,. Then, if ¢ is the surface
density of any true charges (i.e., other than polarization charges) that
may be on the surfaces and P, is the polarization in the plate, including
that of piezoelectric origin as well as that due to E,, one may write the
general equation

E, = E, — 4xP, — 4mo {(286)

The sign of ¢ is to be taken as that on the face toward the positive direc-
tion of the m-axis. The free charges may be upon metallic electrodes in
contact with the plate, or they may be compensating charges resulting
from surface or body leakage.
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If now a stress X; is impressed, while the erystal is still free to deform
itself in the field, the value of P, from Eq. (263) may be substituted,
giving

By = E5, — 4r(n).Ba — dexXy) — 4me

= - (2, + X — o) (287)

Throughout this chapter all elastic constants, unless otherwise
specified, have the constani-field values.

213. CaspI. Plate of thickness ¢ in contact with electrodes on which
s stress X and a polential difference V = eF,, are impressed. In Tiq.
(287) the field EZ, outside the electrodes has no effect on the conditions
between them, so that the charge density on the electrodes becomes*

= — EE + doeXa (288)

The strain is

d”:“.’ — sE Xy (289)

Ty =

The polarization remains as in Eq. {263). The strain z, caused by X,
can be reduced to zero by applying a field

B, = s“' X, (200)

This field depends fnversely on the piezoelectric strain comstant, while
by Eq. (263) the field necessary to reduce the polarization to zero depends
directly on this constant.

If there is no external stress, the ecrystal is mechanically free and
bebaves as a dielectric with

kL E,
4x

and P, =+ FE,

o= —
For a clamped plate the polarization, from Eqs. (264) and (266), is
)
P = faEn = En(th ~ 3, tnithui) (291)
3

If En = 0 (electrodes short-cireuited), then under an impressed X,
we have simply, from (263), (288), and (289), ¢ = dwXs, Pn = —dmXy,
and 2, = —sf, X This is the special case in which the fundamental '
piezoelectric polarization equation holds without modification.t

* Cf. Yoiar, p. 918, Eq. (298).
t Voior, p. 919.
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214. CasE II. Like Case I, only the eleetrodes are separated by a
distance e + 1w, leaving a total gap w (which may be divided between
the two sides) between erystal and electrodes. As before, both laterat
dimensions are assumed to be large in comparison with the thickness.
In Eq. (287) the free charge o = 0, and both E,, and E?, are dependent
in part upon V and in part upon the surface polarization charges due to
ai or X3 The quantity e + klw, which, as in §110, may be regarded
as the electrical distance between the electrodes, will be denoted by the
symbol &',

The treatment of the problem is slightly different according to whether
there is impressed on the crystal a single sfress X, as in Case I, or a single
sirain 2. As we shall see in §244, the assumption that the stress is given
lends itself most eonveniently to the solution of the problem of the bar
vibrating lengthwise, while for thickness vibrations of a plate, owing to
the presence of lateral constraints, there is but a single sirain to consider.

a. A single extensional stress X, is impressed upon an elongated plate
or bar whose relatively amall thickness dimension is in the direction m.
The cnly strain that concerns us is zi, extensional, in the direction of
the length of the bar. The electric field is in the m-direction. For
example, with a quartz X-cut bar having its length parallel to the Y-axis,
the subscript & = 2, Xi = ¥y, 21 = ¥y, and the electric field is parallel
to X, so that m = L.

We seek an expression for the ¢ffective elastic compliance of the erystal
in a gap. From Egs. (164a) and (163b) the total field in the orystal,
including the contributions due to ¥ and Xj, is

Em - K _ 4mEPm) — K + 4‘"’deka (292)

where (Pn) = —d.wXi. By substituting this value of E, in Eq. (287)
and setting ¢ = 0, we find for the field in the gap
gy = eV 4o Tn) Bl el (203)
e € ¢ €
The second term on the right in Eq. (292) is the depolarizing field. Asw
increases, the depolarizing field becomes greater, appreaching as a limit
the value given below for w —r «,

When w — 0, Egs. (202) and (293) are both reduced to (286). In
the crystal the field is simply V/e, while in the {infinitesimal) gap it is
k'V/e - 41rdkak.

When w — o while ¥ remains finite, Ky =+ 4nduiXs/kp, and £, — 0.
This is the case for a stressed crystal completely isolated in space. Itis
easily proved that the principle of continuity of displacement is satisfied,
the displacement approaching zero inside as well as outside the crystal.
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Nevertheless, the polarization does not then approach zero. Its value
at infinite gap ig*

P2 = ~duXs + v, B = — PtX1 (204)

or only 1/k!, of the value when w = 0 and V = 0, as given at the end of
Case I. The analogy with the effect of magnetic depolarization upon a
magnetic shell is obvious.

In Eqgs. (288) and (289) of the *Lehrbuch,” Voigt treats the case in
which the crystal is placed in an external field of constant value E,.
His results, represented in Eqgs. (295) and (296) with appropriate changes
in subscripts and on the assumption that the surrounding medium has a
dielectric constant of unity, can be derived from Egs. (292) to (294).
The erystal plate may be considered as in a very wide gap, with ¥V large
enough to produce an arbitrary E5,. It is then easily proved that

By = T . SrteaXs (295)

P, = ki B — duaXs) | ' (296)

When X; is constant, we see that the crystal behaves, with respect to
variations in Eg, like an ordinary dielectric with dielectric constant &f,.
We return to the case where w is finite. The total strain component z:
is due in part to the two field constituents in Eq. (202). With the aid
of Eq. (184) one finds
AV | dwwdi, Xe

o= —— + .

; - X @)

If, as is usually the case, V is independent of zy, the effective compliance
of a crystal with gap w, when a stress X; is applied, may be written as

ATy s _ Amdiw

= — 3X, - e o (298)

Similarly, one can derive the more general equation

3 4xd
= = gt = of, - Trntlmt (2980)

‘When the gap is infinite, the last two equations became identical with
Eqgs. {273e) and {273), since the only depolarizing field is parallel to the
thickness of the bar.

* “Lehrbuch,” p. 917, Eq. (291).
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These equations show how the compliance departs from the isagric
value when there iz a gap. For example, if w = 0 or if the crystal has
no dey, 8% = . As the gap increases, then if dy # 0, the compliance
goes down, and, in the case of a resonator, the natural frequency increases.
As the gap becomes indefinitely large, %, approaches the value given by
Eq. (273e). This condition may be very approximately realized when
w is still of the order of magnitude of e. Analogous equations may be
derived for the other compliance coefficients. When w = 0, Case II
reduces to Case L

216. Casg IIb. A thin plate of infinite extent, with thickness e in
the m~direction, is subject to a single extensional strain z,,. This situation
will be encountered in the theory of thickness vibrations (§243). Here
we consider only the static case, where z.. is uniform throughout the plate.
As in (a), the plate lies between parallel electrodes, with a gap w. A
potential difference V is impressed on the electrodes, causing a contribu-
tion to the field in the m~direction in the crystal, of magnitude

En=2Y
€

where e =¢+ kiw (299)

The clamped dielectric constant . is used here, in accordance with §104,
because the strain is prescribed.

As in Eq. (202), there exists also in the crystal a depolarizing field
due to the strain z,, of value —4rw(P,)/e’, where now (Pn) = emnmim.
Hence the total field in the crystal is

_ ¥V 4wwPw) _ 40 mm
e” T

The stress X, required to produce the prescribed z, when ¥ is given
is the sum of two constituents, one of which is that due to En, while the
other is that causing z. at zero field. That is,

X = tmmBn — 650n = e"'“' (me““ + c,f,,,,) zm  (300)
The effective stiffness of a crystal of infinite area, thickness ¢, and gap
w, under a static pressure, is therefore

@ =B 4 4srwe,,.,,.

(301)

When w = o, this equation becomes identical with Eq. (272a)
(setting & = m), since, as w — o, w/e' = w/(e + kw) — 1/k. .

218, Case III., Crystal of any form, completely clamped, with field E,
impressed. A system of external mechanical stresses is applied, such
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that each of the components of stress X = —enBs is neutralized by a
stress — X, reducing the strain to zero. This does not reduce the
polarization to zero, for a polarization Py = ¢} By still persists. For all
erystal clagsses with which we are concerned, there are no polarization
components other than P; for a given E),, so long as E) is parallel to one
of the three orthogonal crystal axes, For the general case, the compo-
nents of P are given by Eq. (140) [see also Eq. (154)].

217. Case IV. Equation (292) may be used to derive the field and
resultant polarization in s stressed crystal having adherent eleptrodes con-
nected to an external cepacitance, a8, for example, an electrometer or the
deflecting plates of an oscillograph. It is necessary only to set ¥V = 0
and to replace the capacitance of the gap €, = 4/4rw (see Case 1I
above) by the external capacitance C. A is here the area of the crystal,
and for the capacitance of the crystal we have C, = kA /4xe. From
these two equations it follows that w/e' = C/E(C, 4+ C.), whence
from (292) we have

_ X €, O

B= kW  C.+C (302)
The resultant polarization is —du X5 + n,E,, or
4rny  C,
Py = —duX: (1 - -%‘ . m) (303)

When € = 0, Eq. (308) reduces to (204); when C = w«, it becomes the
fundamental equation {¢'} in Table XXI.

218, Case V. Crystal plate of large area A having adherent elec-
trodes on which fized charges +@Q are placed. The charge density is
o = Q/A. If the plate iz clamped, the field strength is E; = —4wo/k"
(specific subseripts are here unnecessary). When the plate is released,
the field becomes reduced to E; = —dwo/k = —dwo/(k”’ + 4xZed)
[¢f. Eq. (265)]. We may say that the reduction in field strength is due
to the increase in the effective dielectric constant. It would be equally
correct to say that it is due to an induced counter-field, proportional to
the strain, of amount E' = (4we/k"’)(4rZed/k'), a relation that is easily
verified.

The foregoing paragraphs contain many instances of the piezoelectric
analogy to Lenz's law, which, as commonly understood, may be expressed
by saying that an induced current flows in such a direction as to oppose
the cause that produced it, the amount of reaction depending upon the
resistance of the electric circuit. In the case of the piezoelactric effect
the statement is as follows: A piezoelectrically induced field has such a
direction a8 to oppose the stress that produced it, the amount of reaction
depending upon the freedom of the erystal from mechanical constraint.
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£19. Numerical Examples. The magnitude of the secondary effecta will now be
illustrated, quartz being taken as an example of relatively low piezoelectricity and
Rochelle ralt as the most strongly piezoelectric substance known. In each case an
X-cut plate of large ares is considered, the electric field and polarization being in the
X-direction. The values of di, 2%, and k, for Rochelle salt are taken from Fige.
145 and 146 at 5°C and are typical for small electric and elastic streases. The figures
for lerger stresses near o Curie point would give a still more striking contrast with

6

quartz. The symbol Zed signifies the summation Eeu;du., which for quartz is
[

28|1d||_ + Gudu[Eq. (213)1, while for Rochelle salt it is simply Gu,du.

Quantity Quartz Rochelle salt
d di, = 6.9(10-%) diy = 10.4(10-%)
¢ e = 5.2{10% s = f%: = 65(109
5% sf = 1.30(10712) | s¥ = 16{10-%)
Zod 0.0069 6.75
K 4.5 190
w, 0.282 15
mn 0.276 8.2
k) 4.46 104
& 8P = 1.29(1017) | 5P = 8.8(10-13)

= 0,992s% = 0,658,

The table shows clearly how little influence the piczoelectric effect has on the
dielectric constant and compliance of quartz as compared with Rochelle salt. Con-
gidet, for example, the effect of clamping on the dielectric constant. In quartz, ki is
about 2 per cent less than kJ, while in Rochelle salt, for the example cited, &, is only
about half as large as k,. If the ficld in Rochelle salt were such as to bring the polari-
zation to the knee of the P.E curve, then between the Curie points &, would be but a
stall fraction of k).

220. Piezoelectric Reaction on Elastic Cycles. It is helpful to an understanding
of piezoelectric renctions to consider the energy expended clectrically when a piezo-
electric erystal is put through a cycle of stress and release, even though experimental
data are lacking. We shall here treat the problem as static rather than vibrational
and assume, to fix the ideas, that we have an m-cut plate with elcetrodes covering its
opposite faces, the electrodes being either left insulated or connectod through a resist-
ance . Energy lost through internal mechanical friction may be ignored. A uni-
form stress X, is applied, where k may be identical with m. The piezoelectric polari-
gation 18 Pm = —dmeX

If the electrodes are insulated (R = =) and there is no external field, the atrain
% is given by Eq. (268),

e = —sp Xy (304)
where, by Eq. (271), :
2
o = of, — 4’;‘%*" (304a)
For the field due to Pw we have
B = drdmXs (304b)
Eu

It is this depolarizing field that is responsible for the second term in (304a).
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When the electrodes are connected through a resistance, unless the resigtance is
extremely great, the depolarizing field Es will disappear within & short time after the
application of Xz 'We have then the case represented in Eq. (288) when V' = 0:

2 = —af X (304¢c)

For simplicity we now drop tho subscripts k and k and write o' = &8, s, = sf,
2 = —8'X, To= —8X, B = 425X /k, and &' = 8, —~ 4xd?/k.
When X is applied, the energy expended is, for electrodes insulated (R = e},

W, = — $2'X = 3'X2 = }X32 (80 — :4_1,;_6’) - (304d)

and, for short-cireuited electrodes (B = 0),
Wy = — dzoX = §8.X2 (304¢)

In neither of these processes is there any loss of energy. In the case of Wi there is a
storage of both elastic and elecirical energy in the stressed plate, all of which ia
returned when X is removed. In the case of Wy a current flows without loss of
energy, since B = 0 and the electrodes are at all times at the same potential.

The two processes are illustrated in Fig. 49, in which, for clarity, the ratio z./z' is
greatly exaggerated. The lines 04 and OB correspond, respectively, to Egs. (304d)
and (304e), the energies being given by the arcas of the triangles 04X and OBX. For
the electrostatic energy when B = s one finds, from Eq. (304b},

kE* _ 2r80X?
We=%r =%

(304f)
Since this is identieal with the second term on the right in (304d), it follows that the
energy stored electrically when B = e is the same as the excess of Woover Wi This
excess is represented by the area of the triangle OBA.

After the point A has been reached upon applying the stress while B = =, if the
electrodes are connected through a finite resistance R, the additional work in pussing
from 4 to B depends upon R. If B = 0 and if the cireuil is non-induetive, the dis-
charge and consequent relaxation of the plate are instantaneous, so that the stress
drops at once to zero (point z’ in Fig. 49). If the stress is applied again in such &
manner that its relation to the additional strain zo — 2’ is linear, the line 2'B results,
and the additional work done is the area of the triangle 2"BA. But this equals the
area OBA, which has heen proved to represent the energy W.. Thuas in this special
case, and then only, the total work done is the same a3 if the erystal had been short-
circuited from the start.

For any value of E greater than zero, a further increment of work is necessary to
compensate for the loss [§2R df in the cirenit. As R increases, the loss rises from zero
to a certain extreme value, which is attained when R is so great, and hence the rate
of relaxation so slow, that the full stress X is applied during the entire increase in strain
from 2’ to £o. The additional work is then — (zo — 2"} X, and this, by Egas. (304d) to
{3047), is just twice W, being represented by the rectangle 'z,BA.

From these considerations it is a natural step to the construction of the ideal cycle
of operations represented by the parallelogram OABC in Fig. 49. Along 04 mechani-
onl atress is applied while R = «; along AB the electrodes are connected through &
high resistance; R = « sgain along BC while the stress is removed; and finally a
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rasistance is connected, allowing the erystal to return along CO to its unstrained state.
The total loss in energy is 2W,, the area of the paralielogram. The points of analogy
with the Carnot cycle—ag well ns the essential differences—are sufficiently obvious.
Similarly, a hysteresis loop can be constructed for the case in which an alternating
stress is applied to a crystal having electrodes connected through a constant resistance.
The analogous problem of the energy losses when an elecirie stress is applied to the
crystal by connecting the electrodes to a battery suggests itsclf. Corresponding to

Xgfrm—=—mmm———————— B
L = |4
i
C
0 x

F1o. 49 —Relution between stress and strain for e piezoelsetric crystal.

the insulated and short-circuited states in the foregoing treatment are, according to
§199, the mechanically clamped and free states. Cycles similar to those described
above can he drawn, the coordinates being polarization and field strength. The
energy that disappears is accounted for partly by dielectric losses and partly by inter-
nal friction in the crystal and in the external system that controls the clamping.
Examples of this sort will be found in Chaps. XXIT and XXIII.

In order to illustrate Lippmann’s theorom, Poynting and Thomson* discuss a
piezoelectric cycle of a form somewhat analogous to Fig. 49,

* Ref. B42, p. 157.



CHAPTER XIII
THE PIEZOELECTRIC RESONATOR

They gather also peerles by the sea side, and Diamondes and Carbunecles vpon
certein rockes; and yet they seke not for them; but by chaunce finding them they cutt
and polish them. —8SIr Tiomas More.

221. Introduction. In the most general sense, a piezoelectric reso-
nator, or piezo resonator, is an elastic solid body consisting partly at
least of piesoelectric crystalline material, capable of being excited to
resonant vibration by an alternating electric field of the proper frequency.
In its simplest form it is o single piece of crystal, usually eut to a pre-
geribed size, shape, and orientation, but even a rough fragment or an
entire crystal ean be made to resonate. When one or more pieces of
piezoelectric crystal are cemented to non-piezoelectric material, for exam-
ple & metal bar or plate, usually for the purpose of obtaining resonance
at relatively low frequency, we have a composite resonator. The field
is applied by means of electrodes, so situated that the field will be in the
proper direction to excite the desired mode of vibration. With all types
of resonator, the electrodes may be separated from the crystal by gaps,
or they may be attached directly to the crystal.

The electric field drives the resonator through the action of the
converse piezoelectric effect. When the crystal vibrates, the periodic
deformation causes periodic piezoelectric charges on the electrodes,
through the direct vffect, that react on the driving circuit. It is this
reaction, present only when the resonator is vibrating, that gives the
device its greatest usefulness.

The cooperation of the direct and converse effects has an analogy
in the electric motor, which is driven by an electric current and which
when running develops a counter emf that reacts on the driving eircuit.
The ansalogy with the synchronous motor is especially close, since here,
as in the crystal, both the amount and the phase of the reaction have
to be considered. Where the analogy breaks down is in the fact that the
crystal, unlike the synehronous motor, can be “driven’” to an appreciable
extent only at or near a definite frequency.® The phase relation in the
case of the synchronous motor depends on the load. With the piezo

*In most cases, as the applied frequency is varied, resonanee occurs at a large
number of distinet frequencies, depending on the possible vibrational modes that can
be excited by a field in the given direction. The frequency corresponding to any ane
of these modes may be taken as the “definite frequency.” -~

284 -
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resonator the load wsually includes only the losses in the resonator
itself. Gonsidered as a motor, the resonator “idles.” The phase angle
between resonator-reaction and spplied emf is determined by the differ-
ence between the driving frequency and the natural frequency of the
regsonator, and at a given frequency it depends also on the losses.

The piezo resonator may also be thought of as a vibrating condenser.
At very low frequencies, including zero, it behaves as a pure capacitance,
at least for most crystals now in practical use, since in them the dielectric
losses at low frequency are negligible. There is, of course, some piezo-
electric deformation even in & 1 field, but it is insignificant in comparison
with the deformation near resonance. That is, the resonator, like all
other vibrating systems, is in & state of forced vibration at all frequencies
of the driving force. As the applied frequency is increased until the value
corresponding to the lowest natural mode of the resonator is approached,
the amplitude of the deformation increases, passes through a maximum
at a certain frequency, and then decreases. With further increase in
frequency a whole spectrum of maxima of various heights is encountered,
gorresponding to various vibrational modes and their overtones, up to
frequency values many times greater than that of the first maximum.

The mechanical vibrations in the neighborhood of a resonani fre-
quency depend on the inertia, elastic compliance, and damping losses
of the vibrating crystal. Similarly, ita electric reaction on any electrie
circuit to which it is connected is the same as if the erystal were replaced
by a certain “ equivalent network,” containing an inductance, capacitance,
and resistance, corresponding to the mechanical inertia, compliance,
and frictional resistance of the erystal and proportional to them.

From the engineering point of view, a piezoelectric resonator is an
electromechanical fransducer.*

229. The usefulness of the piezo resonator in a wide range of practical
application arises from its extremely sharp resonance, together with the
lucky circumstange that crystals of convenient size can be made to
resonate at frequencies over the entire range from 50 to 3(10%) cycles
per second; this iz a range of over 20 octaves. Still higher resonant
frequencies have been observed, but they do not yet seem to have
reached the stage of practical application.

T these advantages should be added the fact that in quartz crystals
we possess a piegoelectric material that combines almost ideal elastic
qualities with great mechanical strength and durability. By the use of
certain oblique cuts, quartz resonators for almost any frequency can be
made with frequencies practically independent of temperature over a
very broad temperature range.

* For a treatment of the piezoelectric transducer, both resonating and non-
resonating, see ref. B35.
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The most widely used resonators are in the form of rectangular
parallelepipeds with the electric field in the thickness direction, If the
slab is relatively long and narrow, it is called a Der or rod and is used
mostly for lengthwise compressional vibrations of relatively low fre-
quency. For a given crystal and orientation the fundamental frequency
is inversely proportional to the length. Plates with both length and
breadth large in comparison with the thickness are used in one of two
ways. The first depends on the fact that certain cuts can be made to
execute thickness vibrations, the resonant frequency being inversely pro-
portional to the thickness; such resonators are used in the higher range of
frequencies. Rectangular plates with breadth comparable with the
length can also be made to vibrate in a shear mode, the shear taking place
in the plane of the plate {contour vibrations). The frequency is of the
same order of magnitude as that of a bar of length comparable with the
length or breadth of the plate. The temperature coefficient of frequency
practically vanishes over a very wide range of temperature in the case of
properly oriented quartz plates vibrating in this mode.

223, Thus far we have spoken only of the piezo resonator, without
mention of the piezo oscillator or of the piezo stabilizer. In general,
every piezoelectric device that has a natural frequency and is not too
highly damped, when vibrated electrically at or near this frequency, is a
resonator. 'This gtatement is true even when the crystal controls the
frequency, as in a piezo-oscillator circuit. In a more restricted sense
it is sometimes called a “resonator” only when it does nothing but
resonate. This condition is realized when it is zo loosely coupled to the
driving circuit that its reaction on the driver is negligible. Such circuits
are used in studying the properties of the cerystal, and to some extent in
frequency measurement,

The term piezo oscillator is properly applied to an amplifying circuit
that of itself is incapable of oscillating because of too little regeneration
or an unfavorabie phase angle, but that oscillates when a piezo resonator
is inserted in it or is coupled to it, the frequency being determined by
one of the vibrational modes of the resonator. Such a eircuit is said to
be crystal controlled.

Sometimes & piezo resonator is connected to a cireuit that is capable
of oscillating by itself, for the purpose of holding the frequency constant
within narrower limits than would otherwise be possible. The cireuit is
then said to be plezeelectrically stabilized or erysial stabilized, and the
resonsator operates as a crystal stabilizer.

The present chapter has to do with the theory of piezo resonators
congisting of bars in lengthwise vibration and plates in thickness vibra-
tion. It includes a discussion of the manner in which the dielectric
constants of a piezoelectric crystal vary with frequency. At the
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close is an account of the effect of piezoelectric vibrations on X-ray
reflections,

Further properties of the resonator, including those of orystals
vibrating in other modes, will be considered in later chapters, as well
as the application of the theory to particular crystals, with some experi-
mental results.

224, Noies on the History of the Piezo Resonalor. 'The first to make an important
applieation of piezoelectricity was P. Langevin, who, in the investigation of his quartz-
metal “sandwich’ deseribed in §506, recognized the resomating propertics as carly
a8 1917. A, M. Nicolson deseribed experiments on resonance in Rochelle-salt erystals
in November, 1919, including observation of the effective series capucitance over a
eertain range in frequency and of the minimum in current at the resonant frequency.
The publications of Langevin snd of Nicolson say nothing concerning the fact that the
reaction of the crystal on the circuit makes possible the applicstion of the crysta), when
vibrating in a normal mode, as a frequency standard, constant-frequency oscillator,
or filter.

The author observed the minimum in capacitance together with the renction of a
Rochelle-salt plate on the driving circuit in August, 1918, and experimented with
his firat quartz resonator in January, 1919, In the succoeding months he investigated
the properties and possible applications of the piezo resonator as well ne methods
of mounting the crystal plates. The first public aceount of the device was given to
the American Thysical Society on Feb. 26, 1921; on this occasion the uses of the
resonator as a standard of frequeney, as a filter, and a8 a coupling device between
eircuits were mentioned. At the meeting on Apr. 23, 1921, the piezoelectrie stabilizer
for h-f gencrating circuite was first publicly described; and on Dec. 28, 1921, eame the
first, paper on the piezo oscillator, in which lengthwise vibrations of a quarlz bar were
used.

The various steps mentioned above are described in the following patents:

{A) P. Langevin, French patent 505,703, application Sept. 17, 1918, issued Aug. 5,
1920; also British patent 145,691 of July 28, 1621,

{B) P. Langevin, U. 8, patent 2,248,870, application Junc 21, 1920, issued July 8,
1941, N ~

(" A. M. Nicolsen, U. 8. patent 1,495,429, application Apr. 10, 1918, issued May
27, 1924,

(D} A. M. Nicolson, 1. 8. patent 2,212,845, divisional application Apr. 13, 1923,
based on the foregoing, issued Aug. 27, 1940.

(E) W. G. Cady, U. 8. patent 1,450,246, application Jan. 28, 1920, iasued Apr. 3,
1923,

(F) W. G. Cady, U. 8. patent 1,472,583, application May 28, 1921, issued Oect. 30,
1923,

(4) iz Langevin's original patent on the use of a vibrating quariz sandwich for
submarine signaling. In it he mentions tuning the driving circuit to the natural
frequency of the quartz steel transducer but says nothing about the reacting or con-
trolling properties of the latter. Nicoleon's firast patent (€) bad to do chiefly with
acoustic applications of Rocheile salt. One of these, illustrated in his Fig. 11, waa
the use of a Rochelle-salt crystal, connected to an oscillating circuit, for modulating
& carrier wave. The circuit was not claimed to be vibrating in resonance with the
erystal. Nothing was said about the use of the crystal as a resonator.*

* Recently the author was informed by Dr. Nieolson that he found in September,
1917, that the circuit represented in his Fig. 11 must have been oscillating at a fre-
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(E) is the original patent on the piezo resonator, in which the uses of the resonator
as a frequency standard, coupler, and filter are mentioned, together with an explana-
tion of the various effects. In (F), which followed soon after, various piezo-oscillator
circuits are described, Shortly after the appearance of (E), Nicolson filed a divi-
sional application based on Fig. 11 in (C), in which the doctrine of inherency was
invoked to claim that this figure embodied the prineiple of the piezo resonstor,
oscillator, coupler, and filter, The result was (D). When patent {B), on “piczo-
electric signaling apparstus,” was issued, it contained claims for the use of a quartz
crystal as a “frequency-determining element.” Litigation has resulted in legal deci-
sions in faver of Nicolson over {B) as well as over (F) and (F).

226. Alternating-current Notation. A few of the standard definitions
and symbols are given here, for reference in this and later chapters.

We consider a resistance R, self-inductance L, and capacitance C, in
series with an alternating emf. V = V' cos wt, where v = 2af.

1
Reactance = X = ol — e \
213
s = 2 = {1+ (s - )]

Vector impedance = Z = B 4 3X

Conductance = g = —ZI?,-

p > (305)
Susceptance = b = 7
Admittance = ¥V = —21.

Vector admittance

Y = g — b (see below)

Maximum current = current amplifude = I, = %’ = VY }

The emi is usually written in exponential notation as V = Vyeior.
The vector current is

= '2’ = VY = Vigstlg — jb) (305a)

The real part of this expression is the insiantaneous current I:

I = VoY cos (wl — ¢) (tan @ = % = g) (305b)

¥or the peak value (maximum in & cycle or current amplitude), we have
I ¢ = VnY

quency determined by a nstural mode of the Rochelle-galt crystal. It is most unfor-
tunate that the evidence was not published. In view of this statement, however, it
appears that Nicolson was the first to construct a crystal-controlled oscillator—unless,
indeed, Langevin’s circuit was to some extent crystal controlled. Buch findings were
entirely unknown to the author in his investigations described above.
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Whenever the vector emf is written in the form ¥V = Vi, it is
customary to regard the vector diagram as rotating counterclockwise
and to take as the instantaneous V the real part of ¥: V = V; cos o,
Sometimes one finds the emf given as ¥V = Ve . In this case the vector
rotates clockwise, but the real part is the same as for Vet Never-
theless, as i8 clearly seen when time derivatives have to be taken, the
opposite sense of the rotation requires that the signs of X, b, and ¢ be
taken as opposite to those when Vet is used, This fact is not always
made clear in texts on aliernating currents.

A simple example will illustrate this statement. If the eircuit is a pure capacitance
C in series with ¥V = Vo194, then, if the instantaneous charge is @,

I=dQ/dt = CdV/dt = —jwCV,

while if ¥ = V™ wo should write [ = +jwCV. The discrepancy is removed by
writing b = +4wC in the former case.

226. Theory of the Piezo Resonator. A rigorous theory for a crystal
resonator of any form and orientation, vibrating in any desired mode,
would have to take account of all boundary conditions, size and position
of electrodes, losses due to the dielectric and mounting, non-linear effects,
coupling between different modes of vibration, non-uniformity of electric
field, and, when the electrodes are separated by a gap from the crystal,
the effects of the gap, including possible resonance effects in the air
itself. While no such general theory has been attempted, special
problems involving most of these considerations have been attacked by
many writers. Some of these special cases will be considered later.

In practice, the commonest types of piezo resonator are the bar,
vibrating compressionally lengthwise, and the plate, in which the wave
propagation is normal to the major surfaces although the vibration
direction may have any orientation. Other types involve flezural
vibrations, torsional vibrations, and the confour vibrations mentioned
above,

In principle, it iz always possible to express the amplitude of vibration
at any frequency in terms of the effective driving stress, together with the
physical constants of the material and the dimensions of the specimen.
The corresponding electrical problem is the caleulation of the equivalent,
eloctrio constants in the neighborhood of a resonant frequency. Just
a8 the spectroscopist is interested in both frequencies and intensities of
spectral lines, so here the study of the resonator involves both resonant
frequencies and vibrational (or current} amplitudes. Resonant fre-
quencies are usually only slightly dependent on the damping. On the
other hand, in expressing such guantities as sharpness of resonance or
the shape of the resonance curve, on which the usefulness of the resonator
depends, the damping factor must be introduced.
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In the present chapter it is assumed that all stress-strain relations,
both electrical and mechanical, are linear. The treatment: of non-linear
efiects has been carried out only for Rochelle salt and will be considered
in Chaps. XXIIT and XXIV.

We shall restrict ourselves to the theory of lengthwise vibrations of
bars and thickness vibrations of plates. While these two types of resona-
tor have much in common, they differ in such significant particulars
that they are better treated separately. Theories of the flexural and
torsional resonator could be developed along the lines indicated for the
bar.

In all cases the resonator is assumed to be in the form of a parallele-
piped with edges parallel to the axes of reference and with the field
parallel to one of these axes. If the reference axes are the erystallo-
graphic axes, for any given crystal the elastic and piezoelectric constants
that come into play are given directly by the tables in §§29 and 131.
For oblique cuts all parameters must be those appropriate to the particu-
lar axes employed; they may be computed from the transformation
equations already given in Chaps. 1V, VI, and VIII.

LENGTHWISE COMPRESSIONAL VIBRATIONS OF BARS

227. The length  of the bar is in the n-direction, and the compres-
sional stress and strain are denoted by X, and =z., respectively. As
in the treatment of lengthwise vibrations in Chap. V, we take the origin
at the center of the bar and denote the distance from the origin, along
the axis of the bar, by 2. The section of the bar is rectangular, with
dimensions small in comparison with I. The electric field F; is in the
i-direction, normal to a pair of the lateral faces.* The electrodes are
assumed to cover the entire surface of the bar normal to the i-axis,
though they may be separated from it by a total gap w. The breadth
and thickness of the bar are denoted by b and e. We assume that
b < < 1 and that the ratio b/e is great enough to make the driving field
sensibly uniform over the cross section. For excitation it is necessary
that there be a piezoelectrie constant d;, such that z, = di B

228, The Driving Stress for Lengthwise Vibrations. This quantity is
defined as that alternating mechanieal stress, denoted by (X,)s, which,
applied uniformly throughout the bar, would produce the same vibration
of type z. a8 is actually produced by the alternating field K. (X,)q
then takes the place of the stress X in §§57 following, while in place of

* Under certain conditions lengthwise vibrations ean also be exeited by placing
the electrodes so as to produce a field parallel to the length of the bar. In this case
the electric field is paralel to the direction of wave propagation, and the theory is
more complicated becausa of the presence of & space charge. Aa will be seen In §349,
quarts resonators of this type have been described by Giebe and Scheibe.
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Young's modulus ¥ we shall use the symbol ¢’ = 1/s%,; thie is the
effective value assumed by Young’s modulus when there is a total gap w
between orystal and electrodes, as given below in Eq. (330).

In general, E; causes six components of piezoelectric stress:

Xi= —enk; -+ - Xy = —ef;

Through elastic coupling each of them contributes to (X,)s. Thus X;
tends to cause a strain component —s5, X;, and the sum of all six strain

components is ., = — I8 Xy = —38 (X.)e. We seek the value of the
effective piezoelectric stress coefficient ¢, given by (X,)s = —efi. We
have
8 8
1 B
(Xoda = = 2 X = — 2 shew = —eki (306)
nn h nn h
6
Hence, ;};- Z 856 (307)
)

If the resonator is parily clamped (sce §372) or if the dimensions are
such that some of the six stresses are prevented by inertia from becoming
effective, some of the terms in the summation will be absent. In a thin
bar undergoing longitudinal vibration all six terms are present (though
in most cases certain of the ew vanish for the particular crystal used).
1t follows from Egq. {191a) that, for a field parallel to <,

e =S (308)

This expression will be used throughout in the theory of the bar. Its
value is independent of the gap.

As an illustration of the formula for (X,}; may be mentioned the
quartz X-cut resonator with length parallel to Y, which was the earliest
type and is still widely used. Forit, when w = 0,¢ = dio/sf = --du/sf,
while the driving stress is (Vy}a = —ef, = ~duk./sf.

In all cases only the component of polarization parallel to the field
need be considered. From §110 it is seen that a potential difference V
applied to the electrodes causes a field strength £, = V/el = V/(¢ + kuw)
(for % see next section). Hence, from Eq. (306}, on writing V' = Ve,
we have

(X = — T (309)

229. The Dielectric Constant for Lengthwise Vibrations. At very
low frequencies the dielectric constant has the value &; for a free crystal.
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The lowest normal mode, leaving aside flexural and torsional vibrations,
is the fundamental lengthwise mode. As the frequency of this mode is
approached, the longitudinal strain z. due to the state of vibration begins
to be appreciable, becoming many times grester than the static strain
% = d;,E; that tends to be caused by the instantaneous E;. Since the
normal modes correspending to all the components of strain except 2,
have frequencies that are high in comparison with the fundamental
lengthwise frequency, all such components of strain are practieally
proporticnal to and in phase with E;, With respect to these comporlents,
then, the crystal is still free, and they all contribute to the value of the
dielectric constant. On the other hand, with increasing {requency the
static strain =% gradually merges into the vibrational strain z,, which is
treated in a separate equation. Hence the polarization ex? must be
subtracted from that characteristic of the free crystal in forming the
expresston for the effective dielectric eonstant. We have therefore, for
the polarization due to E;,

2
P} = nF, — exi = 0l — edinkl; = (n: - ;dg—") E; = nE (310)
where the effective susceptibility is m = o] — edis. The effective dielec-
tric constant is therefore®

2
Be= 14 dom = K — dradis = B} — Tnoe (311)

[0,

In & quartz X-cut resonator & is about 1 per cent less than .. In
a Rochelle-salt X-cut 45° bar, k: is only about half as large as k.

The value of %: given by Eq. (311) is to be used everywhere in the
theory of lengthwise vibrations, except in the expression for the stiffness
q’, as explained in §235. The symbol &; indicates the dielectric constant
that determines the driving field for lengthwise vibrations when a potential
difierence V is applied to the electrodes. In terms of k; the “electric
apacing” (§110) is

eh=e+ kw (312}

230. Polarization and Current in the Resonator, The instantaneous
piezoelectric polarization at any distance x from the center and at any
frequency is derived from the general expression for the strain x.(z) at
the same point. The X-direction, which is that of the length of the bar,
may have any orientation with respect to the crystallographic axes.
For the lengthwise compressional vibrations here considered, z, means
the lengthwise compressional strain.

* This equation, for a quartz X-cut bar, was first derived by Vigoureux.’t?
Similar expressions have been used by Mueller®*® and by Mason.BPse.sie
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In order to find an expression of sufficient generality for z, we must
go back to §57, where the mechanical displacement £ at any z is given by
Eq, (68). With the aid of Eqgs. (71) and (73} we find (writing ¢’ in place
of ¢ for the stiffness)

8¢(z) _ . (X,)ao cosh vz ]
o ¢ cosh (v[/2)

where ! is the length of the bar, ¢' is given by Eq. (330), and
(Xn)d = (Xu)dl}f”m

is the instantaneous driving stress, taking the place of X in the earlier
section. At zero frequency (X,)q becomes a static stress, the static strain
being approximately —(X.)s/¢'. Equation (313) shows that the actual
strain at any point when the crystal vibrates is this statie strain mul-
tiplied by the factor cosh vyz/cosh (yI/2). This is the factor by which
the amplitude of vibration is in excess of the static clongation.

From the equations that follow it can be proved that, for the same
driving force, the ratio of the static to the resonant amplitude of mechani-
cal displacement is 8/4w, where § = o/f is the logarithmic decrement
per period. The same ratio holds for the strain at the centor and for the
current.

In terms of maximal displacement £:(1/2) at the end of the bar, the
maximal vibrational stress is —ag'lE,(1/2).

The piezoelectric polarization™® at any point is P;(z) = er.(x). It
gives rise to a piezoelectrie displacement D, which, when there is a gap,
is equal to the corresponding field (£.), in the gap, and is given by Lq.
(164a):

et (313)

za{z) =

Dy(2) = (Bu)ole) = 4xPi(z) 5 (314)

The total displacement D(z) at any z is the sum of D,{z) and the
contribution due to the driving field E,, viz., &V /e, by Eq.(163b). The
current density at any z is aD/4xdt, and the total current I is the integral
of this expression over the breadth b and length I of the bar: from Egs.
(309), (313), and (314) one finds

meVo 3 ( 4re’e cosh vz )
1= 41re,. _[;/2 ki = g'el cosh (yI/2) dz

. o kbl |, 2bele ¥l
B we —

Jw Vo (4“, + o tan h (315)
*In general, the polarization has components at right angles to the thickness e,

but they have no effect on the current.
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This equation holds at all vibrational frequencies up to those at which
coupling between overtone lengthwise vibrations and vibrations in latersl
directions begins to cause complications, and for any degree of damping
for which Eq. (74) in §57 is valid.

When 1% = 0 (electrodes adherent), then as f — 0,

tanh (%I) — —;—z;
v — a/c, and by Eq. (311) k — &, the value for a free crystal,

The quantity in the parentheses in Eq. (315), multiplied by je,
represents an electrieal admittance. The first term is eapacitive, while
the second is the vibrational contribution, which is variable in phase
with respect to V. Use will be made of this fact in deriving the eonstants
of the equivalent electrical network.

A curve relating T with frequency would show a series of maxima like
those in Fig. 20. The relative heights of successive maxima would
depend on the nature of the damping. From the rclations between F,
«, and & in Eq. (67), it can be sbown that the ratio of the maximum
oceurring at the fundamental frequency fo (for which A = 1) to that
oceurring at any harmonic frequency fu = Afs is A% if F is independent of
the frequency; the ratio is & if § is independent of frequency; and the
current is the same at sll harmonic frequencies if o« is independent of
frequency.

Not much is known of the dependence of damping on frequency.
Usually the viscosity inherent in the crystal is overshadowed by losses
due to the mounting, and these may well vary more or less erratically
from one type of mounting to another. On the whole it can be pretty
confidently expected that the current maxima will diminish at a pro-
nounced rate with increasing order of harmonica.

By the use of a system of & pairs of short electrodes, properly con-
nected and distributed uniformly along the length of the bar, the current
corresponding to overtone i can be increased (see §239).

231. Equation (315} can be put into a useful approximate form, (1)
when the damping is negligible, (2) in the neighborhood of & resonant
frequency.

1. When damping is neglected, Eq. (74) reduces to v = ju/c = jaf/if,
where ¢ is the wave velocity and f, the fundamental frequency for maxi-
mum particle velocity and maximum piezo current (§234). Since now
tanh (v!/2) = tanh (jwl/2c) = j tan (xf/2f), it is found from Eq. (315)
that

_jeblVeee (b1, 2 of
=Bt (e 2 v (16)
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This equation can be used at all vibrational frequencies, except that it
becomes infinite when f is an odd multiple of fo. The frequeney for
parallel resonance, which we call f,, is found by setting 7 = 0 and solving
for f. A more convenient expression for f,, in terms of fhe equivalent
electric constants, is given by Eq. (398).

2. In making the approximations for frequencies close to resonance,
we denote the order of the harmonicby A (A =1, 2,3, . . . ), as in §58.
The fundamental frequency fi = wi/2r will, however, still be denoted
by fo = wo/2r. If the width b of the bar is not greater than /4, where !
is the length, a true harmonic ratio for overtones can be assumed to a
first order of approximation. The correction for the frequencies of over-
tones is given in §65. By Eq. (64) the damping constant is as = Ale,
if the frictional coefficient F in Eq. (61) is regarded as constant. If,
as is probable, F varies with frequency, ax must be found experimentally.

For the factor v in the denominator of Eq. (315) one may write with
gufficient approximation jw,/2fil. Near resonance, where ni < < w,
onehasws = wie — 7 [Eq. (81)]. Afier obvious reductionsitisfound that

7 oy + J(—1)'m,
teh g ~ TR - o 817
With even integral values of & this expression becomes extremely small
and the current approaches that flowing to an ordinary non-vibrating
condenser, That is, when full-length electrodes are used, as is here
assumed to be the case, the response of the resonator is negligibly small
in the neighborhood of even harmonics, For the excitation of even
harmonics by short electrodes see §238.
In what immediately follows we shall be concerned only with odd
harmonics. When A is near an odd integer, Eq. (317) becomes

Ty tim
tanh 5 41y i £

With these substitutions in Eq. (315) the equation for current is

i

_ m,.bZVgg‘jf . kz 452631.08 on + jnk
P i S ) G1
On rearranging terms and making the approximation
amown & wiy = kil = by /pl?,

one finds

v e | 4670 o . M . k;bl]

=7V :[pﬂef" (af T tiatm) T g
= Voeit(g' — 30" — jb") = VoY, (319)

where ¢ = 4e%bear/ple(af + nf), ¥ = —4detbena/plel* (e} + n?), and
V' = —wnkibl/dxe,.
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232, The Equivalent Electrical Constants. In Eq. (319), ¥} repre-
sents an electrical vector admittance, of which the first component is a
conductance g, while ¥ and b" are constituents of a susceptance.™
Since b’ and g’ contain n, and e, they must originate in the vibrations,
while b” is & paraliel susceptance independent of the state of vibration.

The electrical impedance corresponding to the vibrational terms is

’ 1

2 = 7= = R} + i X}
where, as is easily verified,
ple™® - Ze"
B=gamee = g (320)

The negative sign results from the definition ny, = Aws — ws and indieates
that on the h-f side of rescnance, where n; is negative, the reactance
X} is positive.

Since ws is elose to hwe, it follows that the reactance X, which must
be of the form wilj — 1/wxC}, ean with sufficient accuracy be written

a8 X; = —2Lim. This expression leads at once to the eguivalent self-
tnductance L},
ple'?
L, = 3¢e (321)

Lj is independent of the value of k, just as was the case with the equivalent
mass M in §63.

The value of the equivalent capacitance Cj in series with Lj is found
from the relation wQIiC) = 1;

;. 8etble
Ci = g R (322)
In parallel with the R;L;C} series chain is the capacitance € repre-
sented by the last term in Iig. (319):

, _ kbl
Ci= dre] (323)

All the foregoing electrical quantities are expressed in egs electro-
static units.

To avoid confusion, we use the primed symbols ¢', R;, L;, and C}, for
the equivalent constants at harmonic k when there is a gap, as in Fig. 50.
‘When the gap is zero, the primes are omitted. The reason for the use
of the primes will become more apparent when we come to the two
alternative networks shown in Fig. 56.

* The symbol for susceptance must not be confused with the b that denotes the
breadth of the bar.
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‘When there is no gap, the expressions for the electric constants become

_eW o kb (524
AT iqeeh? = dye

where now g, is the stiffness at zero gap, with value 1/s%,. The depend-
ence of the four parameters upon the gap w is expressed by the factor
e, = ¢ + kw and, in the case of €}, by the factor ¢’.

It should be noted especially that C. decreases as the gap increuses,
approaching the value zero at infinite gap, while I approaches infinity.
The increase in {requency as the gap goes from zero to infinity is due to
the factor for mechanical stiffness in the expression for €}, which increases
from g, when @ = 0 to ¢ = ¢* when w = «. For quartz this increase
is small; for Rochelle salt (§377) it is very large.

From the foregoing equations, together with Eq, (67), it is seen that
the damping constant as can be variously expressed as

. = T
op = ﬁl: f.n.'sh == m

Qs and 8 would be constants of the material of the resonator if the
frictional coefficient F in §56 were constant. The dependence of @,
on frequency, and hence on the dimensions of the resonator, is discussed
n §296.

Most, if not all, types of piezo resonator, vibrating in the neighbor-
hood of a natural frequeney, can be represented electrically by a serics
RLC- (or R'L'C’-) chain in parallel with a fixed capacitance. The net-
work is shown in Fig. 50, and the representation of the behavior of the
resonator by means of a circle diagram is considered in Chap. XIV.

233. The Electromechanical Katio. In §62 expressions were given for
the equivalent lumped mechanical constants of the bar: Wy = plbeay,
Gy = w*Ybeh?/2l, M), = pble/2. As stated previously, Young's modulus
Y is denoted by ¢in the present discussion. Comparison of these quanii-
ties with the expressions for By, €}, and L; in Eqs. (320), (322), and (321)
shows that they are related in the following manner:

Z=r@n Ri=rW G- L=t (329)

e (e + kbw)?

where o= a‘e—zzﬁ;i = W@“ (326)

is the electromechanical ratio* and Z, is the motional impedance. When
the gap w = 0, the ratio is simply 1/(4€%6%). For every type of piezo reso-

* In a former paper’® the author used the symbol r' for this ratio when there was
& gap between electrodes and crystal and r for the case of zero gap. It is simpler to
use r for all values of gap, including zero.
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uator, ag with every transducer in general, there exists a corresponding
ratio expressing the relationship between the two forms of energy involved.
The expression for r in the case of thickness vibrations is given in §255.

From the foregoing equations it is clear that the quality coefficient Q
may be expressed as either wMs/ Wy or o)/ Ri.

The electromechanical ratio r may be taken as a measure of the
activity of the crystal az a resonator (for its relation to the capacilance
ratio C/C see §280). For example, the amplitude of the piezo current
I, in Fig. 50 is proportional to the coefficient 4¢®be/plel? in Eq. (319),
and this coefficient, from Eq. (326), is 1/ratbe = 1/rif, where M is
the equivalent mass defined above.

234. The electrical network equivalent to the crystal bar with gap,
vibrating longitudinally in the neighborhood of harmonic %, is shewn in
g, 50. Since all electrical quantities are functions of the properties
of the bar and independent of frequency, this network may be considered
as completely replacing the crystal in any circuit, so long ag the frequency

Ry Lh Ck g,
l_

I

1

77| R
Fia. 50.—-Electrical equivalent of a piezo resonator in the neighborhood of harmonic &.
remains sufficiently close to fuo. The frequency fio is that at which
ny = 0 and the reactance X = wnlip — 1/wnCy vanishes. At this
frequency the current has its maximum value. The alternative network,
with RLLACiC: in series with the gap capacitance Co, is explained in
Chap. X1V.

The two components of the current I, represented by the two terms
on the right in Eq. (318), are now seen to be the currents 7; and I, in
Fig. 50. I, is the pieso current in the L{R;C-branch, proportional to
and in phase with the vibrationel velocity. For frequencies close to the
fundamental resonant frequency this fact is readily seen by comparing
Eq. (319) with (87). For this purpose the vibrational part of Eq. (319)
may be rationalized into the form

7. = 4Vacbe
Tope Va4
where tan 8, = {(— 1%/,

The velocity at the end of the rod is given by Eq. (87), which, on

writing (X.)s = —eV/¢] from Eq. (309) in place of X,, becomes

NN 2V, :
(0) = VTR o

cos {wal — O} (327)
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The veloeity is in phase with I, and except at very low frequencies
it is also very nearly in phase with the total current I.
The ratio of the values of I, and »{l/2) is seen from (326) to (328)
to be ‘

Ip _2be _ 1 (329)

6 "
"\2

It must be emphasized that the network shown in Fig. 50 is valid
only as long as the resonator can be treated as having a single degree of
freedom. It fails also when the frequency approaches zero.

236. The Effect of the Gap on the Elastic Constant in Lengthwise
Vibrations. In Eq. (298), a formula is given for the effective compliance
for compressional strains in the k-direction, applicable to a Dbar lying
between short-circuited electrodes that are separated from the bar by a
total gap w. When the subscripts are altered to conform to the notation
in the foregoing paragraphs, this equation becomes*

2
o= o, — Y ql (330)
where ¢’ = ¢ + k'w.

Equation (330) gives the proper value of ¢’ to use in all equations for
lengthwise vibrations when there is a gap, cxcept in the ease of a plated
crystal with gap, which is considered in §286.

According to Fq. {330} the compliance at zero gap is the pure elastic
constant s%,. This statement is in conformity with Voigt’s development
of piezoelectric theory, which says that the piezoelectric reactions vanigh
when the field is unaffected by the state of strain, That this is not the
only logical point of view has already been seen in Chap. XI, where
reasons are given for considering the ““pure’ elastic constants of Rochelle
salt as those observed at infinite gap. Moreover, the theory of thickness
vibrations in all crystals indieates that the elastic stiffness at infinite
gap, rather than that at zero gap, should be regarded as free from piezo-
electric reaction (§251). Tor these reasons it is worth while to see what
form Eq. (330) assumes when the gap correction is measured from w =
instead of from w = 0.

*In Eq. (330) the proper dielectric constant is not ki, s elsewhere in the theory
of lengthwise vibrations [see the discussion of Eq. (312)), but has the value & for an
unconstrained erystal. The reason may be seen from the derivetion of Eq. (208},
according to which the field to which the piezoelectric term is due is proportional
to znd in phase with the instantaneous stress. With respect to this field the erystal
behaves as if unconstrained, just as when an I-f field is applied externally.
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At infinite gap 82, agsumes the value for constant normal displacement
given by Eq. (273a):

* oz - rdh (331)

snn nn kl’

From this equation and (330) one finds

o oot g Ardh  dxdiw e dwdie

San = 8pa k: e + k’w = 8pp + W (%31‘])
Thus, when s, is taken as the pure elastic compliance, the value for
gap w is greater than s}, by 4rd%e/k¢’. When w = 0, the compliance®
becomes, as before, simply sZ,.

With the aid of Eq. (311), & relation can be found between s*, %,
and the dielectric constants &’ for a free crystal and X; for a bar in length-
wise vibration:

y: ] !
S (332)
i

®
sﬂﬂ

"This expression is analogous to Eqs. (281), (282), and (521b).

236. Since %, and s, are inversely proportional to the squares of the
resonant frequencies, f§ at zero gap and f% at infinite gap, respectively,
we may derive from (331) the following equations, which will be used
Iater as a step in caleulating the frequency of a Rochelle-salt bar at infinite

gap:

4 LA 2
g...j-&:..}_:’i_k!ﬂi’r@ (333)
fug Ean Ky k;sﬁ“

This expression has an important relation to the frequency f, at anti-
resonance when the gap is zero, This frequency is the higher of the two
at which the reactance vanishes; when R is small, the current sinks
almost to zero. With good approximation, therefore, the condition for
antiresonance can be found by setting I = 0in Eq. (316). When w = 0,
we have ¢/ = e and ¢’ = ¢o = 1/5E,, giving, with the aid of Eq. (308),

oy Tl o el dxdl
a5, b o7, = b= T st (334)

where 1 specifies the field direction and =, at right angles to 4, specifies
the direction of the length of the bar.
From Eqgs. (333) and (334) we have finally

e oot M2 =1 — I3
Ecot 3, =1 i (335)

* For a comparison with the effective atiffness of a plate, seo §251.
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237. Effect of Gap upon Frequency of Lengthwise Vibrations, As
before, fro denotes the resonant frequency (maximum particle velocity
and maximum piezo current) at harmonic k. For gaps w and 0 we have

h? h?
wYE 2 = .
(f M) V¥E) » 3:“'» (fl?ﬂ) 41‘3 Nﬁn
where 87, is given by Eq. (330). It follows that

1 1Grlpdiw

1
RoP— Tr B

When d;, is large, as in Rochelle salt, this rigorous expression must
be used as it stands. It finds an important application in the deter-
mination of di.. Ususlly observations are made first with zero gap,
and then with a very large gap (w — o), in which case

(336)

11 16wledy,
(fr  (far A%

With such érystals as quartz, i differs from f, by only a few tenths
of 1 per cent. Equation (33Ge) can then be reduced to the simpler form

{336a)

w o 2
i ﬂoﬁo = é}‘;{? ~ _2_;%:’_"1 == Uzif (3361)

where U = 2d?,/s¥, i3 a constant for the erystal and ¢’ = ¢ + ¥

It will be noted that the relative variation of {requency with gap
is the same for harmonic A as for the fundamental frequency (see also
§285).

The case of a plated crystal with gap is treated in §286.

238. The Use of Short Electrodes in Lengthwise Vibrations, Full-
length electrodes are desirable only at the fundamental frequency, when,
with a given alternating potential difference, maximum amplitude of
vibration or maximum reaction upon the electric circuit is to be attained
or sometimes, in the measurement of the physical constants of the
resonator, when it is important to apply the driving stress uniformly to
all parts of the crystal.

At the fundamental frequency, a shortening of the electrodes dirninishes
the response of the erystal. Nevertheless, a very considerable shortening
can take place with relatively small loss in response, as long as the
electrodes are symmetrically placed. This fact is illustrated in Fig. 51,
in which the ends x; and z; of the electrodes of length I’ are at equal dis-
tances from the center, The curve represents the sinusoidal distribution
of vibrational stress, which has a maximum at the center; in the neighbor-
hood of resonance and with small damping, the curve falls practically to
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zero at the ends. The applied piezoelectric stress is most effectual over
the region where the vibrational stress is greatest. If the driving field
near the ends of the bar is absent, there is but lttle diminution in ampli-
tude of vibration. ‘

Harmonic Frequencies. In §58 we learned that when the driving
stress is uniform over the entire length of the bar, as is the case with full-
length electrodes, large resonant amplitudes are built up only when the

R B

]

1
Balmy

X o X2

)
!
Fia. 51.—Excitation of lengthwise vibrations by short electrodes.

order % of the harmonic iz odd. In Fig. 52 the curve shows the distri-
bution of stress in a bar when A = 3. The impressed fleld between the
electrodes tries to make the three segments AB, BC, CD vibrate in phase,
while the curve shows that, as long as the segments are parts of a con-
tinuous bar, there must be between adjacent segments a vibrational
phase difference of 180°. Such a phase difference is impossible when the
electrodes are continuous. In effect, all segments but one neutralize

A B C D

F1a. 52.—Piesoelectrically driven bar vibrating at harmonie A = 8.

one another, so that the resulting vibration is substantially the same as
if the electrodes covered only cne segment.

If h were even, the neutralization would be complete. For example,
in Fig. 52 one might imagine the bar to extend only from A to C, with
h =2 In each of the two segments there would be feeble forced vibra-
tions, as explained in §61, but the piezoelectric reaction on the driving
circuit would vartish (see also §63).

239. By the use of short electrodes, however, intense vibrations, with
correspondingly strong electric reactions, can be secured at apy value
of h, even or odd. For example, the fourth harmonic can be excited by
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means of any one of the four pairs of electrodes shown in Fig. 53. The
bar should be supported at one or more nodes of motion. More than
one pair of electrodes may be used, suitably connected in series or parallel.
With 2 given voltage, if AB’CD’ are connected to one side of the line and
A’BC'D to the other, a large amplitude results. From what has been
said above, the spaces between adjacent electrodes, as A and B, cause
but little loss in amplitude. The reac~
tion on the electric cireuit is four times 4 B c D
that of a single short segment.

Resonators like that shown in Fig. A B c’ F/
53 with any number of pairs of eloc- Fro. 53.—Bar with electrodes for
trodes can be prepared by silvering or ?;c;flii:z; of the fourth hermonie
evaporating a uniform metallic deposit,
on the opposite sides of the bar and then dissolving away metal in
the proper regions to produce the desired number of pairs of separate
electrodes.

An arrangement like that in Fig. 53 is discussed by Sokolov,?
Hehlgans, 27 and Williamsg. 557

A bar with two pairs of electrodes can be used as a coupling device
between two circuits, in which case it serves as a very narrow passband
filter (§500).

By the use of a single pair of short electrodes at one end of the bar,
as at AA’ in Fig. 53, the fundamental and a large number of harmonies,
both even and odd, can be excited. This arrangement was first deseribed
by the author in 1925,%7 In the same year Giebe and Scheibe?® described
the use of short electrodes for the excitation of the luminous effects men-
tioned in §365. Since the intensity of the reaction on the driving circuit
diminishes as k increases (with short electrodes near one end of the bar),
it is found that the response for all values of » including unity is of the
gsame order of magnitude, as long as the length I’ of the electrodes is not
too much greater than the half wavelength of the vibration in the bar.
This fact makes such an arrangement useful as & reference standard
for a large number of nearly harmonic frequencies,

240, Theory of the Lengthwise Resonator with Short Electrodes. In
Eq. (110) it was shown that reducing the length of the electrodes from full
length [ to (z; — ) = I’ (see Fig. 21) caused the amplitude of vibration
at the fundamental mode to be diminished by a factor 81, where

S =1 (sm —?—’ — sin !—f—‘) (337)

Evidently the fundamental mode can still be excited, though weakly,
with short electrodes close to one end. It is emsily proved that, with I’
prescribed, 8. is 8 maximum when z, and z, are equidistant from the
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center, thus confirming the statement made on page 302 concerning the
most effective position of the electrodes. Tor this symmetrical placing
of the electrodes, we may drop the subscript in Eq. (337) and write |

'y

.l
S = sin ’;7 (337a)

Expressions will now be given for current and equivalent electric
constants at the fundamental frequency for a resonator with a pair of
gymmetrical electrodes of any length separated from the crystal bar
by a total gap w. The derivation is exactly like that of Eq. (315) with
these exceptions: {1) the factor S must be applied to the driving siress;
(2) the integration must take place from —'/2 to +1'/2. The result is

1 o ¥ H
. Ubky | 4e%heS a+_7n) (338)

T= 8o (J“' Tne, Tl T

where, instead of %; as given by Eq. (311), we now have for the effective
dielectric constant, with short electrodes and gap,

a2 '’
ke = K — @—j,“e (1r - 2 cos %EZ-) (339)

The corresponding equivalent eloctric constants, in cgs electrostatic
units, are found, by the method of §232, to be

R = plero P _plel® ¢ = 8e?lbeS®
4ebe? 8ethel? rig'e?
f {340)
o = kbl
17 el

where ¢! = ¢ + krw.

These values agree with those deduced by a different method by
Starr,*”* who, however, disregards the losses {a and R are left out of
aceount) and considers only the case in which the gap w = 0. Starr
gives formulas for determining the proper value of I’ when it is desired to
avoid the excitation of some one harmonic.

The foregoing expressions are applicable to a bar of length { vibrating
at any harmonie frequency, with k& pairs of electrodes, each pair having a
length Ii. It can be proved that in this case the electric constants for
each segment are

R = ple;*a Il = ple;

b ™ defbeh sin? (rlsh/20) » ™ 8<®beh sin® (wljh/20)
o - Seble A

T 2 B Arel

{340a)
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When h pairs of segments are connected in parallel, the values for the

entire regonator are
'’ Lf
R = 7;’5 L' = -—h! C' = hCj C] = hC, (341)

When the gap w = 0, it is necessary only to write ¢ in place of ¢’
in all the foregoing equations and to drep the prime accents from R’,
L, €, and Cl.

241. If calculations of highest precision are required when the elec-
trodes are of less than full length, account has to be taken of the fact that
in the regions covered by the electrodes the elastic stiffness is somewhat
smaller than in the exposed regions, as was pointed out in §64.

The optimum length of electrodes depends on the object in view.
For maximal amplitude of vibration with constant impressed alternating
voltage and for maximal control in a piczo-oscillator cireuit at funda-
mental frequency, full-length electrodes should be used. In such meas-
urements as that of the frequency of a bar with infinite gap, a close
approach to the ideal condition of infinite gap can be made by the use
of very short electrodes. For the excitation of overtones short electrodes
are indicated, as explained above.

There remains the important class of cases discussed in §280, in which
it is desirable to make the ratio C: € as large as possible. It will now be
shown that in the case of bars a slight increase can be brought about by
making the electrodes approximately three-fourths as long as the bar.
From Egs. (340), for zero gap (¢} = &) and fundamental frequency
{h = 1}, one finds

_ 32
" wgekr U
where 32¢%l/rqoky is practically constant and S is given by Eq. (337a).
On equating the derivative 8/8{' to zero, we find that C/C) is a maximum
when tan «I'/2] = «l'/l, whence I'/l =~ 0.75, In this case, S = 0.92
and €/C, is about 14 per cent greater than when I’ = I.

If I' is made still shorter, the ratio C/Cy begins to decrease again,
On the other hand, the ratio L/C becomes continuously greater as I
is diminished.*

C
i (342)

942, Laue's Formulation of Resonafor Theory. In 1925 Laue?® published a
thorough treatment of the problem of piesoelectric lengthwise vibrations in a quartz
X-cut bar with length parallel to ¥, subject, however, to the same limitations as in the
theory presented here, viz., that the bar is so thin that no correction for finite cross
geetion need be meade, that there is no coupling with other vibrational modes, and

* Por further disoussion of the ratio I'/l see Mason®®® and Starr,+™
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that overtone frequencies are harmonics of the fundamenial. The electrodes are
assumed to be adberent to the crystal. The equation of motion is derived from a con-
sideration of the various potential and kinetic energiee. The only losses appesring
in the equation are those inherent in the quartz. Two frictional coefficients are intro-
duced, viz., a, » function of Voigt’s frictional coefficients® ba and of the elastic and
piezoelectric constants; and §, a function of the bi-coefficients and elastic constants,
Comparison of Laue’s equation (16) with Eq. (61) shows that the frictional factor F in
(81) is identical with Laue’s 8/8},. We have not attempted to express F in terms of
the fundamental frictional coefficients of quartz, since the latier usually play but a
gmall part in determining the actual damping. .

If sufficiently precise megsurements could be made of resonance in a quarts bar
mounted without friction in s vacuum, Laue’s equations would doubtless be found
useful for determining the frictional coefficients of the crystal. In particular, men-
tion should be made of his equation (23) for the amplitude at the ends of the bar,
{25) for the phase difference between motion and driving field, and (26) for the piezo-
clectric capacitance.

In comparing Laue's theory {8 Laue himself does} with that in the author’s 1922
paper,” one must understand that the author was then concerned only with first-
order effects, with the object of providing an approximate theory for a new device.
In the form in which the author’s formulation of the theery now stands, as set forth
in §§227 to 231, equations are derived that are identical with Laue’s (23), (25), and
(26), save for one point: his equations (25) and (26) contain termain (« + ¢..8), absent
in the author’s theory, which have au effect on the phase angle and on the piezoelectric
capacitance. This expression arises from the assumption that the vibrations are to
some extent influenced by the shearing stress ¥, = —e1.8; [see Laue’s equation (12¢)].
The assumption resta on fundamentsl theory and is perfectly sound, Nevertheless,
this term involves only the losses in the erystal, which may ordinarily be completely
neglected. The assumption of perfect uniformity in the clectrie field and the ignoring
of the correction for eross section probably involve errors greater than that incurred
by the disregard of thia expression.

The Laue method has been applied by Sokolov’ in the study of the produetion
of overtone frequencies in the lengthwise vibrations of bars, by Bechmann® in the
theory of thickness vibrations of plates, and by others.

THICENESS VIBRATIONS OF PLATES

243. The first to deal with thickness vibrations of piezoelectric plates
wag P. Langevin; who in 1915 employed X-cut quarts plates for generat-
ing h-f acoustic waves (§506). It was this work of Langevin's that
later led the author to investigate the possibility of using piezoelectric
crystals as resonators and oscillators.

The use of thickness vibrations for the control of frequency was first
described by G. W. Pierce*?* in 1923. For this purpose he used an X-cut
quartz plate. With this cut the vibrations are compressional (§93),
the plate becoming salternately thicker and thinner. The experimental
evidence of this mode of vibration is that acoustic waves in the air are
emitted from the surface; that small particles of sand or of Iycopodium

* “Lehrbuch,” p. 792.
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can be seen to dance up and down when the plate is horizontal; and that
optical interference patterns can be observed, as described in §367.

The first general treatment of the theory of thickness vibrations for
all crystals and all euts was published by Koga®®** in 1932, He
introduced the Christoffel method for calculating the stiffness, as well
ag the piezoelectric contribution to the stiffness. Overteone frequencies
are included, but both gap and damping are assumed to be zero.

In the theory of thickness vibrations for a piezo resonator with gap
and damping, published by the author!®? in 1936, expressions were derived
for the equivalent electric constants, the elastic coefficients, and the
resonator current, including the gap effect. This treatment of the
theory did not include overtones. It was shown that at the funda-
mental frequency the polarization, space charge, and electric field have
approximately the distribution illustrated in Fig. 54. In the derivation
of the gap correction to the elastic constant, the residual strain due to the
field at the surfaces of the plate was recognized. This strain, although it
is responsible for the effect of gap on frequency, was nevertheless assumed
to be so small as to justify the assumption that in the vibrational equa-
tions the strain and space charge could still be regarded as sinking prae-
tically to zero at the surfaces of the plate. As will be seen, the more
rigorous theories of Bechmann and of Lawson, which take complete
account of the strain at the boundaries, show that the author’s earlier
restllts are correct except for a negligible second-order effect.

In Bechmann’s paper® general equations are derived for thickness
vibrations in plates cut in any orientation from any piezoelectric crystal.
Gap, damping, and overtone frequencies are all taken into account,
and the departure of the overtones from the harmonic relation is given.
Expressions are derived for the equivalent electric constants.

Lawson®" is concerned only with resonant frequencies (normal modes)
of the fundamental and overtones. The gap effect is included, but not
the damping. Like Bechmann, Lawson uges the Christofiel method for
finding the effective stiffness for any crystal and cut.

244. In the following treatment the plate is assumed to be plane-
parallel, with infinite lateral dimensions and with infinite plane electrodes
separated from the erystal surfaces by a total gap w. This assuraption
eliminates the complications due to & finite boundary, and it ensures
that the lateral constraints due to inertia will prohibit all strains except
that which is involved in the thickness vibrations. The chief difference
between the theories of lengthwise and thickness vibrations is that in the
former case we deal with a single stress and in the latter case with a
single strain.

The present theory does not take account of the fact that in a finite
plate the boundary conditions have a marked influence on the vibrations.
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In the first place the velocity of wave propagation is not the same near
the edges aa in the center of the plate. Beyond this, coupling may exist
between the thickness mode and overtones of all other possible modes.
The elastic conditions are so complex that many resonant frequencies
can be observed, all comprised within & narrow band in the neighborhood
of the ideal thickness frequency. The frequency spectrum varies with
small amounts of edge grinding and also with temperature. One of the
most important and difficult problems in the technique of preparing
crystal plates for piezo-oseillator circuits i3 to lap a plate and grind its
edges in such a way ue to give it an outstanding thickness response of
the desired frequency at a certain temperature, with the further require-
ment that changing the temperature shall not cause this response to give
way to another at a slightly different frequency.

At the fundamental frequency fo the mechanical wavelength A is
approximately 2e (for the departure from exact equality see §250).
The velocity of wave propagation is +/¢/p = Mo = 2¢fs. ¢ 15 the
effective stiffness, a function of the fundamental elastic constants, modi-
fied somewhat by space-charge effects and by the presence of the gap.
p is the density, and fy the fundamental frequency, defined as the fre-
guency at which the velocity of a particle and the current I, in the vibra-
tional branch of the equivalent network have maximum values. As is
shown in §255, the ecquivalent network is the same ag that in Fig. 50.

When the plate is driven at the frequency of an overtone of order &,
the basic formula is

L

%
~
o

Tao = (343)

2e
As will be seen, the overtone frequencies are not quite exact multiples
of the fundamental.

Since it is not possible, as it is with lengthwise vibrations, to apply
the electrodes to a single one of the h segments into which the plate may
be considered as divided, there is no means by which resonant vibrations
oan be excited at even harmonics. Hence only odd values of & need be
considered, at least for perfect plates in uniform fields.

There are circumstances under which a plate may conceivably
vibrate in a thickness mode at or close to an even harmonie frequency.
The shape, size, and location of the electrodes may be such as to produce
a driving field in the plate that varies in the direction of the thickness.
Or the plate may be twinned or heve other defects such that the excita-
tion is not uniform. Finslly, the plate may be in contact with an
electrode of considerable mass, so that in effect one has a composite
resonator. It would appear that one or more of these circumstances
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must have been present in a recent observation by Parthasarathy,
Pande, and Pancholy.* In optical diffraction experiments according to
the method of Debye and Sears described in §511, using an X-cut quarts
plate as the ultrasonic source, these investigators found diffraction
patterns (of relatively low intensity) at frequencies that were approxi-
mately 2, 4, 6, and 8 times the fundamental.

A complication arises from the fact that, whereas a bar has only one
value of Young's modulus, a plate has in general three different stiffness
coefficients ¢ for thickness vibrations, corresponding to three different
possible types of vibration.

245. The Three Types of Vibration. We learned in §66 that, when
plane waves are propagated in the direction normal to the surface of the
plate, the vibration direction, in which the particles move in simple
harmonie motion, must lie in one of three mutually perpendicular direc-
tions, which are determined by the elastic constants of the crystal and
the direction of propagation. In general, to each of these vibration
directions there corresponds a different wave veloeity. Thus for a plate
in a given orientation any one of three different types of wave is theo-
retically possible, each traveling with a different velocity. The plate has,
in the most general case, not one fundamental thickness frequency,
but three; each of the three vibration directions may make an obiique
angle with the direction of propagation. It is only in certain special
cases—which, however, are readily realized and are in wide use—that
one of the vibration directions is parallel to the direction of propagation
{compressional waves) or perpendicular to it (transverse or shear waves).

In practice, when the fundamental elastic constants of the crystal
and the orientation of the plate are known, the three values of ¢ and the
direction cosines a, 8, ¥ of the vibration direction can be found from Egs.
(117) and (118). If the plate is referred to an axial system X', ¥, Z',
with X’ a8 the direction of the thickness, the only strain (assuming
infinite area} correaponding to any ¢ is d&/9z', where £ is the instantaneous
mechanical displacement in the vibration direction. This strain can
be resolved into components z!, 2[, and %, which in turn can be resolved
into components with respeet to the X-, Y-, Z-axes.t If the erystal
has a piezoelectric coefficient capable of exciting at least one of these
components, the vibrational type in question can be excited. In the

* 8. PartHasaRaTIY, A. PanDR, and M. PaycuoLy, A New Phenomenon in the
Piezo-electric Oscillations of & Quartz Crystal, Jour. of Scieniific and Indusirial
Research, vol, 2, no. §, June, 1944, 2 pp.

t The strein 2, respresents an extensional displacement normal to the surface,
while 2, and &, are shears in planes containing #’. Lateral inertia prevents all other
strains.
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general case, the effective piezoelectric stress coefficient, which we shall
call ¢, is a function of all the fundamental stress coefficients. The
formula for e is given in Eq. (344). The numerical values of ¢ for guariz
plates in various orientations have already been given 'in Table XII
(page 142).

In lengthwise vibrations, the trifling effect of damping being dis-
regarded, when the field is at right angles to the length of the bar, the
gtrain at the ends vanishes at the frequency of velocity resonance. Such
is not the case at the surfaces of a plate in thickness vibration; except
when the gap between plate and electrodes is infinitely great, on one
gide at least. With a finite gap, as will be seen, the electric field at the
surfaces due to the space charge in the erystal causes a small residual
strain at all frequéncies, even in the absence of damping. As the gap
increases from zero to infinity, the resonant frequencies undergo a slight
increase. The effect can be expressed conveniently as a contribution
to the effective stiffness.

In addition to the effect of the gap, the effective stiffness receives a
further contribution from the field in the interior of the crystal. Thig
piezoelectric contribution is independent of the gap.

The foregoing general statements will be better understood in the
light of the theory that will now be developed.

246. In the following formulation of the theory we shall use a proce-
dure as nearly parallel as possible to that for lengthwise vibrations,
assuming that the elastic stiffness is known.*

The thickness dimension of the plate lies in the s-direction, with
direction cosines I, m, n. The electric field £ is in the same direction.
The origin is at the center of the plate, and the distance from the origin,
in the s-direction, is denoted by z. The X-axis thus coincides with the
s-direction; in general, it is not the crystatlographic X-axis. The surfaces
of the plate are at z = +e¢/2, where ¢ is the thickness.

Of the three possible types of vibration, that one will ususlly be
selected for which the effective piezoelectric coefficient ¢ has the greatest
value according to Eq. (344). If we let £(x) represent the mechanical
displacement of a particle at distance x from the origin, the strain is
z¢ = 0£(z)/9z, where the subscript ¢ denotes the strain corresponding
to the variation of ¢ in the X-direction. The direction cosines of £,
and hence of the vibration direction, are «, 8, ¥ derivable from Egs. (117).
The direction cosines of the normal to the plate are I, m, n.

Under these esonditions the effective piezoelectric stress coefficient,
&8 derived by Bechmann,? is

* For the determination of elastic constanta from observations of frequency, see
§252,
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e = alenl® + eaem® + egn? 4 (095 + esg)mn
+ (ear + ew)nl + (621 + erg}lm]
+ ﬁ[eula + eqm? + ean? + (eu -+ 924)'mn
+ (ew -+ esgnl + (e1s + exa)lm)
+ vlewsl? + eam? + esn? + (es + ez)mn
4- (e1n + egsinl + (end + eas)im]  (344)

This coefficient ¢ is employed in expressing the piezoelectric polariza-
tion P = ex;.

With the simpler cuts the procedure does not have to be so complicated
a5 that indicated above, For example, in the case of an X-cut quartsz
plate, we know that a field E, causes a stvess —enE,, whence we conclude
that the effective piezoelectric constant is e;;. This conclusion is con-
firmed on setting @ = 1 and [ = 1 in Eq. (344) and discarding the piezo-
electric constants that vanish in quartz. Also, thanks to the lateral
constraints in an infinite plate, the only sirain is z., so that from the
equation X, = —ecuz, we conclude that the value of ¢ is ¢y This
finding is confirmed by application of the Christoffel method.

Similarly, in a Z-cut quartz plate ! = m = 0, n = 1, whence from Eq,
(344) since for quartz ess = e31 = €33 = 0, it follows that e = 0 and that
direct excitation of thickness vibrations is impossible.

247. The Dielectric Constant for Thickness Vibrations. This quantity
cannot be derived it the same way as for lengthwise vibrations, chiefly
because the polarization is not uniform in the field direction. Instead,
we make use of the fact that all strains except . are prohibited, so that
the only possible increase in the dielectric constant above the value for a
clamped crystal would be that due to the strain ;. According to the
method adopted here, the entire piezoelectric polarization appears in
the equations as a function of z;. Any piezoelectric contribution, of the
form of endn in Eq. (262), that the strain makes to the susceptibility
ig thus taken care of, leaving as the effective susceptibility only the
clamped value /. The gffective dielectric constant is therefore

kh’ = 1 +4Tﬂ”

The Clamged Dielectric Constant. Since the electric field, like the
thickness dimension, lies in the s-direction and the only component of
polarization with which we are concerned is in this same direction, we
can use Eq. (265), in the form

]
K =k — 4r 2_‘, €illes (345)

If the dielectric constant k! for the unclamped plate is measured at a
low non-resonant frequency and the piezoelectric constants ey and d,;
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are known (transformed to a rotated axial system if the plate is obligue),
kY can be calculated.

If the piezoelactric constants are not known, one can measure &,
directly by using a very high frequency, as explained in §374.

848, The Effective Stiffness. By the method described in §66 the
stiffness for thickness vibrations is deduced from the jundamental elastic
constants. If, as is usually the case, the values of the latter have been
measured at constant field, the derived value is also isagric and will
henceforth be denoted by ¢*. Owing to the piezoelectric reaction that
is now to be considered, a correction term bas to be added to ¢* in order
to give ¢, the effective stiffness.®

The derivation requires no assumption concerning the distribution
of strain beyond considering the only spatial variation of strain to be in a
direction parallel to the field. It is assumed that ¢ is known. In the
notation explained above, we let z;(z) be the strain st any 2z Then,
in general, there is a space charge p(z) = —9P(z}/92 = —edzyx)/02.
Poisson’s equation gives

Vi) _ BE'(:C) _ Awp(z) 4__ xs(x)
Fria dx k' k' ox
whence B = — 4"‘;5@ +C (346)

where E(z) is the field at z due to the space charge. The constant ¢
is a function of the distribution of p from —e/2 to 4+¢/2. It represents
the field at the surfaces of the plate. In general, the distribution of p
is such that there is a polarization charge on each outer surface, with a
surface density o, and the constant C may be regarded as the contribution
—4wo/k' made by ¢ to the field.

The field E(z) causes a piezoelectric stress Xj(x) = —eE(z). X}is
of the nature of a body sfress, balanced by an equal and opposite elastic
restoring stress.t It is the latter that is to be added to the constant-field
elastic stress —gfr;(z), where ¢* is the appropriate isagric elastic coeffi-
cient. The total stress at zisnow

Xo) = o) - D | o= v @D
where g=q%+ 4]:: (347a)

* The expression for the effective stiffness was first derived by the suthor!® in
1036. The problem was attacked independently by Baumgardt®® in 1988, who,
however, failed to take all factors into account.

t See the discussion of Eq. (186), §126.
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This expression holds for all thickness vibrations, including overtones.
The term ¢C, not containing x;(z) as a factor, does nat contribute directly
to this expression for the effective stifiness. As will be seen, ¢C includes
the effect of the gap, and its influence on the frequency can be expressed
either as an effective change in thickness or, indirectly, as a further con-
tribution to the effective stiffness.*

Equation (3470) is a special case of Eq. {272a), which expresses the
stiffness coefficient ¢fy, at constant normal electric displacement, relating
the gtress X, with the strain z; when the electric field in the crystal is
in the m-direction.

249. In order to evaluate the stress e it is necessary to know the
field distribution throughout the plate. TFor this purpose we start with
the assumption that the distribution of strain z, is sinuscidal in the
X-direction, passing through zero at intervals of /2. The piezoclectric
polarization P = ex; hasg a similar
sinugoidal form, as is shown in [T T T Ty
Fig. 54. For the narrow band of | & : f
frequencies in the region of reson- :
ance the difference between the
thickness ¢ of the plate and the
half wavelength is too small to be
appreciable in the figure. The
electrodes are at A’ and B', with a
total gap w = A’A -+ B’B. The
potential difference between the
electrodes is here assumed to be
zero. In the actual resonator the ¥ra. 54 —Distribution of palarization P,
instantaneous driving field due to space charge p, field strength E, and potential
the impressed voltago between the Y, b rowiter for ik xiraions
elactrodes would have to beadded  plateis A5,
to the values shown in the figure,
but this would not affect the present argument. Figure 54 represents
conditions at the fundamental frequency. For an overtone frequency
the portion from A o B may be taken as representing a single segment of
the plate. The following equations hold at the fundamental frequency
and odd (approximate) harmonics (h=1, 3, 5, ... ) As a first
approximation it is assumed that e is A, where A is the wavelength.

At any # the instantaneous strain (§246) is zi(2) = z(0) cos (xhz/e),
where £:(0) is the maximum strain (this is a maximum in space, viz., at
the origin, and not the maximum in a cycle). The polarization due to
the strain is P = ex;(0) cos (whx/e). The space-variation of P gives rige

* For a comparison with the effactive stiffness of & bar, ses §251.
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to a space charge,® of value
P whexi(0) sin 3-_}?

= o0 sin TE
az € = po e
The field in the crystal due to this distribution of space charge can
be derived by a method previously given by the suthor.!"1 The value
at any z, for a crystal of thickness e, vibrating at such s frequency that

the wavelength of the elastic wave is 2e/h, is

E(z)y = — %‘;—‘f (coa rhz 26) = - 0 coe'i—x 2e (348)

e whel k"’ e  mhel

where ¢! has the value

e=¢+t k'w (348a)

This expression is the special form assumed by Eq. (346) when the
distribution of z; and of p is sinusoidal. Comparison with Eq. (346)

shows that .
_ Beezy(0) AT ..
c - m’:‘— -_— E § = kll
At infinite gap ¢ = 0.
From Eq. (347) the stress due to C'is

(349)

Since the gap is included in ¢', it is clear that the stress e’ is reaponsible
for the effect of the gap on the resonant frequency fo. The space charge
in the crystal affects f; through the term 4wxe?/K’ in Eq. (347), while the
surface charge on the crystal affects fy through the stress eC.

250. The effect of this stress, or of the C-field, has been expressed in
various ways. Bechmann® shows that the resonant frequency is very
spproximately expressed (in the notation of this boak) by

_xh(l—w) fo
who = & ] {350)

. lbe%
S 'qel.

* Here we encounter a fundamental difference between thickness and lengthwise
vibrations. In the bar the instantancous polarization varies sinusoidally at resonance
from one end of the bar to the other but does not vary in the direction of the field (as long
a& the field is at right angles to the bar). Space charge is present in the bar only
when the electrodes are at the ends.

{ The effects of space charge on the performance of resonatora seem to have been
considered first by Laue, ™ who found it to be negligible in his theory of the bar vibrat-
ing lengthwise. The subject was considered later in papers by Giebe and Scheibe, 1*%172
Kobzarev,1*® and Koga.?™®

where (Bechmann's v,) (350a)
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and k is an odd positive integer. The factor (1 — va) is very slightly
less than unity. The quantity v, diminishes rapidly with increasing &
and approaches zero (owing to €]} as the gap approaches infinity. Hence,
for large values of & the overtone frequencies approach harmonic ratios, =
fact that was utilized by Atanasoff and Hart in their determination of the
elastic constants of quartz (§90).

One may say that the effect of our constant Cin Eq. (349) is to increase
the effective thickness of the plate from e to ¢/(1 — +;3). This econcept
is used explicitly by Lawseon,*? who uses in place of e a length &, given
approximately by

= 3& ~ D, — D3 (351)

P

where D, = 16e*/zh%''gel. Ignoring the term eD? which is usually

negligibly small, one sces that Lawgon’s D, is identical with Bechmann's

yi/e and that (1 — y,)/e is identical with 1/s.. We write
¢

1 - Yr

e == 8, = (352)
to denote the effective thickness of the plate in the neighborhood of a
resonant frequency corresponding to any odd integral value of k. Then,
in agreement with both Bechmann and Lawson, we may express the
frequency thus:*

who == 2mfne = % \/% (353)
dre?
where, by Eq. {3474), ¢=¢"+ 5

As an alternative to Eq. (350) one may put the factor (1 — ;) under
the radical sign. Then, from Eqs. (347a) and (351),

I oy dmet 320 \F
wh \/g(l =t _wh| T T T A (354)

wh = P ¢ P
=T 7
=2

* At one point Bechmann’s theory differs from that of all others who have derived
the piezoelectric contribution to the stifiness. In place of 4xe?/k* he finde 8re*/k",
which must be regarded as an error. Moreover, as far as one can judge from experi-
mental values of stiffness, for example, those of Atanasoff and Hart,'? it appears that
the isagric stiffness, when caleulated from the observed ¢ by the equation

qf = g — &/,
sgrees better with Voigt's static values than does g% = g — 8xe®/k",
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where the effective stiffness, including the gap effect, is, to a high degree of
approximstion,

2 2 2
¢ =gt B el —;i‘i’;) (355)
This equation, with A = 1, is the one derived by the author'*” by
another method, to express the effective stiffness ¢’ for a plate with gap.
Within experimental errors it yields values of the frequency in agreement
with those derived from Lawson’s and Bechmann’s formulas.
At zero gap, ¢, = e, and Lq. (355) leads to the {ollowing expression for
the effective stiffness ¢:

4mre® 322 322
Qo =g+ pr ~ our =0T G (356)

where g has the value given in Eq. (347a).

When the gap is infinite and also when the order of harmonic b is
sufficiently high, the third term in Eq. (355) vanishes; ¢’ then becomes
identical with ¢ in Eq. (347a) and has the same form as FEq. (272a), as it
should, since, when w = «, there is no electric displacement normal to
the plate. In the general case of thickness vibrations, however, it has
been shown in §246 that the mechanical displacement ¢ may make any
angle with respect to the coordinates. Hence, assuming as in Eq. (272q)
that the thickness direction is denoted by m, it is evident that the elastic
coefficient relating the strain £/8m to the corresponding stress belongs
to an axial system dificrent from that in terms of which the dimensions
of the plate are expressed. In those special cases in which ¢ is normal or
parallel o the plate, Eq. (272¢) becomes identical with (347a), since
then simplifies to ens, the subseript k denoting the particular type of
strain. In the more general case the obliquity of i is taken care of by
giving the proper value to ¢, from Eq. (344).

When elastic constants are to be determined by observation of the
frequency of thickness vibrations, account must be taken of the fact that,
for the stiffness g oceurring in the basic formula f = (g9/p)!/2e, the value
designated by ¢’ in Eq. (355) is to be used. Whatever the gap may be,
this ¢’ is neither the isagric nor the constant-displacement stiffness but
depends on the gap. The isagric value is ¢®, while the constant-dis-
placement value g* is g% + 4we?/k”, as we have stated in the discussion
following Eq. (347a). Both these values can be found when ¢, ¢ k7,
e, h, and w are known.

281. A Comparison between the Elustic Constanis for Thickness and Lengthwise
Vibrations. First it must be recalled that the elastic state of a bar in lengthwise
vibration ean be described as involving only a single stress (§§57 and 244}, while with
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a plate in thickness vibration we have to do with & single sérain. It is for this renson
that compliance constants are appropriate for the bar and stiffness constants for the
plate.

The chief difference between the two types of resonator, with respect to the piezo-
electric reaction, arises from the fact that in the bar the strain is uniform in the field
direction (assuming the field to be perpendieular to the length of the bar), while in
the plate the atrain in the field direction varies ainusoidally. For the bar an equa-
tion similar to {346) can be derived, but the boundary conditions are such that
the constant C, which depends on the gap, assumes at zero gap s value that reduces the
piezoelectric field to zera. It is for this reason that the compliance at zero gap has the
isagric value 8f,. On the other hand Eq. (348) shows that in the plate the ficld does
not vanish at zcro gap (set e. = e in this equation); the constant € is such that there
is no value of w at which the stiffness has the isagric value.

It has becn shown that, if the stiffness of the plate is defined ns ¢ in Eq. (347a), it is
necessary in the frequency oquation (353) to introduce an “effective thicknesa” e in
place of the actual thickness e. A gimilar procesa could be carried out in the case of the
bar, if for the compliance at all gaps one were to take the constant-displacement value
&v, given by Eq. (331); the correct resonant frequency would then be given by sub-
stituting in the frequenoy equation in §237 a suitable “equivalent length’’ I in place
of I The equntion would then be (f5)? = ht/4flos},. Whenw = = [ =

In gummary, it is seen that the stiffness g* at constant normal displacement [the
g of Eq. (347a) for plates or 175, of Tq. {331) for bars], when used in the equation
for frequency along with the actual dimension of the resonator (e or ), gives the
correet value of the regsonant frequency when the gap is infinite, for both plate and bar.
As w diminishes from « to 0, if the dimension of the plato is left uncorrected in the
formula, the decrease in frequency has to be explained by saying that the effective
stiffness decreasos from ¢* to g% = 1/s% in the case of the bar and to the value g4 in
Eq. (856) in the case of the plate. The objection to this explanation is that it makes
the stiffness, and therefore the wave velocity, depend upon both gap and order of
harmonic. If the wave velocity is to be regarded as an intrinsic property of ihe
material, it becomes necegsary to consider ¢* as the true stiffiness under all cireum-
gtances. 'This consideration requires us to insert a factor [(I — va) in the case of the
plate] in the frequency equation to take care of the apparent variation in stiffness;
this factor may be interpreted as a amall correction to the dimension of the resonstor
in the direction of wave propagation.

For practical purposcs it is convenient to regard the effective stiffucss as variable
with the gap and, in the case of the plate, variable with the order of harmonic, Ne
correction factor is then needed for eor . For the plate we use ¢’ as given in Eq. (355).
For the bar, the cffective compliance is 2., given by 1iq. (330), a value that we have
used in the theory of lengthwise vibrations.

252. Procedure for Deriving the Elastic Constants from Observations
of the Frequency of Thickness Vibrations. Now that the effect of piezo-
electric reactions on the stiffness in thickness vibrations has been treated,
we are in a position to indicate how the fundamenial isagric constants
(or, if desired, the constants at constant polarization) may be calculated
from measurements of frequency.

It is desirable to avoid having to make a correction for gap or for the
effective thickness e in Eq. (353). According to Eq. (355) one can either
observe with a gap so wide thai ¢, — = or excite the plate at a high
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harmonie (k = 7 at least) or both, The equation for effective stiffness g
is then (347a). Plated erystals (w = 0) may be used, although the metal-
lic coating affects the frequency somewhat. With thickness vibrations
this source of error is eliminated by observing at a high harmonic ire-
quency. The lateral dimensions of the plate should be sufficiently great
to avoid coupling with other modes and to permit the use of the theory for
infinite plates. A safe minimum value for the ratio of lateral dimension
to half wavelength is perhaps 20. The shape of the plate, and the
ortentation of its edges are usually quite arbitrary as long as they are not
such as to encourage coupling effects. Most investigators have used
square plates.

Unless otherwise stated, it will be assumed that the plate is between
two electrodes of large area, so that the driving field is normal to the
surface.

It is perhaps needless to say thaf for precise results the plate must
be made accurately plane-parallel, and its thickness and density must be
known to the necessary order of precision. The plate should be free from
optical and electrical twinning and so mounted as to leave the major
faces free from external stresses. A simple and satisfactory mounting
congists simply in standing the plate on edge. The orientation of the
normal to the plate should be accurately determined, preferably by
X-rays.

The oscillator circuit must be capable of fine frequency regulation and
sufficiently stable to prevent reaction from the crystal. The latter should
therefore be very loosely coupled to the oscillator, Theoretically, the
observed frequency fis, from which g is found by the use of Eq. (343),
shouid be that at which the current in the LCE-branch of the equivalent
network is & maximym, Practically, a sufficiently close approximation
is reached by observing either (1) the frequency for maximum current
to the resonator, for example by means of a vacuum-tube voltmeter, or
{2) the frequency at the bottom of the “crevasse” (§316). To avoid
disturbances from varying temperature, the current to the crystal should
be extremely small,

263. First Method. 1t is assumed that the observed values of ¢ have
the form of Eq. (347a), the gap effect having been eliminated. We have
seen that g is the effective stiffness at constant normal electric displacement.
Its value may be reduced to ¢® with the aid of Eq. (344), in which case
the solution of a set of equations of the form of (118) gives the isagric
constants at once. There must be at least as many values of ¢ 8s there
are constants to be derived. Usually the same vibrational mede is used,
with cuts rotated by different amounts about some one axis. The
mathematical calculation is earried out in the same manner as in the
second method below. The coefficient ¢ must be calculated for each
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crientation, & process that is often more laborious than that now to be
described.

A second method consists in leaving ¢ uncorrected and applying the
correction to the coefficients cn separately.

Whichever method is selected, it is advantageous to express the I's
in Eqs. (118) with respect to a system of axes of which one is normal to
the plate. We may assume the X'-axis to be thus chosen; it is then, of
course, parallel to the thickness. Using primed symbols in Eqs. (116),
wenow havel’ = 1,m’' = »’ = 0, Anslogous and equally simple expres-
sions are formed by letting m’' =1 or »' = 1. When !’ = 1, all terms
but the first in Eqs. (116} vanish. In place of Eq. (118) we have, after
interchanging rows and columns in the determinant,

= ¢ c s
15 Cos — G Ch =0 (357)
cls Che Cos — 4i

This equation is to be solved for g, giving in general three different
expressions for g, each being a function of the ¢f;. From a knowledge of
the piezoelectric properties of the crystal one usually knows by inspection
which of the three ¢'s is effective in any given case. This is especially
true when Eq. (357} is factorable, so that one value of ¢ is simply ¢},
ef, of Che.  In any case the vibration direction ¢ and hence the strain
at/az’ (§67), can be found from Eq. (117}.

If the first method mentioned above i3 used, the piezoelectric correc-
tion is applied to ¢. The ¢}, in Eq. (357) are then isagric, and from
them the fundamental isagric constants can be found by means of the
formulas for rotated axes.

In the second method each cf,, like the uncerrected g, has a value
corresponding to constant normal displacement, which in Eq. (272) has
been denoted by cp,:

’
& _ drelaen,
Cur = Cxk T (358)
3

Each ¢}, in Eq. (357) is to be replaced by the right-hand side of Eq. (358),
every c,f having first been expressed in terms of the fundamental isagric
constants by the formulas for rotated axes. If in all there are » such
fundamental constants in Eq. (357), there must be at least n observed
values of g, each for a different orientation.

An example of the application of the foregoing theory to quartz is
given in §93 and to Rochelle salt in §§77 and 207.

Sometimes the number of fundamental elastic constants that can be
determined with a given set of erystal plates in different orientations can
be extended by observing g with the driving field parallel to the surfaces
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of the plate. Other piezoelectric constants of the crystal are thus
brought into play, leading to another of the three possible solutions of
Eq. (357), which remains unchanged, whatever may be the direction of
the driving fleld.

254. The Electrical Characteristics of a Plate in Thickness Vibration.
The mechanical driving stress is

XE = —‘EEJ, = - -éT = - e;"“ (359}
where E; is the driving feld, ¥ is the impressed potential difference
between the electrodes, e is given by Eq. (344), and ¢ = ¢ + k"w.
With the aid of this expression, a general equation for the amplitude of
mechanical vibration can be derived, by a method analogous to that in
§57 for a bar. Of greater interest is the expression for the current to the
resonator, which will now be derived.

Asg in the case of the bar, the current per unit area is (3D/dt)/4x,
where D is the vector sum of two components of electric displacement.
For the plate, one component is Iy = ¥'E, = k"V/e], the displacement
in the clamped plate due to the impressed field. The other component
ig D, due to the state of strain. From Eq. (348),

D,=E, =k'E (.‘."2.) - §£€§:’(0) (360)

where E,, is the field in the gap.
The strain z{(0} at the origin is now to be derived from the general
equation (313). One replacing z. by %4 I by e, and setting x = 0, one
has, with the aid of ¥q. {359),
- X Epert - Vet
20) = ~ Toosh (ve/2) — g7 cosh (ve/)

From Eq. (74) this expression, after obvious approximations,t
becomes )

(361)

2uoeV ot an -+ Jna
Tg'e,  of +n}

(361a)

ze(0) = —J

where the fundamental frequency is fo = we/2m, e is the damping con-
stant at the frequency = fi = en/2m, 04 = wpo — wa, and fao = wno/2r
is the resonant frequency (maximum particle velocity and maximum
piezo current} at harmonic A.

* Advantage was taken of this fact by Atanasoff and Hart!s in their observations
with quartez plates.

t Since ¢ = 2fie = wee/r, Eq. (74) may be written as v = (r/we){e + jw). Itis
then easily proved thst cosh ve/2 = (7/2w)(n + ja). At harmonic k, « has the value

Whe .
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The value of z;(0) from Eq. (361a) is now substituted in (360) to
give D,. From this and the foregoing expression for D), we obtain, for
the instantaneous current flowing to a plate of area A,

I= wpd Vet (.k,, 16e®ewn an 4 jra
“arel “rgeh? of T n}

or, since wy = wy = wch/e, where ¢ = (¢'/p},

_chAVeet (., |, 16 an + jma
I= 4dee! (Jk + g'eth af +nf

Except for the difference in notation, this equation can be shown to
be in complete agreement with Bechmann's corresponding expression®?
[his equation (565)], if in place of n, one writes ny(l — ¥5)2 For all
practical purposes the difference is negligible.

966. Equivalent Electric Constants for Thickness Vibrations. As
we did in the case of Eq. (319) for lengthwise vibrations, so here we write
Eq. (362) in the form

(362)

I = Vodot(g' — b’ ~ jb'") = Veeot¥!

h ' _ 462(2’Acu
where g = q—_’ee.'.’_(a,'i + nd)
b o= 4etctAn,

"~ qleel*(of + np)
pr = _ ChARY AT
n deel 4!
For the vibrational terms (those containing o and =), the electrical
impedance is
2 = o = B 4K

whaere, on substituting ¢’/p for 2, one has

R = pee?a I A
ety Ll » 7
63
_ pees 1 (36

=gz eh oo

The two expressions for B, are valid, whatever may be the dependence
of the damping constant « or of the frictional coefficient ¥ [Eqs. (61)
and (67)] upon frequency. If F is constant, Rx varies with i%

As in §232, one finds, with the aid of Eq. (354}, for L; and Cj the
expressions
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oee,?
8624

64
¢ = 8e’de = _8_6_25_?_ (364
P athgel(l — 1)t wthigel
For the non-vibrational branch of the network we have
KA kA
dxe] 41r(e + k'w)

The discussion of the equivalent electric constants in §§232 to 234
applies equally to thickness vibrations. In particular, the -electro-
mechanical ratio r for thickness vibrations has a value that will now be
derived. We need first the expression for the lumped mechanical con-
stants, viz., the mechanical resistance W;, stiffness G4, and mass A,
for any harmonic h. By the method outlined in §§62 and 63 they are
found to be

Ly =

¢ = (365)

Wi = pedon My = ’1215
(366)
Gr = ol = r’Ath(zle ok

On comparing these values with the equivalent electric constants from
Eqgs. (363) and (364) we find for the electromechanical ratio
'’ ' ? 12
___g."_____é_ﬁlﬁﬂ_l”’t_,ﬁez_ (367)
where Z, is the mechanical 1mpedance.

This ratio depends, through ¢, on the gap, but it is independent of the
order of harmonic.

The equivalent electrical network for thickness vibrations is the same
as for lengthwise vibrations, illustrated in Fig. 50 and discussed more
fully in Chap. XIV.

In the table on page 323 are the values assumed by the mechanical
and electric constants for gaps zero and infinity.

Electrically, the crystal becomes a more and more feeble resonator
a8 w — =, but the product L)} is always such that the resonant fre-
quency has the values given in the table.

266. Effect of Gap upon Frequency of Thickness Vibrations. Asin
§237 we let fi5 and fio denote the resonant frequencies at gaps w and zero.
For v, we write v and v8. Then, from Egs. (350) and (350a),

ﬂ’o‘fhuEAfM_ \/—(‘n—'n

Afao _ 16eMw

and T rh’q.e’ L+ 7+ ) (368)
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Tasre XXI1I
Constant w=0 vee
W peday, peday
My gg*f E.‘;_?
R me-gg ®
L Iy = g;’% *
G | &= sy | O
Yy
rhlegq
a om it °
Sro Ih,',:fs ("I - ?’?’_;:ﬁ) Zh"::;

If A'fio is defined as fi3 — fi, where /3 at infinite gap is taken as the
basic frequency, the expression becomes
A w 16e%e
—f;%:-n =T = Rk (369)
Lawson’s analysis introduces a second-order term, according to which
the gap correction, in the present notation, is

Alfro 18¢% 16¢%
T = R, (1 + rmk"qe;) (369a)
Unless ¢ is very large, the last fraction is insignificant, so that Eq. (369)
suffices for use in any investigation in which f is taken as the basic
frequency.

For experimental tests it is usually more convenient to use Eq. (368).
If, as is the case with most crystals, ¥§ < < 1, this equation becomes

16e*w w
%ff’ ~ g = U g (370)

where U = 16¢*/xg ia & constant for the crystal. As will be shown in
§353, the total change in frequency for quartz, as w increases from 0
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to o, is of the order of 1 per cent at the fundamental frequency, when
h=1,

Equation (370) shows that with increasing / the gap correction rapidly
becomes negligible. With h as large as 7 or 9, the frequency can usually
be considered as independent of the gap, and from then on the overtones
have practically harmonic ratios, as explained in §250.

From observations of the gap effect in thickness vibrations an approxi-
mate value of the piezoelectric constant can be derived by means of
Eq. (370). :

For any given gap the ratio A'fae/fhe is very approximately equal to
CL/2C,. When w =0, the ratio becomes C3/2C,, where C» and Cy
are the values at zero gap. But, according to Eq. (401), €./2C, is the
relative difference between the frequencies for paralie! resonance and
series resonance. Thus the foregoing results for thickness vibrations
llustrate the general fact concerning series and parallel resonance stated
in §201 after Eq. (43%a). For further statements concerning the ratio
/20, and its relation to the electromechanical ratio r, see §280.

267. The Maximum Safe Resonator Current. The maximum current
depends on the maximum strain that the crystal can undergo before
breaking, and this in turn depends on the vibrational mode. As an
example of the calculation we consider the case of lengthwise vibrations
in an X-cut quartz bar, length parallel to ¥. From the tensile strength
of 1,000 kg/cm? given in §328 and the elastic compliance s, = 1.30(10'7)
one finds for the breaking strain g, = 0.0013. Rupture may be expected
to start at the center of the bar, where the strain is greatest. The
relation between (y,)o at this point and the piezo current I, can be found
with the aid of Eqgs. (88), (97), and (320). At the fundamental resonant
frequency (h = 1) and zero gap one finds

I, = 2ebe(wy)o esu (371)

where ¢ = +/¢/p and b is the breadth of the bar. For quartz the effec-
tive piezoelectric coefficient ¢ is en1 = 5.2(10%), while ¢ = 5.4(10%) cm/sec.
Henee, if {y)o = 0.0013, we have I, = 7.3b(10") esu = 24b ma. Thus,
ifb = 1.5cm, f, = 36 ma. At resonance I, may be taken as the current
to the entire resonator, since the portion in the parallel capacitance
is then relatively small.

Since the piezo current I, is approximately proportional to the
strain at all frequencies in the resonance range, the value calculated above
holds also when, as in most types of piezo oscillator, the crystal is vibrat-
ing near its antiresonant frequency. The only difference is that in order
to produce the same I, the voltage across the crystal must be higher,
causing the current in C, to be greater. Therefore, near antiresonance
the total safe current can be greater than at resonance.
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The foregoing estimate of I, gives the maximum possible value at
resonance under ideal conditions. The value would be different for other
cuts and other modes of vibration. In actual cases overtones of various
modes, as well as defects in the crystal, are likely to produce localized
stresses sufficient to cause fracture at currents far below the ideal value.

In general, larger currents per square centimeter of electrode area
can be used with thickness than with lengthwise vibrations. With some
thickness resonators of average size, currents as great as 100 ma can be
used safely. Nevertheless, the experimenter would do well not to let
the erystal current exceed 20 ma/em? with thickness vibrations or 10
ma/cm® with lengthwise vibrations. Not only does this precaution
safeguard the crystal, but it also avoids undue heating and consequent
change in frequency.

258, Anomalous Dispersion in the Resonator. Just as a crystal is
often regarded as a single large molecule, so the macroscopic dielectric
properties of & piezo resonator at radio frequencies simulate the molecular
behavior of matter in the infrared and optical regions. While this
similarity is shown {0 some extent also by such electromagnetic devices
as telephone receivers, the analogy is closer in the case of piezoelectric
resonators,

We saw in §116 that when the particles of which a substance is com-
posed have a natural frequency in the optical spectrum, the substance
exhibits anomalous dispersion for radiation in the neighborhood of this
frequency. The medium becomes highly absorptive, and the index of
refraction, and hence the diclectric constant, increases with increasing
frequency to a maximum, decreases to & minimum, finally approaching
2 value somewhat lower than that on the 1 side of resonance. Since,
in electrical language, the vibrating system possesses both reactance and
resistance, it is customary to express both the refractive index and the
diclectric constant as complex quantities, as is shown in Eq. (181) for
the dielectric constant.

In the following sections we shall first show how the equivalent
electrical admittance of the entire resonator can be expressed in terms of
a complex dielectric constant and then trace the dependence of this
constant upon frequency. The dielectric constant and resistance {(or
decrement) of the resonator correspond to the refractive index and
coefficient of absorption in the optical case. The discussion will be con-
fined to Jengthwise vibrations, but in principle it is applicable to piezo
resonators vibrating in any other mode.

In its most general form the complex dielectric constant k. would
be written as in Eq. (181), with b (susceptance) and g derived from Eq.
(315). Bince such an expression would be complex in more than one
sense, it is simpler and equally instructive to take advantage of the very
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low damping in piezo resonators, by writing one expression valid at
frequencies sufficiently removed from resonance, and another for the
resonance region.

269, Except in the immediate neighborhood of & resonance frequency,
the parenthesis in Eq. (316) may be used to represent the complex
dielectric constant. It is assumed that the field strength is small, so
that we have to do only with the tnitial value. First it should be noted
that it is the real part of k. that represents the dielectric constant in the
ordinary sense. In Eg. (316) the imaginary term is omitted, since the
impedance of the crystal is almost exactly a pure reactance except over &
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Fra. 5, —Variation of dielectric constant k, with frequency of lengthwise vibrations.
Curve Q is for quartz, R for Rochello salt. The curves are drawn approximately to scale,
except that the resonance for quarts is made to appear leas sharp than would be the case
with a typical quarts resonator, and that the ordinates for quarte are multiplied ten times.
The dats for Rochelle salt are from Mason’s observations on a 45° X-cut bar, with low
field strength, at 5°C. Energy losses, which limit the values of k. at resonance, are not
represented in this figure.

very narrow region close to resonance. k. is then given very approxi-
mately by the real quantity

ko= b+ 3% o T (372)
The dependence of k. on frequency is governed by k = f/fo, where f; is
the fundamental frequency, f is any frequency higher than the funda-
mental, and k is any real positive number, integral or fractional, greater
than unity. The equation shows that, as f increages indefinitely, k.
diminishes, with anomalous values in the neighborhood of frequencies
for which % is an integer. This k. is the value associated with the
equivalent series capacitance C, of the entire resonator (§271).
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The variation of k. with frequency, for lengthwise vibrations in quarts
and Rochelle galt, is shown in Fig. 55 for values of A up to 3. Negative
values correspond to inductive reactance.

In the case of Rochelle salt it is evident that the "anomaly '’ due to
the fundamental resonance frequency (h = 1) extends over an extremely
wide range of frequency. This fact is the result of the large piezoelectric
constant of Rochelle salt. The quantity &;, which we have called the
“effective dielectric constant,” can be identified on the curve at h = 2,
where the crystal is driven at double frequency, as explained in §321,
At zero frequency k. = &' = 180. Most noteworthy is the fact that the
crystal does not return to this value after the fundamental resonance, st
least not until the frequency approaches the value for which h = 3,
where the current has its second maximum.

Qualitatively the same behavior is shown by the gquartz resonator.
The outstanding difference is that in quartz at all frequencies, except
very close to resonance, the departure of the dielectric constant from its
static value is hardly perceptible. This contrast with the more pro-
nounced curvature in the case of Rochelle salt has practically nothing to
do with relative energy losses. Except over frequency bands too narrow
to be indicated clearly in Fig. 55, the crystal, whether of quartz or of
Rochelle salt, is essentially a pure reactance.

260. The variation of k, close to resonance will next be considered.
For this purpose we may use Eq. (319) and the network shown in Fig. 50.
Let the admittance of the RLC-branch, in the notation of §232,* be
denoted by ¥ = ¢’ — jb’ and that of C1 by ¥1 = —jb; = juCy. The
admittance of the entire resonator is then

. Y X
Yi=gi —jbi=¢ — 0 + by =-ZIE~—J(—Z—,——wC'1) (873)

As in §232, the complex dielectric constant is found by writing
V) = jwC. = jwblk./4re, whence from Eq. (373), for frequencies in the
neighborhood of resonance,
- tme e e (X : B
With the aid of Eq. (320) the real part of this expression can be proved
identieal with Eq. (372), as long as E can be neglected. Close to reso-
nance the effect of K becomes appreciable, in determining the shape and
finite height of the resonance peak.

* For simplicity the primes and the subscript & are dropped from R, L, €, (', and
Z in this gection.
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A plot of the dissipation component —jiweg’/wbl of quartz against
frequency, with the scale used in Fig. 55, would appear as nothing more
than a horizontal straight line of very small ordinate value, rising abruptly
to high values at A = 1 and 8. In Rochelle salt the same is true if g’
is computed for the mechanical losses alone.* Nevertheless, this process
would not ecorrectly represent the dieleciric behavior of Rochelle salt,
owing to the presence of a resistance, which Mason calls Ko, in the
C-branch of Fig. 50. Mason’s?* equation (63) amounts to an,expression
for the complex dielectric constant, but numerical data are not available
for its complete evaluation (see §375).

As the frequency is inereased beyond the limit shown in Fig. 55,
other resonant values are encountered, at each of which the net value
of the dielectric constant on the h-f side is less than on the low. These
resonant values correspond to odd integral values of A up to the point
where other h-f modes, compressional, torsional, flexural, or shear,
depending on the lateral dimengions, begin to enter. Considering only
lengthwise compressional modes, one sees from Eg. (372) that with
increasing frequency the dielectric constant approaches the value %,
which by Eq. (311) is & = ¥} — 4wd?,/8... This is also the value that
would be measured at all even values of . At very high frequencies the
vibrational reaction due to lengthwise compressional vibration is neg-
ligible, even at odd values of k.

If a erystal had only one piezoelectric constant, namely, that associated
with compressional lengthwise vibrations, the value of % given above
would be that of the completely clamped crystal; it would therefore be
expected to hold until the optical range of frequencics was approached.
In general, however, owing to the possession of other piezoelectric con-
stants, before extremely high frequencies are reached the bar resonates
in other modes, as stated above. As long as the frequency is low with
respect to these other modes, then as was shown in §229 the piezoelectric
strains corresponding to these modes are proportional to and in phase
with the driving field. They therefore contribute to the polarization
and to the effective dielectric constant. It is this effect which gives to
k: a value somewhat greater than that of the clamped dielectric constant,
When with increasing frequency these other modes come successively
into rezonance, the crystal in effect becomes progressively more and more
clamped, owing to the inertial reaction of all modes of lower frequency,
until at very high frequencies, which for erystals of ordinary size are
of the order of 107, the only vibrations are high overtones of negligible
amplitude. When this stage is reached, the crystal may be regarded as
completely clamped. The best values of the clamped dielectric constant

* 8ee Mason,’" Eqs. (67).
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k" are obtained by this method. Such messurements on Rochelle salt
are discussed in §442.

From the foregoing statements it is clear that the effective dielectric
constant k; holds for all frequencies within which only compressional
lengthwise vibrations need be considered. A. theoretical formulation
that took account of other vibrational modes and of eoupling efiects
would lead to a different expression for k.

If it were possible to increase the frequency up to that of the optical
range, the dielectric constant would be found to diminish still further,
suffering a drop whenever a characteristic moleeular frequency was
passed,* until in the visible spectrum, where the refractive index is of
the order of 1.5, the dielectric constant would be reduced to the order
of 2.

261, Effects of Piezoelectric Vibrations on X-.ray Reflections.t
a. Observations with Quartz. In 1931 Fox and Carr®] observed that the
Laue spots due to a beam of X-rays passing through an X-cut or Y-cut
quartz plate became more intense when the plate was vibrated piezo-
electrically. The effect was found with all vibrational modes investi-
gated by them, and it varied in amount with the amplitude of vibration.

This subject. received considerable attention in the sueceeding years.
On the experimental side, the fine structure of the spots, which appears
when the quartz plate is vibrating, has been studied by Corkl® and by
Barrett and Howe!l. The latter investigators made a Lauc survey of
an entire X-cut plate vibrating in its thickness mode, which threw light
on the highly complex nature of this mode. TFor further experiments
on the effect of thickness vibrations sce refs. [G], [#], [16], and [19].

The increase in intensity caused by the lengthwise vibrations of X-cut
plates (compressional waves in the Y-direction) has been observed by
Bertsch!® and by Colby and Harris,'® using the Laue method. On the
other hand, Blechschmidt and Boasi?] could {ind no change in intensity,

The foregoing results, obtained by the observation of Laue spots,
indicate that the cause of the increase in intensity lies in the body of the
erystal and is not merely s surface phenomenon. On the other hand,
when an increase in intensity is sought by Bragg reflections, it is found,
az would be expected, that the condition of the surface of the crystal is
important. No increase in intensity of the radiation reflected from a
polished surface ia observed; but if the damage done to the surface by

* From the measyrement of X.ray intensities II. Staub™ has caleulated a Resi-
straklen wavelength in Rochelle salt of about 100k, Valasek®® predicted an absorp-
tion band at 55s, while W. W. Coblentz (“‘Investigations of Infre-red Spectra,”
Carnegie Inmstitution of Washingten, 1005-1908) recorded an absorption band at
¢.24.  Much remains to be done with Rochelle salt in the infrared.

 Reference numbers in this section are to papers listed at the end of the chapter.
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polishing is removed by etching in HsF3, the crystal when vibrating does
show an increase in intensity, provided that the reflection does not take
place from a region on the surface where there is a node of strain. These
conclugions are confirmed by the observations of Colby and Harris.Il
For observations by the Bragg method see also refs. [3], [6], and
[9l. -

On the effects of grinding and etching the surfaces, see refs. [1],
[4], [6], [9), and [18]. For plates in various orientations, see refs. [12]
and [19]; in the latter paper the modes of vibration are investigated by
X-rays.

The increase in intensity mentioned above is confined to the char-
acteristic radiation from the target. Aceording to Jauncey and Brucel'd
vibrations have no effect on the diffuse radiation. The characteristic
lines have been found by Colby and Harrisl®! to be widened as well as
inereased in intensity by vibration. For a theoretical treatment see the
paper by Weigle and Bleuler, 21

From the first it has been recognized that the increased intensity of
the diffracted beam when the plate vibrates is due to a decrease in extine-
tion. The strains due to vibration have an effect somewhat analogous
to that produced by polishing the surface, which destroys or disarranges
the lattice in the superficial layers and allows the X-rays to penetrate
more deeply. The best evidence indicates that vibration reduces the
secondary extinction, by sctting up inhomogeneous strains, warping the
lattice, or causing disturbances among the inhomogeneities that are
normally present in the crystal [1ol0l{17L08L 9]

There is evidence that static as well as dynamic strains cause an
increase in the intensity of the Laue spots from quartz crystals. The
effect was observed by Barrett and Howe!!l and by Fukushimal'® with
strains produced mechanically and by Sakisaka and Sumoto,!?! who
employed thermal strains. The same effect was observed by Kakiuchil'®
when the strain was caused by a static electric field.

Although it has nothing to do with the question of increase in the
intensity of X-ray reflections, mention may be made here of the fact that
plezoelectric strains have been calculated from their effect on Bragg
reflections, by Dolejsek and Jehoda.l’l The results were found to be in
agreement with the values derived from the field strength and the known
piezoelectric constant. The same method as applied to Rochelle salt
is mentioned in §422.

b. Results with Other Crystals. Both Rochelle salt and tourmaline
show an increase in intensity of Laue spots when vibrating, though the
effect is much weaker than with quartz.*

* For Rochelle salt see refs. (8] and [10]; for tourmaline, refs. [10] and [16].
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The use of X-rays in the precise determination of crystal axes is
mentioned in §341.
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CHAPTER XIV
THE ELECTRICAL EQUIVALENT OF THE PIEZO RESONATOR

Mt leisem Finger geistiger Gewqlien

Erbauen sie durchsichiige Gestalien;

Dann ¢m Kristall und seiner ewigen Schweignis

Erblicken sie der Oberwelt Ereignis. b

~—QGorTHE,
262, Introduction. In the foregoing chapter we learned that the

electrical characteristics of a resonator for lengthwise or thickness
vibrations, in the neighborhood of any resonant frequency, can be
expressed in terms of four fixed parameters, represented in IMig. 50.
Most, if not all, types of piezo resonator can be represented by the same
network. In the present chapter some of the properties of this network
and of other equivalent networks will be considered, with special reference
to variations in frequency, gap, and the constants of the crystal.

The “equivalent network” of any electromechanical system is gener-
ally understood to mean an assemblage of RB-, L-, and C-values, each
independent of frequency, so interconnected that when the assemblage
i substituted for the actual system in any cloetrie cirenit its effect on the
circuit will be the same as that of the electromechanical system itself,
at least over g certain range of frequency. In the case of the piczo resona-
tor the electric constants of the equivalent network are chosen so as to
represent. the electrical behavior of the resonator in the neighhorhood of
a particular charaeteristic vibration frequency of the erystal. The fre-
quency range over which the equivalent electric “constants” may be
treated as asctually constant depends largely on the nearness of other
vibrational modes. In general, a crystal resonator having a given form
and orientation possesses a large number of characteristic vibrational
modes, each occurring st a different frequoncy, for each of which the
resonator may be treated as if it had a single degree of freedom, with a
particular set of equivalent electric constants. The equivalent network
has different parameters for each mode.

Several years before the first resonators had been made from piezo-
electric crystals, it was shown theoretically by Butterworth® that any
mechaniecal vibrating device driven by a periodic emf across a condenser
presents to the driving circuit an equivalent electrical impedance ‘con-

* 8, Burrerwanth, Proc. Phys. Sec. (London), vol. 27, pp. 410424, 1915.
333
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sisting of a certain resistance, inductance, and capacitance in series, the
whole being shunted by a second capacitance. This paper had not come
to the attention of the author®® when he first dealt with the theory of
the piezo resonator in 1922; the existence of an equivalent electrical com-
bination was recognized, but the only combination arrived at was a
resistance and & capacitance, either in series or in parallel, with values
that varied with the frequency (see §§271 and 273).

The equivalent network universally adopted for the piezo resonator
today was derived from theauthor’s basic equations by Van Dykeb47.580.552
independently of Butterworth’s work, but leading to the same network,
as shown in Fig. 50. The equivalent electric constants in Van Dyke's
network, as in Butterworth’s, are independent of the frequency.

A little later Dye,!*"* gtarting with Butterworth’s theorem, derived
the same network as Van Dyke and treated the theory of the piezo
resonator very completely, including the effects of the gap between crystal
and electrodes. Since then many papers have appeared on the subject,
to some of which references will be made in due course.

It has already been shown that the Butterworth-Van Dyke-Dye net-
work represented in Figs. 50 and 565 is applicable both to bars in length-
wise vibration and to plates in thickness vibration and also that, by proper
choice of the equivalent constants, the same network holds when there is
a gap of any width (but see §285 for the limitation in the case of unplaied
bars). Although the detailed theory has not been worked out for other
types of resonator, there can hardly he any doubt of the universal validity
of Butterworth’s theorem as applied to piezoeloetric vibrators, in that
4 piezo resonator of any type can be represented by the same form of
equivalent network.

263. We shall now consider the method introduced by Dye and
developed further by Watanabe,’¥ by which the electric constants of a
crystal with gap are equivalent to those of the crystal with zero gap, in
series with which ig still another condenser representing the gap. For
greater simplicity, consideration of overtone frequencies will be left out
of account for the present. The proper notation for overtones can be

introduced at any point if desired.

The crystal and s equivalent networks are illustrated in Fig. 56.
The total gap is w. The electrodes are connected to the external circuit
at p and g. The equivalent constants, the gap being taken into aceount,

* In this paper Dye shows as an alternative network 4 resistance, induetance, and
capacitance in parallel, representing the vibrational portion of the equivalent network
at zero gap, in series with which is a capacitance corresponding to €, in Fig. 50 and
another eapacitance representing the gap. For a general treatment of eguivalent
networks see T, E. Shea, ‘' Transmisgion Networks and Wave Filters,” New York,
1929.
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are, 83 before, represented by R’, L', (", and C}; they are the same as
the B}, L;, C;, and Cf of §§232 and 255. R, L, C, and C; are the corre-
sponding values when % = 0, so that in Fig. 56¢ 3 represents the capaci-
tance of the gap. The relations between the constants in (b) and (c) are
given in §284.

Throughout this discussion the assumption is made that R, L', ¢V,
and C] are independent of the electric field strength and of the amplitude
of vibration. In other words, it is assumed that the fundamental elastic
and dielectric constants are actually constant. This assumption is fully
justified with such crystals as quartz or tourmaline, over all ranges of
stress encountered in practice. In the case of Rochelle salt, unless the
stresses are held at very low values, allowance must be made for the
non-linearity between stress and strain, both mechanieal and electrical.

The disgrams b and ¢ are two different ways of representing the
electrical characteristics of the crystal with gap shown in diagram a. Aa

R L R L C

w
PI -I?me\{ g p I?r'
iz ;lq G
(al (o) (c/

Fra. 66.—A crystal with gap, and its two equivalent networks.

will be secen in §284, hy proper choice of parameters the two networks
can be made equivalent, as long as the surface of the crystal exposed to
the gap is always an equipotential surface; for in this case the erystal
acts ag if it had adherent electrodes, while the gap is a simple air con-
denger. Such is indeed the case with thickness vibrations, at least if the
complications due to coupled modes are disregarded. As will be seen in
§286, it is also the case with lengthwise vibrations of a bar when the
surfaces exposed to the gap are provided with a conducting coating; if the
bar is bare, the gap capacitance C; requires a correcting factor,

The electrical equivalents for the same crystal at several frequencies
may be combined in a single network. For example, if, in addition to the
vibrational mode represented by RLC in Fig. 56¢, there are other modes or
overtones represented electrically by series chaing B \L.Cy, BoLsCs, - . .
these chains, all in parallel, may be connected in parallel with RLC. In
the neighborhood of any one resonant frequency the impedances of all
but one chain are practically infinite, unless two resonant frequencies
happen to come too close together. It must be recalled that C, has a
slightly different value for each mode, as may be seen from Eqgs. (311}
and (323).
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264. The Response Frequencies of the Resonator. There sre several
cases to consider, most of which are of some importance in practice.

1. The erystal is set into vibration, electrically or mechanically, and
then left to itself, with the terminals p and ¢ in Fig. 56 on open cireuit
{(or connected to an infinite impedance). Teo find the frequency of free
vibration and the rate of decay, one may imagine that an initial charge
has been: placed on the condenser €*. The discharge takes place around
the path R'L'C’ in series with (. The {requency of free vibration is
given by w® = 1/L'C; — R'*/4L'?, where C, = C'C{/(C" +°C}). The
oscillographic record of the rate of decay of a vibrating quartz plate
described in §320 was obtained under these circumstances. Although
this frequency differs but little from the resonant frequency given by
w} = 1/L'C’, still the distinction cannot. be ignored.

2. The crystal is excited as in (1) but vibrates freely with pg short-
cireutted, The R'L'C’ chain is now connected to & zero impedance, €, is
inoperative, and the frequency of the decaying vibrations is given by
w? = 1/L'C’ - R'*/4L'%, a value slightly lower than that in (1).

3. The terminals p and ¢ are connected to a generator of variable
frequency and zero internal impedance. This is the case assumed in the
theoretical treatment, where an alternating potential difference of con-
stant amplitude ¥V, is impressed on the network. It is approximately
realized in some experimental methods. The network has two degrees
of freedom, with two characteristic frequencies. These are the well-
known frequencies of series and parallel resonance, coneerning which more
will be said later.

4, Usually the terminals p and g are connected to a circuit on which
the resonator reacts more or less strongly. The potential drop across the
resonator may then vary greatly with the frequency, but the character-
istics of the resonator, including the frequencies for series and parallel
resonance, are the same ags in (3).

The further discussion of the clectrical properties of the piezo resonator
can be better understood with the aid of the graphical representation, to
which we now turn.

285. The Resonance Circle. The use of a circular locus for repre-
senting admittances or impedances of resonators offers many advantages. *
In schematic form it makes the performance of a resonator under varying
conditions evident at a glance, and it is a valuable aid in writing or
interpreting equations. When carefully drawn to scale, such s diagram
can often be used for deriving quantitative results, thus eliminating much
laborious computation.

* The representation of the characteristics of a vibrating system by means of a
circular locus was introduced in 1912 by Kennelly and his collaborators in their

studies of the telephone receiver. The mathod is fully treated in Kennelly’s * Eloctri-
sal Vihratinn Tnatrumenta.’’ Naw Vork. 1623,
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In general, the resonance circle represents correctly the performance
of a resonator over the range of frequencies in which the resonating ele-
ment can be regarded as having a single degree of freedom. If the device
has several resonant frequencies, a separate diagram can be drawn for
each; or by a suitable choice of scale values the same diagram can be
made to serve for different vibrational medes, including harmonies of
the fundamental.

The characteristic electrical property of the piezo resonator is the
equivalent series chain RLC in Fig. 56, Its admittance is very low except
close to the resonant frequency defined by we = 2mfy = (1/LC)., We
start with the graphical representation of the RLC-branch, the gap being
zero, and then show how the graph can be extended to more complicated
networks. In the following discussion all equations and diagrams are
applicable to any overtone, if to E, L, C, and C, are assigned the appropri-

{a) (b)
¥Fia. 57.—Impedance and sdmittance of B, L, and € in series.
ate values. They are also applicable to a crystal with gap, if for B, L, C,
and ' are substituted the appropriate R, L', 7, and C{. The limits
within which the approximations in the equations are valid are given
in §2904.

The impedance of R, L, and € in series depends on the frequency as
shown in Fig. 57a, where X = oL — 1/uC = BS and Z? = R? 4 X2 or,
in vector notation, Z = E 4 jX. As w varies from 0 to «, B = AB
remains constant, while the point S moves up the X-axisfrom X = —~ >
to X = 4. At the resonant frequency the phase angle 8 = 0, X = 0,
and Z = B. Figure 57b represents the admittance ¥ = 1/Z at the same
frequency. We have ¥ = g — jb, where the conductance is

g = % = A'R
and the susceptance is b = X/Z% = B'S’. If X is positive,
b

X
—_— am] anm -t 2
& = tan —R—ta.n 7
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is posttive on both diagrams, but it is laid off clockwise in (b) instead of
counterclockwise. At the resonant frequency, g = 1/E; we shall denote
this value of the conductance by ge.

In Fig. 57b the value of g, is represented by A’'B;. At any frequency,
Y =1/Z = cos §/R = gocos 6. But this is the polar equation of a
cirele of diameter go = 1/E. The circle itself is seen in the figure, and its
circumference is the locus of ¥ = 4’8’ as the frequency varies. When
f=0,8isat A’and ¥ = 0. Asfincreases, § travels clockwise around
the circle, returning to A’ at f = «. '

The reason for thus emphasizing the admittance is that it must be
used, graphically or analytically, when any circuit element, such as C,
in Fig. 50 or 56, is connected in parallel with RLC. In the study of the
resonator we seek a simple means for surveying its performance over the
resonance range, when it is connected to any alternating circuit. Since
both impedances and admittances have to be considered, there is a pro-
nounced advantage in the use of a single diagram to represent both these
quantities, instead of the two separate
diagrams shown in Fig. 57,

266. In constructing any vector dia-
gram, a unit vector, or scale value, must
be selected for the particular physical
quantity that is to be represented. By
the proper choice of scale values the two
diagrams in Fig. 57 can be superposed,
with AB and A’Bjin coincidence. The
result is seen in Fig. 58, where, as before,
ad- AS represents the impedance at any

Y19, 58.—Impedance and
mittance vectors combined in the frequency f. A circle is drawn with

di . . . .
mame diagram an arbitrary radiue p, expressed in con-

venient units of length. If the diameter 2p = AB represents R, the
scale value is s = R/AB = R/2p ohms per unit length (or esu per unit
length). The reactance is s- BS, the impedance is s- AS, while
tan § = BS/AB gives the phase angle.

In order that the admittance may be represented on the same diagram,
we must select a scale value of admittances, say s, such that AB shall
represent go = 1/R. The value is

o= = s = E (375)

reciprocal resistance units per unit distance, as for example mhos per
centimeter. Then, since ¥ = cos 8/R and cos 8 = AP/AB, we have
Y = s,- AP. The components of impedance are E = s+ AB and
X = g BS; those of admittance are g = 5,- AM and b = s, - MP.
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Geometrically, we have performed an {nversion of the vector A4S with
respect to a ctrele of tnversion* (not shown in the diagram) with center
at A and radius AB. According to the principle of inversion, which in
this case amounts to a statement of the fact that (AB)* = A§- AP, any
point S on the line BS L AB inverts into the point P, where AS cuts
the circle having AB as diameter. If AS represents an impedance for
the KLC chain, AP represents, in magnitude and phase, the corresponding
admittance.

The present procedure requires one departure from the usual graphical
convention for admittances, in that a positive susceptance, like a positive
reactance, is drawn upward. This practice nced lead to no confusion,
cspecially since the sign of ¢ is always the same for a susceptance as for
the corresponding reactance. As the frequency increases from zero
through fa to f = e, 8 moves upward from — e through B (minimum
impedance) to -+ «, while P moves counterclockwise around the circle
from A through B {maximum admittance) and back to A. The phase
sugle # is negative below the line AB (f < fi, ecapacitive reactance),
changing through zero to positive abeve A B (f > f,, inductive reactance).t

267, Frequency Calibration of the Resonance Circle. In the applica-
tions of the graphical method that are to come, we shall treat the reso-
nance circle for the admittance of the ELC branch of the resonator as the
Jfducial circle. Any vector drawn from the origin at A in Fig. 58 to a
point on the circumference, as AP, represents the admittance Y of ELC:

* The principle of tnversion. With respect to & circle of radius @ and center at O,
two points P and P’ are said to be mutually tnverse if they are situated on the same
radius, one inside and the other outside the cirele, ot such distances that OF « OP = a2,
The circle is calied the circle of inversion, and its center is the eenter of inversion. If
the principle is applied to all the pointa of any geometrical figure in the plane of the
circle of inversion, the inverse of this figure is obtsined. It is easily proved that by
inversion any circle is transformed into another circle, including the limiting case of a
straight line. Every straight line is transformed into a circle passing through the
center of inversion . We shall have occasion repeatedly to make use of the fact that
any given circle transforms into itself when it is tangentinl to a radius of the circle of
inversion at & point on the circumference of the latter. Any two points on the given
circle are then mutually inverse when they are on the same straight line through the
center of inversion.

For the mathemstical principles of inversion see, for example, Graustein, “Intro-
duction to Higher Algebra,” New York, 1930, or Ziwet and Hopkins, “Analytic
Geometry and Principles of Higher Algebra,” New York, 1922, For applications to
alternating currents,-see Lee, “Graphical Analysis of Alternating Current Circuits,”
Baltimore, 1928. For applications to vibrating systems, see Kennelly, ‘Electrical
Vibration Instruments,” New York, 1923. For applications to piezoelectric resonator
circuits, see Vigoureux 8555 and also refs. 127 and 581.

t The use of & singls resonance circle to represent both admittances and impedances
was introduced by the author® in 1933. In the paper cited will be found certain
applications beyond those described in this book.
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Y =g, - AP. As will be seen, the parallel capacitance C' of the resonator
or any series or parallel external impedance can be represented graphically
in such a manner that a resultant vector can be drawn for the impedance
or admittance of the entire combination. The circle itself may function
as the locus of either admittances or impedances, and the distribution
of frequencies around the cirele will vary according to the total network.
Nevertheless, by simple graphical operations, the frequency corre-
sponding to any vecter, as, for example, the frequency for minimum
impedance for a given network, can be determined in terms of the fre-
quency distribution around the fiducial circle. ’

It iz therefore desirable at this point to show how the fiducial circle
may be calibrated for frequency, when &, L, and € are given.

To each point on the fiducial circle there corresponds a particular
frequency; for example, at P in Fig. 58 the frequency f = w/2r is some-
what higher than the resonant value fy = wo/2r = 1/2zLCat B. We shall
show that the distance BS, measured upward or downward from B to the
point 8 where the line AP produced cuts the vertical axis through B, is
very nearly proportional to the frequency difference f — fo. A linear
scale of frequencies can therefore be constructed on the vertical axis
through B.

The desired expressions can best be derived by starting with the
phase angle § in Fig. 58.

BS X wlC—1 L{u®— )

tn b= o = F = R " Wk (376)

This equation is rigorous for all values of «. With such crystals as
Rochelle salt, for which « varies very considerably over the resonant
range, the expression ecannot be further simplified. BS is proportional
to w only for values of @ close to we; for larger values of w — w,, if L, C,
R, p, and BS are given, « must be found by solving a quadratie equation.
On the other hand, if w is given, BS is easily calculated, and thence the
location of P on the cirele is found.

If w is so close to wo a8 to permit the approximation (w + we) = 2w,
Eq. (376) ean be written in the following simplified form:

BS _ 2L(w —w) _ _ 2n
% R B 877)
where nEw - w= 22 —f ’ (377a)
It follows that the irequency difference can be expressed as
n R
fu—fﬁz—“_ SwLBSﬁe BS (378)
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where the scale value for frequency is

o= — E%I (eycles sec~1)/(unit dist.) (378a)
Unit, distance, measured upward or downward from B, therefore corre-
sponds to a frequency difference o, 0 that a linear scele of frequencies
can be constructed along this vertical line.* Close to resonance the
scale is extremely accurate; it is in error by 1 per cent when f differs
from fy by 2 per cent. It is amply sufficient for quartz resonators at all
frequencies that ever need be considered.

The positive direction of BS is upward, corresponding to negative
values of n (the h-f side of resonance).

A series of graduations, for a particular resonator, could be marked
on the circle itself, but such a seale would be very wide open near B,
becoming more and more closed as A was approached from either direc~
tion. It is much more convenient to find the frequency corresponding
to any point P by the method described above.

268. In many cases it is necessary to find the frequency for a point P
on the left side of the circle, as is the case, in fact, with most piezo oscil-
lators. When the line APS ig drawn, the point 8 may be inconveniently
far above or below B. A good estimate of the frequency can then be
made by the following geometrical artifice: For such a point as P; in
Fig. 58 the point corresponding to S, say §', would come at an incon-
veniently great distance below B, on the prolongation of AP;. Instead
of drawing AP,S’, one may draw the line BP,V. Then, by similar
triangles, B8'/AB = AB/AV, whence BS' = 4p*/AV, and

~2B 4pr _  —Rp —~2ap _ 2me’

m=2m0-BY = i Ay S AV T AV = 4y 8%
r_ B _n = 47 -1 (unit di
where o =5t =5 AV = 4p% (cycles scc™!)(unit dist.) (379a)

The frequency difference fy — f {= n/27) corresponding to any point on
the left side of the circle is ¢'/AV. Conversely, the location on the
circle of the point corresponding to a given f can be found by means of
Eq. (379) or (379a).

By the use of ¢ or ¢’, as defined by Eqs. (378¢) and (379¢), the graphi-
cal method yields values of # correct within 1 per cent as long as n is not
over 2 per cent of fo. For very large and very small frequencies the
operating peint on the cirele is too close to A for reliable measurements
of the distance AV. In such cases it ig better not to use the graphical
method but rather to derive the relations between the various parameters

*This linear scale was described by E. Mallett, “Telegraphy and Telephony,”
P. 135, London, Chapman & Hall, Ltd., 1929,



342 PIEZOELECTRICITY [§260

and the frequency analytically, using the geometrical relations ag a guide.
The derivations are usually quite simple, since far from resonance the
terms in B can be left out. A numerical example is given in §300.

If R; is written for R/, etc., in the treatment of the resonance eircle
in the foregoing sections, all expressions become applicable to a resonator
vibrating near the harmonic k.

269. Resonance Diagram for the Crystal Resonator. We have shown
that the impedance or the admittance of the RLC-branch of the resonator
network can be represented by means of the resonance circle-{Fig. 58).
From this figure a resonance curve of the ordinary sort can be derived, by
plotting frequencies as abscissas and admittances as ordinates. The cir-

S
, P
F Lid o
8 i
M B
F
() (6}

Fre. 59.—Vector diagram for resonator admittance, {g) by the usual convention, (b)
by the method adopted in this book. The arrow j indicates the direction of increasing
Irequency.

cular diagram is simpler, even for the RLC-branch alone, and it becomes
very much more convenient when the effect of the parallel capacitance
€, iz included.

The admittance of () is ¥, = —jb; = ju(;, with absolute value
¥, = wCy The vector admittance of the entire resonator is

Yi=Y4+ Y =g—j—jbh

‘We consider first the manner in which it has been customary in the past
to represent such an admittance. In Fig. 590, A8 represents ¥ = g — jb,
b being inductive in this particular case. To Y is to be added vectorially
Y, = —jby, a capacitive admittance represented by AF drawn upward.
The resultant AP of AF and AS’ represents ¥i. If the point 8§ has a
cireular locus with varying frequency, the compounding of A8’ with AF
requires that the locus be moved upward, to the position indicated by
the dotted circle. Such a shift in the resonance circle would be intoler-
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able in dealing with resonator problems in which the location of the
point ¥ is variable. The difficulty is overcome simply by the expedient
shown in Fig. 588, viz., laying off the angle ¢ upward when positive, as
shown in Fig. 50b. The capacitive admittance ¥, still points upward.
By this means the line FP represents at once the resultant admittance Y73,
the angle 6; being the phase angle for Y], drawn upward when Y| is
inductive, downward when it is capacitive. We now have

1
R—2ps——2~;:?-; X =s8-BS

Z =548 Y=8,,‘AP

g=98 AM b=g- -MP

C'; branch g1 =0 by = —wly = —g AF (380)
g1 =¢ bl = b+ b = s(MP + WM) = s,- WP

RLCC, {Y; =3, FP

RLC branch

8y = m

The point A in Fig. 59b is the origin for vectors representing the
impedance or admittance of the RLC-branch, while F is the origin for
the admittance of the network consisting of €y in parallel with RLC.
Of considerable importance is the ratio AF/AB; considering only the
magnitude, and using the relation @ = wL/R, we have

AF _ AP
AB 2

€
€Q

As the frequency increases from zero to infinity and the operating
point P travels around the circle, the distance AF varies uniformly from
zero to infinity. Nevertheless, over the usual resonant range of such
erystals as quartz, the variation in frequency is so slight that F may
practically be regarded as a fixed point. The use of the graphical method
is thus greatly simplified, without perceptible sacrifice of accuracy.

On the other hand, very strongly piezoelectric crystals, like Rochelle
salt, undergo variations in frequency as great as 50 per cent within the
range that has to be considered. In such cases a separate position must
be assigned to F at each frequency.

In general, the assumption is made throughout this chapter that in
the graphical treatment the frequency varies so little over the range
considered that one may write, in place of the expression in Eqs. (380},

= wCR = (381)

b= —wCy = —s, - AF = const. (382)
where wo = (1/LC)L
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The admittance of the resonator, in general form without approxima-

tions, is
, R (X

In dealing with resonators in which the resonant range is very narrow,
we may set » = wo — 7 in the expressions for X and Z and with negligible
error write woC: in place of »(';. Equation (383) then takes the form

For a circle of fixed radius p and with given L and C, if the effective
value of B is diminished by improved mounting, s, is increased and
AF = —w(,/s, becomes smaller. From Eq. (378a) it is seen that o is
diminished, making BS grester for the same n and giving a more open
scale of frequency over the greater part of the resonance circle.

270. The Impedance Circle. The manner in which the same reso-
nance circle is used not only for the admittance but also for the ¢mpedance
of the entire resonator is shown in Fig. 50b. If a graphical representation
is sought for the resonator with an external impedance in series (for
example, the gap between crystal and electrodes), it is necessary first to
find on the diagram the vector representing Z{ = 1/Y1{, as will now he
explained. Z! can then be added vectorially to the external impedance.

Since Z} is the reciproeal of ¥Y{, we make use of the method of inversion
to find the point P’ inverse to P. This second inversion is performed
with respect to F, the circle of inversion (which need not be drawn)
having the radius FA and center at F. The geometrical relation involved
is (FA)2 = FP-FP'. The point P inverts into P’, where the straight
line FP cuts the circle. For some locations of P it is evident that
FP’ > FP, corresponding to the fact that a smaller admittance means a
larger 1mpedance

By the principle of inversion, wherever P may be on the circle, the
distance FP’ is inversely proportional to FP; it is therefore directly
proportional to the impedance Z]. This fact can be proved in the present
instance very simply without appeal to inversion theory, by writing

, _ 1 - 1 FP’ ,
Zy = EP T RAFE S - Fp (385)
1 1 8y
Where . 5= STARY T Rl T 20 (885a)

is the seale value for the impedance of RLCC,. s, is a function of the
constants /i and C'y and of the fixed diameter 2p; it is also a function of w,
but over the resonance range the relative varistion in frequency is so



§271) ELECTRICAL EQUIVALENT OF PIEZO RESONATOR 345

minute that s, may be treated ss a constant. For the same reason it is
usually allowable to consider AF as constant over the resonance range:
although the impedance of the RLC branch varies enormously, that of Cy
remains practically constant for all frequencies that commonly come into
play.

271. When s, is taken as unit vector, the entire diagram in Fig, 50b is
an admittance diagream, with AF and AP representing the admittances
of €y and RLC, respectively; FP represents the admittance of RLCC,.
On the other hand, with s, as unit vector, the figure becomes an impedance
diagram, for- which the following relations hold, including that given in
Eq. {385):

1

Impedance of {'; = — o0, = & AF (386)

Impedance of RLCCy = Z| = s, FP' = R, -+ jX, (387)

R, and X, are the equivalent serics resistance and reactance of the entire
resonator RLCC,. Their values* can be proved to be (see Fig. 59)

R
(1 — wC1X)? 4 w?C2R2
X — oCi(R? + X2

—_ PP
X, =5 -WP 0 = wCX) T OB (389)
The values of X, at series and parallel resonance are considered in §276.

In many cases it is more convenient t0 use these formulag in the
approximate form obtained by setting w = wy — n, where o} = 1/LC:

R
' T F 2wllCin)® F wiCiRt
X, =~ —2Ln(1 + 2WoLC1ﬂ) - woclR’
‘4 (1 + 2wl Cyn)? + wiCIR?

i

B =5 -FW = (388)

R (390)

(391)

When » lies outside of & certain range, depending on the various parame-
ters and on the desired precision, the effect of R? becomes inappreciable.

The formulas then become

R 3
B = TF 2ulCay @92
—2Ln
X (T 2l (393)

These expressions are valid until # becomes so large that the approxima-
tion involved in the denominator is no longer justified.

* These values correspond to those given by Egs. (a) and (b} in Dye, ref, 127,
p. 408, and to R, and X} in the author’s earlier paper.:%
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Unless R is extremely small, it may be found that the terms in R®
have to be retained over the entire range of frequencies that usually has
to be considered. This fact will be found exemplified in §301.

It is sometimes convenient to treat the resonator as equivalent to a
reststance R, in series with a capacitunce C,. The latter is found from
the equation

I
== X.= " e WEF (394)

For all points on the admittance circle lying above the line FW, WP’ is
positive and C, is negative.

When R is very small, C, can be shown, by means of Eqs. (389)
and (394), to have, at any w, the value

Cl + C — LC;C&JZ
1 — LCw?

272, The Fregquency Scale for the I'mpedance Circle. Turning once
more to Fig. 595, we find that, as the point P on the admittance circle
travels counterclockwise from A back to A, the inverse point P, whose
location represents the impedance, moves clockwise from A back to A.
The distribution of frequency around the circle is also different from
that when the circle is regarded as an admittance locus. It iz not neces-
sary, however, to construet a special frequency scale for impedances, if
the following simple procedure is adopted. ’

Yor every point P’ on the impedance circle there is an inverse point P,
situated on the straight line through F and . P’ and P correspond,
respectively, to the impedance and admittance of the resonator at the
same frequeney. When P’ is given, one need only locate the inverse
point P, draw the line APS (or BPV according to TFig. 58), and find the
frequency from Eq. (378) or (379). This graphical method is sufficiently
accurate for most purposes, and it obviates the laborious caleulations that
would otherwise be needed to determine the frequency corresponding to
any impedance value of the resonator.

273, The resonator RLCC, can also be represented as a resistance
R, in parallel with a capacitance C,. Like R, and C,, E, and C, are
dependent on the frequency. ¥rom Fig. 595 and Egs. (380) it is seen
that at the frequency corresponding to any point P,

Cn = (394&)

RP b U; Y FW (395)
R S S
and Xo = b_; = W = wo’ (39541)

C, is negative at frequencies above the broken line FW in Fig. 59.
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At frequencies well removed from resonance, R, and E; can be ignored.
At high frequencies C, and (', converge toward the common value C1. At
low frequencies they converge toward the common value (€1 + €). This
subject is further discussed in §§300 and 258.

In Fig. 59 and in most of the diagrams that are to follow, the length

of the line AF is greatly exaggerated beyond the value that would be
characteristic of a typical piezo resonator.
The ratio AF:AB is wC1E. The resistance R s
is usually so small that the ratio is of the order
of 1:100. As will be seen, the length AF
becomes greater when a gap is present, but
even then, with the small gaps usually em-
ployed, the ratio remains small. It would
be difficult to illustrate the principle of the
resonator without exaggerating the length of
AF.

274. A Relation between Mutually Inverse
Poinis. The following relation will find appli-
cation later. Consider any two mutually
inverse points on the admittance circle, as
P and P’ in Fig. 60. Calling the correspond- B
ing frequencies f = w/2x and ' = o' /2x, we
havefrom Eq. (378)n = wo — @ = —2re - BS
and ' = wp — o' = —2q0+ BS’. From geo-
metrical considerations, with the aid of the Fro. 60.—Two mutually

equation 4x%2LC = 1, it can be proved that inverse peints on the admit-
tance circie, with the corre-

S8 = 4p*/AF — 2BS,orf' — f= sponding points § and §" on
4pza'/AF —20f — fo), the frequency scale.

ta

Pl
F

whence

, _40’ C
=g =g %LC+2fu~f(1+4C

= const. (396)

Thus the sum of the frequencies for any two mutually tnverse poinis is a
constant, insofar as ¢ and AF can be regarded as constants, which is very
approximately true over the ordinary range of resonance.

975, The Critical Frequencies of the Resonator. We now consuler
the critical points on the resonance circle for admittances, giving at the
same time a number of useful approximate formulas relating the various
frequencies.

The critical points are shown in Fig. 61. At point B the frequency
is fo = 1/2x(LC)}, corresponding to maximum admittance of the RLC-
branch and (with constant voltage) maximum current [, in that branch.
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At B the parallel resistance K, has its minimum value [see Eq. (395)].
On the impedance circle, B is the point at which the series resistance R,
hag its greatest value: for if B replaces P in Eq. (387), Z{ = s,- F'B,
with components B, = s, AB and X, = s, AF; i.e., AR is the largest
value that FW’ in Eq. (388) can have. The frequency corresponding to
B on the impedance circle is not fy but has a value higher than fy, viz,,
the value for the point P on the admittance circle; Py is the inverse of B,
It is easily proved that this maximum value of R, is related to R by the
equation (B.)pe = 1/Rw3C? = 1/RICE.

Consider next the mutually inverse points Py and P, on the horizontal
{conductance or resistance) axis through . At both points the rescnator
acts ag a pure resistance. At Py the admittance, now a pure conductance,

B
g Kp/ ‘j\pa
L 7; 7
8
;
xﬂ
A g i B
£y
f;\\ 58
F

Fia. 81.—The eritical points on the resonance circle. The curved arrows fr and fz
show the directions in which the frequency inereases around the circle, for admittanees and
impedances, respoctively.
is large. The frequency at P is commonly called the frequency for
series resonance, since, if C, is relatively small (as is the case with a
typical piezo resonator), F is close to 4, and P; is so close to B that the
frequency differs only by an extremely small amount from f,, which is
the series-resonance value for the RLC-branch. On the other hand, at
P, we have the condition for parallel resonance (antiresonance), in which
C, plays an important part. The admittances at series and paralicl
resanance are & * FP; and s, * FPy, respectively, while the impedances
are s, - FP, and s, - FP;, vespectively. If AF ig gmall, the ratio FP:FP,
is extremely small.

At P; and P,, as may be seen from Egs. (388), (389), (394), and
(395), X, =0, X, = £,C,=o,C,=0 At Py, R, = ¢ - FP; and
R,=1/(3, - FPs) = Ry;at Py, B, = 8- FPyand Ry = 1/(s, - FP) = R..
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276. Frequencies and Reactances at Series and Parallel Resonanece. The
frequencies are derived from Eq. (383) or by setting X, = 0in Eq. (389).
On solving for w, one finds, to a first order of approximation in R,

1 R*C,y :
2 = —— ——
“ =70 + L0 . 397
11 _RO+C
Lc "¢, L* (C
where o, and v, are the values at series and parallel resonance, respectively
{(points P; and Py). Hence,

2
Wy =

(398)

1 7e,
o= 2fy (1 + B (399)
IR g__m(c,+0)
9 =2 ~ 7 (1 o 3L ) 399a)
w L (€ _RQC+ O
ar — e (5 ) (400)

If the damping is very small, so that £ — 0, w. approaches the value
= (1/LC), while w, approaches (1/LC)¥1 4+ C/2C,). Then also

Wp — C

T T (oD
This expression can be shown to be approximately equal to v in Eq.
(350a). ‘

The smaller the ratio C/C,, the closer together are the frequencies at
series and parallel resonance.

In dealing with such crystals as quartz, with which the ratio C,/C is
over 100, the approximate equations (399} to (400) are usually suffictent.
On the other hand, cases may arise where higher precision iz desired or
where, as with Rochelle salt, the ratio C:/C is not so great, so that
wp ~— w, 18 no longer small in comparison with «, The following more
rigorous expressions, derived from (397) and (398), should then be used:

i Rr2c, 4+ C

2o e it e e 21T N
Wy =T Wy IO, I 9] (402)

In most cases where this formula finds application R is so small that

1 1 1
403
Aiy.g (408)

_L___ _E,.l
w? C

Wi

The statement, has sometimes been made that the series reactance X,
of & piezo resonator is zero at series resonance and infinife at parallel
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resonance. The latter part of the statement would be true only if the
resistance R were strictly zero. Equation (389) shows that as long as
R > 0 the reactance cannot become infinite at any frequency but passes
through the vaiue zero af both sertes and parallel resonance.

If R = 0 in Eqs. (388) and (389), one finds

X

R. =0 X'=l—w01X

(404)
Then X, =0 when X =0, and X, = © when X = 1/w(,;, where
wt = (C1+ O)/LC.C; this iz the
value of ! in Eq. (398) when
R =0
The variation of X, with fre-
quency is illustrated qualitatively
in Fig. 62. When R =0, X, =0
at the frequency fo = 1/2xr(LC)
f_ and changes from 4+ to — at
the frequency fpo given by

._(Ci+ 0O
AR s B

When R > 0, X, has a finite maxi-
. mum and minimum, with zero
values at fyand f,. Forreasonably
small values of I, the frequency

F16. 62 —Variation with [requency of difference (f T f ‘) between anti-
the series reactance X, of a resonator. resonance and resonance does not

The full line is for & = 0. differ appreciably from (fpo — fo).
277. The quadrantal points are at P; and P,. Although they cannot
conveniently be determined experimentally, still they have a certain
physical significance, especially because of their relation to the damping.
They are the points for which 8 = 145° the resistance and reactance of
the RLC-branch being here numerically equal. They are therefore also
the half energy points for the current in the RLC-branch and, by §305,
for the mechanical energy of vibration. This fact leads to the equations

w1 = Vi + o+« w = Vol +a® - a {405)

where wg and o refer to the points P; and Py, and « = E/2L. When a is
small, one has

fa“fo“’fo“flk‘%“fu% (406)

where & ia the logarithmic decrement.
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On the admitlance diagram Py and P, are the points for maximum
positive and negative values, respectively, of the parallel capacitance C,
(§273). On the impedance disgram they are the points for maximum
positive and negative values of the series capacitance C,.

278. The points for mezimum and minimum admitiance of the entire
resonator RLCC; are sometimes used in the measurement of the eleetric
constants. They are the points P; and P,, obtained by drawing a line
from F through the center of the circle C. Letting ¥, and Y. denote
maximum and minimum values of Y%, we find

Yo=28°FPs Yo=38,"FPs Zn=28FP;s Z.=s5 FPy (407)

The frequencies corresponding to P and P, on the impedance diagram
are the same as for Py and P; on the admittance diagram, since these are
mutually inverse points.

279. Equations for wm, wa, ¥Ym, and Y. These expressions could be
derived by applying to Eq. (383) the condition for maximum and mini-
mum admittance of RLCC, with variable w. It is less laborious, and
equally precise, to base the calculation on the graphical representation as
shown in Fig. 61. In that firure let it be assumed that F has the location
corresponding to w, for minimum admittance ¥, so that s, - AF = —w.C1.
Then Ps, where FC cuts the circle, marks the point on the circle at which
« has the value w,. Taking advantage of the fact that ZFCA = 28 and
also that s, - 208 = 1 (§269), one finds

A similar expression holds for the frequency of maximum admittance,
with oy in place of wa} & and AF are then somewhat smaller than in the
case of wa, but this fact need not be taken into account, since neither 6 nor
AF appears in the final solution. A single equation can now be written,
valid for the frequencies f and fo:

tan 26 = 20C\R {408)

The two values of « are found by eliminating ¢ between this equation
and (376). Upon discarding terms of order higher than E? we find

1 3201 o R
R (C + 0) R¥C, + c))
~ 16 (1 +g T 1 ) (1 to (409q)

Even in Rochelle salt, for which B*C,/L is much greater than for qua.rtz
wm I8 extremely close to we.
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When, as is usually the case, the terms in E? can be ignored, one finds

wr —wh _Ja—Jfn
....,........._....._’;'.' m 41
‘”m .ﬁn 1 ( 0)
For quartz, in which € < < C,, one may write with sufficient precision,
W — Wm fu hans fm. v
. o3 Cl. (410a)

Equations (410) and (410a) are identical with (403) and (401), showing
that the frequency difference between maximum and minimum admit-
tance is nearly the same as that between resonance and antircsonance.
The approximation becomes closer the smaller the value of .

In passing, it may be noted that f, is approximately the resonant
frequency of & eircuit consisting of &, L, C, and C}, all in series.

In deriving ¥.. and ¥, we make use again of the graphical relations
in Fig. 61. We have*

1
o g FP, = Y S JENA S Y -
Yo =8 FPs = 8(FC p)"s"(cos% p)— 2K
On combining this expression with Eq. (408} it is found that
Yo =~ w?CiR (411)
or, from Eq. (409a),

_RGy
=g Gt

A similar procedure leads to

Y ) = WiCR(C, + ©) (411q)

Yo =g FPsm 5 L+ wiomRy (411b)

Obviously Y, vanishes with R, as it should for parallel resonance,
while the impedance Z, is extremely close to R as long 2s R is small.
Y, is usually so small and the minimum so flat that it is not easy to
measure f,, with precision.

The difference between the two admittances is

1 R

Yo— Ya= ST A (412)

* The fact that F does not have the same location at both maximum and minimum

admittance, so that strictly F, Py, C, and Py are not collinear, introduces no crror in
the present reasoning.
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When R is small, this difference approximates 1/R, a result that follows
also from the principle of inversion on the assumption that the distance
AF in Fig. 61 is appreciably the same at each frequency,

The ratio ¥Yu/¥, is

Y. LC 1

¥, T RO H0) T GEGCFC) (#13)
When, as in quartz, C; > > C, this becomes
Yo
Y. : (413a)

Y. = oi(iRs

an expression that will be used in §317.

The foregoing derivations offer a good illustration of the usefulness
of the graphical representation. The same procedure can be applied
to & crystal with a gap of any width, using the primed parameters R’,
L/, ¢, and C|.

280. The Capacitance Ralio. When the damping is small, it is seen
from Eqgs. (401), {109¢), and (410g) that the ratio C/2C; is approximately
equal to (fp — f)/fos (fa — So}/fo, ot (fa — fm}/fm. This ratio is a measure
of the excellence of a resonator. Instead of C/2(,, however, it has
become customary to use the ratio C1/C, which we shall call the capaci-
tance ratio.* As will be seen in §283, it is the ratio of the energies stored
in the electrical and mechanical systems. A small capacitance ratio
means high activity. From Egs. (322), (323), (364), and (365) one finds,
for both lengthwise and thickness vibrations, at harmonic A and with a

gap w,

Cl _ wkg'h]
Ci 32 (414)
or, at the fundamental frequency and no gap (A = 1, w = Q},
Oy _ mhyo
T = 328 (414a)

where the electric spacing e/, effective dielectric constant k, stiffness g,
and piezoelectric constant ¢ have the appropriate values in each case.
These expressions do not involve the dimensions of the resonator. The
larger ¢ is, the greater the activity and the greater the spread between
resonance and antiresonance. If a crystal cut is twinned or otherwise
defective, the values of &, ¢, C; and frequency may be normal, but the
low activity will be betrayed by abnormally small values of (f, — fu),

* The importance of the ratio C1/C was first recognized by Dye (ref. 127, p. 426),
who called it the ‘‘piezoslectric ratio.”
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with a correspondingly large value of Lj and of the electromechanical
ratio r,

Relation of the Electromechanical Ratio to the Cepacitance Ratio. If
the value of r, first for lengthwise vibrations from Eq. (326) in §233, then
for thickness vibrations from Eq. (367) in §255, is combined with Eq.
{414), there results in each case

C; _ whghA?

Tl = " 8de r . {(415)

where A is the area of the plate in thickness vibrations, and of the cross
section be in lengthwise vibrations. Since the fraction on the right is
substantially constant, it is seen that r is proportional io the capacitance
ratio. When h = 1l and w = 0,

€y _ whgt®
¢ 8

(416)

Inspection of the equations shows that in order to secure a low ratio
C,/C a crystal of high e should be chosen, with no gap. With a crystal
of given material, for example quartz, e depends on the angle of cut, and
for most of the cuts of low temperature coefficient the angle is such that ¢
is considerably reduced in value {§361). The question is then what can
be done to reduce Cy/C when ¢ k, and ¢ are prescribed,

One expedient is to counect an inductance to the crystal in such a
way as to neutralize C,; this is done in some filter circuits. In the chse
of a bar in lengthwise vibration, C,/C can be diminished by about 20
per cent by making the electrodes three-fourths as long as the bar, as
was shown in §241. With plates in thickness vibration nothing is gained
by making the electrodes smaller, since the effect of this is equivalent to
increasing the gap.

It is to be noted that the expression for the eapacitance ratio does not
involve either E or . For the same C1/C, a resonator will of course be
more sharply selective the smaller R is; £ can be made small by suitable
mounting and by placing the crystal in a vacuum. Anything that
increases the effective value of (', such as stray capacitances or a con-
denser in series or parallel, reduces the activity.

281. Summary of Data on the Critical Frequencies. The results
derived in the foregoing sections are summarized and extended in Table
XXIII. The encircled numbers indicate the order of increasing fre-
quency, while in the second ¢olumn are noted the points on the admit-
tance circle in Figs. 61 and 67. Frequencies are expressed in terms of
relative differences Af/fo = (f. — fo)/fu, J. being the critical frequency.
For I and I, see Fig. 50.



§281] ELECTRICAL EQUIVALENT OF PIEZO RESONATOR 355

TasLy XXIII
No. | Point | QU080 | Critical condition | Equation o
[
[OT I f1 max. X, (406) _g g
@ | P I mex. ¥y, min. Z{, max. I | (409) - %’f_'
X = 0, max. ¥, min, B
@4 B T max. I, max. velovity | “ = L0 0
@ Py f: Xl - 0, Xp = (399) R;gl
® | Ps H |minX, (406) 25 %
® | P . max. X, Sea §300 \
@| P | £ [K=0X =zt @ove) | 7 - BG A D
Py . max. R, Bee §300
® | P fn min. ¥3, max. Zy, min. I | (400a) fg E;{_'}
1
P, min. X, See §300

The following pairs of points are mutually inverse: P, and P, P; and
Ps, Ba.ndP7,P3andP4, Pza»‘.lldPg.

It should be noted that those critical peints which are most used in
resonator caleulations fall into two groups, viz., Py, B, and Py, for all of
which the frequency is very nearly the same, coming closer to fo the
smaller R is, and Py, P;, and Ps, which also differ among themselves but
little in frequency. Within the limits of precision usually attainable
the frequency difference between Py and Py, P; and B, or P, and P,
may be taken as the interval between antiresonance and resonance; in
§280 it has been pointed out that the three ratios (fy — £)/fu (fa — Jo)/fo,
and (fa — fm)/fw are all substantially equal to C/2C. Strictly, the
distance AF in the circle diagrams, given in Eqs. (380), should be greater
for antiresonance than for resonance in the ratio (1 4 C/2Cy):1. For
quartz resonators this ratio is about 1.005 and need not be taken into
account,

In the measurement of the electrical characteristics of resonators,
points Ps and Ps are of chief importance. Piezo oscillators, with the
exception of some recent circuits, usually operate at relatively high
frequency, in the neighborhood of P, the antiresonant point (see §389
and Fig. 61). As has been stated, in mosat resonators the ratio of the
distance AF to the diameter of the circle is so small that at the higher
frequencies the graphical method can serve only as a guide in making
calculations. For example, at very high and very low frequencies X,
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can be obtained from Eq. (389), in which with sufficient precision one can
get B == 0. The value is then

X
Xo= X (417
Aslong as n < < wo, X = —2Ln;in this cose
—2ln
X~ T STl . W79

In extension of Table XXIIT one more critical frequency may be
mentioned, viz., that for free vibralfons, which plays & part in certain
methods of measurement, as will be seen in §320. From Eq. (65) or
Eq. (93) one finds, for the fundamental frequency of free vibrations of
any resonator, the expression

fi= f’(l‘ﬁ)=ﬁ(l"4fw=) ﬁ’( 1321?)

— 2
Hence, /i 7 fo R — r'C (418)

When R is reasonably small, this value is too small to detect by ordinary
means. It is less than the value for point Ps in Table XXIII in the ratio
C/4C,. In the example discussed in §298, with C; == 31.9 esu, the fre-
quency for free vibrations would be lower than fo by about 0.0004 cycle/
Bec.

From Table XXIII it is evident that all frequencies are more or less
dependent on the resistance B of the RLC-branch of the resonator net-
work. Nevertheless, in a well-mounted resonator the terms in R are
extremely small. It will be noted that as R approaches zero the fre-
quencies at points Py, P;, P;, and P, all converge on the common value fo;
in practice, these points may all be found to lie within a single cycle per
second. Also, P, and P, fall very close together when R is small, so that,
for both points, Af/fv = €/2C:. If R could be made to vanish entirely,
X, would become infinite instead of zero at Py,

The entire range of values assumed by X, on passing through resonance
from very low to very high frequencies is illustrated and discussed in
§300.

282. Phase Relations. The following relation holds between the
phase angle #, the damping constant « = E/2L, and the frequency
difference #. = wo — w, for maximum admittance ¥, [see Fig. 61 and
Eq. (376)):

BS AV FK FP, Y, ~—n,

b= = =T AT ~aC = = 49



§284] ELECTRICAL EQUIVALENT OF PIEZO RESONATOR 357

In Fig. 61 the horizontal line through F is the one on which points
P; and P, fall, for series and parallel resonance, respectively. At these
points the resonator is a simple resistance, and the current I is in phase
with the potential difference V impressed on the resonator. If the vector
representing I is drawn parallel to FP;, then the vector for V¥, at any
frequency f, is parallel to the line that represents the admittance Y] at
this frequency. For example, at the frequency represented by P; in
Fig. 61, I leads V by the angle PJFP; = 8,. The current 7, in the RLC
branch leads ¥ by the angle #; since by geometry ¢ = ZBAP; = ZBP:F;,
it is clear that the phase of I, (for point Pj) is given correctly by the
direction P:B. Since according to §234 the particle veloeity » is in
phase with I, (a relation that holds for all types of piezo resonator), it is
clear that PeB gives also the phase of 9. The mechanical strain, indi-
cated as x., lags 90° behind v and is therefore represented by a vector
parallel to PgA.

Bimilar relations hold for all points around the circle. In all cases
the current vector I is parallel to FPs;. The lengths of the various lines
are not proportional to I, I, V, v, and the strain x,; the lines indicate
only relative phases.

283. The Distribution of Energy in the Resonator. In §125 considera-
tion was given to the allocation of the energy in a piezoelectric crystal
under combined electric and mechanical stress among the various terms
in the energy equation. Somewhat analogous reasoning can be applied
to the equivalent RLCC, network. The simplest case is that of thick-
ness vibrations, in which, as shown in §247, the parallel capacitance C,
is that of the clamped crystal. At any instant when a field is applied
to the crystal, the encrgy stored in C, is electrical energy at constant
strain, while that stored in C represents the work done in mechanical
deformation. The energy lost per second in friction iz J2R. If there
are appreciable dielectric losses, another resistance must be added to the
network in series with {4, ag explained in §302; this step was taken by
Masgon® in his treatment of the Rochelle-salt resonator.

284, Relations between the Equivalent Electric Constants with and
without a Gap. It was stated in §263 that the electrical properties of a
piezo resonator can be represented by either of the two networks shown
in Fig. 56. If A is the area of the elecirodes (equal to bl in the case of
full-sized electrodes), then as long as the surfaces of the crystal exposed
to the gap are equipotential, the capacitance of the gap is

A
Cy = Irw (420)
For either lengthwise or thickness vibrations there is a simple relation

between the oft-appearing ratio e/e, and the capacitances C: and C,.



358 PIEZOELECTRICITY (4284

It will be recalled that ¢ is the erystal thickness and w the gap and that
¢ == ¢ -+ kw, where k is represented by k: or &’ for lengthwise or thick-
nesy vibrations, respectively. For either type, C1 = kA /4we. It is casily
shown that
e Cz
e Ci+C:
We seek the relations between the four constants Bi, L}, C}, and C}
for gap w and the corresponding values R, L, Cs, and Cr for w = 0.
From equations in §232 and §255, for both lengthwize and thickness

vibrations,
Jid ey (01 + Cy
motio(e)- ) (422)

(421)

O
G )7 o + 0. ¢ (422q)
Ci _ _e_ C,

T, ¢ Ti+0Cs (423)

where ¢, and ¢’ are the stiffness poefficients for gaps 0 and w, respectively.

Equations (420) to (423) are theoretically correct for all erystals and
all gaps, as long as the performance of the resonator can be represented
by an RLC-chsain in parallel with a pure capacitance €'y, They will now
be used as a test for the equivalence of the two alternative networks
shown in §263, Fig. 56. A simple circuit analysis shows that, if the
networks (b) and (¢} are equivalent, then, with the subscript b inserted
for generality,

R _ L _ (c,+cg)’ ¢, C

g:. Ly . C,y ‘ c, Ci+C. (424)
‘C‘—,,FCl-}—CzC;.-!—C;-!-Cz
O _(Ci+C: Ci+ Ciel
o c —(—c,—) c'z( ) () toe 29

These equations were first given by Watanabe,®®* They agree in all
particulars with Egs. (422) to (423}, provided that the dependence of the
elastic stifflness on the gap is such that

P _ €1+ Cz)
¢ G+ Ci+0Cy)

* Equivalent networke of substantially the same type had previcusly been treated
by K. B. Johnson and T. E. Bhea, Bell System Tech. Jour., vol. 4, p. 52, 1925. For a
general discussion of equivalent networks see 'T. E. Bhea, “‘Transmission Networks
and Wave Filters,” New York, 1920,
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As we shall see, this is the case with thickness vibrations, but not always
with lengthwise vibrations.

In the case of thickness vibrations it is found from Eqs. (421), (355),
{356), (364) and Table XXTII, together with C; = k' A /4we, that

o Ci+Cs

T GHOTG (429)
From this equation and (422a) it follows that
!
4 LY Cs (4250a)

G C+CG+HOT+T
in agreement with Eq. (424),

28b. The Gap Effect in Lengthwise Vibrations in Terms of the Equiva-
lent Netwerk. We shall deal first with the case of the unplated bar. This
is the case commonly encountered in practice, in which the bare bar is
placed between eclectrodes, with or without a gap. The use of a plated
bar with gap is considered later. If the gap is zero, it makes no difference
whether the surfaces presented to the electrodes are plated or not.

In the first place, it must be pointed out that, while the equations
in §232 for the equivalent constants R}, I;, and C}, for a bar separated
from the electrodes by a gap w, are theoretically entirely correct for any
integral value of hk, still these constants do not agreec with those derived
by considering the resonator as an RLCC)-mesh in series with C,; in
other words, Eqs. (424) are not satisfied. The discrepancy arises from
two separate causes. One is the fact that the vibration direction of the
bar is perpendicular to the electrie field and (practically) independent
of the thickness. The effective stiffness ¢/, though a function of the
gap, is independent of the order of harmonic, as may be seen from
Eq. (330). DBut, according to Eq. (425), ¢/, being a function of €3, should
contain k in order to satisfy Eqs. (424). It is thus evident that the latter
equations, if valid at all for bars, are valid only at the fundamental fre-
quency, when b = 1. This statement holds for both plated and bare bars.

The other contributing cause of the diserepancy mentioned above
has specifically to do with the unplated bar with a gap. The strain =,
discussed in §230 and hence the piezoclectric polarization and the depolar-
izing field all vary along the length of the bar. As a consequence, the
surfaces of the unplated crystal are not equipotential except when w = 0.
This complication does not affect the ratio ¢//e¢; as long as b = 1, Eqgs.
(422) and (423) are in agreement with the corresponding expressions in
(424). As far as they are concerned, the R'L'C’C{ and RLCC.C; net-
works are equivalent. But with Eq. (422a) the situation is different;
for when the ratio go/¢’ is caleulated from Fq. (330}, there results a value
that does not agree with Eq. (425). One finds, namely, from (330), that
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1/q0 = 6%, 1/¢ = 83,(1 — 4re?sfw/¢'), 80 that, with the aid of Eq. (324),
a/q =1 — 7*Ce/8Cq¢’, where C;= bl/drw. With such crystals as
quartz, for which the piezoelectrie reaction is relatively small, one may
write as an approximation

*C
g =1+ 55 (426)
Now with the aid of Eq. (423) Ea. (425) may be written in the form
C
% =1+g (cﬁ;) (426a)

Equation (4262) must be satisfied if the RLCC:C; network is to be
equivalent to B'L'C’'C1; yet Eq. (426), which represents the actual stiff-
ness ratio, fails to satisfy it by the factor #2/8 in the second term. This
factor is a consequence of the sinusoidal distribution of that portion of
the polarization in the bar which is due to the state of strain. The con-
tribution of the field in the gap due to the state of strain also has a
sinusoidal distribution, which can be allowed for by substituting for Cs
in Eq. (426) the value

e =5c (127)

‘When this is done and when Cy replaces Cs in Eq. (426a), the two expres-
gions are brought into approximate agreement, with crystals for which,
a8 with quartz, ¢ = ¢'.

It does not follow, however, that €} can replace (s completely in the
equivalent network. For example, in the expression for e/e, in Eq. (423),
one must still use €3 = bl/4mw. Not only is the combined use of both
¢ and C7 troublesome, but it would lead to grave complications in apply-
ing the graphical methods described earlier in this chapter to a bar with
gap. If there is a gap, it is best to derive ', I/, and €' directly from the
equations in §232, which have the added advantage of being applicable
for any value of . If there is no gap, ¢ = ¢o and both € and C7F drop
out of congsideration, so that the graphical method is then entirely
applicable to bars.

We have discussed the problem of the unplated bar with gap at some
length because it has been common practice to sssume that its electrical
characteristics are correctly described in terms of RLCC, in series with
C3. The magnitude of the error so incurred ean be found from Egs.
(426) and (426e). In general, for crystals with small piezoelectric reae-
tion, {(¢'/q) — 1 = (f2/f)) — 1 = 2 Af/fo where f, is the frequency when
the gap is w and Af = f, — fo. Calling (Af); the value from Eq. (426),
which is theoretically correct, and (4f). that from the equivalent network
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theory in Eq. (426a), we find that
A
@ =T @

Since, when the plezoelectric reaction is small, & = e -+ kar differs but
little from & = e 4 k'w, it follows that the network theory predicts a
variation of frequency of the unplated bar with gap that is too small
by the factor #2/8, approximately.

286. The Gap Effect in a Plated Bar. In order to make the two net-
works shown in Fig. 56 strictly equivalent for lengthwise vibrations, it is
necessary to make the crystal surfaces facing the gap equipotential, as
can be done by plating them lightly with metal. Then, for any gap w,
the gap capacitance Cy = bi/4rw can be used in Eqs. (424). These
equations give B', I/, and €' when R, L, C, and C; are known, and the
graphical methods described in §§288 and 289 are applicable. As in the
case of the bare bar, this equivalent-network method can be applied only
at the fundamental frequency, for which b = 1.

The dependence of frequency on w in the case of a plated bar can be
found most conveniently by an expression derived by the author'? for
the effective stiffness ¢',

32e2w) 1, 24w

¢ =it 50) -+
The difference between this ¢’ and that given by Eq. (330) for a bare bar
is due to the fact that when the surfaces are made equipotential the dis-
tribution of the depolarizing field is changed.

Equation (428) gives the value of ¢’ to use in Eq. (322} for ¢, when the
crystal is plated. It becomes 1/sE, as it should, when the gap is zero.
The dogree of approximation in Eq. (428) should be amply accurate for
quartz, but not for Rochelle salt.

By the method that was used in deriving Eq. (336b) it is found that
the relative variation of frequency with gap, for a bar whose opposite
faces have been made equipotential by plating, is

Afu lﬁd,nw _ -
Fo T wmste T Tl ey + k' (429)
where U = 1042, /xs5,.

When w = o, the relative increase in resonant frequency over that
when w = 0 is, for the plated bar, 164} /wsZ k. This value* is greater
than that for an unplated bar, as derived from Eg. (336b), by the factor
=%/8.

* The air-gap equation given by Dye (ref. 127, p. 426) can be reduced to Eq. (429).
Dye did not take account of the distinction between the dielectric constant of a free
erystal and ki for a vibrating bar nor of the distinction between the gap effects with.
bare and plated bara.

(428)
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287. Summary on the Application of Equivalent Network Theory to
Plates and Bars. In summary, it may be said that the equations for
the equivalent network, including Cs, together with the graphical repre-
sentation, are applicable to thickness vibrations of plates at the
fundamental frequency or any overtone thereof; and also to lengthwise
vibrations of plated bars at the fundamental frequency.

If the bar is not plated, the equations for the equivalent electrical
network of a resonator with gap, and the graphical representation, are
valid only as a first approximation. If there is no gap, they become
entirely valid. But in no case can the methed of the equivalent network
of the type treated here be employed at overtone frequencies of bars.

288. Resonance Diagram for a Piezo Resonator with Gap. Thus far
the graphical method has been applied only to the simple RLCC, network.
The graphical construction will now be explained whereby the equivalent
values R}, L], C}, and C}, as well as the critical frequencies, can quickly be
determined for a resonator with gap, or with a condenser € in series,
when Ry, Ls, Ch, and C; at zero gap are given. The assumption is made
that Figs. 56b and ¢ are equivalent, which means that Itqs. (424) are valid.
As has been shown, this assumption is fully justified with thickness
vibrations and with lengthwise vibrations when the bar has its surfaces
plated; and, as shown in §285, it holds approximately for an unplated
bar cut from a crystal such as quartz, of relatively low piezoelectric
constant. With all lengthwise vibrations in which the vibration direction
13 normal to the electric field, only the value & = 1 can be used (§285).

In the following sections we shall omit the subscript &, with the under-
standing that it can be restored when any harmonic frequency is to be
considered. The procedure consists in inverting the admiitance diagram
for RLCC, to an impedance diagram, inserting €, and inverting back
to an admittance diagram. As will be seen, the two inversions entail a
change in the distribution of frequencies around the circle.

Using the same notation as in previous sections, we let the admittance
of C; be represented by AF = —w(C,/s, in Fig. 63. The resonance
circle iz primarily the locus of edmitiances for the RLCC, combination.
On this circle we let the frequencies at B and at any point P be fo and f,
respectively. Then, in accordance with Eq. (387), the same circle can
be regarded as an impedance locus, in which the impedance of RLCC,
is Z{ = &, - FP'.

In order to represent graphically the connection of C; in series, we
lay off a distance FF’' such that s, - F'F = —1/wC,. The vector sum of
F'F and FP' is F'P’, and the impedance of RLCC,(; is

Zi = s, F'P (430)
The same circle that is the locus of admittances for RLCC, is now
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serving as the locus of fmpedances for RLCC,C:; to every point P on the
former circle there corresponds a point P’ on the latter. A line drawn
from F' to any point on the circle gives the impedance of RLCC,C, st
some particular frequency.
From Eq. (386} and the foregoing statements it is seen that
1 1

— + ’=..—.—w— —r——
8+ AF +wC'z

o0, (431)

289. Figure 63 can be inverted into an admillance diagram for
RLCC,C, by performing an inversion with F’ as center. The operation

ke BT TN

£

F P’7

1”
P
Fia. 63.—Rescnance diagram for a resonator with a gap or condenser in series.

consists simply in producing F’P' to cut the circle at P”. The circle is
now the admittance loecus for RLCC.C» with F' asg origin. Besides
the shift in origin, the introduction of C: has brought about two further
changes: there is a new admittance scale value s, given by

1 AFN\?
N ARy T (}TF") (432)
and the frequency distribution arcund the circle is altered. The new
distribution of frequency will be explained in the next section.*

* The foregoing statements can be generalized in the following manner: When the
origin of vectors has to be shifted owing to the introduction of an impedance or admit-
tance into the circuit, the scale value remains unchanged. On the other hand, if with
respect to the new origin an inversion iz performed to pass from admittances to imped-
ances or the reverse, a new scale value is required. One example of this is the intro-
duetion of the new scale value s; in Eq. (432); another example will be found in §303.
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The admittance of RLCC,(, at the frequency corresponding to P on
the admittance circle for RLCC, is found from Eqgs. (430) and (432) and
(F'PYF' Py = {(AF)* to be
. 1
Yg = “‘Z;
This is the graphical equation for Y}. The analytical equation is of the
game form as Fq. (383) or {384), with the circuit elements primed to

indicate the presence of Cs:

= FP" (433)

4 R’ . ! 4
n=2 i wc,) (4330)

or, in the neighborhood of resonance, where & = wy — n,

R + ( 2nL’
SR L IR i
R, L, €7, and C! are given by Eqs. (423) and (424). Y} is the sum of two
admittances, one of which is the vector F' A, practically constant over the
resonant range, while the other is AP, which has a circular locus. Since
this is exactly the condition that obtained in the case of the diagram
for RLCC,, it is clear that the new diagram, with F’ as origin, represents
a series chain, which we call B'L'(Y, in parallel with & fixed capacitance
C}. From Eqs. (431} and (432), C] has the value

v Gl o fe) _ o AF
Citeya=o (e;)~ "y (39

in agreement with Eqgs. (424). The other relations in Egs. (424) also
have their graphical counterparts. The expression for B'/R is verified
with the aid of Eqgs. (385a), (431), and (432):
2
R =i =R %‘t—c-’) (434q)

= 2ps],

Y; + woC{) (433b)

When the frequency scale for the admittance circle for RLCC,C: has
been determined, L’ and C’ can be calculated. Their values are found
10 be identical with those in Eqs. (424);

V=1L (%T)’ (434)
o

=C 2
CGF T TG T 0 (434c)
From the foregoing statements it is evident that a diagram such as
Fig. 63, with the origin of vectors at ', may be thought of as representing
either the RLCC, network in series with Cy or the equivalent simple
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network R'L’C’C{. In the former case, AF’ repregents wC,C:/(C'y + C),
and, in the latter ease, »C}, which by Eq. (434) amounts to the same thing.
Al vectors and all frequencies are the same from either point of view.
It must be remembered, however, that the insertion of ¢y changes the
various scale values, since, as has been shown, the latter are functions of
C:.  In §§302 to 304 we shall discuss the more general case of a resonator
in series or parailel with any arbitrary impedance.

290. Effect of Cy on Resonator Frequencies. - When a gap or an external
capacitance C; is in series with the resonator and the vectors for admit~
tance or impedance are laid off from an origin at F’ in Fig. 63 according
to the preceding paragraphs, the frequency scale value s, as defined by
Fq. {378a), remains unaltered, since the damping constant

remains unchanged. Nevertheless, all frequencies are shifted clockwise
around the circle in a manner that will now be explained.

For the simple RLCC: network it was shown in §267 that frequencies
are determined graphically in terms of frequency differences sbhove or
below the frequency at point B on the circle, measured on a linear scale
on the vertical axis through B, Fig. 58. When . is included, the fre-
quency at B no longer has the same value as before but is increased by a
certain amount depending on €, and on whether the vectors are taken as
representing impedances or admittances.

‘When C: is in, we shall denote the frequency at B by f] and find the
difference f; — fo. Only the procedure for an edmiilance diagram need
be worked out in detail; the value of f} — fi for an impedance diagram
is found by analogous steps. The relation between fo (the frequency at
B for RLCC, alone) and f} is easily found by the following graphical
method. The same method can be applied to finding the frequency
corresponding to any other point on the admittance circle for RLCC1C..

When there is a gap, the frequency at point B on the admittance
diagram is that at which the particle velocity and the current in the
R'L'C’"-branch have maximal values, just as is the case when the gap is
zero and we write RLC in place of R'L'C,

In Fig. 63 the admittance at point B on the admittance eircle for
RLCC\C; is & - F'B = Y}, the frequency at this point being f;. On
performing inversions one finds s -F'P;=Z;, & FPy=Z{, and
sy - FP4 = Y, Hence P; marks the point of frequency f; on the admit-
tance circle for RLCC,. . But this is the fiducial circle, the calibration of
which was explained in §267. On the fiducial circle the frequency at B
is fo. The frequency difference fi — fi can be found graphically accord-
ing to §267. Analytically, since w3 = 1/LC and wf® = 4x%f3? = 1/L'(",
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one finds from Eqs. (4345) and (434¢) that

f-fmar=n(CEGEE 1) 25)

291. The relative change in frequency due to the gap is

af ’ c_
fo 1+01+Cz 1 , (436)

If, as is the case with quartz, ¢ < < (C; 4+ C:), one finds approxi-

mately*
af c e C
1o < HCF TS T 42, (#36e)

When this equation is applied to an unplated bar, €7 = 8C./x®
ghould be used in place of Cy, according to §285.

Equation (436a) can be shown to agree with Eq. (368) except for a
small difference due to the nature of the approximations involved,

The frequency fj is that at which the particle velocity and the current
in the R'L'C’ branch have maximal values. As may be secn by applying
a simple graphical construction to Fig. 64, f] lies between the frequencies
for maximum and minimum admittance fi, and f} shown in Tig. 64,
and it may properly be called the response frequency when the gap is so
great that there is no longer any series resonance in the usual sense.

When the gap is small enough for the resonator to exhibit parallel
and scries resonance (as explained in §294), then, if B is small, f] is prac-
tically indistinguishable from f..

In order to express the difference », — w; between parallel and series
resonance when there is a gap, we may substitute the values of L’ and ¢’
from Eq. (424) in the equation wi? = 1/L'(", assuming, as stated above,
that o = wf = 2nf. The result is

Vo, C+C1+Cz C+01+CE
e (EED) = (G EY) e

From Eqgs. (398) (with all quantities primed), (423), and (424), it is

found that

12 CcC 2
wy = lCl + Icf = gy [1 + W] {438)
whence whow O CCs (438a)

o, 21T 20.(C F C: + Cy)

These expressions for «f, and «) hold only for small gaps and low piezo-
electric constants, as explained in §§294 and 295.

* This approximate relation was also given by Dye!¥ in his equation (22).
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Relation between f, and f; When the Gap Is Infinite. From Eq. (438a)
or (401}, it is seen that at zero gap, when ¢ < < (; and R can be ignored,

foragC (439)
At infinite gap, writing f,, for f; in Eq. (435) and setting Cs = 0, one
finds

J};-; —1= 50 (4390)
It follows, since fo == f,, that f,, = f,.

That is, the frequency for parallel resonance when the gap is zero is
approzimalely the same as the response frequency when the gap approaches
infinity.

It must be clearly understoed, however, that this statement holds
good only when R is small and the piezoelectric constant is small enough
to make C << ;. With quartz this condition is fairly well met. On
the other hand, in Rochelle salt f, may be far greater than f,, ag will
be seen in §375.

292. Equation (438a) is sufficiently accurate for the sruall gaps usually
employed in resonators. For larger gaps, where w is of the order of
magnitude of ¢, the resistance R cannot be ignored. In faet, when w
increases beyond a certain limit, ihe resonator becomes capacitive at all
frequencies. There are then no longer any frequencies for series and
parallel resonance, since these terms are defined as the frequencies at
which the reactance vanishes. For all values of w, however, there are a
maximum and & minimum value of admittance, the values of f,, and f,
depending on w.

As the gap increases from zero, the interval w, — w,, at first relatively
large, gradually diminishes, becoming zero at a value of w that can be
found by equating the numerator on the right of Iiq. (389) to zero and
deriving the condition under which X has a single value. This condition

18
2R = 1 (440)

With the aid of Eqgs. (422) and (423), Eq. {(440) can be written in terms
of C'; and the constants for zero gap, giving

. _ 2RwC}
O = I oRC, (440)
or, gince Oz = bl/4xw,
0=t (g 1) (4400)
k \ Rwdkbl
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As an example, Eq. (440b) may be applied to the quartz bar mentioned
in §208. Itisfound that the critical value of wis about0.5¢m. Ifthegap
ig greater than this, the admittance of the resonator is entirely capacitive.

293. The foregoing statements may be verified by inspection of Fig.
64. In the notation of §§269, 270, 288, and 289,

wCy 1
AF = - Tw_ = — ac—ls;,

FF' = —1/C:s,. When w = 0, FF' = 0 and the {requenctes for maxi-
mum and minimum admittance f, and
Jafall at points P, and P,, obtained by
drawing & line from F through the
center C of the circle. As wincreases
from zero, F' moves upward from F
(usually F has practically the same
location for both f.. and f,.). When #*
coincides with F;, w has the critical
value given by Eq. (4400), and the
frequencies for series and parallel
resonance merge at P;. At this point
Yo=Y, =4 -FiPy, where & is given
by Eq. (432). The corresponding
frequency on the fiducial cirele (§267)
comes where a straight line from Py
to F cuts the circle.

For larger values of w, F' falls
above Fy, and there is no longer either
7 f series or parallel resonance. For a

F1o. 64.—Effect of increasing gapon  BivenR location of F’, the maximum
maximum and minimum admittance of and minimum admittances are ¥/, =
# resonator. &< F'P, and Y, = s F'P, while
Zl, = 8 FP,and Z!, = s,- F'P,. For the RLCC, network, the imped-
ance corresponding to P, is Z{ = s, - FP;, and on the fiducial circle the
admittance at the same frequency is Y| = &+ FP. On the fiducial
cirele, therefore, the frequency for maximum admittance, when w is
such that F’ comes in the position indicated in Fig. 64, falls at P!,
Similarly, the frequency for minimum admittance falls at P, The
introduction of a gap has caused the point for maximum admittance to
move clockwise from P, to P, while the point marking the frequency
has moved counterclockwise; the frequency inereases from the value at
P, to that at P;. The frequency for minimum admittance increases
from the value at P, to that at P,

At infinite gap, FF' = « and P, and P! coincide with P, and P,.

B’U
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The frequencies are thus still further inereased, to values that can be
represented graphically by the method described above or caleulated by
means of Eq. (425) or, depending on the type of resonator, by means of
(330), (836a), (370), or (429).

When the gap is so large that the admittance Y} of RLCC,C; is
capacitive at all frequencies, the variation of ¥} with frequency is as
shown qualitatively by Fig. 65, in which f;, and f’ are the frequencies
at P,, and P, in Fig. 64. As w approaches infinity, the frequency differ-
ence f,, — fi, decreases toward a very small but definite limit, while
¥} approaches zero. It ig true that the line representing ¥} in Fig. 64
becomes infinitely long, but it must be noted that the scale value s
varies in such a manner as to make Y/,
itself diminish toward zero, Although [¥7
the response of the resonator, as indi-
cated by the crevasse or the elick
method, theoretically vanishes at infi-
nite gap, still the stray clectrostatic
coupling ean be enough to produce a
response even when the resonator is
entirely disconnected from the oscillat- £ f
ing circuit. A narrow bar 2 or 3 emlong Fie, 65.—Variation of resonator
suspended by a thread in the neighbor- ;g;‘f;:tﬁ:;‘:‘e'“'i‘h froquency when the
hood of the tuning condenser or coil can
still cause an audible click when the oscillator frequency passes through
the resonant value. The response is due to the minute change in capaci-
tive admittance from a maximum at fj, to & minimum at f},.

294, The Failure of Approzimate Egquations When the Gap Is Large.
Many of the formulas given in this chapter, including some that have
been used by various investigators in the measurement of the constants
of resonators and of erystals, are approximations. One approximation is
the treatment of R as a very small quantity or ignoring it altogether. A
second approximation rests on the assumption that the resonance
phenomena under discussion are comprised within a band of frequencies
so narrow that the frequency difference n = w; — w is small in comparison
with o

We have now to examine the validity of & third assumption, men-
tioned in the text but not yet fully explained. This is the assumption
that the gap between eryatal and electrodes is small enough to make such
equations as those in §$276 and 279 sufficiently accurate:

1
1
il
A
[§]
N
H
I

fn}:‘fq ﬁip_fé ~ 5%1 (441)

The electric constants are primed to indicate the presence of a gap.
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In deriving the equations in §276 by the binomial theorem the con-
dition for sufficient approximation is that 4w*C{*R2< < 1, that is,

wCOiR << 0.5 (442)
From Eqs. (422) and (423) this expression may be written as
4_ ke 05
T= 1+ << xR (442a)

The smaller R is, the greater can the gap w be without Violating this
inequality. In many practical cases the approximate equations referred
to are accurate only when w is very much less than the critical value
given by Eq. (440b), for which @, — «, vanishes. That is, w must be
small enough to make the distance A#” in Fig. 64 only a small fraction
of AF;. For quariz the allowable gap width w is of the order of mag-
nitude of the crystal thickness e or less.*

As an example we consider the quartz bar described in §298. Here
wCiR = 0.03; hence, by~Eq. (442¢), w << 0.5 em. For values of w
greater than this the more rigorous equations should be used.

The limitation imposed on the equations as w increases does not in
any way affect the applicability of the graphical method. By means
of a graphical construction the various frequencies and admittances can
be determined at all gaps with as much precision as any graphical method
permits.

We return now to the approximate equations (441). From §§232
and 255 it is found that €’'/2C) fs proportional to e/, vanishing at
infinite gap. That Eq. (441) breaks down completely when w is large is
clear from the foregoing discussion. This equation prediets that (fa — fi)
and {f, — f,) gradually approach zero with increasing w, whereas in fact
(fa — fu) vanishes at a certain finite w, while (f, — f.) remains greater
than zero at all gaps.

296. Finally a fourth approximation consists in the assumption that
C in the RLC-branch of the resonator is small in comparison with €.
While most of the equations are independent of this assumption, still it
must be made if the equations in §284 for the equivalent network of a
bar in lengthwise vibration are to hold with any precision, as will soon he
shown. The expressions in §284 are accurate for plates in thickness
vibration whatever values € and w may have. The following discussion
has to do only with lengthwise vibrations in bars:

The ratio C/C; is large when the piezoelectric constant is large, as

* The reason why Eq. (387), for example, ig sccurate only when the gap is small
may be expressed by saying that, even though R may be very small at zero gap, still,
with increasing gap, R’ rapidly becomes large (primed symbols are used when there
is & gap). )
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may be seen from Eq. (322). This is the case with Rochelle salt. With
quarts, as explained in §288, the equivalent network equations and the
corresponding graphical treatment can be used with fair accuracy at all
gaps, whether the bar is bare or plated, since /(" is very small.

When C is not small in comparison with C; or, as in Rochelle salt at
certain temperatures, is even greater than C,, the outstanding con-
sequences are as follows: (1) By Eq. (401), the difference in frequency
(wp — w,) between sntiresonance and resonance is relatively large.
(2) The frequency f, at infinite gap, instead of being approximately
equal to f, secording to the statement following Eq. (430q), is much
greater than f,.

This sccond consequence does not follow at all from the simple net-
work equations (424). The reason, as already stated in §284, is that
they are accurate only when the elastic complisnce varies with the gap
in a particular manner, a condition that is not fulfilled in the case of the
bar.

The reason why 2 large piezoelectric constant brings about a relatively
great value of f, is evident at once from an inspection of Eq. (331).
That it is also so much greater than f, cannot be seen from the clastie
equations, but it follows from Eq. (333).

The experimental confirmation of the foregoing statements will be
found in §375.

296. Lesonance Conditions for Thickness Vibralions in Very Thin
Plates or of High Harmonic Frequencies, In most types of piezo oscillator
the resonator vibrates at a frequency at which its reactanee is inductive.
One must therefore make sure that the effect of the gap or of an external
reactance connected in any way to the resonator is not to deprive the
resonaior of its region of inductive reactance. From the last section
it is clear that the condition that must be satisfied if the resonator with
gap is to have an inductive region is that the origin of admittance vectors
F' in Fig. 64 shall be below the point Fy, for which AF, = 4AB/2,

Ii there is no gap, the origin is at F. For most resonators, the ratio
AF/ARB is relatively very small. We ghall now investigate certain cases
in which A¥F may become so great, even with zero gap, as to make the
resonator eapacitive at all frequencies.

From Egs. (380) it follows that in general, when w == 0, AF/AB =
AF/2p = wyC 1R, where wy, is approximately A times the fundamental fre-
quency fo and R, is given in Table XXII. As long as wwCilx < 0.5,
there is a range of frequencies over which the resonator is induetive.
Now from Table XXII we find, on writing ws = wh(ge/p)i/e,

' hk''e 0
wlilly = '—""“i'é"';f@" 241 (443)
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This expression can also be written in terms of the quality factor
= ‘R'fh/ 27 %
xhk qo
326*Qh

Either @y or the damping factor « may be taken as a measure of the
resonator losses. Since they include both mounting losses and dis-
sipation of energy in the crystal, theory can predict neither their amount
nor their dependence on frequency. Obviously, if o 18 independent of
frequency, Qs cannot be. If experiment shows « to be constant, Eq.
(443) indicates that wi(\Rx is proportional to the product he. The
resonator will have an inductive region when wiC Ry does not exceed
0.5, that is, when

waCifly = (443a)

82
B \/Qo?;

This expression sets the limit to the order of harmonie A for a given ¢
or to the thickness e itself at the fundamental frequency; above this limit -
the reactance of the resonator can be only capacitive.

On the other hand, if @, should turn out to be independent of fre-
quency, one would conclude from Eq. (443a) that, when w,Cifty Z 0.5,

16e*Qy,
g0

he 3 (444)

ht = (444a)
In this case the resonator would become capacitive at a comparatively
low value of A; but at the fundamental frequency it would have an induc-
tive region for all values of e, unless @ were so excessively low that A
could not even equal unity.

As an example we consider a quartz plate 1 mm thick, with a {unda-
mental frequency around 3(10%). In round numbers we may take
s = 5(10Y), k” = 4.5, ¢s = 90(10%%), p = 2,65, Then, if as = 1,000 at
all frequencies, Eq. (444) shows that 4 can have any value up to about 30.
But if @, has the value 10,000 at all frequencies, i cannot exceed 5.
Such experimental data as are available indicate that the latter of these
alternatives is more nearly correct.* That is, while @ and the logarithmie
decrement § appear to be independent of frequency, o; increases with the
frequency.

297. Distribution of Potential in Crysial and Gap. The current I from
p to ¢ in Fig. 56 is

I= b7~ B ngCn (445)

where Zi, Z}, and 1/wC; are the impedances 'of RLCCC,, RLCCy, and C,

* Bee Mason and Fair.342
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respectively. The potential drops V' across the crystal and V. across the
gap, in terms of the total drop V, are

Vi _ 2§ Ve 1

V=7 Voo (446)
Z{ = 1/7} is given by Eq. (383) or (384) and 2} = 1/¥} by Eq. (433a) or
(433b). :

The dependence of the relative magnitudes of ¥, and Vs upon fre-
quency i3 brought to light clearly by means of the resonance circle in Fig,.
63. It is shown in §288 that for any frequency, such as that correspond-
ing to point P on the admittance cirele for RLCC,, the following relations
hold: Z{ = s, FP', Zj =35, FP, and wCy= —1/(s, F'F). Con-
sidering magnitudes only, one has, from Eq. (446},

V., FP V. F'F
V=FF TV FP (447)

As represented in Fig. 63, P comes at a frequency very close to the
resonant value fy at B. As the frequency increases, P moves counter-
clockwise around the circle, while P/, the point inverse to P with respect
to I, moves clockwise, causing a decrease in F'P’ and an increase in FP'.
V. therefore increases, until at a certain frequency the ratioc FP'/F'P’
has a maximal value. Since the position of #’ does not vary perceptibly
with frequencies near resonance, this maximal value comes when the line
F'P'P passes through the center of the circle. This construction at once
determines the position of P and therefore the frequency at which the
voltage across the crystal, and also across the gap, is a maximum with
constant V¥ for s given Cs. This is the frequency at which the impedance
of the entire network is a minimum.

For a given V, this maximal ratio ¥,/V depends on 'y and has its
greatest possible value at & certain critical value of C.. The geometrical
problem is to find that position of F’ that makes FF'/F'P, a maximum,
P, being the new location of P' on the straight line from I to the center
of the circle. It is easily proved that this condition is satisfied when
FP, is tangent to the circle, so that FP,F’ is a right angle. Since now
AF = FP,, it follows that at this frequency the resctance of €, is numeri-
eally equal to the impedance of ELCC,.

When C\ is relatively small and the gap is such that C; has the critical
value, the potential drop across the gap may be many times greater than
the applied potential ¥. Dye,!*” who made a study of this effect, found
the increase to be as much as thirtyfold. If V¥ is of the order of 50 volts,
& glow discharge may be seen in the space between electrodes and crystal,
with either lengthwise or thickness vibrations.
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208, A Typical Resonance Curve. The characteristics of a typical
resonator are shown in Fig. 66. Qualitatively, they illustrate the per-
formance of all piezo resonators. Numerical data are for the same
X-cut quartz bar N2, in lengthwise vibration, and with a small gap, that
has been mentioned in previous papers.#5° The dimensions are X1.4

N
-5

NoE ¥

2kt
¥ | \./
| L ix
0] D0 @ ® ® QPO @

Fre. 66.—8ome characteristic curves of a pieso rescnator of frequency B89.87 ke.
Abucigsas are departures from resonance, in cycles per socond. ¥Frequenoy increases from
left to right. Ordinstes shown in the figure aro to be multiplied by 10f esu for ¥ and ¥,
and by 6(10-*) gsu for X, X,, X, R, and R,. The vertioal dotted lines are marked to corre-
spond to points on the eircumference of the circle in Fig. 67 (first column in Table XXIII).

mm, ¥30.7 mm, Z4.1 mm, fundamental frequency fo = 89.87 ke/sec,
wo = 5.68(10%. The equivalent electric constants are

L = 137 henrys = 1.52(10-%) esu
R = 15,000 ohms = 1.67(10~%) esu
C = 0.0228 mmf = 0.0205 esu

C: = 3.54 mmf = 3.19 esu

The product »C'1R, which according to Eq. (381) determines the ratio
AF:AB in Fig. 67, is only about 0.03. Although this value is much
larger than is common with modern, well-mounted resonators, still it is
so small that its use would bring the point F so close to A as to crowd the
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critical points in the neighborhood of F very close together. The per-
formance of the resonator ean be shown more instructively by arbitrarily
multiplying C; by a suitable factor. In the present case the factor 10
has been chosen, so that the value of C,, for the purpose of illustration,
is assumed to be C; = 31.9 esu. The effect is the same as if an external
capacitance of 28.7 esu were placed in parallel with the crystal.

299, The graphical procedure for obtaining the ordinates of the
various curves ig illustrated in Fig. 67. In constructing this diagram, a

1

F1a. 87.—Reponance circle used in deriving the data for Fig, 68,

circle was first drawn with diameter AB = 2p = 16 em. TFrom the data
above, together with p = 8 em, it was found from Eys. (375), (885a),
(378a), and (379%a) that s, = 3.75(10%), 5, = 1.16{107%),

FA—“’—-('H—f}Scm,

U

g = 0.544 cyclesec~lem~!, ¢ = 96 cyclessec—lem. Values plotted in Fig.
66 were obtained for the critical points shown in Fig. 61 and for a few
other selected points, so that smooth curves could be drawn with
enough accuracy to illustrate the characteristics of the resonator. For
example, in the case of point P;, the distance BS was measured, and
ny = ¢ + BS was caleulated, where ny = fo — fs, Jo is the frequeney at B,
and f, the frequency at Ps. This value of ny (2.4 cycles/sec) was plotted
as abscissa in Fig. 66. At this frequency, ¥ = &, - AP, Y| = g, FP;
(maximal value of ¥7).
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The values of R,, B, X,, and X, (8§271, 273) for points P; and P,
were obtained by dropping perpendiculars on the line Fz in Fig. 67 from
Py and also from P4, the point inverse to Py. In the notation of Fig. 59,
these perpendiculars are PyW and PsW’ (P; and Py correspond to P
and P’ in Fig. 59b). Then, according to Eqs. (388}, (380), and (305a),
RB.=s8,FW ,Ry=1/(3, - FW), X, = 8- WP,and X, = 1/(s,- WP).

The same process was used for the other points, except that for points
on the left side of the circle {as, for example, Py} it was morg convenient
to use the frequency scale value ¢’ and to measure AV instead of BS, as
explained in §268. In such cases the value of ny is given by ny = ¢'/4AV.

300. As may be seen from Fig. 68, ¥ has a maximum at n; = 0, while
the maximum of Y| comes at & slightly lower frequency. The maxi-
mum of B, comes at the frequency corresponding to the point P; inverse
to B, for which point FW’' = Fz = AB. As may be easily verified,
this maximum value i8 (B)uw = 1/RC}w®. R, has its minimum value
when ny = 0. X, becomes zero at points Py and P4, where the resonator
18 & pure resistance; its maximum value is af the frequency corresponding
to the point Py inverse to P,, while its minimum is at Py, inverse to P,
(see also Fig, 62). X, has a maximum at P;, & minimum at Ps, and
becomes infinite at P; and Py; a vestige of X, coming up from — = can
be seen in the lower right-hand corner.

Over a range of frequencies considerably beyond that shown in Fig,.
66, the distance AF = —w(./s, remains practically constant. At still
lower frequencies the point F approaches A4, while it moves upward with-
out limit on the h-f side. Moreover, at very high and very low fre-
quencies the distance AV, in terms of which frequencies are expressed,
becomes too small to measure accurately. Recourse must be had then
to the algebraic equations, which become very simple at frequencies far
enough from resonance for certain terms in £ to be ignored. It is con-
venient to write @ == hwy, where b is a multiplying factor greater or less
than 1. The admittance of RLC can be written as

1 _ wll{h® —1)

X n

For Y}, X., and R., we use Eqs. (383), (388), and (389). By this means
the following values have been computed, providing an extension of the
data in Fig. 66, all in esu.

The table on page 377 illustrates the extent to which the various
quantities are affected as the frequency departs widely from resonance.
The admittance ¥ sinks to g#v of its maximum value when the frequency is
off resonance by 2 per cent. ¥}, like ¥, gradually becomes a pure capaci-
tive admittance. Since at very low frequencies ¥ — 1/X — «C, it is
evident from Eq. (383) that ¥ — (C + Ci). On the h-f side, ¥\ > C1.

Y =
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1
C'—_m

tends toward the limiting values (C; + C) and €, on the 1-f and h-f sides,
respectively. Considered as a condenser, the resonator has s series
capacitance €, that diminishes from (C; 4+ €) at low frequency to C,
at high frequency; this is equivalent to saying that the dielectric constant
defined as & = 4x(C,/A undergoes a diminution on passing through the
resonant region, with anomalous values in the resonant region itself
(see §258). It will be noted, however, that C, differs from its limiting

TanLe XXIV
k ! Y ¥ X, % R, Ce
kes »x 108 * 108 x 1078 X 10718
0.5 4,494 | 0.0077 9.05 —11 7,750 0.012 32.2
1.02 9,167 | 0.303 18.1 - 5.5 198 4.65 31.5
1.5 13,481 { 0.0140 | 27.2 — 3.7 4,300 0.0044 31.8

values (31.92 and 31.9) perceptibly, even for detuning as great as that
indicated by A = 0.5 and A = 1.5. The large ratio X/R shows that the
resonator has a very low power factor even for detuning as low as 2 per
cent. Corresponding to this fact are the low values of E,, which are
practically negligible in comparison with E.

In an setual quartz resonator the diminution of C, from (€, 4 C)
to €1 with increasing frequency would be much more pronounced than is
indicated by the data above. FEven so, the diminution in quartz is less
than 1 per cent; on the other hand, in Rochelle salt the diminution is
very large.

The arbitrary assignment to C; of & value ten times the actual value
for the erystal in question has served its purpose in making the steps in
the graphical method easier to follow. Qualitatively it has not made
the resulting curves less instructive. On the quantitative side it may be
said that, if €, were smaller, the maximum of ¥] would come closer to
that of ¥, with respect to both magnitude and frequency. The minimum
of ¥! would be lower and would come at a higher frequency. The
frequency scale itself would remain unchanged, but the interval w, — o,
between the two values for X, = 0 would be increased almost propor-
tionately to the decrease in C;. From Egq. (400) it can be shown that, if
ingtead of the fictitious value 31.9 we had used 3.19 for Cy, f, — f» would
have been about 290, instead of the value 23.3 shown in Fig. 66.

301. Effect of B upon the Performance of the Resonator. As wag stated
in §269, the smaller & is, the larger is 8, (for a circle of the same diameter)
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and the smaller o and ¢’ become. Therefore, as R diminishes, the fre-
quency scale becomes more wide open, fewer cycles are comprised on the
right side of the circle between the quadrantal points, and the resonance
ig sharper. The maxima of ¥ and ¥7 are higher, and the minimum of
¥iislower. The difference between the frequencies for series and parallel
resonance is greater when R is made smaller, as may be seen from Eq.
(400).

In the discussion following Eq. (393) the necessity for retaining R
in the expressions for K, and X, over a relatively wide range of frequencies
is emphsasized. This fact is well llustrated in the foregoing example.
For instance, if X, for point Py in Fig. 66 or 67 is calculated from Eq.
(389), it is found that the terms in R? form the chief contribution to both
numerator and denominator. It is only at considerably higher fre-
guencies or at correspondingly low frequencies that the simpler equation
(393) can be nsed.

302, Graphical Method for the Insertion of Qther Circuit Elements.
As the basic resonator network only the KLCC, combination need be
considered. If there is a gap, the primed values shown in Fig. 56b
should be used.

In the present section the method will be outlined briefly, leaving
specific applications until later.

a. A Reststance If; in Series with C:. This case oceurs when there are
losses in C;; such losses in Rochelle salt are discussed by Mason.3%8
We have Z, = Ry — j{1/wCy), Y1 = Bi/Z} + j(1/C\Z3) = g, — jb.
Hitherto I, has been ignored, and, as in Eq. (380), we have set

aF = =95,
¥
with oC; = byand g1 = 0. When R, is included, we can no longer use F
aa the origin of vectors for the resonator. Instead, it is necessary to
choocsa as origin a new point, represented as 0" in Fig. 68, such that

H__lﬂ-= 1 . uu___g_}__ RI
AF" = 5 5l O"F" = Py (448)
The presence of Ry makes AF'' smaller than AF in the ratio
AF" 1

AF T TR,
0" is to be used as the origin for all vectors for RLCCR, in the same
way that F was used in preceding sections for RLCC,.
308. b. An Impedance Z, in Series with RLCCy. Tet the point P
(Fig. 68) on the Y-circle for RLC be given, at any frequency f, and let
it be required to find the vector representing the impedance of RLCC.Zs
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at this frequency. The impedance of RLCC, 18 Z] = 4, FP'. Draw the
line OF of such length that s, - OF = Z; = R: 4 jX,, 80 that

8:'OM=R3, Sg'MF=Xz.

Asp represented in Fig. 68, X, is capacitive. If it were inductive, M
would lie below F.

The vector sum of Z» and Z{ is Z}, given by the equation Z} = s, OP'.
Tts components are Rj = s.- OW and X} = s,- WP’. P’ is the point
on the impedance circle for RLCC\Z; at which the frequency is the same
as at P on the original admittance circle for RLC.

0 MW T

A

Fig. 68.—Resonance diagram for a resonator with an impedance in series.

The admittance diagram for RLCC\Z, is obteined by inverting P’
into P, with O as center of inversion, and ON (tangent to the resonance
circle at N) as radius of the circle of inversion. ON need be drawn only
when the scale value s for admittances of RLCC Z: is desired:

1
L
¥ = (50N
The admittance of RLCC:Z1 at frequency f is then ¥} = &) - OP",

The method described in §282 for representing phase relalions can be
applied to the present case. Welet V1 and V' be the potential difference
across RLCC, and RLCC 12, respectively. With this notation, the phase
relations are as indicated in Fig. 68.

With regard to the distribution of frequencies around the admittance
circle for RLCC,Z,, it is to be noted first that, upon the addition of Z.,
A inverts into A’, which becomes the point for zero and infinite frequency.
At P, and P;, on the prolongation of OF, frequencies are the same as
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on the original admittance cirele for RLC. All frequencies that, on the
RLC circle, lie on the Jower (1-f) portion between A and P are now com-
pressed into the arc A’P”. The frequencies corresponding to all points
on the admittance circle with Z; out (origin at F) are, when Z, is in,
ghifted in both directions away from P, toward P,.

This extension of the graphical method is useful in investigating the
effect of the impedance of the circuit to which the resonator is connected
on the critical frequencies and on the performance of the rescnator,
For example, the maximum and minimum impedances of RLCC:Z; are
found simply by drawing a line from O through the center of the circle.
The frequencies at series and parallel resonance are determined by the
points where the horizontal kne through O cuts the cirele. If AM is
greater than the radiug of the circle, these points no longer exist, and the
cirenit is capacitive (or inductive if AN is drawn downward) at all
{requencies.

If it is desired to find the frequency corresponding to any point P”
on the admittance circle for RLCC 2., the method deseribed for locating
P'" when P is given is worked backward. First P’ is found, on the line
P"0; then FP'P is drawn; and the desired frequency is that for P on the
RLC circle. ‘This frequency is determined as described in §267,

Tt may happen that Z: cannot be regarded as constant over the range
of frequencies considered. For example, as in §316, Z; may be arbi-
trarily varied so as to hold the current in some part of the circuit at a
maximum value; or Z; may contain elements that are either sharply
tuned or subject to variation with current, as is the case with tube
impedances. In such cases it is necessary to determine the locus of the
origin O in Fig. 68, whereby the position of O at any given frequency is
known. Such a method is described in §324.

The grapbical treatment can also be extended without difficulty to
cover the case where an arbitrary impedance is connected in parallel
with either RLCC; or RLCC,C;. ‘This and other features of the graphical
method have been discussed elsewhere by the author.!®

804. c. A Capacitance Cy in Parallel with RECC1C5.  As in §288, the
capacitance O in series with RLCC; may be either the gap or an external
condenser. In either case the admittance locus is the circle in Fig. 63,
with ) + AF' = —wC] from Eq. (434) and with a frequency scale for
RLCC,(; determined according to §200. The addition of Cs (condenser
or capacitance of connecting wires, ete.) in parallel with RLCC,C; simply
necessitates moving the origin upward cxactly as in the case of C, only
now the new origin ¥ is determined by the equation & - FF' = —wCy,
or & AF"” = —w(C, + C;). The frequency distribution is still that
for RLCC,C,, but the critical points when Cs is in are shifted in such a
manner that series resonance, corresponding to point P; in Fig. 61,
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comes at & frequency very slightly higher than when C, is out; the same
is true of the frequency for maximum admittance. The frequencies for
parallel resonance and for maximum impedance are lowered by the
presence of Ca. That is, a parallel capacitance diminishes the frequency
interval between scries and parallel resonance.

These relations are easily derived analytically. The equation for
series resonance, analogous to Kq. (397), is®

1 Ry 1 C
2 e gl RS _ .
w,” = F e + yITald ic (1 + o, F o,

+ R a(C +C1 4+ C)

IeE ) (449)
where L', €7, and B’ are given by Bgs. (424), €5 = C| + Cy, and
Cig = C,Cy + CuC3 + €€,

R is usually small enough to justify the approximation

W} = LIC (1 + élic"_?;) (450)
This expression is the same as Eq. (437) for RLCC,C,, showing that the
presence of (7 is practically without effect on the frequency for series
resonance.
The frequency for parallel resonance, when R is small, is found most
readily by applying Eq. (383) to the R'L'C'C{ network, setting I’ = 0
and Z' = X' = (w*L'C" — 1)/wC’. Then, for RLCCC.C;,

\ . C’
Y3 = —1 ({:2—.[4—’%:-1 — wC{ - wCa)

The condition for parallel resonance is that ¥5 = 0, By the use of Eqgs.
(424) one then finds

n oy Lo LY D S ___Q(ﬁim_@__ﬁ]
W' = g (1 T cs) ~Ic [1 *eoiF oo o (9%
The last expression involves the approximation
C+C+C=Ci+C

306. The Resonance Circle for Motional Admittance. From Eq. (329)
it is seen that a proportionality exists between the current I in the RLC
branch of a resonator for lengthwise vibrations and the particle velocity v
at the ends of the bar. A similar relation can be proved for thickness

* The symbol w, is used in order to avoid confusion with w,, the value for the RLCC,
network alone.
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vibrations. This proportionality is expressed in Egs. (325) and (367),
for lengthwise and thickness vibrations, as a fixed ratio between the
electrical impedanee Z, of the RLC branch and the mechanical imped-
ance (Z.)a. A corresponding ratic must hold for piezo resonators of
other types as well. It follows that the same admittance circle, with the
game scale of frequencies, can be used for the mechanical admittance,
as that which has been described in the case of the electrical admittance.
Since we are desling here only with the £LC branch, the origin of vectors
is at A on the resonance circle, for example in Fig. 58. Any electric
vectar divided by the electromechanical ratio r gives the corresponding
mechanical vector. That is, the seale value for mechanieal admittances
is & = r8,.

On the circle for mechanical admittance, the maximum admittance
comes at point B, where the particle velocity is a maximum and the fre-
quency is defined as fo. In accordance with Eq. (94), the frequency f,
for maximum amplitude of vibration is lower than f; by the amount
fob2/8x%, where § is the logarithmic decrement per period. From Table
XXIII it is seen that the frequency f. is only C/4C, as far from f, as is
the frequency for maximum electrical admittance, at point Ps; at I
the frequency is already extremely close to fo.

If there is a gap between crystal and electrodes, the resonance circle
in Fig. 63 is used, with /7 ag origin for electric vectors. The presence
of the gap (represented by a shift of origin from F to F') changes the
maximum particle velocity and also the distribution of frequencies
around the circle. The frequency for maximum particle velocity,
though somewhat higher than when there is no gap, still comes ai point B
in Fig. 63. By §§58 and 234 the amplitude of vibration & at the bound-
ary of the resonstor, in terms of the peak current (I,)o in the RLC
branch, is

el’
50 = 2Eb;‘w (IP)U (451)

808. The Electrical and the Mechanical Theories of a Resonator with Gap. The
electrical theory may be defined as that which regards the electric and elastic properties
of the resonstor as those characteristic of zero gap, while the gap itself is represented
as & scries capacitance O as illustrated in Fig, 56e. The equivalent network is
RLCC.Cy.

On the other hand, the mechanical theory treats the electric and elastic properties
as dependent on the gap. The equivalent network is R'L'C’Cy as shown in Fig. 56b,
in which all four parameters are functions of the gap. The elastic stiffness, which
occurs as a factor in (", is different from that which occurs in € when there is no gap.
TIn the following discussion we shall use g» for the stiffness when thero is a gap w and go
for the value when w = 0. According to the electrical theory the stiffness is o at all
values of the gap.

The equivalence of the two theories has aiready been proved. It remaina only
to show how each requires a somewhat different description of the vibrational process,
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Let fo be the resonant frequency for RLCC, as observed when there ia no gap, and
let fu be the resonant frequency when the gap is w. Then, under constant impressed
voltage, if the frequency f, is applied while the gap is w, there is no resonance. Accord-
ing to the electrical theory the crystal is being driven at its resonant frequency, its
impedance is low, but the drop in voltage takes place mostly in the gap so that the
amplitude of vibration iz small. According to the mechanical theory the stiffness
of the erystal, in the presence of the gap, is so great that the applied voltage causes
only forced vibrations of small amplitude.

Rimilarly, when the impressed frequency is f,, the electrical theory states that
there is electric resonance although the erystal itself is not in mechaniecal resonance:
the impedance of the crystal is large, so that the potential drop across it is relatively
large, resulting in forced vibrations of great amplitude, On the other hand, the
mechanical theory states that the crystal is vibrating in resonance, with low imped-
ance, and that the large drop in potential across it is produced piezoelectrically by ity
own deformation.

The difference in the point of view is due to the different definitions of the stiffness
of the crystal. Which view to adopt is & matter of convenience. In any case, when
the crystal with gap is in resonance, f,, > fo, so that the RLCC, combination is induc-
tive, while (' is, of course, capacitive. Over a certain range of values of C'; the poten-
tial drop across (3 and also the corresponding drop across the crystal may be many
{imes greater than the applied voltage V. The condition for maximum voltage acroes
the gap is shown graphically in §297.



CHAPTER XV

THE DYNAMIC MEASUREMENT OF PIEZOELECTRIC
AND EQUIVALENT ELECTRIC CONSTANTS

A vibrating system of one degree of freedom when set in motion by the interaction
of charged bodies on nn electrostatic field behaves as » series combination of induce-
tance, resistance and capacity. ~—8., BUTTERWORTH,

307. Although the technique of electrical measurcments lies outside
the scope of this book, it is desirable to indicate the principles on which
are based the applications of standard methods of measurement at radio
frequencies to the crystal resonator. The cboice of method depends
on the size of the quantity to be observed and on the required precision,
as well a8 on simplicity and the desirability of obtaining results in a short
time by as few observations as possible.

The measurement of elastic constants has been treated in §§75 and
252. In §§183 and 184 we have considered briefly the measurement of
piezocelectric eonstants by static methods,

In the present chapter the “click™ method is first described, in which
use is made of the audible response of a resonator as the impressed fre-
quency passes through resonance. There follows an outline of the
methods available for determining, from observaiions with circuits of
various types, the piezoelectric constants of any erystal, and the electric
constants of the equivalent network for any piezo resonator. Lastly we
shall discuss the reduction of such observations, with particular reference
to the use of graphical methods.

For the methods described below, the most indispensable feature of
the equipment iz a generator with extremely fine frequency regulation
over the resonance range of the erystal. The generator must be suffi-
ciently stable to hold its frequency and voltage constant, at any given
setting, during the time needed for a scries of observations; means must
be provided for measuring accurately small changes in frequency; and
the generated frequency should be immune against reaction due to the
varying impedance of the crystal. The generator may be a power oscilla-
tor of 50 to 250 watts, very loosely coupled to a secondary eircuit con-
taining the crystal; or it may be a low-power oscillator connected through
an amplifier to the erystal, the stages of amplification being so designed
as to prevent reaction. For the more precise measurements it may be
necessary to adjust the frequency within a small {raction of a cycle per

384
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gecond. The importance of avoiding harmenies in the output voltage is
emphasized in §379.

308. The Click and Key-tapping Methods. Before coming to the
guantitative measurements of the piezoelectric and equivalent electric
constants, we deseribe some simple ecircuits that are useful for qualitative
tests of piezoelectric erystals, such as those mentioned in §172. These
circuits also provide a means for making an approximate determination
of crystal frequency in terms of a frequency meter and for calibrating a
frequency meter when one or more resonators of known frequency are
available. Those who are just begioning the study of crystal resonators
can learn much about their performance by experimenting with these
simple devices.

For demonstrating the principle of the click method it is convenient
10 use a low-power tube oscillator with inductive feedback and with o tele-
phone regeiver or loud-speaker in the anodo cireuit; either the grid or the
anode circuit may be tuned. The frequency must be continuously vari-
able over a considerable range on each side of crystal resonance. As a
resonator, a small X-cut quartz bar (length parallel to ¥) may be chosen.
For lengths of 10 to 40 mm the fundamental lengthwise frequency varies,
in round numbers, from 300,000 to 75,000 cycles/sec. I the anode volt-
age is low enough to avoid danger of fracture, the crystal, which may be
mounted loosely between fixed electrodes, can be connected directly
gcross the tuning element. As the tuning condenser is varied through
the setting corresponding to crystal resonance, a characteristic elick is
heard, which has more of a musical quality the lower the frequency and
the smaller the damping of the resonator. The sound is due to the fact
that the resonator is set into vibration when the condenser reaches the
critical setting and continues to vibrate for a fraction of a second. Dur-
ing this time it acts as a generator, impressing on the tube circuit an alter-
nating voltage at its own resonant frequency and producing beats with
the oscillating current already present. A d-¢ meter in the anode cireuit
will also respond at crystal resonance.

'The click can also be heard with the crystal at other locations in the
oscillating circuit, for example in series with the grid, with a high-regist-
ance leak in parsilel. One can usually hear an audible response with
one electrode of the crystal disconnected. Indeed, it may suffice to
suspend the bar, without electrodes, from a thread and let it hang close
to the coil or to a binding post of the tuning condenser. Enocugh energy
is absorbed and reradiated to produce the beats.

When the click method is used with thickness vibrations, one hears,
on tuning through the frequency at which the response should come, not
a single click, as in the case of the bar, but rather a whole volley of clicks.
A very large number of responses may be heard in a narrow range of



386 PIRZOELECTRICITY [§300

frequency around the expected value. This complexity is due chiefly
to various elastic couplings, as stated in §244. The procedure for
reducing the number of responses, and for obtaining a single dominating
frequeney of resonsnce, as is necessary in efficient piezo oscillators, is
mentioned in §352.

If the oscillating cireuit is already calibrated, or of too high power,
it is better to place the crystal in a loosely coupled secondary circuit,
as shown in Fig. 69. L, is the cutput coil of the oseillator. L.C; should
be tuned approximately to the erystal. The elick is heard in the tele-
phone receiver 7. A d-¢c milliammeter may be used in place of 7'. If
desired, the crystal may replace the grid condenser C,.

In the earlier experiments, the author sometimes used a contact
detector {galena or molybdenite) and telephone receiver in place of the

~

!
2 7, == r
| il

Fia. 89.-—Circuit for resting a resonntor by the elick method.

detecting tube shown in Fig. 69. Moreover, it was found that L, could
be the coil of a buzzer-driven wavemeter; in this case L picked up trains
of decaying waves, and the buzzer tone, heard continuously in 7', under-
went a change in quality when the wavemeter was tuned through crystal
resonance.

With the circuits that have been described, somewhat greater pre-
cision can be gained by setting the tuning condenser of the generator
circuit as closely as possible to the critical value and then suddenly vary-
ing it by a small amount. The setting is altered by small stages until
the click is just heard. By performing this operation with both increas-
ing and decreasing settings, & fairly precise mean value can be obtained.

309, This last expedient leads naturally to the key-fapping method,
whereby the rapid turning of a variable condenser back and forth is
avoided. All that is necessary is to place in parallol with the tuning

condenser in the oscillating circuit a small suxiliary variable condenser
in serics with a key. The auxiliary condenser should be sct at such a
value that when the key is pressed the frequency f is changed to a value
f1such that f — fy is a frequency in the audible range. The key should be
on the grounded side in order to avoid a troublesome knock on closing,.
The key is tapped repeatedly as the tuning condenser is slowly varied.
When a setting is reached such that, with the key open, the resonator
is set into vibration, then on closing the key a beat note, of longer or



§310] THE DYNAMIC MEASUREMENT OF CONSTANTS 387

shorter duration, is heard. This note has a very sharp maximum at the
resonant frequency. It is, of course, also possible to listen for maximum
loudness of the beat note on opening the key.

Either the click method or the key-tapping method is a helpful adjunet
to the equipment for measuring resonator constants by the methods
outlined in §§315 to 321. Owing to the extreme sharpness of resonance
of 8 good crystal, it is usually quite difficult to find the adjustment of the
oscillator corresponding to the very narrow band of frequencies to which
the erystal responds. If provision iy made for listening to the click, this
adjustment can be artived at very quickly.

DYNAMIC MEASUREMERT OF PIEZOELECTRIC CONSTANTS

The methods that have been employed may be classified as follows:

a. The gap method, involving measurements of frequency of a
resonator at two different gaps, usually w = 0 and w = e,

b. The antiresonsnce method, by which the gap (commeonly zero)
is fixed while the frequencies at resonance and antiresonance are observed.

¢. The resonance-curve method, by which the piezoelectric constant
is dertved from the value of the equivalent R, L, or C.

d. The elongation method, by which the maximum elongation of a
bar at resonance is meagured.

e. The composite-bar method, by which the crystal under investiga-
tion is vibrated by means of a second crystal of known constants,

Either lengthwise vibrations of bars or thickness vibrations of plates
may be used. The chief equations for each case will now be given.
For generality, we assume the bar or plate to be oblique, so that all con-
stants are primed, indicating transformed axes.

310. a. The Gap Method.* Owing to the difficulty in measuring
small gaps with precision, as well as to the lack of close agreement,
between observations and theory noted in §§349 and 3563, no gain in
precision ean be expected by using gaps other than zero and infinity.

Bars. Only the fundamental lengthwise frequency meed be con-
gsidered. For gaps zero and infinity we have

1 1

Y . Y
(s.,) i {sna) 1%fT
With negligible error fo and f, may be regarded as frequencies at
either maximum admittance of the resonator or maximum amplitude of
vibration.

* This method was first used by the author'® for measuring da; of Rochelle gnlt.
Soon after this, Mikhailov®® used it for d1, of Rochelle salt, ebtaining a result in good

agreement with that by method ¢.
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The solution is somewhat different according to whether or not, when
w = o, the surfaces of the bar normal to the electric field are plated
with a metallic coating to render them equipotential. If the surfaces
are bare, Egs. (332) and (333) are to be used, giving

@ =15 (3~ 7) o2

where i indicates the field direction and &' is the dielectric constant of
the free erystal for the particular orfentation, measured at a non-resonant
low frequency.

Thus when &} is known, d}, can be found from the frequencies at zero
and infinite gap. The precision with which (di,)? can be measured
by this method depends on that of &} and of the frequency difference
{f, — fo); and, as in all other methods, it is limited also by the fact that
the ideal conditions sssumed in the equations never can be exactly
realized in practice.

The large value of the dielectric constant k. of Rochelle salt makes it
permissible, for an X-cut bar from this erystal, to write Eq. (452) in the

form
f
! _“‘ ey L

where y' = k'/4x. In caleulating d,s for Rochelle salt from Mason’s
observations, Mucller?”® used this equation.

‘When a plated bar is used, the stiffness at infinite gap, from Iiq. (428),
is
i 3242,
&ty
From this equation, together with (311} and the relation g, = 1/s%,
for zero gap, one finds

k! 8 £
ﬁayzwm(w ﬁ+0 sy

This approximation is valid only for erystals with small piezoelectric
constants, like quartz.

As an example of the foregoing method, we calculate di; for quartz
from the author’s cbservations on a quartz X-cut bar with dimensions
X0.152 ¢m, ¥4.04 em, Z1.40 em. The unclamped dielectric constant is
E = 4.5. When the bar is bare, the observed frequency for w = 0 is
fo = 6.86(109), Extrapolation of observed frequencies for w = « gives
S = fo = 298. Similarly for the same bar when plated, fo = 6.65(104),
fo = fo = 240. On substitution of these values in the foregoing equa-

G = (453)
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tions we find, for the bare and plated bars, 6.45(10~%) and 6.42(10-%),
respectively. Although the values are comparatively low, owing
probably to defects in the bar, they show at lesst that the formulas
give practically identical results for bare and plated bars.

Plates. By observing the frequencies fy and f, of thickness vibra-
tions, the following expression can be derived from Eq. (355) for the
effective piezoelectric constant e:

2 T
=" g (455)
where ¢ i3 the thickness and k" the clamped dielectric constant for the
particular orientation. Execept with the simplest cuts the derivation of
the fundamental ¢,s from e is impossible. In general, observations with
several plates in different orientations would be necessary. When it is
considered that k" cannot be caleulated without a previous knowledge
of at least the approximate values of the piezoelectric constants or
observed without the use of extremely high frequency (§247), it hecomes
clear that it is not advisable in general to attempt to determine the piczo-
electric constants by the gap method with thickness vibrations. Neo
such determination seems to have been undertaken.

311. b. The Antiresonance Mcthod. The frequencies fi and f, for
series and parallel resonance (resonance and antiresonance) are observed
at a fixed gap, preferably zero.

The desired oxpressions can be derived from the approximate equation
(401) when the piczoelectric constanis are small. If the piezoelectric
reaction is large, as in Rochelle salt, it is better to start with the more
rigorous equations (397) and (398), in which it is usually allowable for
the present purpose to set B = 0. One thus finds, to a high degree of
precision,

2

p'_wz_c_.f;_ﬁ (456)

w

w? i i

From Eqgs. (824) and Table XXII it is found that C'/C: has the same
form for both lenpthwise and thickness vibrations. If f, and f, are
observed at harmonic k, Ci/C = 32¢*/mhgo, whenos, since go = 4%f3/h%,

2 hi
o= (g TG (457)

For thickness vibrations, we write &' for k and let I represent the thick-
ness. For lengthwise vibrations (with which only A = 1 should be used)
k becomes k; and [ is the length of the bar. e is the effective piezoelectric
constant for the particular orientation. In order to obtain the funda-~
mental piezoelectric constants, observations with several different
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orientations are usually necessary. In the case of bars, the efiective
plezoelectric strain eoefficient (d7, in the preceding paragraphs) can be
found directly from ¢ by the relation d;, = ¢/qu.

This method is simple and fairly accurate. The chief difficulty,
aside from the determination of k, is that the antiresonant f; is not sharp.
It is the method used by Mason®®® in measuring d1; and dy4 for quarts.

312, ¢. The Resonance-curve Method. While methods & and b use
only two observed frequencies, method ¢ offers the advantage of increased
pecuracy, in that by means of a resonance curve or of the resonance
cirele a large number of observations at different frequencies can lead
to an aceurate measurement (§315) of the equivalent L, R, or €. Then
Egs. (324) or those in Table XXII (page 323) can be solved for ¢, from
observations on bars or plates, respectively. The simplest expression
to use is that for I or C, although the values of dy; obtained by Andreeff,
Fréedericksz, and Kazarnowsky, by Fréedericksz and Mikhailov, and by
Van Dyke, in Table XIX {page 220) were obtained from K. Nuss-
baumer’s value in the same table was derived from observations with a
crevasse circuit (§318), which is essentially an equivalent-network
method.

No sharp distinction can be drawn between methods b and ¢ except
insofar as ¢ can make use of more observational data. For cxample,
the last part of Eq. (457) is written for use with method ¢,  From this
equation can be derived an expression for df, in terms of &', applicable
to & bar vibrating at its iundamential lengthwise frequency. By writing
b=k =k — 4r(d)*/sE,, we find, since e = dl,/sE,,

’ T2 k'C _ s,
@) = 5Re, T 0) = &l © (458)
where C and C, are in esu.

313. d. The Elongation Method. This method is hardly suitable for
plates but has been used by Fujimoto* with a quartz X-cut bar, for
determining dy;. The method is the dynamic analogue of the static
measurement of piezoelectric constants by the converse effect. The
arplitude of vibration £ at one end of the bar at resonance is observed
with an optical interferometer. From Eqs. (67), (324), {329), (87),
and (406), one finds for the effective piezoelectric constant, with suffi-
" cient precigion,

o Lo _ Vo _ Mefh _ Mok

¢ ok — ToweRls ~ QY ~ WV, Cx @) (459

* T, FusmmoTo, Proc. World Eng. Congr., Tokye, vol. 20, pp. 309416, 1629. The

value of d;; = ¢/8:; in Table XIX was ealculated by the author from Fujimoto’s data.

For a more complete treatment of the application of the interferometer to resonator

messurements, with experimental data, see H. Osterberg®® and 8. H. Cortez.11* Pre-

liminary observatione by this method were made by E. M. Thorndike (Willbur Figke
Scholar thesis, Wesleyan University, 1926).
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Any one of these expressions may be used, depending on which electrical
quantities are observed. I, and ¥, are maximum current and voltage
at resonance, & is the resistance in the equivalent network, M = pble/2
is the equivalent mass, and @ is the quality factor from Eq. (67). w,
and « are the angular velocities at the two quadrantal points (§277);
if observations are made at & sufficient number of frequencies for plotting
the resonance cirele, {w; — ;) can be determined with considerable
precision,

This method calls for practically the same electrieal equipment as
method ¢, in addition to means for measuring the elongation, It is
therefore not to be recommended, except as & check on the other methods
and on the theory.

314, e. The Composite-bar Method. This method was inftroduced by
Mason®® for determining the piezoelectric constant a14 (his fi.) of Rochelle
salt. He cemented an X-cut 45° Rochelle-salt bar endwise to a quartz
bar of which the constants were accurately known., The bars had a
common lengthwise resonant frequency, and the system was driven by
an oscillator connected to the quartz. The quartz had also a pair of small
suxiliary electrodes that could be connected to an amplifier of high imped-
ance for comparing the voltage drop E, across the quartz with E across
the Rochelle salt. For this purpose the Rochelle-salt bar, otherwise
bare, had a pair of small electrodes plated on at its center. The Rochelle
salt was set in vibration by the quartz. Since the layer of cement came
at a loop of motion, it was under very little strain. In evaluating the
observations it was necessary to estimate the ratio of the strains y,, and
yyr on either side of the joint. Mason’s formula may be written as
follows: S (e (@i (4) .

= ST Caa)rll2)e \S2)r € Yug Dk
Gu = k; {ste}a €r tur E (460)
where 55, is the effective stiffness in each case and e, and e are the thick-
nesses of the bars. Using an 18.5° quartz bar (§357) of known di,
and %, Mason found ey = 7.8(10%) at 30°C; for the dependence on
temperature see §474.

This method is, of course, applicable to any piezoelectric crystal from
which a bar can be so cut that its piezoeleetric constant can be expressed
in terms of the elongation of the bar, [t offers the great advantage that
the dielectric constant of the erystal under investigation need not be
known, so far as the constant a.. according to the polarization theory is
concerned. Nevertheless, in order to find di. from @i, the dielectric
susceptibility must be known, according to Eq. (xi) or (xii) in Table XX
(page 249). For example, in the case of Rochelle salt at 30°C we may
use Eq. (4056). Then, if 8§, = 1/¢f, = 1/11.6(10%), o' = 26 from Fig.
148, and au = 7.6(10%), we find dy = 16{10~%).
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Method e involves rather serious sources of error.  As is recognized
by Magon, the absolute value of the result cannot be considered very
accurate, but relative values over a range of temperatures can be com-
pared with good precision.

316. Determination of the Constants of the Equivalent Network.
The methods outlined above for the measurement of piezoelectrie con-
stants had to do with a property of the material. 'We shall now deseribe
methods for finding the electric constants of a resonator of given dimen-
gions. From them, in turn, the mechanical and electric constants of the
material can be derived.

The present discussion is applicable to any form of piczoelectric
resonator that can be represented by ah equivalent electrical network
RLCC,, as illustrated in Fig. 50 or 56. We omit the prime accents,
with the understanding that the symbols stand for the over-all values,
including the effect of the gap when there is one. In gencral, any change
in gap or in the sige or placing of the electrodes will affect the values of
R, L, C, and €. Most of the experimental work mentioned below was
done with quartz resonators.

The parameters of greatest practical importance in resonators are
the capacitance ratio C1/C (§280) and Q = wl./R = 1/wiCR. These
quantities can be caleulated when Cy, C, and B have been determined,
or they can be expressed directly in terms of observed quantities as
indicated below.

The various experimental methods that have been used for deter-
mining the electric constants are classified below, though there is & certain
amount of overlapping. We cannot go into details here concerning tubes,
circuits, shielding, temperature control, and ether matters of technique,
important as they are. Particular attention should, however, be drawn
to one source of error so easily overiocoked {hat the trustiul observer
may not suspect that it is ruining his results. This circumstance is the
presence of harmonie frequencies in the voltage applied to the crystal.
A harmonie component of more than negligible size can affect the readings
of meters, and in addition it may excite undesired vibrations that react
upon the characteristics of the particular mode that is being investignted.
It is highly desirable to know the wave form of the generator and to
provide such {iltering circuits as may be necessary to ensure a practically
pure sinusoidal supply to the erystal.

One other troublesome effect should be mentioned, which is present
with crystals that have an appreciable temperature coefficient of fre-
quency. As resonance s approached, the crystal vibrates more vigor-
ously, and more of the driving energy is expended in heating the crystal.
Even though the resonator may be under temperature control, this body
heating changes the constants of the crystal, thus altering the resonant
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frequency. A continuous curve can still be obtained, but it is distorted,
since the charaeteristics of the crystal are o function of the ordinates
of the curve. The distortion does not prevent the derivation of a
correct value of the decrement from the curve. On the other hand, the
values of R, L, and ' for any particular temperature cannot be deter-
mined unless eertain corrections are applied to the curve or unless the
current can be made small enough to avoid perceptible heating. This
effect has been studied by Walstrom in the investigation mentioned in
§316; see also Hatakeyams. 0%

316. a. The Crevasse,* or Parallel-impedance, Method. This method
was first used by the author,*® and later by Dye'?” in his very thorough

a L b

Fre. 70 —Crovasse circuit for messurement of resouator constanta.

investigation of the clectric propertics of the piezo resomator. Dye's
paper should be consulted for ity treatrnent of many reflinements, in both
theory and experiment. Watanabe®® gives a full discussion of the use
of the resonance circle. The method has been employed by many others
for the measurement of resonator constanis. The circuit is shown in
Fig. 70. The output coil L; of a gencrator with fine frequency control
is loosely coupled to the secondary circuit containing the crystal. The
L4Cy cireuit should be capable of being tuned both sides of erystal fre-
quency.f As the impressed frequency is varied in small steps, C; may
be varied so as to make the current in L, always a maximum, or it may
be left at that eonstant value for which the I.C; circuit resonates at the
natural frequency fo of the crystal. The current in L, and that flowing
to the crystal can be measured by thermoelements at o and b, or readings
can be taken on a tube voltmeter connected aeross the erystal. In any

* The term ‘‘crevasse,” first used by Dye, was suggested by the form of the
response curve, as illustrated in Fig, 75.

t The tuning condenser is designated by € to distinguish it from the air-gap
capacitance C: that may be present in the equivalent network of the eryatal,
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case A complete resonance curve can be obtained, from which the erystal
constants can be derived.*

Instead of placing the erystal in a separate secondary circuit, Bech~
mann*? and Builder® connected it directly to the tuned output element
of the oscillator itself. The disadvantage in this method is the reaction
of the crystal upon the oscillator frequency.

According to a hitherto unpublished method used in this laboratory, T
the erystal is connected across the output of an amplifier in such a manner
that a practically constant voltage of variable frequency is impressed
upon it. The current to the erystal is observed with a thermoelement,
and the results are plotted as a resonance curve, from which the decre-
ment can be calculated.

The graphical treatment of the crevasse cireuit is given in §322.

317. b. The Filter, or Series-tmpedance, Method. The simple measur-
ing cireuit described by Heegner?'® belongs properly in this eategory.
In its simplest form it contains a pickup coil loosely coupled to an oscilla-
tor, the crystal, and a thermoelement in series. With certain refinements
this device has been used in this laboratory by Newark and Peabody}
for measuring the maximum and minimum impedances of quartz bars,
from which resonance circles were plotted and the equivalent constants
were caleulated.

Some modifications of Heegner’s method are described by Heegner
himself, and also by Meissner,?*%9° including the use of a triode in place
of the thermoelement,

According to the method that seems at present to be preferable, the
crystal is connected as & filter between a variable-frequency oscillator
and a receiving eircuit, which may be a tube voltmeter (preceded, when
necessary, by a suitable attenuator and amplifier) or a detector. The
latter is used when only frequencies are to be observed. In one form or
another this method has been described by Mason,®? Booth,? and Mason
and Fair.¥! When 2 tube volimeter is used, the circuit is as represented
in Fig. 71. The variable frequency from the oscillator O is impressed
across the resistance K, and the drop across R; is measured by the tube
voltmeter V. In order to minimize the stray capacitance of the crystal
leads, B, and R, are made very small and are placed close to the crystal.

* Applications of the crevasse method will be found in the references at the end
of the chapter. All who study these papers with a view to using the speeinl techniques
described in them should be very discriminating with regard to the extent to which
certain small quantities are dropped as being negligible, For example, the expressions
derived by Mme. Székely®® and applied experimentally by Mme. Nussbaumer? gsre
valid only at frequencies so far from resonance that the ratio BS/4 B in Fig. 59 is large.

1 J. E. Warsrrom, M. A. thesis, Wesleyan University, 1934,

1 A. F. NEwaARg, M. A. thesis, Wesleyan University, 1931; E. T, Peasopy, M. A.
thegis, Wesleyan University, 1833.
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For determining the crystal constants it suffices to observe the fre-
quencies fu and f. together with the corresponding maximum and mini-
mum voltmeter readings V.. and V.. These are the values at which the
resonator admittance ¥ has its maximum and minimum values Y,
and Y, (§278). From Eq. (407) and Fig. 61 it is seen that ¥, = s, - FP;,
Y. = s, FPs. By the principle of inversion, FP; - FPg = AF? = w}C}/sl.
For a quartz resonator the ratio AF/AB is very small and P; is so close

T gg{ﬂl L
| |

¥i1g. 71,—8eries impedance eircuit for measuring resonntor constants,

to B that one can write FP; = AB = 1/s,R. Therefore

Yo V. FPy_ 1
Y. =V, " PP~ WuiCh (461)

From this equation R follows at once. In order to determine

wnL

it is necessary to find L. For this purpose we use Eq. (410a), which,
since wy is extremely cloge 1o wy,, may be written in the form

L.
2LC1wu -

From this equation and (461) it follows that

_ moL L [Va
Q z(wﬂ - ‘-"m) Jvn 2(fﬂ - fM) JV"N (462)

Asis shown in §281, both fu and f very nearly coincide with the frequency
for series resonance, while f, is almost exactly that for parallel resonance
(antiresonance).

As an alternative method, Mason and Fair replace the voltmetor with
a detecting cireuit by means of which f, and f, are determined. Since
Jnis extremely close to the frequency at which the impedance of the erystal
becomes simply the R of the RLC-branch, it is possible to find R by sub-
stitution of a known resistance in place of the erystal, while the frequency

Wp ™ Oy
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is held at the value fn.. When B is known, Q is found with the aid of
Eq. (403):*
~ fn
0= - RCE (4620)

Mason and Fair deseribe still another variant of the method, whereby
Q is found from V,, f., and any frequency f near resonance together with
the corresponding voltage V.

318, ¢. The DBridge Method. The crystal forms one arm of a h-f
bridge, and its impedance at various frequencies is measured. Van Dyke
and Thorndike used a bridge in their “three-crystal method,” which
required two auxiliary crystals nearly identical with the one being tested.
One auxiliary crystal was in a piezo-oscillator cireuit and served as a
fixed standard. The other, in & separate piezo-oseillator circuit, supplied
the driving current for the bridge; by adjustments of this eircuit the
frequency could be varied over the necessary range, which was very small.
By the use of mixer and beat-counter eircuits the applied frequency was
very precisely known. From the resulting resonance curve the electrie
constants of the test erystal were determined. §

A bridge connection was also used by Van Dyke®*® in determining the
equivalent network of the erystal by measurements of the Lissajous
figures obtzined with a cathode-ray oscillogruph.

319, d. The Subsiitution Method. By means of a two-way key the
crystal may be replaced by & variable resistance or a combination of
resistance and reactance in & suitable measuring circuit. Giinther, 1%
adapting a method due to Pauli, placed the crystal in a secondary circuit,
but instead of replacing it by a known impedance he measured the change
in resonant frequency when the resistance or inductance of the eireuit
was varied by a known amount. Beecker?® found the equivalent con-
stants of the crystal by substituting for it a known capacitance and
resistance in parallel.

Bechmann® placed the crystal between the tubes of a two-tube
oscillating circuit, so that in effect his was a filter method. e deter-

* It i here assumed that fo and f» are equal, vespectively, to f, and f, within the
limits of preeision. That this assumption is justified, at least for quartz, can be seen
by applying Eq. (396) to the pairs of mutually inverse points P, and PP, in Iig. 61,
The frequencics arc f, at I3, f, at Py, fw at Py, and f, st Ps.  From Xq. (396),

Jot o =fa+1n

Now for quartz f, = fa, whence f; = fa.

T The advantages gained, in both convenicnee and accuracy, by using two matched
cryatals, onc as an oscillator of slightly variable frequency and the other ag test
erystal in a accondary circuit, should be obvious. The third matched crystal is not
needed when there is available a secondary frequency standard with equipment for
precise checking of the calibration of tho oscillator,
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mined the equivalent constants by substituting a known resistance for
the crystal or by connecting a known inductance and capacitance in
geries.

320. e. The decay method has been used by several experimenters.
Van Dyke85-%6¢ excited vibrations in & erystal and then allowed them to
decay while the crystal was connected through an amplifier to a eathode-
ray oscillograph in such a way that the decay took place virtually while
the crystal was on open circuit. By a special timing arrangement ampli-
tudes of vibration could be compared at known intervals. The logarith-
mic decrement was thus found directly. It was by this method that he
observed the extremely low decrements mentioned in §363. A similar
method has been used by Bosshard and Busch,” H. A. Brown,” and
Becker.4¢

Chaikin® let the current from the vibrating crystal pass through a
contact defector and ballistic galvanometer., He used a rotating disk
earrying a contact to give suitable time intervals and thus measured the
decrement. This method has been employed by Reziankin**? and also
by Gockel;'”* the latter substituted a Helmholtz pendulum for the
rotating disk. The ballistic galvancmeter method is open to the objec-
tion that the impedance in serics with the erystal is not infinite, so that
the measured quantity is not the true open-cireuit decrement.

321. The Effective Parallel Capacitance C,. €, is usually derived
from measurement of the erystal eapacitance at a frequency low enough
for the crystal vibrations to be inappreciable, say at 1,000 cycles/sec,
The quantity thus measured iz, however, the capacitance of the free
crystal (plus the effeet of leads and mounting), and for precise results
it should be diminished by a certain amount, in order to allow for the
fact that the effective dielectric constant of the erystal when vibrating
near resonance if less than that of the frce erystal. This diminution
depends on the type of rescnator.

For an unplated bar, if the frequency fo at zero gap and f, at infinite
gap are known and also the free dielectrie constant &, the effective con-
stant &; can be found from Eq. (332):

. 1K .
Sn o de X 4
Pl » (463)

ki is also the type of dielectric constant to use in expressions for the
equivaleni network of o flexural resonator. In the ease of bars in length-
wise vibration it can be measured directly by applying an alternating
voltage at twice the fundamental frequency, as described in §371.

In the case of thickness vibrations with the ficld in the m-direction,
the effective dielectric constant is k', as for a clamped crystal. Onpe can
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measure the capacitance (C]), of the free erystal at low frequency and
then write € = K(C)o/k;,. For the calculation of £}] see §247, where
it is also suggested that C, for the clamped erystzl can be measured
directly by using a very high frequency.

322. Reduction of Observations for the Determination of the Electric
Constants, We are concerned here chiefly with those methods which
yield the values of the impedance Z] or the admittance ¥; = 1/Z} of
the entire resonator at various frequencies. These quantities are defined
in §260, The simplest and most widely used procedure, sufficicntly
precise for most purposes, is to observe the masimum and minimum
values Y, and Y, (§278), together with the corresponding frequencies
fu and fn,. At these frequencies the resonator is practically a pure
resistance.

Before considering this special case further we shall deal with the more
general problem, in which measurements are made, at a number of known
frequencies in the resonant range, of ¥ and its components g} and b{
(Y1 = ¢, — b1). It is by this means that the most precise results can
be attained.

In this book the term resonant frequency usually refers to the frequency
fo for maximum mechanical admittance, identical with that for maximum
electrical admittance of the RLC branch (§275). The resonant frequency
actually measured is usually f.., the value for maximum admittance of
the entire network (§279). The only other critical frequency near
resonance that is readily found is f,, at sertes resonance (§276); here
the reactance b vanishes, and the resonator becomes a pure resistance.
As may be geen from Table XXI1I, the differences (fo — fm) and (fs — fo)
are proportional to R?, becoming vanishingly small for well-mounted
quartz resonators;* with resonators subject to large losses, whether by
friction in the mounting, radiation, or the nature of the crystal itself,
these differences may have to be recognized. For almost all purposes it
suffices to assume that within the limits of error the resonant frequency,
as measured by a frequency meter, is fo = f. = fm. Moreover, from the
footnote on page 396, it is seen that with equal precision one may set
fo = fa. The quantity that must be measured with highest precision is
the frequency difference fo — f, not the absolute value of fp.

From §269 and Fig. 59 we have the following relations: For the entire
RLCC; network,

wl1 =8 -AF Y =8, FP gi=8 -FW b =3 WP (464)

* For a quartz bar with logarithmic decrement, 1{10™%) the quantity (fo — fa)/fais
less than one part in thirty miliion, If Fig. 61 were drawn to scale, the point F for
most resonators would come so elose to A that points Py, B, and P; would bepractically
indistinguighable,
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For the RCL branch, ¥ = g — jb, where
Y =g, AP g=s,-AM = ¢f b =g -MP (465)

b=bl — w( (465a)
4 b b —

tan ;=%  tanf = - = 222 465b

o Ty g (5650)

Although it is theoretically possible to derive the electric constants
from observations at any two different frequencies, still it is preferable to
use & large numbor of cbserved values of g] and b} and then to plot a
resonance circle. A convenient scale value s, is arbitrarily sclected, and,
for each frequency, FW and WP are laid off with F as origin. A point P
is thus located at each frequency. All such points should lie on a cir-
cular locus, the center C of which is at a distance AF = wo(';/s; below
the horizontal axis through F. If the center does not fall at this level,
it may indicate an error in the measurement of €; nevertheless, the ratio
AF/AB is usually so small that a rough agreement is sufficient. If the
locus is not circular and no source of error in the electrical measurements
can be found, the discrepancy may be traced to varying temperature of
the resonator, especially since the temperature depends on the varying
amplitude of vibration as well as on the surrounding air, as explained in
§315. In the case of Rochelle salt both the piczoclectric and dielectric
constants vary with temperature, and a variation in either of these con-
stants will displace the point P.  If the circular locus is not tangent to the
vertical axis through F, an additional resistance component must be
sought. With Rochelle salt this component may be inherent in C,
itself. The graphical method for allowing for the resistance of the ther-
moelement is described in ref. 107,

If for no other reason, the plotting of the eircular locus is useful for
detecting sources of error and checking the consistency of the observations.

When the circular locus has been drawn, its dinmeter A B gives the
value of K by the relation
1

E=—"in

(466)

323. In order to find L, C, and @, one must make use of the frequency
measurements. The frequency is most conveniently introduced by
means of the formula for frequency scale vaiue ¢ [liq. (8378a)]. Usually
the observed frequency for maximum admittance may be taken as identi-
cal with f,. If very high precision is sought, the following procedure is
recommended: Let /' = «'/2r be the frequency for which b] is nearest to
gero, Velues of #' = o — « for the various observed frequencies are
tabulated. Assuming € and R to have been determined and b] and g]
to be known at each frequency, we can express ¢ by the following formula,
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which is easily derived:
_ 8,R(w — o)
7= Zx(tan & — tan 0)

(467)

Tor each chserved frequency, o is calculated, and the average faken.
When ¢ has thus been determined and f,, the frequency at point B in
Fig. 59, has been found, the frequency carresponding to any point on the
circle can be found according to §267. This knowledge is useful in pre-
dicting the performance of the resonator when it is to be gonnected to a
given external impedance.

From this average value of ¢, L is found from Eq. (378):

_ _ &R
L= Yo (468)

If it is desired to calculate w, very precisely, the following formula

may be used for each observed w:

wtan # — ' tan 0
tan & — tan @

wy = (469)
The final valuc of we is the average of the values thus obtained.
(' i to be caleulated {from wf = 1/LC, and Q from the equation

_ ol _ _ B
Q= R 8ra (470)
The foregoing procedure is necessary only whon the highest possible
precision is sought. For most practical purposes it suffices to use Eqs.
(412) and (410a):
R = 1 C____2Cl(fﬂ_fm)

Yo — T, Im @)
r  Z2af,L
=s~"® = 20ful{¥m — Ya)
L is found from I, = 1/wl(.

If observations are made with a gap, the symbols R’, L/, and ¢’ should
be used in Eqs. (471). R, L, and € can then be calculated by use of the
equations in §232 or §255.

An alternative, but more laborious, procedure for precise determina-
tion of the electric constants has been described by Dye.!?

324. The foregoing section has dealt only with the circle diagram for
the resonator by itself. It is often helpful to add to this diagram the
other constants of the measuring cireuit. Light is thus thrown on the
performance of the circuit as a whole, and conclusions can be drawn
concerning the best values of the circuit constants.
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As an example we consider the crevasse circuit (Fig. 70). Since the

induced emf is effectively in series with Ly, the cirenit may be represented
sain Fig. 72. R;is the resistance of Ly. The emf is applied at the points
a and b, and we seck the graphical representation of the impedance
between, them. Qualitatively, the
diagram can be constructed as in Fig. &£ L C
73, and useful conclusions can be
drawn without knowledge of the exact & It o 6
values of the various constants. For 1l 272
application to a quantitative problem
it 13 best to start with the known value _i IZ’S_
of R and to draw a circle of convenient Fra. 72.-~Equivalent crevasse cireuit
diameter AB. The scale value for with erystal represented by RLCCu.
admittances is then 8 = 1/(R . AB). The voltage is applied at ¢ and &.
In building up the diagram for the other parameters we lay off
AF = —w(Cy/sy and FF' = —w(3/8,. For any point P on the fiducial
circle (§267), corresponding to some frequency in the resonant range, the
admittance ¥ of RLCC Csis given by s, - F'P = Y3,

Sinee L is in series with RLCOC,C,,
it is necessary to treat the problem from
here on in terms of impedances, accord-
ing to method b, §303. The imped-
anceof RLCC\Ciis Zy = 1 /¥ = s, F'F,
where

Sy
w?(Cy + Cy)?

and P’ is the point inverse to P with
respect to ¥, To this must be added
vectorially the external impedance of
LyR,, namely, s, F'F”’ = wl,,

8- OF" = R,

The vectorial sum is OP’ = Z,;/s,, where
Z3 i8 the impedance of

RLCC,CyLa R,

We have left out of account the correc-
tion, usually small, for a thermoelement
or other measuring device in the circuit;
this correction has been treated in a
former paper.1¥?

Before considering what happens to 0P while the crystal is vibrating
and the frequency is varied over the resonant range, it is necessary to

8 =

Fig. 73.~Resonance cirecle diagram
{for the crevasse circuit.
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show how the resonance curve for the tuned circurt L,R.CsC; slone can
be derived. Such a curve can, of course, be found experimentally by
clamping the crystal to suppress its vibrations or by removing it tem-
porarily from the eircuit and connecting a known capacitance of value €
in its place. Either procedure effectively makes the diameter AB shrink
to zero, so that the resonator admittance is simply —w(; = 5+ AF.
Now observations are hardly ever extended over a frequency range of
more than 0.01f,. With a good resonator and a fiducial circle of reason-
able size, AF is usually so short that its variation with w ean be ignored.
As the frequency passes through the
resonant range with the crystal vibrating,
the operating point on the circle goes
01&—-— % around nearly the whole circumference,
g, Ay the point /” remains practically fixed, but
B the changes in FF' and F'F" with frequency

cannot be ignored. C; is likely to be so

I great that FF' is several times as large as

1 AB and hundreds of times greater than
0.?:_ YA AF. Hence, as the frequency increases
L from & value f; on the I-f side of resonance
ol ! 1P £ to f; on the other side, the origin O does
@y not, like ¥, remain practically fixed but
o' [ 57 moves downward through a range that
1
{

n amounts to perhaps a tenth of AB. Small
O, as this range is, it plays a vital part in the
resonance phenomena.
F16. 74.—Vector dingram for reso- IT the erystal does not vibrate, the imped-

nancs eurve of LiR:CyCs. ance Z; becomes s -0A = Z;. The
variation of this quantity with frequency can best be seen from Fig.
74, which is an enlarged view of the portion near the point A in Fig. 73.
Suppose 0 to move from 0; to O; as the frequency increases through the
resonance range from fy to f,. Each vector 0,4, 0,4, ete., is proportional
to the impedance of L.R.CsC., and its reciprocal gives the admittance
¥, = 1/(s. - OF), which, under constant impressed voltage, is propor-
tional to the current I in Ls. A plot of 1/04, V., or I, against f
will therefore be the resonance curve for LyR2C3C:.  The peak of the curve
is at the frequency for which OA is a minimum. The origin O is then
at Oy, and the resonant frequency for LyR;CaCy, say fj = wf/2x, is given
by wply = 1/wi(Cy 4+ C1). f}is usually not far from fo, but it is not neces-
sarily equal to fo. Indeed, the C3L: circuit may be so detuned that f}
lies far outside the range of frequencies constituting the ‘“resonant
range" of the crystal.

Such a curve, with different parameters from those arbitrarily
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asgumed in Fig. 74, which is purely schematie, is shown in Fig. 75. This
figure 18 based on experimental data from Dye* for a 44-ke X-cut bar in
lengthwise vibration. The broken line is the resonance curve for
LoR:C3C,, with fi = 44,000 — 120, fy = 44,000 4 120, and f at about
44,000 — 70, corresponding to the minimum impedance OsA in Fig. 74.
When the crystal vibrates, the impedance vector Z; for RLOC1LaRyCs
at any frequency is obtained by drawing a line from the appropriate
location of O to the point on the circle for the particular frequency in
question. Tt must be remembered that we are now dealing with an
impedance circle (§§270, 303), around which the frequency increases in a
clockwise direction. As the frequency increases from a low value f, to

£y

== iy ~ i

|| f ™ e

NHEERESS
YT
Al |
no
-100 af 100
Fia. 76.—Resonance curves for I: and I’z in the crevasse cirowt, from Dyo.  The frequency

is 44,000 + Af.

s high value fo, the operating point on the circle travels clockwise from
some such position as P, to Py in Fig. 74.  Z; is proportional to O,P, at
frequency f1, to OsP; at the frequengy of resonance for L.R,C:C;, and
finally to OsP; at fa (to avoid confusion these lines are not shown in the
figure). As the frequeney increases from fi, a value is soon reached for
which the line 0,P, passes through the center of the circle. This is the
frequency for minimum Z; or maximum Y, corresponding to maximum
current I} in L, with the crystal vibrating.

The full curve in Fig. 75 shows I} as function of f. The maximum
just referred to comes at fu1, about (44,000 — 90) cycles/sec. Here I}
is glightly greater than I,, eorresponding to the fact that in Fig. 74
0P, < 0.4. A second maximum in T} comes at {44,000 4+ 40) cycles/
sec, corresponding to @,P, in Fig. 74; at this frequency, fas, the points O
and P again find themselves on a line passing through the center of the
circle.

* Ref. 127, Fig. 6.
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Within the small range of intervening frequencies the operating point
swings around the circle, and the impedance Z; passes through a very
sharp maximum at a frequency depending on Cj (if Ly is fixed), but always
very close to fo. This maximum Z; determines the minimum 7; at the
bottom of the crevasse, the frequency here being denoted by f.o. The
graphical relations can now be understood best with the aid of Fig. 73.
It will be recalled that in this figure s, - OP' = Z; at the frequency for
which P’ haa the position shown on the impedance cirele. If now the
frequency is increased slightly, P’ moves clockwise aroufid the circle, O
moves downward, and st a certain frequency the line OF passes through
the center C of the circle. This position of the line is marked 0,CP,
in Fig. 73; 1t is here that Z, has its greatest possible value, for given values
of Lz and €y, The smaller B; can be made, the sharper is the bottom of
the crevasse and the larger the value of I} at this point. In general, if
C, is set at a relatively large value, so that f; is less than fs by 2 or 3 per
cent, the bottom of the erevasse comes at a frequency slightly lower than
fo, and I} is relatively small at this point. When C; is decreased until fj
has the value shown in Fig. 75, the bottom of the crevasse is at frequency
fno, less than fo by an extremely small amount. fuo coincides with fo
when f} is almost, but not quite, as great as f5. It is here that the mini-
mum of I4 has its greatest possible value. As (5 is still further decreased,
Fno becomes slightly greater than f, and the minimum value of f} dimin-
ishes again.

The foregoing conclusions, based on the graphical method, are in
agreement with Dye’s analytical treatment, as illustrated in Fig. 7 in
his paper.

For determining the resonsator constants by the crevasse method it is
usually amply accurate to have fj = fo within a few parts in a thousand
and to assume that f., = fy at the bottom of the crevasse.

826, Impressed Voltage in Parallel with Ls. As has been stated in
§316, in a few cases the coil Ly has been connected directly to the ogcillator
output. The voltage is then applied effectively to the coil, Cs, and the
resonator, all in parallel. The vector representing the coil has com-
ponents s, - F'F" = by, 5, - OF" = g,, where b, and g. are the susceptance
and conductance of L:R; In the graphical treatment, following the
path indicated above, no impedance diagram is necessary; the problem
is handled entirely in terms of admittances. To this extent the graphieal
method is considerably simplified. Each vector like OP' in Fig. 73 is
now proportional to the admitiance ¥; of the entire network, For any
given L: and C;, as the frequency is gradually varied it is found that
there are two minimum values of ¥;, with one sharp maximum between
them. They correspond to the two minima and one maximum in Zs
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when Ls is in series with the rest of the network. The “‘crevasse’ is
converted into a sharp *“pinnacle.”

It can be shown that the frequency difference between the two values
of minimum Yy is greater the larger the value of L, and that it can be
made several times greater than the difference f, — f. between the
parallel- and series-resonance frequencies of the resonator alone. It
was for this reason that DBuilder®' adopted this method in his measure-
ment of resonator constants.
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CHAPTER XVI
PROPERTIES AND TECHNIQUE OF QUARTZ

Marmoreum ne sperne globum. Spectecula fransil
regia, nec rubro vilior iste mari.
infarmis glacies, sazum rude, nulla figurae
gratia: sed raras inter habetur opes.
—CrLAUDIUR CLAUDIANDS.

Because of its physical stability and its superior elastic properties,
quartz is the only piezoelectric crystal that has found important appliea-
tions as a resonator, Its behavior as a resonator will be treated in the
next chapter. For the present we shall be concerned first with the con-
ventions respecting axes and angles and with those physical properties
that are not treated in Chaps. II, VI, IX, XXX, and XXXI. Later
in the chapter will be found a description of methods for orienting raw
crystals, cutting and finishing of plates, and mounting in holders.

3268. Axes and Angles for Right- and Left-quartz. Through the
voluminous literature on the properties of quartz crystals there runs,
like a crack in an otherwise clear crystal, an amazing ambiguity concern-
ing the distinction between right- and left-quartsz, the positive sense of
the directions of the X- and Y-axes, and the positive sense of angles of
rotation. This subject has been discussed at some length in two recent
papers! 53 and a committee of the I.R.IE. has agreed upon a system of
conventions to be recommended for general adoption.* The recom-
mendations of this committee concerning the three matters named above
are in agrecment with the suggestions in the paper by Van Dyke and the
author,''® and they are followed in this book.

The distinetion between right and left (dextro~ and levogyrate)
crystals has been pointed out in §7. The ambiguity in definition had
its origin in the writings of Herschel and Biot, who used opposite defini-
tions of the sense of rotation of a beam of plane-polarized light.f The
convention now adopted is that of Biot, according to which a erystal is
called right when the direclion of rotalion appears clockwise fo an observer
looking back through the analyzer toward the source of light (see also §538).
This definition has the advantage that if a given erystal is “right”

* The report of this committee was approved by the directors of the institute on
June 7, 1944,
t Bosman, ref. B47, p, 649,
406
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