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PREFACE

Interest in the physical properties of piezoelectric crystals, as well

as in their practical applications, has become so great as to make the

need felt for a comprehensive treatise. The present book is an attempt
to meet this need, at least in part.

Piezoelectricity is related by so many ties to all branches of physics

that any general text on tine subject must be to some extent a treatise

on crystal physics. That this book makes 110 attempt to comprise the

whole of crystal physics is evident from tho fact that sucli topics as

metallic crystals and structure sensitiveness arc hardly mentioned.

Even with regard to insulating crystals the discussion is confined mainly
to those with piezoelectric properties. Such matters as thermal proper-

tics and plasticity are treated, if at all, only insofar as they have a bearing

on the central theme. On the other hand, it seemed desirable to include

chapters on elasticity, pyroelectricity, and certain optical effects, pre-

senting the basic principles and those special features which relate them
to piezoelectric phenomena.

Considerable space has been given to the theory oi the piezo resonator,

its equivalent electrical network, and graphical methods for the analysis

of resonator problems.
llochclle salt and other Seignettrj-clectrics have boon treated at some

length, because of the interesting problems they present and their wide

range of present and future applications. The intelligent use of these

crystals in technical devices is impossible without a knowledge; of their

properties and of the accompanying theory. Tho notes on ferro-

magnctism in the Appendix were written as an aid in interpreting the

analogous effects in the Scignetc-electrics. Those who desire only a

brief treatment of the subject will find that various aspects of the proper-

tics and theory of Rochellc salt are summarized in the opening paragraphs
of Chaps. XX, XXIII, and XXV and also in 471 to 470 and 489 to 490.

A new formulation of piezoelectric theory, known as the "polarization

theory," has recently been made by Prof. Hans Mueller and Dr. W. P.

Mason in their attacks on the problem of Rochelle salt. In Chap. XI
the author has shown how this and still other formulations may be

derived from thermodynamic principles and has developed the polariza-

tion theory in general form, applicable to all piezoelectric crystals.

Those who use the book as a general text on the physical properties

and applications of piezoelectric crystals will find their material chiefly

ix
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in Chaps. I to III, V, VII, VIII, X to XV, XVIII, XIX, and XXVIII
to XXXI, supplemented by the opening sections of most of the other

chapters, and by 49 to 52 and 172 to/175.

Since the book is intended for research workers as well as for students

of physics and radio amateurs who wish to learn more about crystals, it

is unavoidable that some portions place more demands than others on

previous acquaintance with physics, mathematics, and electric-circuit

theory. Not much previous scientific training is required for under-

standing most of Chaps. I, II, XVI, XIX, and XXVIII, as weU as the

introductions to many other chapters, in which general surveys of

various topics are given; Chaps. VIII, XIII, XVII, and XX may be

mentioned in particular.

In general, details of electric circuits have been omitted; a few

typical examples are given. Although a laboratory manual on piezo-

electric crystals would doubtless be useful, limitations of space prevent

the present book from going much further in this direction than to

include some paragraphs on the technique of quartz and Rochelle salt.

Here and there in the book will be found material that has not been

published elsewhere. This material includes some of the methods of

approach and development, as well as some original contnbutions to the

field. Mention may be made of considerable portions of Chaps. V, XI,

XII, XIII, XIV. and XVII; the devices suggested in Figs. 105 and 156

and in the footnote on page 417; and some experimental results obtained

by students at Wesleyan University and described in their theses.*

In general, the reference numbers in the text are the numbers of

books or articles listed in the general bibliography at the end of the

book. Book numbers have the prefix B. Special bibliographies, on

electrets and on the effect of X-rays on vibrating crystals, will be found

at the ends of Chaps. IX and XIII, respectively. Text references to

articles in these bibliographies are in square brackets in the respective

chapters.

For permission to use certain illustrations, thanks are extended to the

publishers of the following books and journals and to the authors con-

cerned: Hermann & Cie, Paris; B. G. Teubner, Leipzig; Annalen der

Physik; Bell System Technical Journal; EUktriSche Nachrichten-Technik;

Ergebnisse der exakten Naturwissenschaften; Helvetica Physica Acta; Pro-

ceedings of the Institute of Radio Engineers; Annals of the New York

Academy of Sciences; Physics; Physical Review; Physikalische Zeitschrift;

Proceedings of the Physical Society; Proceedings of the Royal Society

(London); Telefunken-Zeitung; Memoires de la Sotieie vaudoise des sciences

naturettes; Zeitschrift fur technische Physik.

* To a large extent the students' investigations were initiated by Prof. Van Dyke
and carried out under his direction, as parts of an extended program of research.



PREFACE xi

Thanks are due to the following students and assistants, in addition

to those mentioned in the text, for their efficient aid hi experimental

work, calculations, and the preparation of diagrams: H. P. Blakeslee,

A. H. Butler, R. S. Cohen, C. A. Dyer, R. C. Hitchcock, G. J. Holton,
H. H. Hubbell, Jr., R. I. Hulsizer, Jr., R. S. Kardas, G. H. Kent, G. A.

Kolstad, J. F. Muller, D. O. North, E. T. Peabody, Miss E. Ruthven

Tremain, J. E. Walstrom, M. E. White, and P. D. Zottu. Special

recognition should be given to the aid rendered by Dr. H. Jaffe in experi- .

mentation and computation and particularly in the assembling of much
of the material for the chapters on Rochelle salt and atomic theory. For
aid in preparing the data on the structure of quartz the author is indebted

to G. J. Holton.

Grateful acknowledgment is made to Dr. W. P. Mason and the Bell

Laboratories for diagrams, elastic and piezoelectric equations, and unpub-
lished experimental data; to J. K. Clapp and the General Radio Company
for the use of the photograph shown in Fig. 103 and for technical infor-

mation; to the Brush Development Company for Rochelle-salt crystals

and much valuable information; and to the Naval Research Laboratory
for access to their bibliography on crystals.

Many sections of the book have been read by the author's students,
whose comments and criticisms have been very stimulating. Certain

portions have been examined by Prof. Hans Mueller, Prof. V. E. Eaton,
Dr. W. P. Mason, and Dr. Hans Jaffe, from whom many helpful sug-

gestions have been received. The author is especially indebted to

Prof. K. S. Van Dyke and Dr. W. M. Cady for much patient perusal of

manuscript, constructive criticism, and many invaluable suggestions

during the growth of the book. The careful reading of the manuscript
in its final form by Lieut. F. H. Rathmann, USNR, of the Naval Research

Laboratory, has also led to various emendations. To all these good
friends the author is very grateful. For such errors as may still remain
in the text he is responsible, not they.

WALTER GUYTON CADY.
MlDDLETOWN, CONN.,

January, 1946.
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SYMBOLS AND ABBREVIATIONS

References are given to sections in which the symbols are defined or

first used.

A Amplitude of vibration, real or complex, 56.

a Coefficient of linear thermal expansion, 20.

Chnht
bmh Piezoelectric stress and strain constants used in the polarization

theory, 189.

o, 6, c Crystallographic axes, 4.

a, b, c Intercepts of the unit face on the a-, b-, c-axes, 4.

B Dielectric saturation coefficient, 449, 452.

b Breadth of a bar or plate; electric susceptance (application to the

resonator in 269).

C Electric capacitance; for resonator, see R, L, C, Ci below.

<72 Capacitance of gap between crystal and electrodes, 284.

c Wave velocity, 55; generalized symbol for an elastic stress coefficient,

201.

Chk Elastic stiffness coefficient, 26; superscripts E, P, D, and * denote the

values at constant electric field, constant polarization, constant

total displacement, and constant normal displacement, respectively,

as explained in Chap. XII.

D Electric displacement.

dmh Piezoelectric strain constant, 23, 124.

E Electric field strength, 20.

e Thickness of a plate or bar.

e' Electric spacing e + kw, 110.

e^ Effective electric spacing of a resonator, 229, 249.

mh Piezoelectric stress constant, 23, 124.

F Frictional factor, 56; internal field strength, 113, 485.

/ Frequency ;/ ** o/2r = fundamental frequency, 58.

/,, fp Frequencies at series and parallel resonance, 276.

fm t fn Frequencies for maximum and minimum admittance, 279.

Equivalent stiffness, 62.

g Electric conductance (application to a resonator in 269).

H Magnetic field strength ;
wave constant *

//, 362.

h Order of harmonic, 55; ratio of any frequency / to the fundamental

frequency /o, 61.

1 Electric current; moment of inertia, 74; magnetic polarization, 548.

/ Mechanical equivalent of heat, 23.

j (-1)*.
K The Boltzmann constant, 114.

k Wavelength constant, 56; dielectric constant permittivity, 103.

ki Effective dielectric constant for lengthwise vibrations, 229.

km Dielectric constant for field in any direction m; other special suffixes

are explained in 105, 107, 430.



xxu SYMBOLS AND ABBREVIATIONS

k', k" Dielectric constants, respectively, of a crystal free and clamped,

104, 124, 204.

kc/sec Kilocycles per second; occasionally, when there is no ambiguity,

the term is abbreviated to kc.

L The Langevin function, 114, 548; self-inductance (for self-induct-

ance of a resonator see R, L, C, Ci below).

I Length.

I, m, n Direction cosines.

M Equivalent mass of a resonator, 62.

ma Milliampcres.

me /sec Megacycles per second; occasionally, when there is tio ambiguity,

the symbol is abbreviated to me.

mf, mmf microfarad, micromicrofarad.

N Number of molecules per unit volume, 113; dynamic torsional

stiffness, 74.

N, Static torsional stiffness, 35.

n shear modulus, 24; measure of dissonance (n = w w), 58.

P Electric polarization.

P Spontaneous polarization.

p Pyroelectric constant, 20, 516; coefficient of the generalized Langevin

function, 114, 552.

ppm Parts per million.

Q Quantity of heat, 20; torque, 35; electric charge; quality factor -

7T/5 - uL/R, 56, 269.

Qh Quality factor at harmonic h, 232.

q Electrocaloric constant, 523; coefficient of the generalized Langevin

function, 114, 552; general stiffness factor in vibrational equations,

55; thermoelastic coefficient, 20, 23.

g', q Stiffness factors with and without a gap, respectively.

R
1 L, C, Ci Equivalent electric constants of a resonator, 232.

R 1

, L', C", C{ Same for a resonator with gap, 232.

R'k , L(, C'h Equivalent constants for overtone of order h, 232.

Rs , X, t C, Equivalent series constants, 271.

Rp,
Xp, Cp Equivalent parallel constants, 273.

r Electromechanical ratio, 233.

s Generalized symbol for an elastic compliance coefficient, 20, 201.

SM Elastic compliance coefficient, 26; special superscripts same as for c*&.

sy Scale value for admittances on the resonance circle, 266.

s. Scale value for impedances on the resonance circle, 270.

T Absolute temperature; torsional compliance, 35.

t Time; temperature in degrees centigrade.

U Constant of the gap effect, 237.

M, v, w Components of displacement of a particle, 26

V Potential; potential difference.

v Velocity of a particle in vibration, 58.

W Equivalent frictional coefficient of a resonator, 62.

w Total gap between crystal and electrodes, 110.

X Generalized symbol for a stress, 20, 201; electric reactance (for

reactance of a resonator see 232).

Xk ' A component of stress, 25.

X, K, Z Orthogonal axes, 5.

X', Y', Z' Rotated orthogonal axes, 38.
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Driving stress, with orientation indicated by n, in resonator theory,

x Generalized symbol for a strain, 20.

Xh A component of strain, 26.

Xj y, Coordinates in space.

Y Young's modulus, 24; electric admittance (for admittance of a

resonator see 232, 265, 269).

Z Electric impedance (for impedance of a resonator see 232, 265, 269).

a Damping factor or attenuation constant, 56; molecular polarizability,

113; temperature coefficient (usually with a subscript), 85, 357.

a, 0, 7 Direction cosines.

7 Internal field constant, 113, 484; parameter in theory of forced

vibrations, 57; of thickness vibrations, 250.

8
***

Logarithmic decrement per cycle, 56.

d, Generalized symbols for piezoelectric constants d?* and cm*, used when
it is desirable to omit suffixes, 20, 201, 228, 246.

Second thermodynamic potential, 23.

i\ Dielectric susceptibility, 104; special suffixes and superscripts are

in general the same as for k, but see also 449, 450, 454.

171 Clamped susceptibility of Rochelle salt, 450.

Angular parameter for expressing general orientation of a plate, 52.

Angle of rotation, 38, 51; phase angle, 234.

0,h Coefficients of dielectric impermeability, 106.

tt , 0i Upper and lower Curie temperatures.

& A small departure of temperature from a standard value, 20.

K Volume elasticity, 24.

X Wavelength; Lame* coefficient, 31.

H Moment of a dipole, 113.

First thermodynamic potential, 23; vibrational displacement of a

particle, 56.

p Density; radius of resonance circle, 266.
*

^ Summation over integral values of m from 1 to h.

m
cr Surface density of electric charge; Poisson's ratio, 24; scale value for

frequency, 267.

<r' Scale value for frequency, 268.

T Torsional strain, 35.

$ Force acting on the equivalent mass M of a resonator, 62.

Angle of azimuth, 51.

X Reciprocal susceptibility, 106; special suffixes and superscripts same
as for 17.

^ Angle of skew used in expressing the general orientation of a plate,

52.

w 2ir/ Angular velocity or pulsatance; special subscripts same as for /.

~ Cycles; cycles per second; order of magnitude.

Approximate equality.
m Identical with.

\ Some of the foregoing symbols, as well as others not listed, are used

ijocally for special purposes. In such cases they are suitably defined.





PIEZOELECTRICITY
CHAPTER I

INTRODUCTION

Lorsqu'une idee nouvelle, naissait dans Vcsprit du Vinci, elle ne s'y engendrait pas
d'elle-mdme et sans cause; elle y etait produite par quelque circonstance exttrieure, par
Vobservation d'un phenomene naturel, par la conversation d'un homme, plus souvent encore

par la lecture d'un lime. P. DUHEM.

Man's earliest production of an electrical effect came through the

agency of mechanical forces. A mysterious attractive power.was Joiown

by the ancient Greeks to beji property of elcktron (amber) when_rubbed.
*

In later ^centuries,, as more was learned about electricity, its various

manifestations were distinguished by speciaTprefixes, as galvanic, voltaic,

animal^ frictional, contact, faradic, tKermo-, photo-, ballo-, tribo-, actino-,

pyro-, piezo-, or strepho-, some of which are now obsolete or abandoned.

It had long been observed that a tourmaline crystal when placed in

hot ashes first attracted and then repelled them. This fact first became
known in Europe about 1703, when tourmalines were brought from

Ceylon by Dutch merchants, but the attracting power of the crystal

seems to have been recognized in Ceylon and India from time immemorial.

It was sometimes called the "Ceylon magnet," and in 1747 Linnaeus

gave it the scientific name lapis clcctricus. Its electrical character was
established in 1756 by Aepinus, who noted the opposite polarities at the

two ends of a heated tourmaline crystal. In 1824 Brewster, who had
observed the effect with various kinds of crystals, introduced the name

"pyroelectricity." Among the crystals with which he found the pyro-
electric effect was Rochelle salt. The first definite theory of pyro-

electricity which most subsequent investigations have tended to confirm

was that of Lord Kelvin, who, noting that Canton in 1759 had observed

opposite polarities on the freshly exposed surfaces of a fractured tourma-

line crystal, postulated a state of permanent polarization in every pyro-
electric crystal. According to this theory the pyroelectric effect is simply
a manifestation of the temperature coefficient of this polarization.

* Although a knowledge of this property of amber is frequently attributed to

Thales in the sixth century B.C., the first authentic account that has come down to us

appears to be ia Plato's (427-347 B.C.) "Timaeus," Sec. 80c.

1
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Following a conjecture of Coulomb's that electricity might be pro-

duced by pressure, Hauy (the "father of crystallography") and later

A. C. Becquerel performed experiments in which certain crystals showed

electrical effects when compressed. Their findings especially the fact

that positive results were reported with such non-piezoelectric crystals as

calcite led, however, to the conclusion that what they observed was

chiefly, if not entirely, contact electricity.*

Credit may confidently be given to the brothers Pierre and Jacques

Curief for the discovery in 1880 that some crystals when compressed in

particular directions show positive and negative charges on certain por-

tions of their surfaces, the charges being proportional to the pressure and

disappearing when the pressure is withdrawn.

This was no chance discovery. Pierre Curie's previous study of the

relation between pyroelectric phenomena and crystal symmetry led the

two brothers not only to look for* electrification from pressure but to

foresee in what direction pressure should be applied and in which classes

the effect was to be expected. It is fitting to quote here, in translation,

the opening paragraphs of their paper in which the discovery was

announced.

"Those crystals having one or more axes whose ends are unlike, that is to say

hemihedral crystals with oblique faces, have the special physical property of giving

rise to two electric poles of opposite signs at the extremities of these axes when they

*
Nevertheless, there was something prophetic in a statement by A. C. Becquerel

(Bull. soc. philomath. Pan's, ser. 3, vol. 7, pp. 149-155, 1820) quoted at the beginning

of Chap. VIII.

f Pierre Curie was born in Paris on May 15, 1859. After attending the Sorbonne,

where he served as preparator in physics and received the master's degree and later the

degree of doctor of science, he was appointed to a professorship in the Municipal

School of Physics and Chemistry in Paris in 1895, and in the same year he married

Marie Sklodowska. In 1900 he became a professor at the Sorbonne. In addition to

his famous work on radioactivity in collaboration with Mme. Curie and on piezo-

electric and other properties of dielectrics with his brother, his researches included the

principles of symmetry, the design of various measuring instruments of great deli-

cacy, and especially the effects of temperature on magnetism. He died on Apr.

19, 1906.

Paul-Jacques Curie was born in Paris in 1855. At the age of twenty he became

preparator of chemistry courses in the School of Pharmacy and later preparator in the

laboratory of mineralogy under Friedel, at the Sorbonne. He was associated with

Friedel in a series of publications on pyroelectricity. It was in this laboratory that

he and Pierre Curie discovered piezoelectricity in 1880. For this discovery the two

brothers were awarded the Plante* prize in 1895. In 1893 Jacques Curie became head

lecturer in mineralogy at the University of Montpelier. His last work in physics

was his determination of the piezoelectric constant of quartz in 1910. Suffering from

a serious deafness, he retired in 1925 and died in 1941. (The information concerning

Jacques Curie was obtained through the courtesy of his son, Prof. Maurice Curie.)
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are subjected to a change in temperature: this is the phenomenon known under the

name of pyroelectricity.

"We have found a new method for the development of polar electricity in these

same crystals, consisting in subjecting them to variations in pressure along their

hemihedral axes."

These remarks are followed by a brief account of the preparation of

flat plates cut according to the proper orientation, provided with tin-foil

electrodes, and connected to an electrometer. Deflections were observed

on the application of pressure to plates from the following crystals : zinc

blende, sodium chlorate, boracite, tourmaline, quartz, calamine, topaz,

tartaric acid, cane sugar, and Rochelle salt. In later papers the Curies

described piezoelectric effects in other crystals, the first quantitative

measurements of the effect in quartz and tourmaline, practical applica-

tions of piezoelectric crystals, and the verification of the converse effect,

to which reference will presently be made.

Great interest was immediately aroused in scientific circles. In par-

ticular, Hankel took exception to the Curies' belief in a one-to-one

correspondence between the electrical effects of thermal and mechanical

deformation. He contended that the new effect obeyed special laws of

its own and proposed the name "piezoelectricity," a term that was

promptly accepted by all, including the Curie brothers themselves.

This question of the relation of pyro- to piezoelectricity has been the

object of much discussion, especially on the part of Voigt. He pointed
out that a distinction must be made between "true" pyroelectricity

caused by a change in temperature alone and the "false" pyroelectricity

that is due to the deformation which accompanies a change in tempera-
ture and which is therefore of piezoelectric origin. Nor does it in any
sense detract from the brilliance of the Curies' discovery to say that the

first manifestations of piezoelectricity were observed centuries before

their time, under the guise of electrification through heat.

The pyroelectric effect is so closely related to the piezoelectric that

we shall have frequent occasion to refer to it. According to the dic-

tionary (Webster's "New International Dictionary," 1939) the two
effects are thus defined:*

* So many mispronunciations of "piezoelectricity" are current that it may be

well to point out that according to both British and American dictionaries the first two

syllables should be pronounced like the words "pie" and "ease." Although most
authorities place the accent on the first syllable, in the 1934 and 1939 editions of

Webster it is shifted to the second. This change deserves general acceptance, as

it makes the word a little more euphonious, besides conforming to the practice in

European languages.

The prefixes "piezo-" and "pyro-" are derived from Greek words meaning
"to press" and "fire," respectively.
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"Piezoelectricity. Electricity or electric polarity due to pressure, especially in a

crystallized substance, as quartz.

"Pyroelectricity. A state of electric polarity produced on certain crystals by
change of temperature. . . ."

An electromechanical phenomenon somewhat related to piezoelec-

tricity is eleclrostriction, for which the dictionary offers this definition:

"Electrostriction. A deformation produced by electric stress, as the deformation

of a Leyden jar on being charged."*

Piezoelectricity may be more precisely defined as electric 'polarization

produced by mechanical strain in crystals belonging to certain classes, the

polarization being proportional to the strain and changing sign with it.

This statement defines the direct piezoelectric effect. Closely related to it

is the converse effect (sometimes called the "reciprocal" or "inverse"

effect), whereby a piezoelectric crystal becomes strained, when electrically

polarized, by an amount proportional to the polarizing field. Both

effects are manifestations of the same fundamental property of the

crystal, and they occupy a position among those physical phenomena
which are reversible. It is therefore only for historical reasons that the

term "direct" is applied to one rather than the other of these two effects.

The converse piezoelectric effect was not foreseen by the Curie

brothers. In the year following their discovery of the direct effect,

Lippmann discussed the application of thermodynamic principles to

reversible processes involving electric quantities. He treated the special

cases of electrostriction, pyroelectricity, and the Curies' recent discovery,

and he asserted that there should exist a converse phenomenon corre-

sponding to each of these effects. All these predictions have been veri-

fied. The converse of pyroelectricity is the electrocaloric effect, which,

also on thermodynamic grounds, had already been predicted by Lord

Kelvin in 1877. Before the end of 1881 the Curies had verified the con-

verse piezoelectric effect, and in a later paper they showed that the

piezoelectric coefficient of quartz had the same value for the converse as

for the direct effect. They also called attention to the analogy between

the interaction of the direct and converse effects and Lenz's law.

The converse piezoelectric effect has sometimes been treated as a

special type of electrostriction. Although the dictionary definitions

given above may appear to justify this treatment, the two phenomena are

essentially different. So far as external effects are concerned, the dis-

tinction lies in the fact that the deformations due to electrostriction are

proportional to the square of the applied electric field and therefore are

independent of the direction of the field. That is, to show the effect a

* For more precise definitions of pyroelectricity and electrostriction see 515 and
137.
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substance need have no special peculiarity in its internal structure.

Indeed, electrostriction is a universal property of dielectrics, whether in

the gaseous, liquid, or solid state. The effect is always extremely minute,
and we shall have but little occasion to refer to it. On the other hand,

piezoelectric deformations are directly proportional to the electric field

and reverse their sign upon reversal of field. This is possible only in

substances that possess a certain inherent "one-wayness." Such sub-?

stances are anisotropic, and the only materials with which we shall be

especially concerned are those crystals which possess the requisite degree
of asymmetry.

The phenomenological theory of piezoelectricity is based on thermo-

dynamic principles enunciated by Lord Kelvin. His penetrating and

many-sided applications of thermodynamics to crystals marked a great

advance in the study of crystal physics. The piezoelectric formulation

was carried out more completely by P. Duhern and F. Pockels and most

fully and rigorously by Woldemar Voigt in 1894. To this formulation is

devoted one of the chapters in Voigt's monumental "Lehrbuch der

Kristallphysik,"* which appeared in 1910 and has ever since been the

bible for workers in this field. By combining the elements of symmetry
of elastic tensors and of electric vectors with the geometrical symmetry
elements of crystals he made clear in which of the 32 crystal classes piezo-

electric effects may exist, and for each class he showed which of the

possible 18 piezoelectric coefficients may have values differing from zero.

For a third of a century after its discovery piezoelectricity remained a

scientific curiosity, unmcniioned in many textbooks, and furnishing

material for a few doctor's theses. Even among crystallographers it has

received less attention than pyroelectricity, although it was the chief

cause of most observed pyroelectric effects, and, properly applied, it

might have served as a valuable aid in crystal classification.

Then came the spur of wartime activity. In France, cradle of piezo-

electricity, Langevin conceived the idea of exciting quartz plates elec-

trically to serve as emitters, and later also as receivers, of high-frequency

(h-f) sound waves under water. At the hands of Langevin and others the

"echo method" has become a valuable means of locating immersed

objects and of exploring the ocean bottom.

Langevin thus became the originator of the modern science and art

of ultrasonics. Acoustic waves having frequencies of a million or more

are now widely used, both for measuring various elastic and other proper-

ties of matter and for many practical applications in chemistry, biology,

and industry. The source of radiation may be either a magnetostriction

*
Throughout the present book, references to the "Lehrbuch" will be indicated

simply by Voigt, "Kristallphysik," or "Lehrbuch."
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oscillator or, more commonly, especially for the highest frequencies, a

vibrating piezoelectric crystal plate (usually quartz). For investigating

the properties of gases and liquids there is the acoustic interferometer,

first described by G. W. Pierce in 1925. Elastic properties of liqxiids and

solids are studied by various adaptations of the principle of optical diffrac-

tion produced by h-f compressional waves, discovered in 1932 inde-

pendently by Debye and Sears and by Lucas and Biquard.

The exigency of the First World War led to experiments in various

laboratories on the properties and practical applications of piezoelectric

crystals. As is well known, these investigations have most fortunately

borne fruit in the form of many useful peacetime devices. In the course

of observing the characteristics of Rochelle-salt crystal plates for use in

underwater signaling, the author was led in 1918 to examine certain

peculiarities in their electrical behavior in the neighborhood of frequencies

of mechanical resonance. Out of this experience arose the development
of the piezoelectric resonator and its various uses as stabilizer, oscillator,

and filter, for which quartz was soon found to be the most suitable

material. Their operation involves a combination of the direct and con-

verse effects. At the hands of many experimenters, resonators of quartz

or tourmaline have been constructed that respond to frequencies from

the audible range to over a hundred million cycles per second. On the

purely scientific side, by means of observations with piezo resonators

knowledge has been gained of the nature of vibrations in crystalline media

and of the dynamic values of the elastic and piezoelectric constants.

Composite resonators have also been constructed, in which, for example,
a bar of metal is kept in resonant vibration by means of an attached

piece of quartz. By this means the elastic constants and frictional

coefficients of various solids have been determined.

Among the technical developments of resonating crystals may be

mentioned their almost universal use in radio transmitting stations, either

for direct control of frequency in the form of piezo oscillators or indirectly

as monitoring devices. The combination in quartz of extraordinarily

low damping with sufficiently strong piezoelectric properties to react

upon and control the frequency of vacuum-tube generators results in a

method for obtaining frequencies much more constant than is possible

by electrical tuning alone. Certain disturbing effects due to coupling
between different modes of vibration, and also the effect of changing

temperature upon frequency, can be largely avoided by cutting quartz

plates according to special orientations. This precision reaches its culmi-

nation in the quartz clock, in which a vibrating quartz plate or ring replaces

the swinging pendulum, resulting in a timepiece more constant than the

best astronomical clocks. Piezo resonators and oscillators have proved
useful in many kinds of electrical measurement. Among recent appli-
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cations is their use as electric filters for communication lines and radio

receiving sets.

At the same time that the crystal resonator and its applications were

being investigated, there was hardly less activity in the development of

non-resonant applications of quartz and Rochelle salt and, to a less

extent, of tourmaline. Many devices have been invented, especially in

Germany and Japan, for the measurement of explosive pressures and of

velocities, accelerations, forces, vibrations of machinery, etc. In the

United States the progress has been chiefly in the field of acoustics, by

taking advantage of the extremely great piezoelectric effect in Rochelle

salt. By the ingenious adaptation of plates from Rochelle-salt crystals,

microphones, telephone receivers, phonograph pickups, record cutters,

and other devices have been made that are in most respects superior to

their elctromagnetic predecessors.

The revival of interest in piezoelectricity has led to a vast amount of

research on the electrical properties of Rochelle salt. This substance has

turned out to be the most remarkable of all known dielectrics and the

prototype of a group of crystals known as the "Seignette-electrics." Our

reasons for devoting to these what may seem a disproportionate amount

of space are the close relation of their unique behavior to their piezo-

electric properties, their analogy to ferromagnetic materials, and the

important place they occupy in the theory of polar dielectrics. For these

reasons we shall attempt in later chapters to summarize and correlate the

chief results that have thus far been achieved. Investigations in this

field have been most active in the United States, Russia, and Switzerland.

With respect to an atomic theory of piezoelectricity only modest prog-

ress has hitherto been made. Early attempts were put forward by the

Curies, Riecke, and Voigt and especially by Lord Kelvin. The most

rigorous treatment is that by M. Born, who in his general theory of lattice

dynamics included a consideration of dielectric, pyroelectric, and piezo-

electric effects. He applied his theory to a few types of cubic lattice.

In 1920 he published, with E. Bormann, the first theoretical calculation

of the piezoelectric constant of zinc blende.

X-ray analysis has thrown considerable light on tne arrangement of

atoms in quartz. By this means Bragg and Gibbs in 1925 arrived at a

qualitative explanation of piezoelectric polarization in this crystal. The

effect of vibrations in quartz plates upon X-ray reflection patterns has

also been studied, by both the Laue and the Bragg methods. As to

Rochelle salt, its structure is too complex for X-rays to be of much help

in accounting for the piezoelectric properties, although they have thrown

some light on the problem of the internal field. The molecular theory

of the Seignette-electrics is still at a very early stage.

Piezoelectricity has been called by Voigt the most complicated
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branch of crystal physics. Considered only in its phenomenological

aspect, quite apart from the difficulties with which the atomic theory is

beset, a complete description of the piezoelectric properties of a crystal

involves a treatment in terms of three different types of directed quan-
tities. These are electric (field and polarization), elastic (stress and

Professor Woldemar Voigt. (The portrait was obtained through the courtesy of his

grandson, Dr. E. Mollwo, of the University of Gottingen.)

strain), and the piezoelectric coefficients by which they are related. In

mathematical language the three types are, respectively, vectors (first-

order tensors) and tensors of the second and third orders. With masterly
skill and great thoroughness Voigt worked out all the essential details of

these very intricate relations. He laid an impregnable and permanent

groundwork for the labors of all succeeding workers in this field.*

* "Woldemar Voigt was born in 1850. He studied under F. Neumann, to whose
influence his interest in crystal physics was due. In 1875 he became Ausserordent-

licher Professor of physics at Konigsberg, and in 1883 professor of theoretical physics
at Gottingen, where he remained until his death in 1919. lie served twice as Rektor

of the University of Gottingen. Besides his monumental work in the physics of

crystals, he made notable contributions in elasticity, thermodynamics, and magiieto-
and electro-optics" (translated from C. Runge, Physik. Z., vol. 21, pp. 81-82, 1920).

Voigt came very near to being the originator of the piezo resonator. In the

"Lehrbuch" he gave the differential equations for clastic vibrations in crystals,

without, however, mentioning the bearing of the piezoelectric effect on such vibrations.

He mentioned the use of h-f in the measurement of dielectric constants, recogniz-

ing the fact that anomalous results are to be expected at frequencies of molecular

resonance. What he did not foresee was that similar anomalies would be found with

all vibrating piezoelectric crystals whenever the applied frequency coincided with that

of a normal vibrations! mode of the entire crystal specimen. It was the electronic

generator of h-f alternating currents, supplanting the induction coil of Voigt's day,
that paved the way for the advent of the piezo resonator.



CHAPTER II

CRYSTALLOGRAPHY

An engineer gave me an ashtray
Made of a chunk of smelted bismuth.

The ore, when cooked,

Crystallizes in cubes and terraces,

Condenses in sharp stairs and corners,

Like the ruins of a mimic Cuzco.

O basic and everlasting geometry I

The cordillera itself

In the slack and purge of fire

Boils into right angles,

Takes conventional Inca pattern.
The greatest disorder on earth

Has the instinct of Perfect Form.
CHRISTOPHER MORLBY.

1. In speaking of bismuth, it may be said at the start that the great

majority of metallic elements and alloys crystallize with structures that

are too highly symmetrical to show the piezoelectric effect, even if they
were not conductors of electricity. Among the few exceptions are

selenium and tellurium, which are commonly assigned to the trigonal

holoaxial class, to which quartz belongs. A few intermetallic compounds,
as MgTe and CdSe, also belong to a piezoelectric class, but they are rather

salts than metals.

No familiarity with any branch of crystal physics is possible without

at least a slight acquaintance with the principles of crystallography.

This is especially true of piezoelectricity, if for no other reason than that

without such acquaintance confusion and ambiguity are sure to arise

in the specification of crystal faces, angles of cuts, etc. Until the recent

growth of literature on piezo resonators, such matters as the definition

of positive directions of crystal axes were minutiae that concerned only

crystallographers and the few workers in the field of crystal physics.

Such conventions as had been advocated were in a widely scattered

state, not readily available to physicists. It is therefore not entirely

surprising that so many investigators of piezoelectricity have been

inclined to state their own particular "conventions" with regard to

axes and angles if indeed they did not fail altogether to be specific.

It is hardly an exaggeration to say that the only general agreement seems
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to have been in ignoring such definitions as had already been provided

on good authority. This practice has led to considerable confusion,

especially with regard to the recent oblique cuts in quartz. It is highly

desirable, in dealing with elastic and piezoelectric coefficients, that a

standard set of definitions concerning the positive sense of axes and of

angles be universally adopted as soon as possible. It is hoped that the

present treatment may prove to be a step in the right direction.

In this chapter only those crystallographic principles are given that

are needed for an understanding of the succeeding portions^of the book.

For a general introduction to the subject the reader may consult one or

more of the references given at the end of the chapter.

The ideal crystal consists of identical unit cells, each similarly situated

with respect to its neighbors, forming a crystal lattice. The unit cell is the

smallest parallelepiped, identical with all others in dimensions and atomic

content, out of which the crystal could be constructed. The particular

group of atoms contained in each cell is usually chosen to conform to the

structural cell, as revealed by X-rays, whenever the structure is known.

The edges of the unit cell are parallel to the crystallographic axes, and,

as we shall see, its relative dimensions are simply related to the unit

distances along these axes.

There are, for any given crystal, various directions in which planes,

known as "net planes/' can be conceived as drawn, such that each plane
is populated with corresponding points of unit cells regularly arranged in

rows and columns. The crystal differs from isotropic substances in

external appearance, since in its normal growth certain of these planes

become the faces of the crystal. A more important difference is the fact

that the physical properties of a crystal vary from one direction to

another. This last statement holds for all anisotropic bodies, even a

piece of wood, which has different properties along and across the grain.

The belief is now held that ideal crystals exist rarely if ever. In the

first place an "ideal crystal," for which there existed an exact correspond-

ence between external and physical symmetry, would have to be grown
in entire absence of external forces, such as gravity and stresses due to

changing temperature; and second there is the possibility that the net

planes may not be actually continuous throughout the crystal, i.e., the

crystal may have a "secondary structure," as if broken into small frag-

ments similarly oriented and closely joined, but not quite alike in size.

Since this book deals chiefly with large-scale phenomena in actual crystals,

we shall be but little concerned with the question of departure from

perfect homogeneity, except when we encounter the phenomenon of

twinning, and the existence of a so-called "domain" structure in certain

crystals.

The Law of Constancy of Angles. From what has been said it should



3] CRYSTALLOGRAPHY 11

be clear that, however much actual crystals of the same species differ in

size and in the relative development of faces, the angles between cor-

responding faces are constant. This constancy of crystal angles is a

fundamental law of crystallography.

2. Neumann's Principle. The most fundamental principle of crystal

physics is the correspondence between geometrical form and physical

properties, first pointed out by F. Neumann. It is the basis of the

phenomenological theory of every branch of the subject. According to

this principle, when the elements of symmetry that characterize the out-

ward form of the crystal are known, the symmetry of its physical prop-

erties can be predicted. Any given physical property, as density or

thermal expansion or elasticity, may be of higher symmetry than that

of the crystal form (approaching more closely to that of an isotropic

body), but it cannot be of lower symmetry.
It is, of course, not to be expected that every specimen will indicate

its exact classification by visible faces. Fundamentally the symmetry
is that of the atomic structure of the unit cell; and while on a given

specimen any of the faces constituting the external symmetry may be

present, still the ensemble of all recorded faces is rarely if ever found.

For example, crystals of quartz and Rochelle salt frequently occur with-

out a visible trace of those faces which alone betray the asymmetry on

which their characteristic piezoelectric properties depend. The extent

to which such faces are developed bears no relation to the magnitude of

the corresponding physical effects. When present, the faces of low

symmetry in Rochelle salt are even less conspicuous than the correspond-

ing ones in quartz; yet the piezoelectric effect is hundreds of times

greater.

Neumann's principle is a rule that works both ways. From the

study of physical properties the proper crystallographic classification has

been made of crystals that were so rare or so imperfect that an insufficient

number of faces could be identified. In some cases the morphology as

indicated by the physical properties has later been confirmed through

the finding of new specimens with hitherto unidentified faces.

3. The classification of crystals is somewhat analogous to that of plants

or animals into various orders, families, genera, and species. A very

important difference is that, while the number of possible biological

groups is apparently limitless, the number of possible crystal groups is

restricted by geometrical laws to a knpwn finite number. The nearest

approach to freedom from restriction is in the variety of atomic arrange-

ments capable of forming crystals, and this in turn is limited only by

the number of ways in which atoms can form compounds. Nevertheless,

every crystal, whatever its composition, must belong to some one of the

finite number of subdivisions.
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The geometrical basis for the classification of crystals can here be

outlined in only the briefest terms. Bravais showed that the number of

types of polyhedron that will completely fill all space is 7. These

polyhedra are usually represented in skeleton form, as an array of points,

one of which comes at each vertex of the polyhedron. These seven

arrays are the units of the seven simple space-lattices. Bravais also

found that, when face-centered and body-centered polyhedra are taken

into account, the number of possible space-lattices is increased to 14.

Each polyhedron is a unit cell. It is characteristic of space-lattices that,

if the entire lattice is moved without rotation until any given point

reaches the position occupied by some other point in the original position

of the lattice, all points are found to coincide with points in the original

position. The lattice thus repeats itself, and such a translation is the

simplest of all covering operations. Other covering operations for the

space-lattices are rotations through certain angles about certain axes

and reflections with respect to certain planes. From the simple lattices

are evolved the seven crystal systems described below; the edges of a

polyhedron are the crystallographic axes, the faces are the pinacoids, or

basal planes, of the crystal. Each polyhedron of a simple Bravais space-

lattice represents the class of highest symmetry (the holohedral class) for

the system in question.

In general, the points that form the space-lattices do not represent

the positions of atoms. They serve merely to define the unit cells, within

which the atoms may be situated in any configuration. The symmetry
characteristics of the unit cell, and hence the elements of symmetry of

the crystal as a whole, depend on the arrangement of the atoms. As

diverse as are the atomic configurations in the thousands of different

crystals, nevertheless they can all be classified in a finite number of

space-groups, all the configurations in each group having certain geo-

metrical characteristics in common. Historically, the theory of space-

groups was fully developed long before X-rays had made possible the

determination of the arrangements of the atoms. It is a purely geo-

metrical theory. The evolution of the space-groups out of the Bravais

space-lattices consists essentially in inserting further points in the unit

cell of the space-lattice, such that the pattern can be made to repeat itself

by a combination of rotation and translation (screw axes), or of reflection

in a plane and translation (glide planes), in addition to the cyclic axes

of symmetry and reflection planes that characterize the Bravais lattices.

Through the labors of Sohncke, Fedorov, Schoenflies, and Barlow, it has

been proved that there are in all 230 such configurations. These con-

figurations constitute the 230 space-groups.

The space-groups are divided into 32 point-groups, each possessing

certain symmetry characteristics with respect to a point (6). These
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are the same as the 32 classes of the crystallographer. Each point-group
is commonly designated by a symbol indicating the particular rotations

about an axis and reflections in a plane that constitute the covering

operations for that group. The symmetry operations for the point-

group do not include translations of the lattice as a whole. On the other

hand, the symmetry of a space-group is such that a symmetry operation

niay result in a new position related to the original one by a translation.

A space-group may be regarded as a combining of the characteristics of

the point-group with those of the space-lattice.

Although the space-group is a more fundamental picture of crystal

properties than the point-group, it cannot be determined by gross

measurements on crystals or by observation of their general physical

properties. A more refined method is needed, and in recent years this

need has been met by X-ray analysis. Since this book has to do with

properties characteristic of classes, it is unnecessary to deal further with

space-groups.
*

4. Crystal faces are specified in terms of their intercepts on the three

crystallographic axes, called by the crystallographer the a-, &-, and

c-axes (the use of four axes and also of the symbols ai, a2 , etc., in certain

cases is considered below). In each system the axial directions are

chosen so as to make the specification of the faces as simple as possible.

Usually a crystallographic axis is an axis of symmetry or, a line normal

to a plane of symmetry or the edge between two prominent crystal faces.

It is of course understood that a crystal axis is primarily a direction with

respect to the crystal; the location of the origin is entirely arbitrary.

It is customary to take as the unit face for a given crystal a prominent

face having intercepts a, b, c, of the same order of magnitude on all three

crystallographic axes. The quantities of importance to the crystal-

lographer are the axial ratio a:b:cf and the angles between the axes;

when these have been determined, the inclinations of all possible crystal

faces can be expressed at once. This definition of the axial ratio was

adopted by the crystallographers long before the dimensions of the unit

cell had been measured by X-ray methods. It is now known that the

ratio of the three edges of the unit cell is either the same as the crystal-

lographic axial ratio or related thereto by small integers. Any plane

drawn through three points having coordinates a/h, b/k, c/l, is parallel

to a net plane of the lattice and hence to a geometrically possible crystal

face. In accordance with the law of rational indices, h, k, and I are

* The nature of space-groups and the symbols used to specify them are given in

refs. B8, B14, and B53. The theory has been fully developed by Wyckoff.
B 7 A good

account of the history of the subject is in Tutton.348

t Since the location of the origin is arbitrary, only the ratios of the intercepts are

significant. Usually they are so adjusted that 6 1.
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integers, including zero. It is only in the classes of highest symmetry
that all the geometrically possible faces could occur, and even then in

most cases only a relatively small number is actually found; there are the

holohedral classes in Table I, pages 19-20. In all other classes the atomic

structure of the unit cell is such that certain faces are never formed. For

example, a crystal may have a face corresponding to +a/h, +b/k,
and +c/l, but not to +a/h, b/k, and +c/L All crystals in the same

class share the same fate as regards the suppression of certain faces.

The Miller indices are commonly used for specifying crystal faces.

According to the Millerian system the unit face has the index (111)

(signifying that the intercepts on the three axes are the unit distances fl,

b, and c), while the general formula for any face is (hkl). The symbols

Fro. 1. Orientations of three crystal faces, illustrating the use of the Miller indices.

The axial ratio A :OB :OC is here represented as approximately that for Hochelle salt. The
triangles ABC, AB'Ct and A'BC show respectively the inclinations of faces having the

symbols (111) (the unit face), (111), and (211). A face through (or parallel to) B'C and
parallel to the a-axis would have the symbol (Oil).

h, k, I are taken in the order of the a-, 6-, c- axes, and they are usually
small integers, including zero. They are proportional to the reciprocals

of the intercepts on the axes. If an intercept lies on the negative side

of an axis, a negative sign is placed above the corresponding index, as

illustrated in Fig. 1. By way of further example, it may be stated that

(001) means a face perpendicular to the c-axis at its positive end. The

corresponding face at the negative end is (001), and the two faces form

the basal pinacoid. The face (213) has intercepts at a/2, 6, and c/3.

Each face of a crystal is a member of a/orm consisting of a set of faces

similarly oriented with respect to the elements of symmetry. Each
form has a common form-symbol [hkl], where A, k, and I have fixed

numerical values. The various faces belonging to the form are obtained

by giving to A, /b, and I all the positive and negative combinations com-

patible with the symmetry of the crystal class. It is only in the holo-

hedral class of each system that the form can be a complete octohedron.
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A set of faces having parallel intersections is called a zone. A com-

plete zone is therefore a prism. On an actual crystal the faces of the zone

may be so little developed that their intersections are absent, owing to

the intervention of faces of other forms.

As will be seen in 5, the axes on which the intercepts are taken in

expressing the Miller indices are not orthogonal except in the cubic,

tetragonal, and rhombic systems.

Of great significance physically is the possession by many crystals of

polar axes. In crystallography a polar axis is a direction having at its

two ends faces of different forms, with different numerical indices. A
"one-wayness" of this sort is a sure indication 'of a corresponding uni-

lateral quality for this direction with regard to the physical properties.

For example, such vectorial effects as pyro- and piezoelectricity are

found only with crystals having polar axes.

5. The Seven Crystal Systems. The physicist unschooled in crystal-

lography finds himself somewhat bewildered by the diversity in nomen-

clature used by different authorities. This applies not only to the

names of the classes but also to their grouping into systems. The geo-

metrical nature of each of the 32 classes is of course as absolute as mathe-

matics itself. Still, their characteristics can be expressed in various ways,

depending especially on whether they are defined in terms of faces or of

symmetry elements. The arrangement of the 32 classes in order of

ascending or descending symmetry, and their classification into systems,

is to some degree a matter of opinion. For example, while some crystal-

lographers prefer to assign crystals having trigonal symmetry to a

separate system, others regard them as a hexagonal subsystem. The

number of crystal systems is accordingly given sometimes as six, some-

times as seven.

In this book the division into seven systems is adopted. As a preface

to the list given below, a few general statements should be made con-

cerning the axes and their positive directions. If a crystallographic axis

is unique, as for example by the possession of trigonal symmetry, it is

made the c-axis. In the case of a non-polar axis the positive direction is

arbitrary. With a polar axis, if the crystal shows a pyroelectric effect

in this direction, the positive end may be defined as that at which a posi-

tive charge appears when the crystal is heated; or if piezoelectric charges

appear at the ends of the axis when the crystal is stretched in the direction

of the axis, the positive end is that at which a positive charge appears on

stretching.

The relations of the physicist's orthogonal X- F-, Z-axes to the axes

of the crystallographer, as used in this book, are explained below for each

system. The XY-, YZ- and ZX-planes will be referred to as the

principal planes. Except with the levogyrate (left) forms of. enantio-
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morphous crystals (7), a right-handed orthogonal axial system is always
to be understood.

. Cubic System (also called the regular, isometric, or tesseral system). There are

three orthogonal two- or fourfold axes ai, a2,
a s of equal length. The (111) plane

therefore has equal intercepts along the three axes. The X-
t Y-, Z-axes are parallel

to ai, 02, 03*

Tetragonal System. Orthogonal axes are used with ai and a2 of equal length, both

different from c. The -2T-, F-, Z-axes are parallel, respectively, to ai, a 2,
c.

Rhombic (or orthorhombic) System. There are three orthogonal axes o, 6, c, all

unequal; they are parallel to the X-, Y-, Z-axes, respectively.

Monoclinic System. More crystals belong to this system than to any other. The
axes are unequal in length, the 6-axis being perpendicular to the a- and c-axes, which

do not form a right angle. The positive directions of a and c are outward from the

obtuse angle between them, while the positive direction of b (the polar axis) is such

as to make a right-handed system. The X-axis, according to Voigt's* usage, coincides

with c in direction and sign, and the Z-axis with b. The F-axis completes the right-

handed orthogonal axial system, thus making an acute angle with the a-axis. f

Triclinic System. The a-, 6-, c-axes are all unequal and oblique. For each species

the choice of the o-, 6-, c-axes, also of the orthogonal X-, F-, Z-axes, is arbitrary.

Hexagonal System. The c-axis is the axis of sixfold symmetry. Faces are com-

monly specified by means of the Bravais (often called the Bravais-Miller) system.

This system employs four crystallographic axes, viz., the c-axis and three others per-

pendicular to it, called AI, A*, A 3,
120 apart, each being parallel to a pair of faces of

the first-order prism, as shown in Fig. 3. A typical face symbol is (hikl), the four

letters corresponding to A\, A 2 ,
A s, c, respectively. Since three parameters suffice

to specify a face and since always h -f- i -f k 0, it is common practice to write as

face symbol (hi 0, the dot signifying k = (h + i). The orthogonal axial system
has the Z-axis coincident with c, the X-axis parallel to any one of the A-axes, and the

F-axis perpendicular to Z and X.

Since the three axes A ,,
A 2, and A 3 are equivalent, the unit face makes equal inter-

cepts on two of these axes. The axial ratio is therefore given by the single ratio a :c,

for both the hexagonal and the trigonal system.

Trigonal System. From the crystallographic point of view the fundamental form

is that of a rhombohedron, although in only three of the five classes is this form fully

developed. Two opposite vertices of a rhombohedron lie on the trigonal, (optic, or

principal) axis, thus forming a three-sided pyramid at each end of the crystal. In

two classes (Nos. 16 and 19), only the pyramid at one end of the trigonal axis is present

for each rhombohedron. With any given kind of crystal a prominent rhombohedron

(or pyramid) is selected as the primary rhombohedron (OT first-order trigonal pyramid).
If twofold axes are present (as in quartz), the rhombohedron is so chosen that the

angles between the projections of its edges on the plane normal to the principal axis

are bisected by these axes, as shown in Fig. 3.

The Bravais system, with four axes, may be used as with the hexagonal system.
It is quite common, however, to employ the Miller system, according to which the

faces of trigonal crystals are specified in terms of the three Millcrian axes, viz., the

three edges of the primary rhombohedron or of the first-order trigonal pyramid (see

Fig. 3). The typical face symbol is (hkl), the letters corresponding to intercepts on

the Millerian ar, a*-, a-axes, respectively. The angle between any two Millerian

*
"Lehrbuch," p. 100.

t For the special convention in the case of Hochelle salt, see 481.
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axes is denoted by a and is called the Millerian angle. If this angle were 90, the

rhombohedron would become a cube and the MUlerian indices would become the usual

indices for the cubic system. The trigonal and cubic systems are thus related in the

sense that the trigonal rhombohedron may be regarded as a distorted cube.*

The cyclical order in which the Bravais and the Miller axes are to be taken is given
in 12.

For the convenience of those who may have occasion to translate Millerian symbols
into Bravais, or vice versa, the following relations are given, in which (hkl) and

(HIKL) or (HI - L) are the Miller and Bravais symbols for the same face:

H - (*
-

*); / - (k
-

fl; K -
(I
-

h); L - (h + k + /);

h = H - K +L **2II +1 +L;
Jb - I -H + L; J - -H -21 +L **K -I +L.

For an orthogonal axial system we shall use, for Y- and Z-axes, the convention

adopted by Voigt.f The Z-axis is the trigonal axis; either end may be taken as

positive. The F-axis is the projection of any one of the Millerian axes upon a plane
normal to the Z-axis; its positive direction is outward from one of the faces of the

first-order trigonal pyramid at the positive end of the Z-axis. The X-axis according
to Voigt always forms a right-handed system with the other two. We shall adhere to

Voigt's convention for dextrogyrate forms (7); but for levogyrate forms, for reasons

explained in 327, we shall define the positive direction of the X-axis as that which

forms a left-handed system with the Y- and Z-axes.

The relation of the orthogonal X-, F-, Z-axes to the Bravais axes is the same as for

the hexagonal system.

6. The Thirty-two Crystal Classes. As shown in Table I, the num-

bering of classes in the order of ascending symmetry, and their grouping
in systems, is taken from Rogers. The symmetry formulas in the fourth

column are those of Schonflies; in the fifth column are the Hermann-

Mauguin symbols. Voigt*s terminology for the names of the classes is

given, for the benefit of those who are acquainted with his "Lehrbuch."

Voigt's class numbers are given in parentheses. The terminology intro-

duced by Miers is also included, as the expressions are based on symmetry
elements rather than on faces and hence give rather simply the symmetry
relations that are essential in piezoelectricity.

A body or any one of its physical properties may be symmetrical with

respect to a point, a line, a plane, or any combination of these. If

symmetrical with respect to a point, the body is centrosymmetrical and can

possess no polar properties; hence, no piezoelectric crystals are found in

any of the 11 centrosymmetrical classes. With one exception, all classes

devoid of a center of symmetry are piezoelectric. The single exception
is Class 29, which, although without a center of symmetry, nevertheless

* This relation is discussed more fully by Voigt in the "Lehrbuch," p. 31, and in

"Die fundamentalen physikalischen Eigenschaften der Kristalle in elementarer

Darstellung," pp. 10-12, Leipzig, 1898,

t "Lehrbuch," p. 750.
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has other symmetry elements that combine to exclude the piezoelectric

property.

Symmetry with respect to a line is called axial symmetry, and the line

is an axis of symmetry.*
A plane of symmetry may be likened to a mirror. In those classes

having this type of symmetry, a plane passed through a crystal in the

proper orientation divides the crystal in such a way that to each face on

one side of the plane there corresponds a possible face on the other side,

each face being the mirror image of the other with respect* to the plane.

EXPLANATION OP THE SCHONFLIES SYMBOLS OP CBYSTAL SYMMETRY
C A cyclic axis of symmetry, i.e., an axis such that rotation about it through an

angle 2ir/n results in a repetition of the figure, (n =
1, 2, 3, 4, or 6.) n 1

means no symmetry at all.

Cnh An n-fold cyclic axis with a plane of symmetry normal to it.

Cni An n-fold cyclic axis with a center of symmetry.
Cnv An n-fold cyclic axis to which n planes of symmetry are parallel.

82 Every direction is a twofold cyclic axis with a plane of symmetry perpendicular
to it, or an "axis of composite symmetry." The crystal has a center of sym-
metry and nothing else.

S^ A fourfold cyclic axis of composite symmetry with reflection at each 90 step

of rotation (alternating axis, or Drehspiegelachse). This means that upon
rotation of 90 the figure becomes the mirror image, with respect to a plane

perpendicular to the axis, of what it was before rotation. There is no center

of symmetry. This type of symmetry was first described by P. Curie.

V 3 mutually perpendicular twofold cyclic axes.

Vh Symmetry V with addition of a plane of symmetry normal to each of the 3 axes.

Vd Symmetry V with 2 planes of symmetry containing the principal axis, and
at 45 to the other 2 axes.

Dn Axis Cn (principal axis) with n twofold axes (secondary axes) normal to it.

(n- 3, 4, or 6.)

Dnd Symmetry Dn with n planes of symmetry containing the Cn axis and bisecting the

angles between the secondary axes.

Dnh Symmetry Dn with a plane of symmetry normal to the Cn (principal) axis and
therefore n planes of symmetry each containing the principal and 1 secondary
axis.

T 3 orthogonal twofold axes and 4 threefold axes (the tetrahedral group).

Th Symmetry T with a plane of symmetry normal to each of the twofold axes.

Td Symmetry T with 6 planes of symmetry each containing 2 of the threefold axes.

3 orthogonal fourfold axes, 6 twofold axes, and 4 threefold axes (the octahedral

group).

Oh Symmetry with the planes of symmetry of both Td and Th.

The classes listed in Table I as pyroelectric are those possessing

primary, or true, pyroelectricity. All pyroelectric crystals are also piezo-

electric. As will be seen in Chap. XXIX, all piezoelectric crystals may
exhibit secondary pyroelectricity.

* An axis of this type is sometimes called a cyclic axis, to distinguish it from the

screw axis mentioned in 3.



6} CRYSTALLOGRAPHY 19

TABLE I. CRYSTAL SYSTEMS AND CLASSES

P - piezoelectric P - both pie*o- and pyroeleetrio

Triclinio System

Monoclinic System

Rhombic (or orthorhombic) System

Tetragonal System

Trigonal System
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TABLE I. CRYSTAL SYSTEMS AND CLASSES. (Continued)

Hexagonal System

Cubic (isometric or regular) System

* No fully authentic member of Class 29 seems to be known. X-ray analysis has made it appear

that the customary assignment of cuprite, sylvite, and ammonium chloride to this class is incorrect.

(R. W. G. WYCXOFF, "The Structure of Crystals," pp. 209, 266, 306, New York, 1924.)

7. Enantiomorphous Crystals. In the 11 classes having no plane of

symmetry, two different types of the same species may exist, those of one

type being characterized by certain faces that are related to the corre-

sponding faces of the other as the right hand is related to the left. Each

type is the mirror image of the other; neither type can be made to look

exactly like the other by a simple rotation. * Some species of crystals, as

for example Rochelle salt, commonly occur in only one of the two pos-

sible enantiomorphous forms. In other species both forms are of frequent

occurrence, as is the case with quartz.

Enantiomorphous crystals .offer a good illustration of Neumann's

principle, since certain directed physical properties have different signs

for the two types.

* However unsymmetrical a non-enantiomorphous crystal may be in external

appearance and physical properties, a mirror-image model would after suitable rota-

tion be indistinguishable from the original.
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In the Millerian system, the symbols are the same for a "right-
"

as

for a "left-
"

crystal, if the convention given in 327 is accepted.

The right and left forms of an enantiomorphous crystal are also termed

the "dextrogyrate" and "levogyrate" forms according to the sense in

which they rotate the plane of polarization of light as seen by an observer

looking back toward the source of light (326). The prefixes d and I (or r

and I) are often used, as for example r-quartz and Z-quartz.

When orthogonal axes are used, ambiguities may be avoided by
employing a right-handed axial system for dextrogyrate crystals, left-

handed for levogyrate (327). This practice will be followed in this book.

The 11 enantiomorphous classes are Nos. 1, 3, 6, 10, 12, 16, 18, 23, 24,

28, and 29. Of these all but the last are piezoelectric. All 11 are included

among the 15 optically active classes (538).
8. Special Crystallographic Properties of Certain Crystals. Rhombic

Digonal Holoaxial Class, No. 6, (symmetry V, rhombic enantiomorphous

hemihedral, sphenoidal, bi- or disphenoidal, or tetrahedral class). This

is one of the 11 enantiomorphous classes. Since the X-, F-, Z-axes are

identical with the crystallographic a-, &-, c-axes, the Millerian symbols

apply equally to either. The symmetry is such that either end of any
two of the axes may be taken as positive. The third axis is then given

the proper direction to form a right-handed system. The crystal may be

rotated 180 about any one of the three axes without change in magnitude
or sign of the physical properties.

The member of this class with which we have chiefly to do is Rochelle

salt, a diagram of which is shown in Fig. 2.
*

Crystals are usually dextro-

gyrate. Axial ratio a :b :c = 0.8325:1:0.4334 (see 542). The most

prominent and typical forms are the three pinacoids (pairs of faces normal

to the three axes, marked a, 6, c in the figure) .{ 100} , {010} , {001 } ;
a series

of prisms p{110}, pi{120} not shown in the figure and p 2 {210} parallel to

the Z-axis; two prisms g{011} and r{101} parallel to the X- and F-axes,

four faces each; and the primary and secondary bisphenoids 0{111} and

v{211}, four faces each. The #-, r-, o-, and v-faces are often vestigial or

absent. Yet it is the bisphenoids that furnish the outward and visible

sign of the polarity of all three axes and of the enantiomorphous structure.

Figure 2 shows a rig^-crystal, which is the only form that normally occurs.

The c and p faces are usually by far the most developed, f

* Recent evidence that between the temperatures 18 and +24C Rochelle salt

should strictly be classed as monoclinic will be considered in 481. For the present

we adhere to the traditional classification.

t Figure 2 is based on a drawing in Groth.B2a In actual crystals the occurrence

and relative size of many of the faces are very variable. Dr. H. Jaffe informs me that

in the examination of many specimens he has found {
211

} the commonest of the bisphe-

noids, while {111 j never occurs.
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Following are the angles between an a face and the principal prismatic

faces: Zap2 = 2235'; /ap = 3943'; ap l
= 5857'. For further data

on Rochelle salt see Chaps. XX and XXXI.
To this class belong other tartrates isomorphous with Rochelle salt,

which will be dealt with in Chap. XXVII.
9. Trigonal Holoaxial Class, No. 18 (symmetry Z>3) . This class is vari-

ously described as trigonal trapezohedral, holoaxial tetartosymmetrical,

hexagonal trapezohedral tetartohedral, trigonal enantiomorphous hemi-

hedral, and rhombohedral trapezohedral. As we have seen, the Millerian

axes and indices are commonly used, with the primary rhombohedron as

the basis, although there is doubt whether some representatives, for

P2-.

FIG. 2. An idealized Rochelle-salt crystal. The e-faces (top and base of the prism)
and the prismatic p-faces are usually the most developed. The other faces are often very
small or absent.

example quartz (ref. B14), have a truly rhombohedral structure. The
various alternative axial systems are shown in Fig. 3, which is drawn with

special reference to quartz, although in principle it is applicable to all

trigonal crystals. BCDEFG is a section of the usual prism, perpendicular
to the trigonal axis OZ. The three pyramidal faces ABC, ADE, and AFG
belong to the primary positive first-order rhombohedron; they are the

three jR-faces at one end of the quartz crystal, as shown in Fig. 5. The

remaining pyramidal faces, ACD, etc., are r-faces, belonging to the pri-

mary negative first-order rhombohedron (ref. B47). For simplicity the

pyramid is shown with hexagonal symmetry, although the #-faces are

usually larger than the r. When the /?-faces are extended, they meet

along the lines AMi, AM2 , and AM3,
which are the edges of the rhombo-

hedron and the axes of the Millerian system. The projections of these
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axes on a plane normal to the principal axis, one of which is shown as

M\N, are the 7-axes of the rectangular system. The positive direction

of any F-axis is that in which it emerges from an JK-face (see Fig. 5). In

Fig. 3, OZ is the Z-axis, positive upward (either end may be taken as

positive). Each X-axis bisects the angle between two prismatic faces, as

for example at G, forming (except with levogyrate crystals) a right-handed

system with Y and Z. The X-axes are the twofold (binary or digonal)

polar axes; following the Curies, they are also called electric axes. The
name "mechanical axis" is sometimes applied to Y. In this book we

FIQ. 3. Axes for the hexagonal and trigonal systems. The Miller axes are 01, a*, as.

The Bravais axes are Ai, A*, A, and ct parallel respectively to GO, CO, EO, and OA. One
of the three sets of orthogonal axes is shown as X, K, and Z. Any one of the Bravais axes

Ai t Az, A* may be taken as an X-axis. The projections of the Miller axes upon the basal

plane (normal to the -Z-axis) are the F-axes.

shall make use of the terms X-, F-, and Z-axes almost exclusively; prep-

arations cut with major faces normal to these axes are X-cuts, 7-cuts, or

Z-cuts.

The three Bravais axes Ai, A z ,
and A 3 are parallel to the three X-axes

and are indicated by the lines GD, CF, and EB in Fig. 3. As usually

represented, their sense is the same as that of the X-axes in a left-quartz,

opposite in a right-quartz. The Bravais o-axis (OZ in the figure) coin-

cides with the Z-axis.

10. Alpka-quartz. The word "crystal" is derived from the Latin

wystallum, which in turn is from the Greek fcpforraXXos, compounded from

/cpfos, clear ice, and priXta^, to set in order.* This term was also applied

* S. I. TOMKEIEPP, On the Origin of the Name "Quartz," Mineral. Mag., vol. 26,

pp. 172-178, 1942. This paper points out that the word "crystallum" for quart*
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in ancient times to quartz, in the belief that quartz was a form of ice.

Quartz is silicon dioxide, 3iO2. Both these elements are among the most

abundant, and Si02,
in its various forms, crystalline or amorphous, is

said to form about one-tenth of the earth's crust. It is a constituent in

sandstones, in many of the rocks, and in other geological formations.

Fia. 4. Quartz crystals in the Museum of Natural History at Ueneva, Switzerland.

They were found in 1868 in a cave at the side of the Rhone glacier. Mountaineers were
attracted to the cave by the bright reflection of the sun from the faces of the crystals.

The separate specimens (some weighing as much as 150 kg) were distributed among the

chalets of the mountaineers. Later as many of the crystals as possible were purchased
and reassembled, half in Geneva and half in Berne. (Courtesy of Professor Jean Weigle
and of Dr. Revilliod, Director of the museum in Geneva.)

Sand consists largely of quartz grains, a-quartz ("low-quartz," or rock

crystal) is only one of the numerous crystalline forms; it is the one that

crystallizes at temperatures below 573C (14). If crystallization takes

place between 573 and 870, the form known as "beta-quartz" ("high-

quartz ") is produced, of hexagonal instead of trigonal structure. Among

survived until almost the end of the eighteenth century. It presents evidence that

"quertz," the original spelling of "quartz," is a contraction of Querklufterz, or cross-

vein ore, used by the miners in Saxony.
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the other forms of Si02 are tridymite, cristobalite, and the fused amor-

phous form called silica or "quartz glass." The colors of such varieties

as rose quartz, smoky quartz, amethyst, and other gems are due to traces

of foreign matter. Unless their electric conductivity is too high or they
are found to be twinned (as is often the case with amethyst), there is

no technical reason why they should not be suitable for piezoelectric

applications.

Our concern lies almost exclusively with a-quartz, to which we shall

in general refer simply as "quartz." As abundant as SiO 2 is, in only a

few regions have crystals of any considerable size and perfection been

found. At present the supply comes chiefly from Brazil. Clear crystals

have been found of lengths of 4 ft. or more and weighing over 100 Ib. In

the Smithsonian Institution in Washington is a very clear quartz sphere

12J- in. in diameter. *

In the past, large and clear quartz crystals were fashioned into beauti-

ful objets d'art, such as may be seen in the Louvre and other museums, to

say nothing of spheres for crystal gazing. Too often large crystals are

shattered in transportation or even purposely broken up by the laborers

who collect them in remote regions. For this reason as well as because

of the frequent presence of internal defects, foreign matter, and twinning,

the task of determining the orientation of the axes and of selecting those

portions suitable for cutting into plates, etc., is often not easy. The
methods for attacking this problem are described in Chap. XVI. Pyra-
midal faces at both ends are rarely found, except on crystals of small size.

It is believed that natural quartz crystals were formed either by con-

densation of Si0 2 vapor or by the evaporation of solutions of silicates in

water. Very small crystals can be produced artificially, f

* An account of this beautiful specimen is given in Science, vol. 71, p. 410, 1930.

The various forms of quartz and their occurrence in nature, as well as descriptions of

some famous quartz specimens, are treated in a popular manner in "
Quartz Family

Minerals," by H. C. Dake, F. L. Fleener, and B. II. Wilson, New York, 1938. P. F.

Kerr and 'A. I. Erichsen (Am. Mineral, vol. 27, pp. 487-499, 1942) describe a crystal

of smoky quartz from Teofilo Otoni in Brazil, 7 ft. 2 in. long, 11 ft. 2 in. in circumfer-

ence, weighing over 5 tons.

t A full account of this subject has recently been prepared by Paul F. Kerr and

Elizabeth Armstrong, "Recorded Experiments in the Production of Quartz," Bull.

Oeol. Soc. Am., vol. 54, supplement 1, pp. 1-34, 1943. Most of the experiments have

been performed with steel bombs or thick-walled tubes, at pressures up to 3,000 kg/cm*.
Various temperatures, extending in some cases to over 870C, have been used.

Crystals have been produced from a large number of materials. The presence of

potassium or lithium chloride and of sodium tungstate is thought to be beneficial.

The largest artificial quartz crystals on record were produced by Chrustschoff in 1887

from aqueous dialyzed silica at 250 to 320C; they measured 8 by 3 mm, reaching this

size in 6 months. Most of the experiments of other workers, resulting in smaller

crystals (usually a millimeter or less in size), lasted only a few days. The question is
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11. As was stated in 7, quartz is enantiomorphous, both right- and

left-crystals being found in nature. The two types of a-quartz are repre-

sented in Fig. 5. In addition to the faces shown, which are the most

characteristic, many others have been recorded.* The trigonal sym-

metry is usually revealed by the larger size and greater smoothness of the

R- as compared with the r-faces. It is the x- and s-faces that indicate

Left-quartz Right-quarta

Fio. 6. The two enantiomorphio forms of a-quartz, together with the orthogonal axial

systems.

right- or left-handedness. It will be observed in Fig. 5 that in a left-

quartz the normal to the edge where these two faces meet points up and

to the left, while in right-quartz it points up and to the right. Moreover,

the two non-parallel edges of an z-face converge upward toward the left

in a left-quartz, upward toward the right in a right-quartz. This rule

holds true on inverting the crystal end for end; hence, either end of the

principal axis may be taken as the positive end of the Z-axis. In other

still open whether quartz crystals large enough for practical purposes can be grown
in a reasonable time in the laboratory, instead of requiring the lapse of many years,

as seems to have been the case in nature.
* A discussion of many less common faces on quartz crystals may be found in a

paper by A. Descloiseaux in Ann. chim. phys., vol. 44, pp. 129-316, 1855; also in

"Manuel de Mineralogie," vol. 1, Paris, 1862, by the same author; see also G. Kalb,

Z. Krist., vol. 86, pp. 439-464, 1932, vol. 89, pp. 400-412, 1933, vol. 90, pp. 163-185,

1935. Further information on quartz is given in A, E. H. Tutton's*48 "Crystal-

lography and Practical Crystal Measurement'' and in the book by Sosman847.
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words, the principal axis is not a polar axis, as are the three X-axes.

Their polarity is betrayed by the x- and s-faces, when these are present.

As indicated in Fig. 5, the x- and s-faces occur (in untwinned specimens)

only at alternate edges of the prism. Hence it is only at one end of each

X-axis that the sz-combination can be found and not always there, for

in many specimens these faces are altogether absent. They are said to

be most common in crystals from Brazil. In twinned crystals, on the

other hand, the ^-combination may occasionally be found at both ends

of an X-axis. The s-faces tend to have one pair of parallel edges rela-

tively long and close together; moreover, the natural striations sometimes

visible on an s-face always point toward an adjacent z-face.

Prismatic faces, especially on large specimens, often have parallel

striations running across them in the X-direction. When present, espe-

cially on two adjacent faces, they are useful in forming a first estimate

of the axial directions. These striations are alternations between very
short segments of m- and r-faces; the effect is sometimes called palisading.

They may cause a pronounced tapering of the prismatic face, the edges
of which then usually converge toward an 72-face. Usually the R- and

r-faces are more nearly plane and perfectly oriented than the prismatic
faces.

In this book we take as the positive sense of an X-axis the -direction

outward from a prismatic edge at the ends of which x- and s-faces belong,

whether the crystal is right or left, as shown in Fig. 5 (see Chap. XVI for

a full discussion of quartz axes and their determination). This conven-

tion, with the customary F-axes, makes the axial system right-handed
for right-quartz, left-handed for left-quartz.

The principal (Z-) axis of quartz is of the type called a "screw axis";

the SiO2 groups occupy positions that wind themselves progressively

about this axis, as explained in 540. The sense of rotation in a right-

crystal is opposed to that in the levo form.

The axial ratio for the Bravais-Miller axes of a-quartz at room tem-

perature is a:c = 1:1.100; it is the ratio OA/OB in Fig. 3, the 72-face

being taken as the unit face. The Millerian angle a between any two of

the Miller axes has the value 9357' 2'. The R- and r-faces make an

angle of 14147 / with the corresponding m-faces.* The s-faces are at an

angle of 2426' with the principal axis. Such evidence of cleavage as there

is shows itself chiefly parallel to the R- or r-faces. This can sometimes

be observed when a thin plate is shattered by too intense vibration.

12. List of the Commoner Faces of Quartz Crystals, with Miller and

Bravais Symbols. It is customary to number the Miller axes ai, a2, a 3,

* The azimuths ^ and polar angles of the normals to the six ft-faces are <p 90,
$ - 5147'; v - 30, = -5147'; and ? - -30, 9 - 5147'. For definitions of

these angles see 51.
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as well as the Bravais-Miller axes A\ 9
A 2 , A*, in cyclical order counter-

clockwise 8p seen from the positive end of the principal (c- or Z-) axis,

whether the crystal is dextro- or levogyrate. This convention is followed

in Table II below and also in Fig. 6.

The names of the various faces are as follows:

m, first-order hexagonal prism.

R, primary positive first-order rhombohedron (or simply positive

rhombohedron or major rhombohedron).

r, negative first-order rhombohedron (or simply negative rhombo-

hedron or minor rhombohedron).

s, trigonal bipyramid.

x, trigonal trapezohedron.

The numbers in the first column of Table II are those of the faces

marked in Fig. 6. Faces 4, 5, and 6 for m are obtained by reversing the

sign of each index of faces 1, 2, and 3. The symbols for faces R, r, s, and

x apply to the +Z-end of the crystal (the end toward the observer in

Fig. 6). For the other end, all signs of indices for R and r are reversed;

for the s- and z-faces, any two indices of the Miller symbol are inter-

changed, with corresponding changes for the Bravais symbols. Miller

and Bravais symbols are denoted by M and B.

TABLE II. SYMBOLS OF FACES FOR RIGHT-QUARTZ

, For a surface normal to an .X-axis (the FZ-plane), the Miller indices

are (Oil), (Oil); (T01), (10T); (110), (TlO). Such surfaces are not com-

mon natural faces of the crystal, but they are the major faces of the X-
cuts. Surfaces normal to the F-axes are of course simply the m-faces.

A surface normal to the principal (Z-) axis (the basal plane) would have

the symbol (111) or (Til).

Face Symbols for Left-quartz. In conformity with the principle out-

lined in 327, it would be logical to let the mirror image of Fig. 6 be the

stereographic projection for left-quartz. This procedure would require

taking the Miller and Bravais axes in clockwise instead of counter-

clockwise order, but it would offer the advantage of leaving the symbols
of all faces the same as for right-quartz. If one adheres to the usual

convention of counterclockwise order for both kinds of quartz, it is neces-

sary to assign different symbols to corresponding $- and #-faces. For
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these faces, the Miller symbols for left-quartz are derived from those for

right by interchanging any two indices (or by writing all three indices

in reverse order) ;
from statements made above it is thus evident that the

same face symbols hold for the s- and z-faces of left-quartz at the +Z-end
of the crystal as for right-quartz at the Z-end. The Bravais symbols
for the s-faces of left-quartz are obtained from those of right-quartz by
changing the signs of the first three indices; for the x-faces, the first three

indices are written in reverse order with signs reversed. The open circles

FIG. 6. Stereographic projection of the faces seen from the +Z end of a right-quartz

crystal. The three Bravais axes A\ t Az t Az are parallel to the -XT-axes of a left-quartz,

antiparallel to those of a right-quartz. The Z-axis is toward the front. The axes marked
Yi t Fa, "3 are the projections of the three Miller axes upon the plane of the primitive circle.

The circles marked s and x (without subscripts) are the poles of those faces for a left-

quartz; they are also the poles of the same faces for a right-quartz at the end facing away
from the observer. For a left-quartz, the mirror image of this figure would be used, with
the words "right" and "left" interchanged in the caption.

in Fig. 6 show the locations of the poles of the s- and re-faces of a left-

quartz at the end toward the observer.

The angles between the normals to adjacent pairs of faces of quartz

crystals are as follows, from Tutton:

mR 3813' mx 12!'

RR 8546' mm 600'

Rr 4616' xa 2557'

ms 3758' rx 5451'

mr 6652'

Stereographic Projection of a Quartz Crystal.* Figure 6 shows the

arrangement of faces at the end nearer the observer for a right-quartz.
*
Stereographic projections are explained in 19.
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Attention is called especially to the trigonal disposition of the s- and r-

faces. The s-faces are the more significant, since the pole corresponding
to each of them comes at the intersection of two circular arcs containing
also R- and r-faces. According to 19, all poles on the same arc corre-

spond to faces in the same zone, having parallel intersections. For

example, one such zone comprises the series mi, Xi, Si, rs ,
R 2 ,

s z ,
and m*,

13. Ditrigonal Polar Class, No. 19 (symmetry C 3v ,
also called trigonal

hemimorphic hemihedral, rhombohedral hemimorphic, ditrigonal pyram-
idal, and polar ditrigonal tetartosymmetrical). The only representative
of this class that need be mentioned is tourmaline. For further infor-

mation one should consult the larger books on crystallography and

especially a paper by Worobieff.*

In chemical composition tourmaline is a complex silicate of boron and
aluminum and one or more of various metals. The composition, like

the color, is very variable. Opaque specimens are generally useless for

piezoelectric purposes owing to their relatively high conductivity. The
usual form is that of a rather slender prism terminated by pyramids which

often have different degrees of bluntness, owing to the predominance of

different types of trigonal pyramid at the two ends. The axis of the

prism is the c- (or Z-) axis; unlike that in the quartz class, it is a polar

axis. By convention that end which becomes electrically positive on

heating is called the "positive" end. Aepinus called this the analogous
end of a tourmaline crystal, regarding the positive increase in charge
as analogous to the positive increase in temperature; the opposite end he

called the antilogous end (usually, but not always, the more pointed end).

It has become common usage to apply the terms "analogous" and "anti-

logous" to the positive and negative ends of the polar axes of other

crystals as well.

When once the positive direction of the Z-axis has been fixed, the

X- and 7-axes are determined according to the general rule for the

trigonal system given in 3.

The axial ratio of tourmaline is a : c = 1 : 0.4474.

14. Hexagonal Holoaxial Class, No. 24 (symmetry JDe, hexagonal

enantiomorphous hemihedral, hemimorphic hemihedral, or trapezo-

hedral). The representative of present interest is p-quartz, or high-

quartz, the form that crystallizes at temperatures from 573 to 870C.
Above 870 it transforms to upper high-tridymite. 0-quartz occurs as a

natural crystal, and has been grown on a small scale artificially. When
crystals of 0-quartz are cooled below 573, the outward features remain

unchanged (with minute alterations in axial ratio and density), but the

* V. V. WOBOBIEFP, Z. Krist., vol. 33, p. 263, 1900. A long paper, illustrated,

giving a very full account of this crystal.
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internal structure is that of a-quartz.* Similarly, crystals that grew
as a-quartz at temperatures below 573 are inverted to 0-quartz at the

transition temperature, bearing still their trigonal faces, some of which
now are unrelated to the internal structure. Right a-quartz becomes

right 0-quartz, and similarly for the left forms. A crystal may be passed

up and down through the inversion point repeatedly, having the char-

acteristic properties of a trigonal crystal on one side of the critical tem-

perature and those of a hexagonal crystal on the other. Stresses set up
on cooling, however, are likely to cause cracks; and, after cooling, the

a-quartz may be found twinned. The inversion point has been precisely

determined to be 573.3. f Like a-quartz, high-quartz is enantio-

morphous and has neither center nor plane of symmetry. The same axes

are used as for a-quartz, but the twofold axes are now six in number.

15. Crystal Twinning. Much has been written about the analogies
between crystals and living organisms, with regard to growth, disease,

and many other attributes. One characteristic that crystals share with

mankind is the ability to change their minds. After growing to a certain

extent from the original nucleus, a crystal face may decide to change its

manner of growth, henceforth taking on particles in a different orienta-

tion. If the decision is made once and for all, a contact twin results, each

portion being entirely characteristic of the class, but with axes in different

orientations. Sometimes there is such a state of vacillation that it

appears as if two crystals were so intimately intcrgrown as to make

separation impossible. This is called penetration twinning; the component
parts may be of very irregular size and shape. Various intermediate

gradations between contact and penetration twins occur. Again, the

change in orientation may take place in a rhythmical manner, sometimes

producing quite uniform alternating layers, leading to visible striations

on the surface (repeated, or polysynthetic, twinning). In many cases

twinning increases the apparent symmetry of a crystal.

In structure, the two components of a twin may be symmetrical with

respect to a plane (reflection, or chiral, twins) or to a point (inversion

twins); or one component may be relatively rotated 180 about a line

called the twin axis (oricntational, or rotational, twins). Still other special

types of twinning are recognized.

The only example of twinning to which particular attention need be

given here is that in quartz crystals. Twinning in Rochelle salt is related

to the domain structure and will be treated in Chap. XXV.

*
According to Sosman (ref. B47, p. 116), departures have been found with some

specimens.

t BATES, F., and F. P. PHELPS, Nat. Bur. Standards, Sci. Paper 557, August, 1927.

The transition is so sharply defined that its use as a base point on the thermometric

scale is suggested.
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Twinning in quartz crystals is a very important consideration in the

selection of material for resonators as well as for specimens to be used in

the measurement of piezoelectric coefficients. For the following state-

ments we are indebted chiefly to Sosman's book. Orientational twinning

is common; in the case of quartz this is called twinning of the Dauphine

type, the two components being both right or both left, but one being

rotated 180 with respect to the other about the Z-axis. Also of frequent

occurrence is chiral twinning, known as the Brazil type, with one com-

ponent right, the other left, having a prismatic face (1120) as the twinning

plane. The electric axes may be in the same sense or in opposite senses,

depending on whether or not there is also Dauphin^ twinning. Penetra-

tion twinning is common in both the Dauphin^ and the Brazilian types.

Repeated twinning, especially of the Brazilian type, is often found, with

layers parallel to the faces of the trigonal prism. Other less common

types of twinning have been recorded.*

Twinning of the Dauphin^ type is not revealed by optical tests with

polarized light parallel to the optic axis (333), since both components of

the twin rotate the plane of polarization in the same sense. Since the

electric axes in the two components are opposed, thereby diminishing the

piezoelectric effect, this type is sometimes called electrical twinning. This

term is also applicable to those Brazil twins in which the electric axes are

opposed. The Brazil type can always be detected in polarized light and

may therefore be called optical twinning. There are probably not many
cases of optical twinning in which the electric activity is not impaired,

especially when the twinning is irregular.

Many badly twinned crystals show no external evidence of anything
abnormal. In the case of penetration twinning, however, it may happen
that x- or s-faces occur at the ends of adjacent, instead of alternate,

prismatic edges. If the s-faces are all inclined in the same way when
seen from the front, the twinning is of the Dauphin6 type; if they point

alternately in opposite directions, the twinning is Brazilian. Sometimes

local twinning at the surface is revealed by differences in the degree of

glossiness or, on artificially polished or etched surfaces, by a line sepa-

rating the twinned portions.

The question of the possible removal of twinning from quartz crystals

is considered by Sosman. He points out that (for Brazilian twinning)

the conversion of right- into left-quartz or the reverse must be difficult, if

not impossible, since it would require on the part of each pair of oxygen
atoms in the twinned region, not only a rotation of 180 about the prin-

*
Twinning in quartz crystals is described at greater length by GrothBM ; Sos-

manB47 ;L. Essen, Jour. Sci. Instruments,vo\. 12, p. 256, 1935; W. A. Burgers, Proc. Roy.
Soc. (London), vol. 116, p. 553, 1927; and W. Bragg and R. E. Gibbs, Proc. Roy. Soc.

(London), vol. 109, pp. 405-427, 1925.
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cipal axis, but a further change in orientation with respect to the Si atoms
as well. It is true that Shubnikov and Zinserling* assert that a sharply
localized stress (pressure with a steel ball) causes a (Dauphine*) twin to

form on the surface of a quartz crystal, but this holds out no hope for

the removal of twinning from the interior. Twinning in quartz is con-

sidered further in Chap. XVI.
16. Etch Figures and Their Uses. Crystal symmetry is related to

chemical as well as to physical agents. Just as the rate of growth of a

crystal from a solution or melt is different in different directions, so also

is its rate of solution. For example, a sphere of quartz immersed in

aqueous hydrofluoric acid assumes in time a flattened form having trig-

onal trapezohedral symmetry.
Our interest is mainly in the microscopic figures and general patterns

produced by etching with a suitable solvent on a natural or artificial plane
on the surface of a crystal or on a sphere fashioned from a crystal. Such

figures are of great value in the identification of faces, in determining the

axes of unfaced crystals and the positive directions of polar axes, in dis-

tinguishing between enantiomorphous forms, and in revealing the presence
of regions of twinning.

The study of etch figures is complicated by the fact that they depend
to a considerable extent on the treatment of the surface before etching,

the solvent, the extent to which the solvent is kept in circulation during
the etch process, the time of etching, and other factors. For etch figures

on Rochelle salt see 406; for those on quartz, 335.

17. Isomorphic Mixtures. Many instances are known of two or more

different compounds so closely related that their crystals not only belong

to the same class but can be mingled in any proportion in the same crystal.

Such a crystal may be regarded as a type of solid solution, the term iso-

morphic referring to the similarity in crystalline form of the constituents.

Isomorphic mixtures, or
"mixed crystals/' are found especially among

salts having the same acid radicals and related metals and with molecular

radii and axial ratios that are not too different. Such crystals are found

in nature, as for example the garnets. In the laboratory they can be

produced in great variety. We shall revert to this subject in Chap.

XXVII, where mixed crystals of Rochelle salt and certain isomorphic

salts will be dealt with.

18. The Grouping of Crystal Classes According to Physical Prop-
erties. With respect to any given physical effect each class is character-

ized by certain constants that can be arranged in matrix form according

to their geometrical properties. Each physical effect is a relation

between two phenomena, for example, elastic stress and strain or electric

field and polarization. Mathematically, each effect is treated as the
* A. SHUBNIKOV and K. ZINSERLING, Z. Krist., vol. 83, pp. 243-264, 1932.
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relation between two parameters, either of which may be scalar, polar

vector, axial vector, or tensor. * From the types of parameter, one deter-

mines what constants exist in the most general case, and then from con-

siderations of crystal symmetry one learns which constants may differ

from zero for each class.

Those crystallographically related classes having identical matrices of

constants (the magnitudes of these constants varying from one species of

crystal to another) may be combined to form a "group." In general, the

groups are not the same as the crystal systems, though closely related to

them. Voigt distinguishes 11 chief groups (Obergrupperi) having centro-

symmetrical properties" in common; for the elastic, dielectric, and piezo-

optic constants the number is further reduced. Piezo- and pyroelec-
tric phenomena do not fall into this scheme; each class possessing these

properties forms a group by itself.

In Table III fire presented the pertinent data for some of the branches

of crystal physics. The second column gives the mathematical symbols
for the physical effects involved: S = scalar, V = polar vector, Va =
axial vector, T = tensor. The third column indicates the number of

groups as defined above, and the last column shows how many classes

exhibit the effect named.

TABLE III

19. Stereographic Projections of Crystal Faces. If from the center of a sphere
radii are drawn parallel to the normals to the faces of any crystal, they intersect the

spherical surface in points known as poles. A Stereographic projection is the projection

of all poles of one hemisphere upon the plane of the great circle of that hemisphere,
as seen by an eye at the geometrical pole of the other hemisphere. It is common

practice to combine the projections of the poles of both hemispheres on one diagram.
The great circle is called the primitive circle.

*
According to common usage the term tensor, when not otherwise qualified, means

a tensor of the second rank (a dyadic).
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If the crystal has a unique axis (commonly taken as the Z-axis), the plane of the

primitive circle is chosen normal to it, so that the end of the unique axis, which is now
the axis of projection, appears at the center of the projection. If there is no unique
axis, the axis of projection is taken parallel to the intersections of the faces belonging
to some prominent zone. In what follows we shall refer to the axis of projection as

the Z-axis.

The projected poles corresponding to faces parallel to the Z-axis lie on the primi-
tive circle itself. All other poles fall in loci that are either straight lines or circular

arcs passing through the ends of a diameter of the primitive circle. The poles on any
such locus correspond to a set of faces that form a zone (4) ;

the edges formed by the

intersections of such a set of faces are all parallel. The pole at the center of the

primitive circle represents a face normal to the Z-axis (the basal plane).

Although a stereographic projection cannot show the actual form of a crystal, it is

in important respects more useful than a perspective view of the crystal, since it

FIG. 7. The angular coordinates <p and
of a crystal face ABC.

FIG. 8. Diagram illustrating the con-
struction of a stereographic projection.

reveals the symmetry characteristics at a glance and shows quantitatively the orienta-

tions of the various faces.

In Fig. 6 is shown a stereographic projection of a quartz crystal.

Since clear and simple directions for making stereographic projections are some-

what hard to find, the method now to be described may prove useful. The problem
is to find by the smallest number of operations the location of the pole P in Fig. 8,

corresponding to a face (hkl) of a crystal of given axial ratio a :b :c.

The method can best be explained by reference to Fig. 7, in which the (MO-plane
is represented by the triangle ABC, the normal to which is OD. In accordance with

4, we may let the distance OA be a/h, OB = b/k, OC c/l. Any of the digits

hj k, I may be negative, in which case the corresponding distances in the figure are to

be laid off in the negative directions. The angular coordinates of the direction OD
are <p and 0, where tan <p

= ka/hb, and tan = (al/ch) cos <p
- (bl/ck) sin <p.

If in Fig. 7 is taken as the center of the sphere, it is evident that the pole cor-

responding to the face (hkT) will be at the intersection of OD with the spherical surface.

The projection on the plane of the primitive circle (the .XT-plane in Fig. 7) will lie

on the line OE, since it is the point where the primitive circle is intersected by the line

from the pole on the sphere to the point on the Z-axis where the eye is located.



36 PIEZOELECTRICITY [19

The construction of the stereographic projection can now be carried out according

to Fig. 8, in which OX, OY, and ? are the same as in Fig. 7, and OE", a radius of the

primitive circle, is parallel to OE. It remains to find the position of P on OE".

Instead of making a separate diagram for this purposejt is customary to perform the

construction on the same diagram. As the first step we imagine the CO^-plane in

Fig. 7 to coincide with the plane of the paper in Fig. 8 so that OC, OD, and OE coincide

in direction with OC', OD', and OE', respectively. The line OD', making the angle 9

with OE', is normal to (hkl) ; hence, D' is the pole of (hkl) on the sphere. The eye is

100
210 2fO

120

120

FIG. 9. Stereographic projection of a Rochelle-salt crystal, with details of construction

for the (T21) face.

located at X; hence, P' is the stereographic projection of D' on the plane of the primi-

tive circle, which at this stage is perpendicular to the paper. OP' is the distance of

the stereographic projection from the center of the circle.

Having located P', we now return the primitive circle to its original position in the

plane of the paper. The second and final step in the construction consists simply

in laying off on OE" a distance OP =* OP'. P is then the desired projection of the

face (hkl).

If the stereographic projection is desired for a face belonging to a hexagonal or

trigonal crystal, for which the indices are given according to the Miller or the Bravais

system, it is necessary first to calculate the relative intercepts of the face on the three

orthogonal axes. Formulas for the transformation are given, for example, by Davey

(ref. B14, p. 34) and by Wolfe*.

As an example of this construction we shall find the stereographic projection of the

(3Tl)-face of rhombic Rochelle salt. Here h - -2, k = -1, I - 1. From 8 wo

* C. W. WOLFE, Am. Mineral, vol. 26, p. 83, 1941,
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find a:b:c - 0.8325:1:0.4334. Hence tan <t>
- ka/hb -

0.416, *>
- 2236',

cos <P
- 0.923

tan -
( Z/c.1) cos ? -0.893, - ~4147'. As in Fig. 8 these angles are laid off

on Fig. 9, and the pole for (21 1) is thereby located. The poles of the remaining faces

of Rochelle salt are also shown. The open circles indicate faces at the end of the

crystal away from the observer. This diagram reveals clearly the asymmetry of

Rochelle salt with respect to all three principal planes.
Between the Curie points, Rochelle salt has the form of a monoclinic crystal, owing

to the spontaneous strain i(482). This strain rises from zero at 18 and -f24C
to a maximum of about 4' of arc at about 5C and represents the departure of the angle
between the 7- and Z-axes from 90. The alteration in Fig. 8 caused by so small an

angular change would
be_quite imperceptible. Strictly, one of the two black dots

representing the faces (OlO) and (010) (the two F-faces) would be moved inward

radially by a very minute amount, while the other black dot would become an open
circle moved inward by the same amount.

With those systems having oblique crystallographic axes, the axial ratios do not

at once lead to the distances OA, OB, and 0(7 in Fig. 7. Nevertheless, the angles <p

and for any face can always be calculated from goniomctric measurements, so that

Fig. 8 can be used for locating the position of the corresponding pole.
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CHAPTER III

CRYSTAL ELASTICITY

Take from our souls the strain and stress . . . WHITTIEB.

Owing to the interactions between the elastic and the electric prop-
erties of piezoelectric crystals, it may be helpful, before considering
elastic phenomena by themselves, to survey the field somewhat compre-
hensively, including thermal effects as well. The first part of the chapter
is devoted to this survey, which leads naturally to the expression for the

energy of a system that is under mechanical, electric, and thermal strain,

known as the thermodynamic potential. The subject matter of the present

chapter is symbolized by the first term in that equation.
After these general preliminaries, there will follow the treatment of

the purely elastic relations. As an introduction to the special elastic

properties of crystals, the familiar expressions for stress and strain and
for the elastic constants of isotropic solids are first reviewed. The sub-

ject of shears is considered somewhat in detail, because of their occurrence

in some of the more important types of resonator and other piezoelectric

devices.

After the fundamental stress-strain equations for anisotropic solids

will come consideration of the properties of the nine clastic groups into

which the 32 classes can be divided. Finally we shall give the equations
for transformation to axial systems in any orientation, first in general

form, then specialized for those groups which are of chief importance in

this work.

20. Relations among Elastic, Electric, and Thermal Properties of

Crystals. No study of piezoelectric phenomena can be complete without

regard to the interactions between the electroelastic effects on the one

hand and thermal phenomena on the other. The following chapters

contain abundant evidence that the subject is of more than academic

interest. The present discussion is confined to linear effects, thus exclud-

ing such subjects as electrostriction.

The relationships between the three types of effect are illustrated in

Fig. 10. The arrangement of symbols is here based upon Voigt's theory,

according to which a field E causes a piezoelectric stress X = eE, where

e is the appropriate piezoelectric stress coefficient. Similarly a strain x

causes the electric polarization P = X. In like manner the pyroelectric

constant p relates a change in temperature # with P; the arrow from E to
39
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E

BQ indicates the electrocaloric effect (variation in the quantity of heat Q
on application of an electric field E), which, however, is usually expressed

as a relation between the change & in temperature and E (523); the

coefficient of expansion a relates & with x\ the line from X to 5Q, with a

coefficient b relating them, indicates the thermoelastic effect.* X and x

are related by an equation of the form x = sX, with analogous expres-

sions for the dielectric susceptibility vj and the specific heat C. The
arrows indicate the directions in which the various effects usually take

place. The additional arrow from P to E shows that an electric^ield may
exist by virtue of polarization charges.

Each of the nine straight lines forming the diagram in Fig. 10 repre-

sents what may be designated as a primary effect. In every case, how-

ever, there is at least one other

path over which the process can

take place, unless certain coeffi-

cients vanish for the particular

class to which the crystal belongs.

Such roundabout effects may be

called secondary effects. An out-

standing instance is the "false"

pyroelectric effect, due to piezo-

electric action, which may be

several times as great as the direct

effect itself. In this case the pri-

mary, or "true," effect is indicated

by the path # P, while the

secondary effect follows the path
# > x * P. Similarly, when an

FIG. 10. Relations between elastic, di-

electric, and thermal phenomena, adapted
from Heckmann(213)

.

elastic compliance coefficient sis measured by observations on X and

x, a piezoelectric polarization P is produced (unless c = 0), which

if the crystal is not short-circuited gives rise to a field E, which in

turn modifies the value of X ; moreover, through the thermoelastic effect

the temperature changes, thus affecting the value of x. While for most

crystals the thermoelastic effect is very small (adiabatic correction), this

is by no means true of the piezoelectric reaction upon X.

This unified presentation of primary and secondary effects does not

appear to have been given hitherto. The reader can easily trace out still

* This expression of thermoelastic relations in terms of a coefficient such as 6

relating stress to change in quantity of heat is unconventional. Usually, as on pp.

285, 286, and 784 in Voigt, the theory relates stress to temperature, through coefficients

of thermal stress <?&; these are the coefficients employed in Eq. (1) below. In the

treatment of the electrocaloric effect (523) we shall use the symbol q to designate

the electrocaloric coefficient, but there need be no confusion, since the electrocaloric q
does not appear in the present chapter.
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other secondary effects. The only one with which we shall be especially
concerned is the relation between E and P: the susceptibility derived

from measured values of P and E may be very different (especially with

Rochelle salt) according to whether or not the path E *X & > P is

suppressed by mechanical constraints that prohibit deformation of the

crystal.

21. We are thus led to another important consideration, viz., the

specification of the conditions under which any given coefficient is observed.

In thermodynamics one distinguishes between the two specific heats of

gases, Cp and Cv . Similarly in solids the difference between the specific

heat Cx at constant stress, and Cx at constant strain, though small, is

real. The necessary condition, or standard state, for the experimental
determination of Cx, as well as for its use in equations, is that X and E
shall be held constant: there must be no change in applied stress, of

either mechanical or electrical origin. For C, x and P must be constant.

Of greater importance to us are the analogous remarks that may be

made concerning the coefficients s and rj (see also 198, 204, and 205).

Supplementing the statement made above, it may be said that the com-

pliance coefficients s (always with appropriate subscripts) have in general

different values according to the thermal and electrical state of the crys-

tal: not only must we discriminate between the elastic coefficients at

constant temperature (isothermal) and at constant entropy (adiabatic),

but in each of these cases it is necessary to specify whether E or P is con-

stant throughout the process. Frequent use will be made of the symbols

SE (or sometimes S
E
)
* and of SP (or sp) to denote constancy of field and of

polarization, respectively. Other suffixes or superscripts, as D for con-

stant electric displacement, will also be employed. Similar notation will

be used for the elastic stiffness coefficients c. It is not necessary to indi-

cate in the symbol whether T (temperature) or Q is constant. In static

equations the isothermal values will be tacitly assumed; in vibrational

equations, the adiabatic.

In the case of the dielectric susceptibility we shall use the symbol if

when X is constant (crystal "free"), and if' when x is constant (crystal

"clamped")-
We come now to the effects represented by the sides of the triangles

in Fig. 10. Reference has already been made to the true and the false

pyroelectric effects. Similarly, one might speak of a true and a false

thermal expansion effect in piezoelectric crystals: the true, or primary,

effect would be observed by holding E constant. Otherwise, a secondary

effect&*P-^E>X*x might occur, causing a piezoelectric contribu-

tion to the observed expansion.

* It is perhaps excusable, and certainly space-saving, to refer to the value of an

elastic coefficient at constant field as the "isagric" value (pronounced "ice-agric").
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In the case of the direct piezoelectric effect represented by x P, the

standard state, tacitly assumed in the fundamental equations, is with E
and & constant. Strictty, if observations are not made with extreme

slowness, the application of stress X causes adiabatic heating, with a

false piezoelectric effect over the path X 8Q & * P. Unless the

pyroelectric constant p is very large, this may be neglected in static

experiments. When a pyroelectric crystal vibrates, however, the periodi-

cally varying temperature must make a pyroelectric contribution to the

polarization. Such an effect deserves consideration in such crystals as

Rochelle salt.

In Fig. 10, as also in Fig. 11, the portion Xx&5Q represents the thermo-

dynamics of solids. In a broader

sense the entire figure is a thermo-

dynamic diagram, and the devel-

opment of the theory relating the

various effects is along thermo-

dynamic lines. It is in this sense

that the strain-energy function

about to be considered is called a
' '

thermodynamic potential.
' '

FIG. 11. Tetrahedrons representing the
relations between elastic, dielectric, thermal,
and magnetic effects.

22. It is possible to extend the fore-

going discussion by including other

physical effects. By way of illustration

we consider briefly the relation of mag-
netic phenomena to those already treat-

ed, even though they have but slight

bearing on the field of this book. This

extension requires a three-dimensional

model instead of the two-dimensional

Fig. 10. guch a model is shown in

perspective in Fig. 11, consisting of the

tetrahedron HXdQEj which we may
call the stress tetrahedron, enclosing a smaller strain tetrahedron Ix&P. The two basic

triangles X8QE and x&P are the same as in Fig. 10.

In Fig. 11, H represents the magnetic field strength, related to the magnetic

polarization / (intensity of magnetization) by the equation / = %//, analogous to

P -
t\E. The three quadrilaterals HIxX, HI8Q&, and HIPE symbolize, respectively,

the relations of magnetism to elasticity (primarily piezo magnetism, though the con-

cept may be extended to include other magnetoelastic effects), to heat (thermo-

magnetic effects), and to electrostatics. The last effect is hitherto undetected, and

probably undetectable, owing to the absence of appreciable magnetic permeability
in insulating crystals. The purpose in mentioning these magnetic effects is to point
out that, so far as they exist at all, they are subject to secondary effects and to the

necessity of defining standard states, just as is the case with the elastic, electrical, and
thermal effects to which we now turn.

It should be noted that in Figs. 10 and 11 the quantities 8Q and # are scalars,

E and P vectors, X, jc, H, and / tensors; in tensor analysis they are tensors of ranks 0,

1, and 2.



23] CRYSTAL ELASTICITY 43

23. The Thennodynamic Potentials. In the treatment of problems
in elasticity, Green in 1837 introduced the "strain-energy function."'*

This function, when applied to a reversible system, is commonly called

the free energy of the system and has been extended to include thermal

and electrical as well as elastic effects. The synonymous term "thermo-

dynamic potential" was used by Lord Kelvin and by Gibbs and applied

to crystals by Duhem and by Voigt.

When the free energy is expressed in terms of strains, it is known as the

first thermodynamic potential and is denoted by . The negatives of its

differential coefficients with respect to the components of elastic strain

are the components of stress.

The free energy is also often expressed in terms of stresses. It is theD

called the second thermodynamic potential, denoted by f ;
the negatives of

its differential coefficients with respect to the components of elastic stress

are then the components of strain. These potentials are further dis-

cussed in 187. Either of these expressions for the free energy can be

expanded in powers and products of the components of strain (or of

stress), thus becoming the sum of homogeneous functions of various

degrees. Since for an unstrained body the potential energy is a true

minimum, the first-degree term vanishes. Insofar as the strains are

small, as is usually the case, only quadratic terms need be retained. In

elasticity, for example, this amounts to the acceptance of Hooke's law.

We shall have but little occasion to consider terms of higher degree.

As a basis for further discussion in later chapters, as well as with

respect to elasticity, we now write the two thermodynamic potentials in

terms of mechanical, electrical, and thermal effects. A crystal plate is

assumed to be subjected simultaneously to an arbitrary uniform mechan-

ical stress, a uniform electric field in any orientation, and to be at a tem-

perature differing from some standard temperature T by the amount &;

A>S is the change in entropy corresponding to #.

The frame of reference has its X-, Y-, and Z-axes parallel to the prin-

cipal orthogonal axes of the crystal, as defined in Chap. II. The six

terms in each equation represent the energy in terms of the elastic,

dielectric, piezoelectric, thermal, thermoelastic, and pyroelectric prop-

erties of the material. Symbols of the form xh denote components of tho

total strain due to all causes, while Xh , X< are components of externally

applied mechanical stress (25); CM and shi are coefficients of elastic stiff-

ness and compliance, respectively (26) (their values are assumed to be

* " Mathematical Papers of the Late George Green," Macmillan & Co., London,

1871, p. 245: "In whatever way the elements of any material system act on each other,

if all'the internal forces exerted be multiplied by the elements of their respective direc-

tions, the total sum for any assigned portion of the mass will always be the exact

differential of some function." The phrase "in whatever way" may be regarded as

including thermal and electrical effects.
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those which would be observed at constant electric field (76) and at the

temperature !T); i?"m and r?JL are dielectric susceptibilities at constant

strain and constant stress, respectively (204) ;
Ek ,

Em are components of

the field strength in the crystal, maintained constant by potentials

applied to suitable electrodes; emh and dU are piezoelectric stress and

strain coefficients; J is the mechanical equivalent of heat in ergs per

calorie, p the density, C the specific heat in calories g"
1
deg-

1
(with solids

its value is practically the same at constant stress and constant strain) ;

qh and ah coefficients of thermal stress and expansion;* and pm *, pyro-

electric constant, f Summations extend from 1 to the number indicated

in the superscript. For all combinations of different subscripts, SM = sih

and ijkm
=

f\mk\ such commutation is not permissible with the piezo-

electric coefficients. Hence in the development of Eqs. (1) and (2) there

are, in the most general case, 21 elastic terms, 6 dielectric, 18 piezo-

electric, 6 thermoelastic, and 3 pyroelectric. All products are scalar.J:

66 33 36

5
Mhi 3hi k

h

66 33 3

hi km m h

6

(2)

*
VOIGT, pp. 285 and 772.

f Note on the use of subscripts. Just as the six components of stress or of strain

are often conveniently indicated by the subscripts 1 ... 6, so the three components
of electric vectors are often indicated by subscripts 1, 2, 3 instead of x, y, z. In writing

general expressions, applicable to all components of a given quantity, it is customary

to use a letter as subscript: for example, Xh means a component of stress where h may
have any value from 1 to 6. Some quantities, as, for example, elastic and piezo-

electric coefficients, require (according to the convention in common use) two sub-

scripts: d2s is the piezoelectric coefficient relating a field parallel to Y to the strain zxt

while dmh is the general form of the coefficient, it being understood that m 1, 2, or 3,

while h 1, 2, 3, 4, 5, or 6. This symbolic notation is especially useful in the writing

of summations in abbreviated form.

The choice of letters to serve as generalized subscripts is entirely arbitrary; the

reader soon learns that the important thing is not what the symbols for the subscripts

are but where they are located.

t Since the field strength E is analogous to stress, and polarization to strain, the

second, third, and sixth terms in Eq. (1) should in strict consistency be expressed in
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The six terms of Eqs. (1) and (2) will be recognized as corresponding
to the three radial and the three peripheral relations represented in Fig.
10. Our concern is mainly with the first three terms, and in the present

chapter with the first term alone. Its use in obtaining the fundamental
stress-strain equations will be discussed in 26.

24. In the elementary theory of elasticity the three elastic constants

of an isotropic solid are Young's modulus F, the rigidity, or shear, modu-
lus n, and the bulk modulus, or volume elasticity, K. These are not inde-

pendent, for any one of the three can be expressed in terms of the other

two by the relations given below. Expressions involving Poisson's ratio

<r (transverse contraction: longitudinal extension) are also included.

3/cF

- Y 2(1 + cr)

nY Y
3(3n - F) 3(1

-
2cr)

_ F - 2n _ 3/c - 2n
"

2n 2(3/c + n)

(3)

The relations between the elasticities of isotropic bodies and of crys-

tals are discussed in succeeding sections, especially in 31.

When a solid body is in equilibrium under a given system of exter-

nally impressed forces, its state of deformation is called a strain, while the

forces, which necessarily occur in equal and opposite pairs, give rise to a

stress. If all parts of the body suffer the same deformation the strain is

homogeneous: lines originally straight and parallel remain so in the

strained state, though in general their lengths are changed (always in

the same ratio) and their directions are altered; a square becomes a paral-

lelogram, a sphere becomes, in the most general case, a triaxial ellipsoid.

25. Stresses and Their Components. In some texts a stress is defined

simply as force per unit area acting on any plane in the body, with the

understanding that the force may or may not be normal to the plane. In

respect to elasticity, such a definition is defective, since an elastic strain

is expressed in terms of one or more pairs of equal and opposite forces per

unit area. A force per unit area is a vector, while a pair of equal and

opposite forces per unit area is a component of a symmetrical tensor.

Graphically, a vector is usually represented by a simple arrow; similarly,

terms of polarization. The energy is, in fact, so expressed in Eq. (243) (p. 252). The

present formulation is chosen because it makes explicit use throughout of the param-

eters that occur in Voigt's theory.
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a tensor component, if extensional or compressional, may be represented

by an arrow with heads at both ends pointing in opposite directions.*

The two heads may be thought of as representing either the oppositely

directed impressed forces acting on opposite sides of the body under stress

or an impressed force balanced at any plane by a force of elastic reaction.

Stresses and Stress Systems for a Homogeneous Solid in Equilibrium. A
stress is defined as the force per unit area exerted by the portion of the

body on one side of a surface element within it upon the portion on the

other side. This definition involves the tensorial nature of the stress; for

when the body is in equilibrium, there is on "the other side" an equal and

opposite force, and the pair of forces constitutes the stress. In general,

such a force can be resolved into a normal component, which is a simple

pressure (positive or negative) and a tangential component, which is one

of the pair of forces producing a shearing stress. Whatever the direction

of the force, if the body is in equilibrium a plane can always be drawn in

such a direction that the shearing stress vanishes (28).
The origin of the stress may be purely mechanical, owing to contact

of the body with some material medium: the forces acting on the surface

are then called surface tractions, and if the strain is homogeneous the stress

at the outer surface is the same as at any point in the interior. On the

other hand, the stress may originate in body forces, exerted directly on

spme or all portions of the body by some agent through "action at a dis-

tance." To this type belong the piezoelectric stresses, i.e., mechanical

stresses in a piezoelectric crystal caused by the application of an electric

field. As will be seen later, a uniform field gives rise to a homogeneous
internal stress, tending to deform the crystal exactly as an equivalent

mechanical stress impressed externally would tend to deform it. If the

crystal is clamped, the clamping mechanism exerts forces equal and oppo-
site to those produced by the field, so that the strain is zero.

In general, the term "impressed stress" means the sum of the mechan-

ical and piezoelectric stresses, with respect to any surface element in the

crystal.

In most practical cases the body is subjected not merely to a single

stress such as we have been discussing, but rather to a system of such

stresses, which may be due in part to external mechanical forces and in

part to an electric field. Hence, in the most general case we have to do

with a stress system, resolvable into stress components with respect to some
set of axes. Such a stress system is treated as a second-order tensor.

The single stress discussed above may be one such component.
Where there can be no ambiguity, we shall sometimes refer to a stress

system simply as the stress.

* In the "Lehrbuch," p. 133, Voigt suggests a special graphical symbol for a

shearing stress.
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A body may, of course, be in equilibrium even though the impressed
stress system is not homogeneous, as in the case of a flexed bar or of a body
subjected to a pair of opposite collinear forces applied to limited regions
on opposite sides. In general, in such cases the stress and hence the strain

become distributed throughout the body in a manner that may be very

complicated, especially in such anisotropic media as crystals. Never-

theless, the stress and strain at any point can always be regarded as

homogeneous if a sufficiently small element of volume is taken in the body
in equilibrium.

In a vibrating body not even small volume elements are in elastic

equilibrium. Each element is subject to an unbalanced stress system,
the forces on opposite sides no longer being in equal and opposite pairs.

The strain in the element is determined by the lesser of the two forces

in the pair; the difference between the two forces is what overcomes

friction and provides the acceleration. Nevertheless, by applying
D'Alembert's principle we can regard the element as being in equilibrium.

The balance of forces then includes the elastic reaction, the inertial and

frictional forces, and the impressed external and body forces. In the

piezo resonator it is the body forces that do the driving.

Just as a force vector may be resolved into three components, so the

symmetrical tensor that represents a stress system may be resolved into

six components, viz., compressions along the three coordinate axes, and

shearing stresses with respect to the three planes normal to the axes. In

all cases a right-handed orthogonal system is used. The six components
are designated by Xx ,

Yy ,
Zz ,

Yg ,
Zx ,

and Xv ,
in each case the capital letter

indicating the direction of the force and the subscript the direction of the

normal to the surface on which the force acts. Frequently we shall find

it convenient to use the symbols Xi, X2,
X3,

Z4 , X&, and X 6f where, for

example, Xi stands for Yz . When a general symbol for a stress is required,

X will be used without a subscript. Xx,
Yv ,

and Zz are compressional

components, while Yg ,
Zx,

and Xv are shearing components. The latter

might equally well be written Zy ,
Xz ,

and Yx .

Rules for the Algebraic Signs of Stresses. In agreement with Voigt we

shall observe the following rule:

Normal to any surface, a stress is positive when compressional, negative

when extensional.

When the term
"
compressional" is used in a general sense, it is with

the understanding that a negative compression is an extension.

26. Strains and Their Components. The components of strain are

denoted by xx, yv,
zz , yz ,

zx,
and xy or by x t ,

x2 ,
. . . ze.* They are

related to the displacements as follows: If u, v, w are displacements of a

* This notation, due to Kirchhoff, is much more commonly used in piezoelectric

literature than that of Love, in which xx, etc., is replaced by eM| etc.
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point whose undisturbed coordinates x, y, z become altered by strain to

x + u, y + v, z + w, then

du dv dw

dw
,
dv du

,
dw dv

,
du

9- -s !? O'-sf 9- _w* ~
dy dz

v
"

ds te
*

""

da: a?/

(4)

The last row of equations takes account of the fact that in general an

arbitrary system of stresses produces a rotation of the body as a whole as

well as a deformation. The amount of rotation is (w* + coj + wj)*

radians about an axis whose direction is given by (w^c^ico*). In the

case of pure shears (27) there is no rotation.

xx> yy ,
and zz are the extensional components of strain, a compression

being a negative extension. The algebraic sign of these components is

positive for an extension^ negative for a compression. A positive strain

corresponds to a negative stress (see 27). This rather unfortunate con-

vention is so deeply embedded in crystal literature that we shall not

attempt to uproot it. It is analogous to the custom in the theory of gases

of treating an externally applied pressure as positive, while a change in

volume is regarded as positive for an expansion. The nature of shearing
strains and the convention with respect to signs are considered in 27.

In elastic theory Hooke's law is assumed to be valid for all types of

deformation within the elastic limit. Linear equations then suffice to

express the stress-strain relations. Departures from linearity in the case

of certain crystals will be considered in 462.

The complete expression for the components of elastic strain of an

anisotropic body in terms of components of stress is obtained by taking
the derivatives of the enfergy function [Eq. (2)], the electric field E being
constant and the change in temperature & being zero. Only the first

term remains,

df V^ -
2,

the negative sign conforming to the convention mentioned above. When
this expression is written out in full for all six values of h and of i

9
we

obtain the following six fundamental equations for the components of

strain in terms of the components of stress and of the 36 elastic com-

pliance coefficients Sn . . . See:*
* In strict tensor notation, the components of stress and strain, which are second-

rank tensors, should be written with two subscripts and the elastic stiffness and

compliance coefficients, which are fourth-rank tensors, with four. We employ the

simpler notation given by Voigt.
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snXx

s31Xx

S22YV

s32Yv

s24F,

-zx =
-xy

=

49

(5)

According to elastic theory the number of independent coefficients is

reduced from 36 to 21 by the relation sik = s*,-, where i and k may be any
integers from 1 to 6. The 21 coefficients sik are called by Voigt the

"elastic moduli." Since in English the term "modulus" is usually

applied to the ratio of stress to strain, we prefer to call the sik the elastic

compliance coefficients or simply the compliances. They may also appro-

priately be called the elastic susceptibilities. We have introduced them

first, as they are the quantities derived directly from observation.

In order to express the stresses in terms of the strains, Eqs. (5) are

solved by determinants. Each stress is then given in terms of strains

and of certain functions of the compliances, which appear as coefficients

of the strains. Calling these coefficients Cu . . . Cee, we have

-Xx =

-Y, =

-Zx =
-Xv

= -f

x f
+
4-

(6)

Equations (5) and (6) are the generalized form of Hooke's law. Equa-
tions (6) can also be obtained by taking the derivative of the first term in

Eq. (1) with respect to XK-

The dk are commonly called the elastic constants. As with the com-

pliances, there are 21 independent values, owing to the relation dk c.
In order to avoid ambiguity and to distinguish them from the compliances

one may appropriately call them the stiffness coefficients. They are analo-

gous to dielectric stiffness, while the sik are analogous to dielectric sus-

ceptibility. Each stiffness coefficient is related to the corresponding

compliance coefficient by an equation of the form Ckk = Shk/D, where D
is the determinant of all the compliance coefficients [the matrix for this

determinant is evident from Eqs. (5) ; it appears also under Group I in

29] and Shk is the cofactor of the same determinant with respect to SA*.

Only in the crystal class of lowest symmetry do all 21 elastic coeffi-

cients have values differing from zero. The number decreases with

ascending symmetry, becoming 3 for cubic crystals, 2 for isotropic solids,

and 1 for fluids. Wherever an sik becomes equal to zero, the correspond-

ing Cik vanishes also.
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The two types of elastic constant are related by the following equa-

tions, in which i and k may have any values from 1 to 6, A; being different

from i:

(7)

27. Shearing Strains and Stresses. Shearing stresses and strains

play an important part in piezoelectric phenomena. The model shown

FIG. 12. Wooden model, hinged ab the coawa, illuttiatmg cheat1
-- Tho pattern painted

on the metal cross strips shows the deformation of a circle into an ellipse.

in Fig. 12 was designed to illustrate a shearing strain. The two lines

drawn at 45 to the sides remain mutually perpendicular after shearing,

and they become the major and minor axes of the ellipse. If the strain

is produced by moving one side while the opposite side remains fixed, it

is called a simple shear. Adjacent cross strips, which may be considered

as representing adjacent parallel planes in a three-dimensional body,

slide relatively to each other. This would be equally true if one of the

vertical sides of the model were moved vertically, and it would also be

true if the strips were horizontal instead of vertical.
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The definitions of the magnitude and sign of a component of shear

can be understood from Fig. 13, which represents the base OACB of a

cube having edges of length OA. The X- and F-axes are here the "axes

corresponding to the shear." If a force in the X-direction is applied to

the AC-face of the cube, so that the stress is Xv,
the base OB being held

immovable, AC will move tangentially to A'C', the distance AA' being

proportional to Xv, to OA, and to the compliance $6 of Eq. (5). All

planes parallel to the face OA are rotated through an angle <p, which, for

small deformations, may be taken as equal to AA'/OA. The angle *? is

the measure of and numerically equal to

the shearing strain, which in Fig. 13 is

positive.

A shearing strain is positive when the *& W **

planes undergoing rotation are turnedfrom the

positive direction of one of the axes correspond-

ing to the strain toward the positive direction of \
the other axis. Or, in a positive shear, a

I

rectangle becomes deformed so that an acute /

angle lies in the quadrant between the positive

directions of the two axes.
~

Flo 13 __A simp 8hear

A shearing stress is positive when it tends The measure of the shearing

to produce a negative shearing strain. The strain Sptsiti^e.^d^he^iane
internal elastic reacting stress, which opposes of the diagram is the plane of

an impressed shearing stress, thus has the
shoar *

same sign as the strain. An analogous statement may be made concern-

ing compressional impressed and reacting stresses.

Figure 13 represents a simple shear
, which involves a rotation of the

body as a whole about the Z-axis. If the stress had been Yx ,
of the same

magnitude as before but applied vertically upward to the face BC, the

deformation would have been the same but the rotation would have been

in the opposite sense, as shown by the dotted lines in Fig. 13. If Yx

and Xv were applied simultaneously, the strain would be twice as great

and the net rotation would be zero. Since in the macroscopic description

of elastic phenomena it is immaterial whether the actual sliding takes

place in one direction or the other, or in both, it is customary to use the

single symbol Xv for the shearing stress in the ZF-plane, whether it is

to be regarded as producing a simple shear, as in Fig. 13, or a pure shear,

which will now be considered. Mathematically, the identification of Xv

with Yx reduces the number of components of the general stress tensor

(Xx,
Yy, Z,, Yf,

Zv,
Zx, X,, Xv ,

Yx) from nine to six.

In a pure shear there is no rotation of the body as a whole. It may be

regarded either as the result of two equal simple shears, as in the preceding

paragraph, or as due to a compression along one diagonal of the cube face
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and an extension along the other, as shown in Fig. 14. From the first

point of view the deformation of the square into a rhombus is effected

by the shearing stresses Si, S{ and 2 , $S, which are equivalent; from

the second point of view, to the mutually perpendicular compressional

stress C, C" and extensional stress E, E1
. The point to be emphasized

is that the deformation may be regarded either as a compressional or as a

shearing strain according to whether the axes of reference are parallel

to E and C or to Si and S2) these sets of axes differing by 45. Geo-

metrically, it means that by rotating the axes 45 a pure shear*becomes

transformed into a compression and
an extension at right angles, and

vice versa. The significance of this

in piezoelectric applications is that

a shearing stress produced piezo-

electrically by an electric field can

be converted into a compression in a

direction 45 from the axes of shear.

The correlation between Eqs. (4)

and Fig. 13 can now be pointed out.

If in Fig. 13 we let OB =
x, OA =

y,

I / v ^-~^^\1 tnen AA'/y = BB"/x, or in differ-

/ Y-- --
^

"Z~ v ential notation du/dy = dv/dx. The
rotation of the body as a whole is

given in the last row of Eqs. (4),

and is zero when du/dy = dv/dx; this

is the condition for a pure shear.

The second row of equations shows that in general a component of shear

such as xy is made up of two simple shears; it is "pure" or "irrotational"

when these two simple shears are equal and opposite.

It is evident that such an expression as "the shear about the Z-axis"

is meaningless until the axes corresponding to the shear have been

specified. However, the expression is permissible with the understanding
that the axes corresponding to the shear are the two orthogonal axes

perpendicular to that axis about which the shear is regarded as taking

place, as illustrated in Fig. 13. This latter axis is that about which

the entire body rotates in a simple shear. This necessity of specifying

the axes corresponding to a shear is analogous to that of specifying the

direction of a compressional strain or stress.

28. The Ellipsoids of Elasticity. From the foregoing discussion it is evident that,

when a solid is sheared, there are two planes in which there is no shear, but only exten-

sion and contraction. This statement may be generalized as follows, the proof being

given in treatises on elasticity: In any homogeneous strain, whether all six components
differ from zero or not, there is always a set of three orthogonal lines in the unstrained

*

FIG. 14. Equivalence of pure shear to

combined extension and compression.



29] CRYSTAL ELASTICITY 53

state that remain orthogonal and unaltered in direction after the strain. These lines

are the principal axes of the ellipsoid into which a sphere is transformed. This

ellipsoid is the strain ellipsoid; its parameters are the components of strain. The
radius vector in any direction is proportional to the ratio of the length of a line having
this direction in the strained state, to the length of the corresponding line before strain.

The planes perpendicular to the principal axes are the principal planes, and they are
the planes in which the shearing strains arc zero.

Associated with the strain ellipsoid is the reciprocal strain ellipsoid. This is the

unique ellipsoid that can be constructed in the body in the unstrained state, which is

transformed by the strain into a sphere. Its principal axes are the reciprocals of those

of the strain ellipsoid; and if the strain is pure, unaccompanied by rotation of the body
as a whole, its axes are coincident in direction with those of the strain ellipsoid.

In the most general type of homogeneous pure strain, in which all six components
may be present, the strain is equivalent to three mutually perpendicular extensions,

whose directions are the principal axes of the strain. They are also the principal axes

of the reciprocal strain ellipsoid. If the strain is not pure, the principal axes of strain

have to be rotated; and in general it may be said that any strain can be resolved into

terms of simple extension and simple shear. The equations by which such trans-

formations are effected are given in 38.

In most of the problems in this book we shall be concerned only with the configura-

tion of a body after strain, without being troubled by the question whether the strain

is pure or not. It is only in certain vibrational problems that the rotation of the body
as a whole becomes important.

Analogous to the strain ellipsoid is the stress ellipsoid, the parameters of which are

components of stress; the principal planes are those for which the shearing stresses

vanish.

29, Elastic Constants for the Thirty-two Crystal Classes. From their

fundamental nature it is evident that the elastic properties of all sub-

stances are centrosymmetrical; they can be described entirely in terms

of axes of symmetry. The question whether an axis is polar or not has

no bearing on the elastic classification. Hence all crystals have a higher

degree of symmetry with respect to their elastic than to their piezoelectric

properties, since the latter are dependent on polarity of axes and also on

elements of symmetry other than axial. With ascending symmetry the

number of independent elastic constants decreases, the criterion being

the degree of axial symmetry. For example, if a crystal has an axis of

threefold symmetry, a rotation of the system of reference by 120 or 240

is a "covering operation" with respect to which all expressions involving

the elastic constants are invariant, and the number of independent con-

stants is correspondingly reduced. It is shown by Voigt that the 32

classes fall into 11 groups (Obergrupperi), in each of which the axial

symmetry is the same. These are the same groups into which crystals

are classified in the treatment of dielectric polarization, electrostriction,

thermal expansion, tensorial pyroelectricity, piezomagnetism, piezo-

optics, and the Kerr effect. For the elastic classification the matrices

are the same in the 2 hexagonal groups and also in the 2 cubic groups.
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For the present purpose we therefore need list only 9 groupings instead

of 11.

Full details of the procedure are given in refs. B34, B52, and B56.

We are concerned only with the results, as presented in the following

tabulation. The class numbers are as in Table I (pages 19-20). The
coefficients are arranged in the same order as in Eqs. (5) and (6), the

subscripts indicating the independent coefficients. For example, the sym-

metry in Groups VI and VII is such that cee = CM, whence CM is

written in place of C56- In accordance with 26, we write Cn in place

of C2i etc., and 812 in place of s2 i etc.

It must be emphasized that the coefficients in the following tabulation

are the ones to use in Eqs. (5) and (6) when, and only when, the frame

of reference is the three orthogonal crystallographic axes defined in 5.

Otherwise, the transformed coefficients must be used, according to

Chap. IV.

GROUP I, TRICLINIC SYSTEM, CLASSES 1, 2

Cll 12 l8 14 l5 16 $11 $12 $13 $14 $16 $16

Cl2 22 23 24 26 26 $12 $22 $23 $24 $25 $26

Cl8 23 88 34 35 36 $13 $23 $33 $34 $85 $86

l4 24 34 44 45 46 $14 $24 $34 $44 $45 $46

16 25 35 46 55 66 $15 $25 $35 $45 $55 $56

l6 26 36 46 (6 66 $16 $26 $36 $46 $56 $66

GROUP II, MONOCLINIC SYSTEM, CLASSES 3, 4, 5

ll 12 18 l6 $11 $12 $13 $16

Cl2 22 28 26 $12 $22 $23 $26

Cis 28 38 38 $18 $23 $83 $36

44 45 000 $44 $45

45 55 000 $45 $55

Cl6 26 36 66 $16 $26 $36 $68

GROUP III, RHOMBIC SYSTEM, CLASSES 6, 7, 8

11 12 13 $n $12 $u
12 22 28 $ 12 $22 $23

18 23 33 $ 18 $23 $88

44 944

55 $55

66 $66

GROUP IV, TETRAGONAL SYSTEM, CLASSES 9, 11, 12, 15

Cll l 18 $11 $12 $13

Cia 11 13 $12 $11 $13

l3 18 33 $18 $13 $33

44 $44

44 $44

66 66
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GROUP V, TETRAGONAL SYSTEM, CLASSES 10, 13, 14

Sit Sit SIG

811 Sis 816

813 33

844

8ie Sis

844

See

GROUP VI, TRIGONAL SYSTEM, CLASSES 16, 17

Cn Ci2 CM Cl4 C2S

Ci2 Cn Cis CM C26

CIS Ci3 C33 00
Cl4 Cu C44 Cj B

-C2 5 C2 6 C44 Cl4

00 c2 5 c14 Me -
Ci 2)

GROUP VII, TRIGONAL SYSTEM, CLASSES 18, 19, 20

Cll

CIS

Cu

Cl2 Cl

Cn Cu

Cu CBS

-Cu

cu

-Cu

C44

C44 Cu

Cu

GROUP VIII, HEXAGONAL SYSTEM, CLASSES 21 TO 27

Cll Cl2 Cl3

Ci2 Cn Cis

cis Cu Ctt

C4400000000
s 44

- 844

2(sn - s l2 )

GROUP IX, CUBIC SYSTEM, CLASSES 28 TO 32

Cll Ci2 Ci2 Sn 12 Si 2

For comparison the corresponding coefficients for isotropic solids are

given; the choice of axes is now arbitrary.

ISOTROPIC SOLIDS

cXX
XcX
XXc

OOO
OOO
OOO
OOOOOwOOOOnOOOOOOn

si 81 000

00 s 2 00000 8 2

00000*!
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It will be observed that the s occurs in exactly the same way as the c

in all groups except VI, VII, and VIII, for trigonal and hexagonal crystals.

The symmetry of these groups requires that c6e
= (GU ci 2)/2, while

$66 = 2(sn $12), and also that $46 = 2$26 and $66 = 2s i4 in the trigonal

groups.

30. The character of the various elastic constants is indicated in

Fig. 15, in which the types of strain that can be produced by the com-

Yy Xv

y

I

/ I/

7
/ ^

S'

FIG. 15. Table showing the stress-strain relation associated with each type of elastic

constant. In the small schematic diagrams, arrows represent forces; dotted lines, strains.

ponents of stress are denoted by L, T
7

, L', T
7

', S, and S'. L (longitudinal)

and T (transverse) indicate extensional strains parallel and transverse,

respectively, to extensional stresses, as shown in the figure. S (shear)
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and S' are shearing strains in planes to which shearing stresses are,

respectively, parallel and perpendicular. L1
indicates a relation between

a shearing stress and an extensional strain parallel to the axis of the shear

(or the converse), while in T' an extensional strain is in the plane of a

shearing stress (or the converse).
All crystals, together with isotropic solids, have values differing from

zero for the elastic coefficients corresponding to L, T
7

,
and S. Fluids

have only compressibility, which is equivalent to writing n = 0, T = L.

In four of the nine groups of crystals no other elastic coefficients exist

than those of the Z/-, T
7

-, and $-types.

Elastic coefficients of types L and /S, represented by Chh or Shh

(h = 1 ... 6), are essentially positive. With few exceptions all com-

pliance coefficients of type T are negative, as they must necessarily

be in isotropic substances, in which the positive extension due to an

extensional stress is always accompanied by a negative lateral extension.

In all other cases the signs of elastic coefficients of crystals may be positive

or negative.

31. Comparison of Isotropic Solids with Crystals. It is of some

interest to compare the elastic properties of isotropic solids with those

of crystals, especially crystals of cubic symmetry. In Group IX the

three constants Cn, Ci2, c 44 are all independent. On the other hand the

three isotropic constants c, X, n, although forming a matrix precisely like

that of cubic crystals, are not all independent. An isotropic substance

has an infinite degree of symmetry about all axes. Since this statement

includes hexagonal symmetry, it follows that the special relations for

trigonal and hexagonal crystals noted at the end of 29 hold here also,

viz., n =
(c
- X)/2 and 2

= 2(s
-

i). Bearing this in mind and apply-

ing Eqs. (3), we can now interpret the elastic constants F, k, and cr in the

light of the fundamental parameters given in the tabulation above, both

for isotropic substances and for crystals. We thus find, as is also proved

in treatises on elasticity, that, for isotropic solids,

w(3X + 2n) _ c X , _ 3X + 2n X
f
~.

F==
X + n

' n -~2~~ *~
3

*
2(X + n)

w

The constants X and n are the "Lame* coefficients
"
of elastic theory.*

n is the rigidity, while X, to which no name seems to have been given, is

a measure of the resistance offered by an isotropic solid to compressional

strain in a direction at right angles to an extensional stress. In other

words, it expresses the lateral incontractibility of a stretched solid. X is

thus related to Poisson's ratio <r; but since the combination of an exten-

sional strain with a compressional strain at right angles to it always

*The symbol /i was originally used in place of n.
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involves a shear, and hence the rigidity modulus n, it turns out that v is

a function of both X and n, as shown in Eq. (8).

In terms of X and n the following expressions for c, s, i, and s2 in the

matrices for isotropic solids in 29 are easily derived:

'" 1
'" 8l==

2n(3)+2n)
2

32. Poisson's ratio calls for further consideration, since it occurs in

the theory of vibrations of crystals. If a simple compressi<5nal stress

Xx is applied to any solid, the resulting compressional strains are

xx = SnXs, yy = Si2Xx,
and zz = SuXx. If the substance is iso-

tropic, yv = zz = xx(si2/Su) = xxsi/s. Since by definition c = yy/xx,
it

is evident that one may also write a = Si/s. As defined in this manner

Poisson's ratio is a negative quantity, since, as is seen from Eq. (9), Si and

s have opposite signs. Nevertheless, it is customary to ignore the nega-

tive sign in dealing with isotropic solids. In crystals Poisson's ratio has

different values depending on the directions of stress and strain. In the

case considered above the values may be denoted by o-2 i
= sJ2/Sn and

tfsi
= Sis/an, the second suffix in each case specifying the stress. In

general, <rhk
=

Shk/Skk, and the numerical value may be of either sign.

Tourmaline has the smallest numerical value of or on record (100) and

Rochelle salt the largest (79).
In contrast to compliance coefficients of types L and S in Fig. 15,

symbolized by Shh, all the remaining compliance coefficients, of form s/^,

express a mutual relation between two different types of deformation. It

is for this reason that such coefficients occur in expressions for the coupling

between different modes of mechanical vibration, just as in magnetic

coupling between oscillating circuits the mutual inductances play a part.

The smaller Poisson's ratio is, the weaker are coupling effects and the

more nearly do the overtones of thickness and lengthwise vibrations

approach to a harmonic ratio. By taking advantage of the fact that for

certain orientations of quartz plates Poisson's ratio vanishes, it is pos-

sible to eliminate certain undesired coupled vibrational modes from

quartz resonators (358).
Coefficients of the form shk or Chk(h ^ k) are often called elastic cross

constants.

33. Elastic constants of crystals of types L and $, mentioned in 30,

can now be further interpreted. Compliance coefficients of the L-type,

viz., Sn, $22, and 535, are reciprocals of Young's modulus Y in the X-, 7-,

and Z-directions. This becomes evident if, for example, it is assumed
that a single stress Xx is applied to a parallelepiped, as when a bar with

length parallel to X is compressed endwise. Then xx == SnXx is the

compressional strain, while the other five strain components derived
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from Eqs. (5) represent the other deformations caused by Xx,
on the

assumption that no constraints are present. The usual stress-strain

relation gives at once Y = 1/Sn = Xx/xx . In the equations for

longitudinal vibrations of rods, the stiffness factor is I/SM, the length of

the rod lying in the A-direction. This factor holds also with close approx-
imation for relatively thin plates vibrating longitudinally, even when the

breadth is greater than the length.

On the other hand, if the parallelepiped were confined in a box with

unyielding sides and bottom and then compressed from above by the

stress Xx ,
the only possible strain would be xx ,

but in addition to Xx

there would, in the general case, be five other stress components exerted

by the box. From Eqs. (6) we find xx = (l/cu)Xx . In general, each

chk is the measure of the resistance offered by the crystal to a stress XK,

when all other strain components are prohibited, while I/SA* is a measure of

the resistance when these other components are permitted.

The same constraints as those

imposed by a rigid box would also

be present if the parallelepiped

were in the form of a flat plate of

infinite area, having its thickness )'

in the /^-direction, and subjected Fio. 16. A rectangular plate ABCD bent
. by flexure into the form A'B'C'D', The

to pressure A*. It is for this
plane of the figuro ifl the plano of flcxure .

reason that Chh appears as the Tne surface through EF normal to the plane
,.,v. A. XT-- of the figure is the neutral surface.

stiffness factor for a thin piezo-

electric plate vibrating in the direction of its thickness h.

With regard to coefficients of typo S it need only be pointed out that,

as with isotropic solids, the constants $44, $55, and See are the reciprocals of

the moduli of torsion about the respective axes.

34. Flexure of Crystalline Plates. First we consider an isotropic plate

in the form of a fiat parallelepiped, bent as shown in Fig. 16. Before

bending, the length I = AB, thickness e = AD, while the breadth 6 is

perpendicular to the plane of the diagram.* If only such forces are

applied as are required to cause bending in the /e-plane, the deformation

is a pure flexure, every section normal to 6 being bent in its own plane into

a form like A'B'C'D 1
. The surface intersecting the paper in EF (or

E'F'), midway between the top and bottom surfaces of the plate, is the

neutral surface. This surface suffers neither elongation nor contraction.

Above this surface (for the case shown in the figure), all linear elements

parallel to I are elongated, by amounts proportional to their distances

from the neutral surface; below it, they are compressed by like amounts.

* For simplicity of treatment we are assuming here that I e. The theory is

more complicated when e is of the same order of magnitude as I, as will be seen in 73.

There is no restriction on the ratio b/e.
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All cross sections normal to I, except that through the center of the plate,

become rotated without change in shape or size. It is owing to this

rotation that the expression for the frequency of flexural vibrations, given
in 73, contains as a factor the moment of inertia of the section perpen-
dicular to Z. From the relation between extensional forces and shears

explained in 27 it is evident that the deformation represented in Fig.

16 can also be produced by suitably applied shearing stresses. This fact

is important in the piezoelectric production of flexural vibrations, as will

be seen in 179.

Complications arise when the plate is of crystalline material. In

general, crystals have elastic cross constants not present in isotropic

solids. Except in special cases these constants couple the compressional
strain that characterizes the flexure with a shearing stress capable of

causing torsion about the length dimension.

As an example we consider a quartz plate with its Z-, &-, e-dimensions

parallel to the Y-, Z-, .X-axes, respectively. When the plate is flexed in

the Ze-plane, as in Fig. 16, the strain +yv is present in the upper half, yv
in the lower. Then, by virtue of the relation Y9

= Cuyv = Cuyv , there

is a stress +Y, in the upper half, Y9 in the lower, and the combined
effect of the two is to twist the plate about the Z-axis.

On the other hand, if the same quartz plate is flexed in the Z6-plane,

similar reasoning shows that there is no cross constant leading to torsion.

This orientation is one of the special cases mentioned above.

The application of a bending moment, whether accomplished mechan-

ically or piezoelectrically, results in a flexure accompanied by a twist,

except when either (1) the length I is parallel to an axis of crystallographic

symmetry or (2) the plane parallel to I and to a principal axis of the

geometrical cross section (for a rectangular cross section this is the bl-

or the fee-plane) coincides with a plane of crystallographic summetry.
This rule can also be put compactly by saying that torsion-free flexure is

possible with a transformed axial system such that

4 = 4, =

the length I of the plate being parallel to Z'.

A quartz bar or plate can be flexed without torsion if its length I lies

anywhere in the FZ-plane.
A plate so oriented as to bend without torsion is also free from flexure

when twisted about the same axis.

Static flexural effects in crystals have been used chiefly in the meas-

urement of elastic constants* and in the Curie electrometer described in

122.

* The theory of flexure in crystals and its use in measurements are treated more

fully in Voigt's "Lehrbuch," pp. 634, 725, 731, 751 and felsewhere.
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Of greater concern in this book are flexural vibrations, which are

treated in 73, 179, 354, 359, 380, 396, and 503.

36. Torsion of Crystalline Prisms and Cylinders. The well-known
facts for homogeneous isotropic materials will first be summarized.

When equal and opposite torques Q are applied at the ends of a solid

cylinder whose circular cross section has the radius o, the torsional strain

in radians per unit length is

where n is the rigidity.

For a circular cylinder, solid or hollow, the velocity of propagation of

torsional waves is v = VWp> where p is the density.

When in a state of torsion, each cross section of a circular cylinder

rotates without deformation in its own plane. If the section is not cir-

cular, it becomes warped by torsion.

For the piezoelectric production of torsion or of torsional vibrations

it is important to note that, when a solid of any material and cross

section is subjected to torsion, all planes parallel to the axis of torque are

in a state of shear. The manner in which advantage is taken of this fact

is explained in 180.

With crystals the theory is complicated except in the case of a circular

cylinder, for which the torsional compliance T is i(s44 + 555) when the

cylindrical axis is in the Z-direction; or, in general, when the axis is

parallel to h, the compliance is Th = i(s + *//), h, i, and j signifying the

X-, Y-, Z-axes taken in any order. This expression reduces to

T = s2
= 1/n

for isotropic cylinders. For oblique directions transformed axes are used.

For any given A-direction the i- and j-axes may have any two mutually

perpendicular directions in the plane normal to h. Hence it is possible

to express the torsional compliance in terms of the fundamental constants

and the direction cosines I, m, n of h alone.*

2Th = s'u + s#
= Z

4
(s65 + See) + m4

(s66 + s44) + W4
(s44 + $55)

+ W2n2
(4s22 + 4sS3

~ 8s2s + $55 + See
- 2s44)

+ n2
Z
2
(4s33 + 4sn - 8s3 i + s66 + s44

- 2s 5 5)

+ Z
2w2

(4sii + 4s22 ~ 8si2 + s44 + s5 6
- 2s66)

+ 2Z2
mn(2s24 + 2s34 - 4su - 3s6e) + 2w2

nZ(2$36 + 2si5
- 4s26 - 3s64>

+ 2s26
- 4s36 3s46)

- 2s8S + s64) + m(2si 6
- 2s2 e + s46)]

2sie + s45) + n(2s24
- 2s34 + s 6fl)]

2n3
[m(2s34

- 2s24 + S6e) + K2s3 5
- 2s16 + S64)] (10)

VOIGT, p. 735.
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This formula, which becomes greatly simplified for the groups of higher

symmetry, plays an important part in the measurement of elastic coeffi-

cients by static methods. If, according to Voigt's usage, the A-direction

is taken as thajt of the Z'-axis, the expression above gives 2Th = 44 + s&6 .

In the following equations r is the rotational (torsional) strain in

radians per unit length of the cylinder or prism, Q the torque, a and b the

major and minor semiaxes of the elliptical section, 2b and 2e the breadth

and thickness of the rectangular section. For rotated axes the coeffi-

cients are to be primed.

For a cylinder of elliptical section, axis parallel to Z,

On setting a = b this becomes the equation for a cylinder with circular

section of radius a:

If the material is isotropic, one has the familiar equation r = 2Q/?rna
4

.

The general equation for a prismatic crystal bar of rectangular section,

in any orientation, is given in Voigt.* The expression is greatly simpli-

fied when the length I (axis of torsion) is parallel to Z and the crystal

symmetry is such that $45 = 0. Under these conditions, taking I, 6, and

the thickness e as parallel to the Z-, X-, and F-axes, respectively, we

have for the torsional strain approximately

where, as long as b > 3e, A
2

1 - 0.630 (e/b) (s^/s^) *.

If the axis of torsion is in a direction of three-, four-, or sixfold sym-

metry, $44 = $55, and the formula becomes identical with that for an

isotropic prism of the same dimensions, in which case $55 becomes 1/n for

isotropic solids. In this case the coefficient A may be found approxi-

mately from A 2 = 1 0.6300/fc when b > 3c. For larger ratios of e to
fe,

A may be obtained from the following values, which we have computed
from data in Geiger and Scheel.f

|
= 1 0.5 0.25 0.125

o

A = 0.895 0.926 0.947 0.968

These values of A are for isotropic solids, but the order of magnitude

is the same for crystals.

* P. 644. See also ref. B19, vol. 8, p. 194.

t Vol. 8, p. 195.
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In general, any cylinder or prism under a static torque Q may be said

to possess a certain static torsional stiffness N, Q/r, which is a more or

less complicated function of the cross section and the elastic constants.

Only with isotropic solids, and in certain special cases with crystals, as

exemplified by Eq. (12), do the elastic constants appear as a separate
factor (modulus of rigidity). The relation of N9 to the dynamic torsional

stiffness of vibrating rods is pointed out in 74.

The subject of torsion in crystals is more fully discussed in Voigt, in

Auerbach-Hort,* and in Geiger and Scheel.f

For the treatment of torsional vibrations see 74, 180, 356, 380, and
503.

36. Compressibility of Crystals. In general, uniform hydrostatic

pressure causes both the volume and the angles of a crystal to change.

Nevertheless, there is always a certain orientation in which a parallele-

piped can be cut so that no angular distortion occurs. In all systems

except triclinic and monoclinic the edges of this parallelepiped are

parallel to the crystallographic axes.

In all cases the compressibility sc is given by the equation

sc = -- = *n + 22 + 533 + 2(s2s + $31 + $12) cm2
dyne" 1

(14)

where Av is the change in volume caused by a change Ap in pressure.

The linear compressibility Si = Al/l Ap depends on the direction

of I. For the three principal directions the formulas J are

Sx
= $11 + $12 + $13 Sy = $21 + $22 + $23

Sz
= $31 + $32 + $33 (15)

37. The Adiabatic Elastic Constants. As a rule, crystal vibrations

are of such high frequency that the adiabatic rather than the isothermal

values of the elastic constants should be used in calculations. Most of

the numerical data for the fundamental constants at present avail-

able were obtained by static measurements, in which the temperature

remained practically constant. The derivation of the adiabatic from

the isothermal values requires a knowledge of the specific heat, which in

solids may with sufficient accuracy be considered as approximately the

same at constant volume as at constant pressure, and of the coefficients

of expansion parallel to the three axes.

The following formulas have been derived by Voigt ;
the superscript

a denotes the adiabatic constants, T is the absolute temperature, c the

* Vol. 3.

t Vol. 8.

J "Lehrbuch," p. 722.

$ "Lehrbuch," pp. 779jf.



64 PIEZOELECTRICITY [37

specific heat in ergs cnr~3
cleg"

1
, and q*. and OA are coefficients of thermal

pressure and expansion:

'

(16)

ahCLkT

The adiabatic correction thus causes a slight increase in the stiffness

of a crystal. -

The quantity q is a thermo-elastic coefficient (23) representing the

increment of a component of stress exerted by the crystal when heated 1

at constant strain. Its value may be calculated from the equation

qh
= Cihdi dyne cm~2

deg^
1

For all elastic groups except I and II the summation extends only over

i = 1, 2, 3, because 04 = as = ae = 0.



CHAPTER IV

ROTATED AXES AND TRANSFORMATION
OF ELASTIC CONSTANTS

Omnia mutantur, nihil Merit. OVID.

More often than not, the crystal plates and bars in technical appli-
cations have orientations that are rotated with respect to the crystallo-

graphic axes. Special formulas are therefore required by which the

elastic properties of an oblique cut from any crystal can be expressed in

terms of the fundamental elastic constants discussed in Chap. III.

The general transformation equations for the components of strain

and stress will be given first. They will be followed by the equations
for transformation of the elastic constants, including the specialization

of these equations with reference to those crystal groups with which we
shall be most concerned.

This chapter contains also a short account of the geometrical repre-

sentation of elastic properties, the terminology for crystal cuts, and the

conventions for specifying the orientation of oblique axes.

38. Transformation of Components of Strain and Stress. The

process of determining which of the 21 possible elastic coefficients vanish

for a crystal of given symmetry involves a rotation of the crystallo-

graphic axes through certain angles. Angular transformations of axes

also play an important part in the measurement of elastic constants,

in the theory and design of piezoelectric devices, and in many other

problems.
The basic equations for the components x'XJ etc., of strain with respect

to an axial system X', Y', Z', in terms of the components with respect to

the original system X, Y, Z, are now given, with direction cosines accord-

ing to the adjoining matrix.

X' Y' Z'

X
Y
Z n\

x'

9
v=

l\Xz + m\yv + n\zz + miniy, + nilizx -f

y'y
=

l\xx + mlVv + nlz* + WW22/* + nd&* +
z',
-

l\x* + m\yv + n\z, + m*n9yz + nj,&x +
y',
= 2lj,*xx + 2m2m3yv + 2n2n&it + (m2n8 +

+ (w2Z8 + n3Z2)2 (18)

65
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It is sometimes necessary to express the unprimed components of

strain or stress in terms of a given set of primed components. Following

are the strain equations, in which the direction cosines are still defined

according to the matrix above:

xx - l\x'x + l\tfy + l\z't + I2ky',

yv = m\x'x + m\y'v

z',
= n\xx + n\yy + n\z

f

, + n2n9y
f

g + n9nizx + nin2xy

y', 2771171^; + 2m2n2^ + 2mzn&'x + (w2n3 + mtfi^

(19)

*. = 2nili4 + 2n2l2y'y + 2n*hz', + (n2k + n9l2)y'z

+ (ndi + niZsK + (^1^2 +
xv = 2limix'x + 2l2m2yv + 2lsm9z

f

s + (I2m^ + Z3m2)t/i

+ JiWsK + (^1^2 +
The corresponding equations for transformation of stresses, using

the same direction cosines, are

X'x = l\Xx + m\Yv + n\Z.
Y'y = l\Xx + m\Yy + n\Zs + 2m 2n 2Yg +
Z'.

= l\Xx + mlYy + n\Zz + 2m zn zYt +
Y'z = 121*XX + m2mzYv + n2nzZz + (w2n8

(20)

Zx
= MiXx + msmiYu + n*niZz + (m3ni + min3)F

+ (nali + nih)Zx + (hnn + l 1m3)Xv

Xy
= IJ>2XX

The unprimed components of stress in terms of the primed com-

ponents are given in Eqs. (21).

Xx = l\X'x + l\Yv + l\Z'z + 2l2l,Y'z + 2WxZi + 2lJ2Xy

Yv
- mJXi + mlY'v + mJZJ + 2m2m3y; + 2m,m 1Zx +

Z. = n\X'x + n\Yv + n\Z', + 2n2n,Y
f

g + 2n zn lZ f

x + 2n 1n2Xy

m2n2Yv + w3n3Z + (m2n3 + m3n2)Fi

(21)

Z.

We shall also have occasion to express the unprimed stress com-

ponents in terms of the primed, using the matrix of direction cosines

i . . . 78 shown in 41, instead of h . . . n8 . In place of Eqs. (21)

we then write
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Xx = a?Zi -

(22)

f /Si&Fi + 7i7 2Z; -f

+ (7i2

In most of the uses to which these formulas will be put, the trans-

formation consists in a rotation about only one of the axes. In such a
case one primed axis is identical with the corresponding unprimed, and
the calculation is considerably simplified.

The angle 6 through which the rotation takes place is to be taken as

positive when counterclockwise as seen by an observer looking back toward

the origin from the positive end of the axis of rotation.

The only exception to this rule occurs with the levo (left) types of

enantiomorphous crystals, in which the rotation is positive when clockwise.

Since, according to our convention (see 327 for quartz), one of the axes

is then also reversed, a single rule for the sign of 6 may be stated thus :

The angle 6 through which any rotation takes place is to be taken as

positive when laid off from the positive direction of one axis to the positive

direction of the other, in this order: for rotations about the X-
,
Y-

,
or

Z-axes, 6 is positive when counted from +Y to +Z, +Z to +X, or +X to

+ F, respectively.

Sometimes, as in the description of certain oblique cuts, all three

axes assume new directions. Although such transformations may be

made in a single step, it is often advantageous to make first a rotation

about one axis to the Xi- , FI- , Zi-system (direction cosines h . . . n3),

and then by rotation about one of the primed axes to reach the final

system X2 ,
F2 ,

Z2 . If l{ . . . nj are the direction cosines of the final

system with respect to the primed axes and I" . . . n'J those of the

final with respect to the original system, the following relations hold:

m" =

til
= Wi + m& + n& m"

n" = lni + mn2

(23)

n't I'tfii "h m$n2 + n$n%

When the matrix of direction cosines given in 41 is used instead of

that in 38, Eqs. (23) become
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(24)

a" ct\ai + a>$i + a'9yi a" = a{2 + 202

ft'
- fti + fifii + fat ft - fta, + ft& + $72

7" - 7ii + 72& + 7s7i 7i'
= 7i2 + 72ft + 7a72

72*03 + 7873

39. The use of the foregoing equations will now be illustrated by a few

simple types of transformation, application of which is to be made in

later sections.

First, assume the only strain to be y and that its components are

sought with respect to axes X' parallel to X, Y' bisecting the angle

between the positive directions of the F- and Z-axes, and Z' making a

right-handed system with X' and Y'. We have B = 45, h =
1,

h h = wii = tti
=

0, w2
= ns

= n2
= m3

= cos 45 = l/\/2- Then,
from Eq. (18), all components vanish except y'v

=
2i =*

j/,/2. The
shear has been transformed into a positive and a negative extensional

strain, each equal to half the original shear in magnitude. The applica-

tion of this transformation in piezoelectric problems will appear
later.

Second, let the only stress be Yz . By substitution in Eqs. (20), it is

found that after rotating the coordinate axes 45 about the X-axis the

stress components equivalent to Yg are Y'v
= Z't = Yt .

Third, still considering a rotation of $ = 45 about the X-axis, assume

compressional stresses Y'y and Z't applied parallel to the Y'- and Z'-axes.

With respect to the original axes the equivalent stress components are

Yv
- Z, - (Yi + ZJ)/2, Y, = (Y'v

-
ZJ)/2. If Zi = 0, then

Yv
- Z, = Y, = ^.

If ZJ = FJ, F, vanishes and the body is compressed on four sides without

being sheared. If Z'g = Y'y (equal compressional and extensional

stresses at right angles), there is neither compression nor extension with

respect to the unprimed axes, but only a shear Yg
= Y

y
.

40. Transformation Equations for the Elastic Constants. When it is

recalled that the vanishing of certain of the elastic coefficients for any
particular crystal class is due to the fact that the coefficients are defined

with respect to the crystallographic axes of symmetry, it becomes evident

that with respect to any other axial system all the coefficients will assume
values different from zero except in certain special cases in which some

degree of axial symmetry is still present. Hence, in the general trans-

formation, however small the amount of rotation may be, all crystal
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classes, even the most symmetrical, assume the elastic properties of the
triclinic system.

On the other hand, it is often possible to find a new set of axes X',

Y', Z' with respect to which some one of the coefficients vanishes, although
it does not do so with respect to the crystallographic X-

,
F-

,
Z-axes.

Advantage of this fact is taken in certain oblique cuts of quartz in order

to eliminate undesired coupling effects.

The complete theory, which is rather complicated, is given in Voigt
and elsewhere. For only a few of the constants have the transformation

equations been worked out for rotation about all three axes. For
rotation about a single axis the equations for a considerable number of

constants, both general and specialized for various crystal classes, have

been derived by various authors.

While the technique described by Voigt* when once mastered leads

most readily to the transformed equations; the following method is in

principle simpler: Let it be required, for example, to derive s'hk with

respect to axes X', Y', Z', according to the equation x( = s^X^. We
assume the single stress component Xk impressed and write the six

fundamental stress components Xx . . . Xy in terms of it, from Eqs.

(21). These values are substituted on the right side of Eqs. (5), giving

xx . . . xv in terms of fundamental elastic constants, direction cosines,

and Xk . The values of xx . . . xy in turn are substituted on the right

side of the expression for x'h in Eqs. (18); for example, if h = 5, the

proper expression is that for z'x . The coefficient of Xk ,
which in the gen-

eral case has 21 independent terms, is the desired quantity 4*.

Similarly, any coefficient c(k can be derived by assuming a single

strain x'h impressed, substituting in Eqs. (19), and then using Eqs. (6)

and (20). The process becomes greatly simplified when the rotation is

about a single axis and when for the crystal in question some of the

fundamental elastic constants are equal to zero.

41. General Equations, Applicable to All Crystal Classes. Direction

cosines are according to the adjoining table. When the rotation takes

X' Y' Z'

Y * fr 72

Z CK3 0S 78

place about a single axis through the angle 0, the positive sign of is

to be taken as indicated in 38. All direction cosines then reduce to 1,

0, cos 0, or sin 0. For brevity we shall write c for cos and 8 for

sin 0.

*
Pp. 689//.
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ROTATION ABOUT ALL THREE AXES.

+ ajs83

544) + ala\(2sn + S 6&) + 2
1ai(2si2 + See)

$45)

(25)

The equation for s22 is derived by substituting ft for a everywhere in

Eq. (25) ;
in the equation for s88 , 7 replaces a. In both cases all subscripts

are left unaltered.

528
= 0l7

2
lSn + 0171522 + 0I7S533

+ (Phi + 0!7l)528 + ' + 02720373544 + '

+ 0l7l(0273 + 0372)56 + * ' + ($7273 + 7!0203)514 + ' '

+ 0l7l(0l73 + 037l)5l5 + (0172 + 027l)5l6 + * '

(26)

Each missing term indicated by a dot is obtained from the term imme-

diately preceding by raising all suffixes of both direction cosines and

compliances by one step: write 2, 3, 1, 5, 6, 4 in place of 1, 2, 3, 4, 5, 6,

respectively.

The equation for s'zl differs from Eq. (26) only in the substitution

of 0, 7, a for a, 0, 7, respectively. For s'12 substitute 7, a, for a, 0, 7,

respectively, leaving subscripts unchanged in both cases.

s'u
= 40^11 + 402

2
7is22 + 40

2
37is33

+ 802720373523 + ' ' + (0273 + 0S72)
2544 + ' '

+ 2(0!72 + 027 1) (0173 + 037l)S56 + ' '

+ 40i7l(0273 + 0372)514 + ' '

+ 40x7i[(0i73 + 037i)5iB + (0172 + 027i)5ie] + '

(27)

Missing terms are to be filled in as in Eq. (26). Equations for 555 and

s'66 are formed from Eq. (27) according to the rule given above for

deriving s'31 and s'12 from Eq. (26).

2c44) + W(c.i + 2cB6) + oM(cu + 2c66)]

+ 2c66) + la3ai(c26 + 2c46) + aaia2 (c3 6 + 2c46)]

(28)

Equations for c'22 and cJ8 are obtained from (28) by the rules given

above for 522 and s38 .

' + 2C2802720373 + ' '

C44(027s + 0s72)
2 + + 2cBe(0i72 + 027i)(0i73 + 0s7i) +

2Ci40l7l(0273 + 0372) + '

20m[c16(0i78 + 037i) + C16(0i72 + 027i)] + ^ (29)
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Missing terms are supplied according to the rule following Eq. (26).
For c 6 and c'66 write 0, 7, a and 7, a, for a, 0, 7, respectively, leaving all

subscripts unchanged. For example, the factor j8273 in the equation for

c44 becomes a2j8$ in that for c'66 .

+ 2c14 (/3
2
17273

+ 20m[ci5(0i73 + fryi) + cietfm + 0m)] + -

(30)

The missing terms in this equation, as well as the cyclical changes for

obtaining expressions for c'31 and c{2 ,
are the same as with Eq. (29).

42. Rotation through Angle about the 7-axis. The direction

cosines become reduced to a\ = 2
= cos 6 s c, 2

=
1
= sin s=

s,

0:3
= ft

= 71 = 72 = 0, 73 = 1.*

+ See) + S4s22

33
== Ss3

S44 == C S44
~~" 2SCS45 ~f~ S 055

S'sl
= S2S44 + 2SCS4B + C2S B5

s'66
= 4c2s2(sn + s22 2si2) 4sc(c

2 s2)(sie s2e)

+ (C
2 - S2)

2S68

s
'

12
= c2s2(sn + s22) + (c

4 + S4
)si2 + sc(c* S2

)(si 6 s26)

= -2sc(c
2sn

X

- S2s22) + cs(c
2 - S2

)(2s 12 + See) ) (31)

+ c2
(c

2 - 3s2
)s16 + s2

(3c
2 - S 2

)s26

s23
= czs2 3 css3 e + s Ssi

s
'

25
= S 3

si 4 + s2c(siB S46) + C
2
s(s24 s 5e) + C 3s25

s26
= -2sc(s

2sn - C2s22)
-

cs(c
2 - S2)(2s12 + s66)

sJ4
= C$3 4 S35

S36
= CS(S23

-
3l) + (C

2 - S2)36

s
'

46
= Cs(s 44

-
sss) + (c

2 ~ S2)s46

s46
= -2s 2

c(s2 6
-

$j6) + 2c 2
s(s24

- s 14) + (c
2 - S2

)(cs46
-

s'B6
= 2c2

s(s26
~

sis) + 2s2
c(s24

-
SH) + (c

2 - s
2
)(ss46

*
Equations (31) are taken from Voigt's "Lehrbuch." In the expression for J6

two misprints have been corrected. The author has noted also a number of other

minor misprints at various points in the "Lehrbuch,"
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For a rotation about the X- or F~axis the equations are exactly as in

(31), except that all digits in suffixes on both sides of the equations are

raised by one and two points, respectively, as shown in the following

table, in which the first column indicates the axis of rotation. For

example, wherever suffix 5 occurs in Eqs. (31), 6 is to be written for

rotation about the -Y-axis, and 4 for rotation about the F-axis.

Nowhere does a complete set of equations for c'hk for rotated axes

seem to have been worked out, except in specialized form for certain

crystal systems. Below is given the equation for e33 for rotation about

the X-axis. It is obtained from Eqs. (28) by first substituting 7 for a

and then setting 71 = 0, 72 = - sin =
s, 73 = cos = c:

c'33
= S4

c22 + C4c33 + 2s2c2(c23 + 2c44)
- 4s 3cc24

- 4c 3sc34 (32)

43. Young's Modulus for a Crystal Bar in Any Orientation. In

33 we saw that 1/sn, l/s22 ,
and l/s33 represent Young's modulus for

bars parallel to Xt F, and Z. Similarly, by suitable choice of axes

Eq. (25) gives the reciprocal of Young's modulus F for any crystal in

any direction. Owing to the importance of this constant we now write

the same equation in another form, due to Koga275
,
which is perhaps more

convenient for calculation. For any direction having the direction

cosines I, m, n,

Ims16)

mns44

nls66 + Ims^) (33)

For example, parallel to the F-axis, I = n **
0, m 1, and 1/F

reduces to $22 . Equation (33) is easily specialized for any crystal group.

When Young's modulus is expressed in terms of transformed axes, it is

customary to take the Z'-axis as the direction of stress and strain, giving

the equation

<=-*' (34)

where Young's modulus is
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SPECIALIZATION OF AXIAL TRANSFORMATIONS FOR CERTAIN

GROUPS OF CRYSTALS

With the groups here considered many of the coefficients vanish, so that

the general expressions are greatly simplified. The following equations
are obtained from the foregoing general equations, the subscripts of the

various coefficients being taken from the tables in 29. The table of

direction cosines is the same as in 41.

Group III, Rhombic System

44. All elastic parameters in this group are symmetrical with respect

to the crystallographic axes. For example, in all polar diagrams (49)

representing the elastic properties in the principal planes (planes normal

to the three crystallographic axes), the same values are repeated in all

four quadrants. Of course, this is not true of planes that are oblique to

all three axes.

This group includes Rochelle salt and its isomorphic relatives. The

procedure for deriving the stiffness coefficients from the observed com-

pliance coefficients according to the method outlined in 26 is especially

simple for this group and will serve as an example of the general method.

The L- and ^-coefficients (30) are found from the determinant

D 521

$31 $32 $33

together with the various cofactors. Thus,

l22 523
*44*55*6

|

531 $32

The 5-coefficients (30) are simply 044 = l/44, CM = I/SBS, andc6e
=

I/See-

Elastic Constants for Axes in Any Orientation. Direction cosines are

as tabulated in 41.

BBS
= 7lSll + 7222 + 73533 + 727

2
(2S2 3 + S44)

+ 7i7!(253i + $55) + 7
2
i7i(2512 + sec) (35)

For s'u and s22 ,
substitute a and /3, respectively, for 7.

S22 + $71533)

+ 0l7l/*272Sl2)

0173)
2

55 + (0l7i + 027l)
2
*6e (36)
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For 555, change to a; for s'66, change 7 to a.

2c44) + aM(cM + 2c56) + a\\(cu + 2c66)] (37)

For c22 and 033, permute a to and 7, respectively.

ci4
= en/Shi + c22/S|7i + c33/?l7i

m + 2ci2/3i7i&72

(38)

The rules for 655 and c'66 are the same as for 555 and s'66 above.

46. Rotation about a Single Axis. All expressions for rotation about

a single axis are found from the more general equations for axes in any

direction, by assigning proper values to the direction cosines according

to 41. Some of the "following are derived more simply from Eqs. (35)

to (38). In all cases the suffixes are determined by the rules following

the respective equations.

Data for rotation about the X-axis (F'-cut) are furnished by Mason. 335

= fin

= c 4s 33 + 5 4
s22 + cV(2fiM + s44)

=
(c

2 - a a
)44 + 4cV(s22 + 533

- 2s23)

(39)

(C
4

-f- S4)S23 + CZSZ
(S22 + 533 S44)

2C 2S 2
[C

2
(2S23 + 544 2S22) + 52

(2$33
- 2S23 S44)]

2c2s 2
[c

2
(2s3 3 2s23 - s44) + s2(2s23 2s22 4

CS(S 55 66)

5'
o' o' . o' o' o' o' (\

16 "26
"~"

"28 "3B 36 "48 "46
"

Of the corresponding stiffness coefficients we give only the following,

derived from Eq. (38) :

C6B = C2C 55

For both compliance and stiffness coefficients the equations for rota-

tion about the Y- and Z-axes are derived from the above by permutation
of subscripts according to the rule and table following Eqs. (31), Among
the more important examples are the following:
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About the F-axis,

c'44
= c2c44 + S2c6e c'66

= C2c68 + 2c44

C'65
=

(C
2 - S2)C55 + CV(CH + C38

- 2C)

About the Z-axis,

S'u
= C4sn + S4522 + C2S2(2$12 + See)

)
c'44

= C2c44 + S2c66 c'65
= c2c65 + s2c44

|
(42)

< =
fa

2 - 2
)C66 + cV(Cn + C22 ~ 2CM) j

When 6 = 45, the foregoing equations become, for rotation about the

X-axis,

(43)

S'l6
=

S'l6
=

25
=

26
= S 35

=
36
= =

*4
=

The corresponding stiffness coefficients, complete with the exception
of C56,

are as follows:

c'n
= en cJ2

=
cJ 3

= i(c22 + c33

+ 2c 23 + 4c 44)

C33 - 2c23) CBS = c'66

+ 544 + 2s23)

2S23 Sjg
=

Sj6
= i(s55 + S6)

c
\ j i/x. *._\ I (44)

(c22 + c33 + 2c23
- 4c44) c24 c34 = i(c33

els
= cie = ^25

= c'26
=

Cas
= C 36

= C45 = C46 =

The reciprocals of s22 and sJ 3 are Young's modulus for directions in the

FZ-plane at 45 with the F-axis. Analogous expressions for rotation

about the F- and Z-axes are obtained by the rule given above.

For any arbitrary direction having direction cosines i, 2 , #3, the

following equation for Young's modulus is derived from Eq. (33) :

2s23)

2s31) + cfai(8ti + 2s12) (45)

For a direction X' making equal angles with all three axes, the stiffness

coefficient c'u is

c'u = 0.111[(cn + C22 + C33) + 2(c23 + CM + C12)

+ 4(c44 + c66 + c66)] (46)

This equation is used in calculating the frequency for thickness vibrations

of the L-cut (140).
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Group VII, Trigonal System

46. This is the trigonal group that includes quartz and tourmaline.

Direction cosines are as tabulated in 41. Although both right and left

forms of crystals may occur in this group, there is no difference in the

equations (see 327).

For this group, the compliance and stiffness coefficients are related

by the following equations :

a =
533(511 + sis) 2s?3

o = ?i? -1-
S
-i* =

CL ft CL

S33 544 Si4
ZCiz = -

Ci4 = 5- C44 =
P P P *P

(47\
r C33 i ^44 ^13
2su =^ + r s" = ~^ S33

'

C33 C44 CH

"~?~W Sl^~W~ S44

General Formulas for Rotated Axes. For orthogonal axes in any
arbitrary orientation only a few equations are found in the literature.

Expressions for the remaining coefficients can be derived by*the methods

described in 40 and 41. Equations (48) and (49) are from Voigt.

538 - - 7n
+ 2(37 f

-
71)7273*14 (48)

For s'n and $22* 7 is changed to a and ft, respectively.

- s 44) + 4/3l7(su + s3s 2s13 s44)

+ 4[(3j3i7i
-

0272)03372 + 027s)
-

a*<xz]su (49)

For s 6 and sJ6 , permute a, j8, 7 to /3, 7, a and 7, a, ft, respectively.

47. Elastic Coefficients for Rotation about a Single Axis. The trans-

formation of axes is given in terms of cos 6 c and sin 8 = s, where

is the angle of rotation of two of the axes about the third axis. 6 is

positive when counterclockwise as seen from the positive end of the axis

of rotation. In all cases the table of direction cosines in 41 is employed.
These equations* result from retaining in the general equations of

42 the special coefficients for Group VII (29). Some of them are

found in Voigt and in later publications, for example, those of Mason882

and of Hight and Willard. 227

* The full set of equations was furnished to the author through the courtesy of the

American Telephone and Telegraph Company. In conformity with our convention

respecting the definition of the positive sense of rotation, the signs of certain of the

terms have been changed.
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Rotation about the X-axis (F'-cut). cti
=

1, ft = y :
= 2 = 3

== 0,

02 7s = c, j8 3
= 72 = 5.

'

22
= C4SU + S4

S33 + C252(2S13 + S44)

*33
= S4 H + C 4S33 + C2S 2

(2S 13 + S 44) + 2CS 3S 14 = S^[d 90]*
s44

= 4c2s2
(sn + sss

- 2s13) + (c
2 - 2

)
2s44 + 4cs(c

2 - 2
)s14

$65
= c25*4 + 2S2

(SU - Si2)
- 4CSSU

-
12) + 52S44 + 4C5S14 = S^O 90]

= S'n[0 90]
S'14

= 2CS(S13
-

Si2) + (C
2 ~ S2

)Si4
> (50)

+ S33
~ S44) + Sc(c

2 - 52
)Si 4

cs(c
2 - s2

)(2s13 -f s44)
- c 2

(c
2 -

+ 2c8ss33 cs(c
2 -
+ s2

(s
2 - 3c2

)s14
= s'24[0 90]

*35
=

86
= 545 = 546

=
sJ 6

= 2(c
2 s2)i4 sc(s66 ^44)

C22 = C 4C22 + S4C33 + 2c 2S 2
(Ci3 -f 2C44)

c'33
= 4

cii + c4c33 + 2c2s2
(c 13 + 2c44) + 4^-^x4 = c^[6 90]

c44 = C2s2
(c22 + c33

- 2c J3) + (c
2 - s2

)
Jc44 + 2cs(c

2 -

C2c66 + 2csc14 = c'6b[0 90]
52

Ci3 + 2CSC14

C2c13
- 2csc14

=
c'ulB 90]

> (51)

c', = c'16
=

Cas
== (C

4 + S4
)Cis + S2C2 (CU + C33

- 4c 44) + 2cs(c
2 ~ S 2)d 4

c2s
= c 2 g

=
C34 == "~~5 ^4C

"""
JijCn ~T" C6'[S Cn ""- C C33 (_C 5 ) (<iC44

= - c24[^ 90]
^< ../ _f -/ /\
C3 s

=s C 3g
== C45 C4 g U

When 6 = 0, so that c = 1, s = 0, the foregoing equations apply to

the F-cut.

* The expression 22 [0 90] means that the equation for 522, for an axial rotation

of 90, is identical with the equation for i8 for a rotation of ft. A similar meaning
is to be attached to all bracketed angles in equations for rotated axes, whether the

transformed quantities are elastic or piezoelectric coefficients.
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Rotation about the Y-axis (X'-cut). j82
=

1, 0i = 8
- 2 = 72 = 0,

i
= 73 = c, as = 71 = s.

s'u
= c 4sn + S 4s33 + 2c2

(s 44 + 2si3)

s'22
= su

2s13)
= s'n[90 -

6]

s'66
= 4s2c 2

(sn + 533
- 2s 13) + (c

2 - S2
)
2

s'66
= S2544 + C2s 66 = ^[QO -

6]

S'l2
= C 2

Si2 + S 2
Si 3

Si3
=

(C
4 + 5

4
)si3 + S2C2

(Su + S33
- S 44)

s'14
= c(l

- 3s2
)s 14

s'15
= cs[2(c

2sn - S2s33)
-

(c
2 - s2)

s
'

16
= -3sc 2s 14

s'23
= s2s12 + c2s13 = i2[90

-
6]

24
= -CSu

(52)

~r rnn
ff\

$36 cs[2(s
2sn c 2

6'3 3) + (c
2 $2)(s 44 + 2si 3)]

=
si5[90 6]

s45
= 2s(l 3c 2

)s i4 = 2s'36

s'46
= cs(s 66

- s 44)

s'56
= 2c(l

- 3s 2
)su = 2s'14

cii = c4cn + s4c 33 + 2s2c2
(2c44 + Ci 8)

/

C/22 Cn
c'33

= s 4cn + C 4c33 + 2s2c2
(2c44 + Ci 3)

== c'n[90 6]

c44 = c2c 44 + s2c 6o

CSB
= S 2

c
2
(di + c 33

-
2ci 3) + (c

2 - S2)
2c44

cJ 6
= s2c44 + c2c66 = c'44[90

-
0]

- c33 4c44)

c'14
= c(l 3s2

)d4

cis
=

cs[c
2Cn S2c33 (c

2 s2)(2c44
-

cJ 6
= 3sc2

ci4

c23 = S2ci2 + c2
ci 3 = ci2[90

-
0]

c34 = 3cs2c14 = -c'16[90 -
6]

cJ 6
=

cs[s
2cn - c2c33 + (c

2 - s2)(2c44 + ci 3)] cl6[90
-

0]

cJ6
=

s(l 3c2
)d 4 = -ci4[90 0]

c46 = c38 = -ci4[90
-

0]

C46 - CS(C66 C44)
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Rotation about the Z-axis. 73 = 1, yi = y 2 =
<*1

ss &2 = C, 2
=*

o,

22
=

22

4s = $33

$44 = $44

$W = $55 '

$W = $66

C22

844

$13
= $13

$14
= c(l

- 4s2
)si4

s'16
= - s(l

- 4c2
)s14

$16 =

-$'lfi

34
=

35
=

I6
=

C22 =

C65 = C44

013

c'u
-

^23 == ^13

^24
==

"""^14

cJ6
- -c'15

C48
= ~C

(54)

48. Young
1
s modulus for a quartz bar in any orientation, the length

having direction cosines Z, m, n, from Eq. (33), is

2s 13)

+ 2mn(3Z2 -
(55)

For any direction in the FZ-plane making an angle 6 with the Z-axis

(cos = c = n, sin = s = ~m), this expression is identical with s38

in Eqs. (50); similarly, in the ZX-plane it becomes 33 from Eqs. (52);

in the .XT-plane it is simply sa in all directions. These relations are

shown graphically in Fig. 38.

Other formulas, involving different angular parameters, are found

in the literature.*

49. Geometrical Representation of Elastic Properties. From the

foregoing sections it is clear that each elastic constant has a definite

meaning and a definite numerical value only with respect to a specific

frame of reference within the crystal. If the frame of reference coincides

with the three conventionally adopted orthogonal crystallographic axes,

one has the "fundamental" constants.

*
See, for example, Wright and Stuart594 and Bechmann."
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In order to present to the eye the dependence of the elastic constants

of any given crystal upon the orientation of the axial system, it is cus-

tomary to make use of certain geometrical surfaces or of diagrammatic
intersections of such surfaces with certain planes.

The most general elastic surface is represented by an equation of the

fourth degree, in which the 21 parameters are either the stiffness or the

compliance constants.* Such surfaces are of greater theoretical than

practical value.

More useful are surfaces representing the magnitudes of individual

constants or functions of constants in their dependence upon the orienta-

tion of the axial system. An example of considerable importance is

the surface for which the radius vector in any direction is proportional

to the value of Young's modulus 1/533 in that direction. A model of

such a surface, for quartz, is shown in Fig. 37.

The construction of surfaces to represent the elastic cross constants,

of types T
7

, Z/, S', or T' (30), would not be quite so simple. As can be

seen from equations such as (26), these constants cannot be expressed

in terms of a single direction in space. For any arbitrary direction of the

Z'-axis the value of any such constant depends also on the choice of the

X'- and F'-axes. A surface representing any cross constant could be

constructed, however, by laying off, for any given Z'-direction, the

computed value of the cross constant in a direction parallel, say, to the

X'-axis. Such a surface would be somewhat analogous to the optical

index ellipsoid (528), in which the refractive indices corresponding to

waves in any direction are proportional to radius vectors perpendicular

to this direction.

Owing to the difficulty in the actual construction of elastic surfaces,

it is customary, and for most purposes sufficient, to prepare polar or

Cartesian graphs showing the various elastic constants for rotation

about a single crystallographic axis. For this purpose the equations in

preceding sections for rotation about a single axis are employed. Exam-

ples of this sort, for individual crystals, are given in Chap. VI.

60. Terminology for Crystal Cuts. When a flat parallel-faced plate

or bar is cut from a crystal, the term "cut" is used to designate the

direction of the normal to the major faces. Thus an Z-cut has the normal

to its major faces parallel to the .X-axis of the crystal. Similarly, F-

and Z-cuts have their faces perpendicular to the Y- and Z-axes.

Oblique Cuts. While in the earlier investigations plates and bars

were usually cut with their edges parallel to the crystal axes, various

oblique cuts, especially of quartz crystals, are in common use. It must
be recognized first of all that the choice of crystal axes is arbitrary, so

that there is no reason a priori why the physical performance of crystal
*
VOIGT, p. 736.
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preparations may not for many purposes be better when they are cut so

that the electric "field will lie in some oblique direction. Mathematically,
the problem consists in carrying out a transformation of axes, resulting
in an entirely different set of values of the elastic and piezoelectric con-

stants. With respect to the new axes piezoelectric effects can be created

that were not present in the original system; conversely, by suitable

choice of axes certain elastic or piezoelectric effects may be eliminated.

For example, Mason332 succeeded in getting -rid of an undesired mode
of vibration in quartz by rotating the Y- and Z-axes through a certain

angle while leaving the X-axis unchanged; several investigators have
found that the frequency of vibrating quartz plates, such as are used for

standards of frequency, can be made practically independent of tempera-
ture by orienting the plates in certain directions; and the author has

made use of the longitudinal effect that can be realized in obliquely cut

Rochelle-salt plates. As early as 1894 Pockels showed that the trans-

verse effect can be obtained in Rochelle salt by cutting bars with their

lengths at 45 with two of the crystal

axes. The last-mentioned fact has
found wide application.

Oblique cuts may be specified in

terms of the transformed axes X', Y', or

7t'\ for example, an X'-cut has its normal

parallel to the X'-axis. Special designa-

tions are considered in later chapters.

We now give the rules for the specifi-

cation of oblique cuts that will be used

in this book.

61. Notationfor Orientation ofTrans-

formed Axes. Many transformation

formulas involve rotation about a single

axis. In such cases, as in 47, we shall use 6 to denote the angle of

rotation and assign to it the positive sign when the rotation is counter-

clockwise as seen from the positive end of the axis about which the rotation

takes place (except with Ze/V-crystals, as indicated below).

When a single direction in space is to be specified, as, for example,

in equations for Young's modulus or in defining the normal to a given

cut, we shall use as parameters the azimuth <p and the colatitude (polar

angle) 0. They are illustrated in Fig. 17, in which OP is the specified

direction. In all cases <p is positive when laid off from +X toward +Y.
The rotation <p about the Z-axis transforms the X-, 7-axes to new axes,

which in Fig. 17 are called X1 and F'. The angle may be regarded as

the result of a rotation of the Z- and X'-axes about Y'. is positive when

the rotation is from +Z toward +X'; if the crystal is enantiomorphous,

XT'
Fio. 17. An arbitrary direction

OP represented in terms of azimuth <p

and polar angle 9.
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this statement is valid for both the right and the left forms. From the

rules for right- and left-crystals given in 7, it is evident that Fig. 17

applies to a right-crystal, since the axial system is here right-handed;

in this case & is positive when counterclockwise as seen from the + end

of the F-axjs. The diagram for a Ze//-crystal would be the mirror image of

Fig. 17, and 6 would be positive when clockwise as seen from the + end of

the F-axis.

The direction denned by <p and 6 is that of the Z'-axis, and with

suitable values of <p and it may assume any orientation in space. This

choice of the Z'-axis to represent a given direction explains why, for

example, Young's modulus is often denoted as l/Sss-

52. While a single direction can be specified by <f> and 6 without men-

tion of transformed axes, it is necessary to make explicit use of the latter

(a) (b) (O
Fio. 18. An oblique plate 0'A\ derived by three rotations from a Z-cut OA.

when a third angular parameter is required. Thus, for specifying com-

pletely the orientation of a rectangular plate, we perform first a rotation

of the X- and F-axes about the Z-axis through the angle ^, as indicated

in Fig. 18; the resulting axial system is Xi, Fi, Zi = Z. A second rota-

tion, about the Fi-axis through the angle 0, gives the axial system X2 ,

F2
= Fi, Z 2 . The Z2-axis is thus defined in terms of <p and 9 and is

taken as the direction of one edge of the plate. The orientation of the

plate at this stage can be visualized by considering first a Z-cut plate OA
with its length I and breadth 6 parallel, respectively, to X and F. The

first rotation, about the Z-axis, turns the plate to the position OAi,

while the second, about the Fi-axis, brings it into the position OA 2 .

The thickness dimension t is now parallel to the Z2-axis. The final

orientation is brought about by a rotation around the Z^axis through the

"angle of skew" ^, yielding the axial system X', F', Z' = Z2 .
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The full specifications for an oblique plate may be given by writing
the values of <p, 9, and ^ in this order, together with the dimensions

parallel to the X'-, F'-, and Z'-axes: for example, an X-cut bar with its

length parallel to the direction of maximum Young's modulus may be
denoted by X'40 mm(0), F'10 mm (90), Z'l mm (4836').*

Direction Cosines. The direction cosines of the X2 F2^2-axial system
with respect to the XFZ-axes, defined according to the accompanying
matrix, are as follows:

= cos <p cos = sn

(56)

For the final X'Y'Z'-a,xes with respect to the XFZ-axes the values are

(57)

713
= cos 9

REFERENCES

AUEBBACH and HOBT,
BI GEIGEB and ScHEELB2 , LovE,

B34 BOND. B*

* The rules given above are in agreement with the conventions recently approved

by the Institute of Radio Engineers (I.R.E.). The institute has recommended fur-

ther that such values be assigned to <f>, O, and ^ as will cause the orientations of the

X '-, Y'-j and Z'-axes to be parallel, respectively, to the length, breadth, and thickness

of the plate. For the application of this I.R.K. axial system to quartz see 327.
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53. Introduction. Voigt in his "Lehrbuch" gave the fundamental

equations for vibrations in crystals, but they received no further attention

until the 1920's, when the advent of the crystal resonator revived interest

in the elastic properties of crystals. The author's paper in 1921 on the

theory of longitudinal vibrations in damped isotropic rods was followed

by another the next year on the application of this theory to the first

piezoelectric resonators. The same problem was subjected to more

precise analysis by Laue in 1925. Soon many other papers on crystal

vibrations appeared, both theoretical and experimental, dealing with rods,

plates, and rings cut from various piezoelectric crystals.

More recently much attention has been given to the theory of

vibrations in quartz plates cut at various oblique angles with respect
to the crystallographic axes, for the purpose of eliminating the effects of

temperature on frequency or of avoiding coupling effects between differ-

ent types of vibration. New methods for measuring elastic constants

have been developed, of which one of the most important and interesting

makes use of optical effects due to ultrasonic waves. In all this work
it is important to observe the distinction between the isothermal elastic

constants derived from static observations and the adiabatic constants

that play a part in all vibratory phenomena.
Although the effect of piezoelectric reactions upon the elastic constants

is touched upon only briefly in this chapter, mention should be made of

the fact that recent measurements of the adiabatic elastic constants of

Rochelle salt have led to a changed opinion as to the conditions under
which the "pure" elastic constants of piezoelectric crystals, uncontami-

nated by piezoelectric reaction, should be measured. This consideration

in turn demands a new formulation of fundamental piezo-electric theory,

differing in important respects from that of Voigt. These matters are

discussed in Chap. XI.

An idea of the complexity in the theory of vibrations can be gained

by considering the various modes in which a parallelepiped is capable of

84
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vibrating. To the six possible components of strain correspond six

degrees of freedom, hence six of the simpler modes of vibration, the

frequency for each depending on the elastic constants, density, and
dimensions. The possible modes are

1. Those corresponding to one of the six strains by itself. These
modes comprise compressional and shear, with their overtones.

2. Flexural (fundamental or overtone), with strains in different parts
of the parallelepiped opposing each other.

3. Torsional, including overtones.

4. Coupled modes, in which two or more of the foregoing simpler
modes become interlocked to form a more complex vibration. As in the

analogous electric case, the coupling may be due to frictional forces, to

inertia, or to elastic coupling through the elastic cross constants. The
latter type of coupling is of chief importance in crystal resonators. Either

fundamental or overtone frequencies may take part in the coupling.

As in electrical networks, the relative importance of each of the com-

ponent modes at any resonant frequency for the coupled vibration

depends on the closeness of coupling and on the natural frequencies of

the component modes.

No complete and rigorous theory of vibrations in solids, even for

the simpler forms of isotropic bodies, has ever been formulated. A full

treatment of all coupling effects and boundary conditions defies analysis.

Nevertheless, the difficulties have been sufficiently overcome so that a

fairly precise description can be given of compressional, shear, flexural,

and torsional vibrations in crystal preparations of simple geometrical

shape. For the fundamental theory the references at the end of this

chapter may be consulted. We must confine ourselves mainly to the

results, although the equations for rods and thin plates will be developed

in some detail. Most of the expressions are basically those for isotropic

solids, with such modifications as are needed to adapt them to crystals.

In many important cases, especially those having to do with com-

pressional waves, the isotropic equations can be used without

alteration.

We shall give attention chiefly to two important forms of crystal

vibrator, for which the theory is fortunately fairly amenable to analysis.

The first of these is the elongated rod. The theory of lengthwise

compressional waves, including the effects of damping, is quite simple.

The vibrations associated with the other five modes of strain, if excited

at all, are of such relatively high natural frequency that coupling can be

ignored; these strains are then in phase with the longitudinal strain.

For vibrations of this type the effective stiffness is Young's modulus.

As the order of overtones becomes high, or the length is no longer great

in comparison with the other dimensions, complicated stages of coupling
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are encountered, until the comparatively simple theory of thickness

vibrations of a thin plate is reached.*

The second form to consider is that of a thin plate of large area.

Here again, only this time for thickness vibrations (compressional or

shear), there is no appreciable coupling with lateral effects except with

high overtones of the latter and in practice these are troublesome

enough. The simple theory considers a plate of infinite lateral extent,

in which case the plate may be regarded as completely constrained later-

ally (see 33), except that, for shear vibrations, freedom for small tan-

gential displacements has to be allowed.

54. Normal Modes of Vibration. In general, when an elastic solid

body is set into a state of free vibration, as by being suddenly struck,

its motion, if of small amplitude, can theoretically be analyzed into a

large number of "normal" vibrational modes. The number of these

modes is the same as the number of degrees of freedom, which is theo-

retically infinite even for the simplest geometrical forms of solids. To
each normal mode corresponds a "normal frequency/' which, however,
is abnormal in one particular, viz.

t
that it is usually taken as the value in

absence of damping.
For any normal frequency the necessary characteristics are that all

particles move in phase with simple harmonic motion and with ampli-
tudes in constant ratios to one another. This criterion is very closely

fulfilled when the viscosity is small.

The chief types of vibration, for each of which an indefinitely large

number of normal frequencies (overtones) is possible, are compressional

(called also "longitudinal" or "extensional"), shear ("transverse"),

flexural, and torsional.

In compressional vibrations the motion of the vibrating particles is

parallel to the direction of propagation of the wave.

In shear vibrations the particles move in a direction normal to the

direction of propagation, i.e., parallel to the wave front.

Flexural vibrations involve a bending of the specimen in a certain plane.

They are sometimes, though ambiguously, called "transverse" or "lat-

eral" vibrations. Although they are most prominent in elongated bars

or in thin plates, they may be present in solids of almost any form.

Torsional vibrations are those in which a relative angular displacement
about a certain axis takes place between adjacent cross sections. The
direction of wave propagation is along this axis.

* The theory of elastic vibrations in the piezoelectric resonator is a little more

complicated when the rod is in a state of forced vibration due to the piezoelectric

effects of an impressed alternating electric field, if, as is usually the case, the field

causes other components of stress than that tending to change the length of the rod,

The method of dealing with this complication is given in Chap. XIII.
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When the "natural frequency
"
for any mode of vibration is measured,

the observed value is always less than the theoretical "normal value"

by an amount depending on the damping to which the resonating body is

subject. The observed frequency also depends somewhat upon the
method of observation: it is slightly greater for free vibrations (those
vibrations which, once excited, die away at a rate depending on the

decrement) than for forced vibrations in which the frequency of maximum
velocity of the particles in the resonator is observed; and this in turn is

slightly greater than the frequency for maximum amplitude of vibration.

All these observed frequencies are lower than the ideal normal frequency
in absence of damping. This subject is discussed further in 58.

65. Vibrations of Crystals. In most cases here considered the vibra-

tions can be expressed in terms of wave velocity. The fundamental

equation for velocity in absence of damping is

(58)

where q is the stiffness factor, which assumes different forms for different

types of vibration, and p is the density. The problem then resolves

itself into finding the proper expression for q for each type of vibration,

due heed being paid to the dimensions of the vibrator. In the case of an

unconstrained rectangular parallelepiped in which the direction of wave

propagation is parallel to one of the edges it is permissible, to a certain

degree of approximation, to consider the vibration as due to a system of

stationary waves, reflection taking place at two opposite faces. To fix

the ideas we assume the parallelepiped to have dimensions X, F, Z and

the wave propagation to be in the Z-direction. Then for the wave

velocity and frequency of free undamped vibrations we may write

where h is the order of the overtone, which is approximately harmonic;

for the fundamental frequency, h = 1.

Leaving flexural and torsional vibrations for later consideration, we

regard for the present two extreme cases that are often approximated

in practice. The first is that of thin rods, the second that of extended

media, exemplified by thickness vibrations in plates of relatively large

area. In general we shall be concerned only with steady-state solutions,

in homogeneous rods of unvarying cross section.*

* The theory for isotropic rods of varying cross section and of varying material was

given long ago* by J. Stefan, in Sitzber. Akad. Wiss. Wien., Math.-naturw. Klasse,

vol. 55, part 2, pp. 597/., 1867; vol. 57, part 2, pp. 517/., 1868. Recently the theory of
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66. Longitudinal Vibrations of Rods. Most of the theoretical and

experimental investigations with which we are concerned have to do with

steady-state forced vibrations. Space permits only a statement of the

principal results, with references to original papers in which a fuller

treatment can be found. The discussion will be confined to rods in

which both ends are free, since this is the case usually occurring with

piezoelectric resonators.

In the ideal case of an infinitely thin frictionless rod, Eq. (59) may be

written in the form *

_ h
fq (

~2iVp
^

(60)

where I is the length of the rod and q = 1/s is Young's modulus. As a

first approximation (lateral inertia being ignored) this equation is often

very useful, especially for predetermining the length of a resonator.

We now turn to the problem of vibrations in a thin rod subject to fric-

tional losses. Concerning these losses nothing further need be assumed

than that there is a frictional force proportional to the velocity.* The

following treatment is essentially that which was first given by the

author,
92

starting with the differential wave equation and leading to

simple expressions in which the resonator is regarded as having con-

centrated mass and elasticity, vibrating with a single degree of freedom.

The method will be recognized as analogous to that used in the problem
of the electric transmission line.

The well-known equation for waves in one dimension is

' -+ ' <

where is the displacement at time t of that cross section whose undis-

turbed coordinate is x.\ p, q, and F are density, Young's modulus,

vibrations in composite rods driven piezoelectrically has received much attention,

especially in connection with the measurement of the dynamic elastic characteristics

of metals and other non-piezoelectric solids. References will be found at the end of

this chapter and of the next.
*
Voigt ("Lehrbuch," p. 792) discusses the coefficients of internal friction of

crystals, 6fcfc ,
and their relation to the elastic constants. In most practical cases the

internal friction is small in comparison with that due to external causes. The &**

could be measured only with crystals mounted with extreme care and vibrated in

vacuum. As will be seen in 242, they were introduced by Laue in his theory. The
internal losses in Rochelle salt are treated in Chaps. XVIII and XX to XXV.

f In the case of longitudinal vibrations, is parallel to the direction of wave

propagation. Equation (61), however, holds for displacements in any direction, as

long as this direction is the same for all particles in the same plane normal to the

direction of propagation. This equation is therefore applicable to all modes of thick-

ness vibration of plates as well as to longitudinal vibrations of rods.
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and fnotional factor. The possible dependence of q and F upon tempera-
ture, frequency, and various electrical and mechanical circumstances, is

for the present left in abeyance. F is here regarded as a constant, with

dimensions (ML"1!7-1
). In most practical cases F depends much more

on losses due to mounting and to surrounding air than on the losses

inherent in the crystal. The theory is in no way contingent on any
assumption as to the origin of F or its constancy, except that at any fre-

que'ncy it must be independent of the amplitude of vibration. In general,

in place of F, we shall use the logarithmic decrement 5, the quality factor

Q, or the damping factor a, which are quantities related to F that can be

determined at any frequency.

We first write the solution of Eq. (61) in the form appropriate for

progressive waves of any wavelength X, subject to attenuation with time.

No term representing attenuation in space need be included. The solu-

tion is

(62)

where A is the amplitude, a and k are constants, and w =
2irf.

The following relations are found by substituting Eq. (62) in (61)

and equating real and imaginary parts:

k = (63)

Fk* 2w*F ,.,
a =

2?
=
!* (64)

k is sometimes called the "wavelength constant" and a the "attenuation

constant" or "damping constant."

The velocity of progressive waves, including the effect of damping, is

(65)

where d is the logarithmic decrement and Q is the quality factor, given

by Eq. (67). The dependence of c upon X, and therefore on the fre-

quency, may be called a "dispersion," analogous to optical dispersion.

In most cases the second term in the expressions above is negligible in

comparison with the first, so that the velocity given by Eq. (65) is

practically identical with that in Eq. (58).

The instantaneous displacement at any point then becomes

2*Wt n

f"^ COS(* + C*) (66)
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This is the equation for the displacement at any distance x from an

arbitrary origin, for progressive sinusoidal waves of length X, traveling

with velocity c in a rod of indefinite length. If free, they die away at a

rate given by the exponential factor. The logarithmic decrement per

period is

= -r- =
-j,
=

fi
PC\ f Q

57. Forced Vibrations. A flat bar of relatively small cfoss section

with its length I in the X-direction is excited piezoeLectrically by a uni-

form alternating electric field parallel to the thickness of the bar. A
uniform alternating stress system is thus produced. As will be seen when

specific cases are encountered, this complex of stress components can be

resolved into an equivalent uniformly distributed longitudinal driving

stress X. The problem before us is to express the instantaneous dis-

placement (o?) at any point in terms of X and of any prescribed fre-

quency. The origin of coordinates is taken at the center of the rod.

For the steady-state solution, Eq. (62) is replaced by

= A(z)c** (68)

in which A is now a complex function of x, involving amplitude, fre-

quency, and phase.

Upon substituting Eq. (68) in (61) it is found that

= y*A(x) (69)

where y< - (70)

The only simplifying assumption inherent in these expressions, beyond
the disregard of cross section, is the same as in Eq. (62), namely, that the

frictional coefficient is so small that its effect upon the distribution of

strain along the length of the rod can be ignored.

If XQ is the maximum value of the impressed stress, we may assume

the instantaneous impressed stress to be

(71)

This equation gives also the total stress at the ends of the rod, where

x = Z/2, so that the strain at the ends is

'-^ -<*),-- (72)
*/2 #

In order to find A (x) and ,
we solve Eq. (69) for A (x) . The constants

of integration are determined from the boundary conditions that when
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x = 0,
=

0, and when x = 1/2, d/dx = <*'dA(x)/dx -
from Eqs. (71) and (72). It can then be proved that

(73)

57 cosh 7 g

The solution obtained from this assumption of a uniformly dis-

tributed periodic driving stress is the same that would be reached if one

supposed a pair of equal and opposite periodic forces to be applied at the

ends of the rod, the force per unit area being numerically equal to the

stress X. Although the author used the latter method in his first papers
on the resonator,

92 - 98 a method that has since been followed by others,

still the treatment now considered is to be preferred, since it represents

the facts more directly; moreover, as will be seen when the theory is

specialized for particular crystals, it facilitates the inclusion in the

theory of all the piezoelectric effects that contribute to the vibration and

to the electrical characteristics of the resonator.

Equation (73) can be thrown into a more workable form, which retains

high precision even for a degree of damping greatly in excess of any

commonly encountered in resonators, by writing, from Eqs. (64) and (70),

7-f+jf W
On substituting this value of 7 in Eq. (73) and making obvious

reductions one finds

.
, N

A(x) =
v '

(o)X
0)1 aHx ax . wA .(ax ux col . ctl . coo: . w

sin_ cos^-^ cos - sm^ -3 (--
cos - cos^ +g sin- sm

~ ~
2

coJ
,
aH* .

2
wl

COS 2
jr- + -r-r Sin2

^r-
2c 4c 2 2c

(75)

The modulus of A (x) is the amplitude of at any x, while the argument

is the phase angle. In most cases it suffices to express the amplitude and

phase of the vibration at the ends of the rod; we therefore set x = 1/2 in

Eq. (75) and find, after making trigonometrical reductions and rejecting

as negligible the term in a2 in the numerator (the
2-term in the denomina-

tor must be retained owing to the vanishing of the cos2 term at resonance)

i\ Zoc
sin 7-^7

v '
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At frequencies close to resonance all terms in Eq. (76) have to be

retained.

From Eqs. (68) and (76) the longitudinal displacement at the end of

the rod is found to be

H*
,

. .

T + sin

+..COS2
H" + TT sin o"2c 4c2 2c

where tan =
[sin (Z/c)]/(aZ/c). {(Z/2) leads Jo by the angle

90 - e.

Equations (76) and (77) hold with high precision at all frequencies,

including zero. At zero frequency a and w vanish, and the amplitude
becomes the static elongation

58. In most practical cases interest is confined to frequencies close to

resonance. For generality we give the equation in a form applicable to

overtones as well as to the fundamental frequency. The overtone fre-

quencies, in the ideal case of an infinitely thin rod here considered, are

almost exactly integral multiples of the fundamental, the departure
from true harmonic relation being due to the slight variation of velocity

with frequency expressed in Eq. (65). This departure is so small in

comparison with that due to the effect of cross section (65) that it can

usually be ignored. The resonant harmonic frequencies are then

Ao =
hfo, where /o

= c/2l is the fundamental frequency (h = 1) of the

undamped bar and h is the order of the harmonic. As will be seen, fho
is the frequency at which the velocity of particles in the rod is a maxi-

mum under forced vibrations. We have, from Eq. (65),

f WHO __ , - __ he h
fq f

.

/*o~2?-V-2T- 2>/-
( }

Under our present assumption that the rod is driven by a uniformly
distributed stress, it is to be anticipated that large amplitudes at the

ends can occur only for odd integral values of h.

For all values of h, the attenuation constant and logarithmic decre-

ment may be written, from Eq. (67), as

<*h * 5hfh (80)

Close to resonance we may write

WA = MHO nh (81)

where HA is a measure of the dissonance and wAo = Zr/M = hwo*
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The longitudinal displacement at the end of the bar has large maxima
at frequencies very close to odd integral values of h and is extremely
small at even integral values of &. This fact is implicit in Eq. (77) and
is brought clearly to light by making the following substitutions, valid

in the neighborhood of all harmonic frequencies. We write

l, sin

, n sin ojl/c t . N h nh
tan 6h = --T-rf- (-!)*/

and after the customary approximations for trigonometrical functions

we find

For h odd,

~
(2)

=
"sdr / 2 .

,

sin (** - ft) (82)
\z/ gow V ex 4- ttj[

For h even,

( ) =:
?; -v/a? + ?i? sin (co;4i ft) (83)

\2/ ^^cjft

In writing the maximum values at frequencies close to harmonics,

we may with sufficient accuracy set hcjo in place of & in the denominators

of the equations above:

cos ft [h odd] (84)

In the absence of damping, the amplitude when nh = would become

infinite for odd values of h and zero for even values, as is further explained

in 61.

When h is odd, the amplitude &(l/2) has its greatest value at a fre-

quency fha
= *a/2r, obtained by minimizing the product wA(aJ +

in Eq. (82), it being remembered that a* = hwQ ru and that ah =

To a high order of precision the result is

and -~- i - (86)

Atthefundamentalfrequency,wa = (1
- 52/4^

2
)- This expression

for a>a is similar to that for electric displacement-resonance in an oscillating

electric circuit with L, C, and $ in series, measufed in terms of maximum

voltage across the condenser as the frequency is varied.
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The velocity of a particle at the end of the bar, for odd values of h,

is the time derivative of Eq. (82) :

v
Qj

= a>^o Qj
cosM -

fc) = "o Qj
cos (** - A) (87)

, /l\ -2X c2 -2X -2X
where t> H = = = -T^= = " cos ** = 92

(88)

The velocity has its maximum value when UH = 0. The angular

velocity is then WA, = WAO, the same as for free vibrations in the absence

of damping. Velocity resonance corresponds to current resonance in an

oscillating circuit (234).
When h is even, one finds from Eq. (83) for the maximum velocity in a

cycle

/ 7\ _ V 7

(89)

The mechanical impedances for h odd and even, as well as further

analogies with electric resonance, are treated in 62.

For damped free vibrations at any harmonic frequency, the angular

velocity */ is found from Eq. (65) :

Then

Tftc '* -
)

<9 >

This expression is similar to that for free oscillations in a series electric

circuit with L, C, and R.

59. Summary of the Critical Frequencies of a Thin Bar. From the foregoing equa-
tions it is seen that the frequency fho of free vibrations in the absence of damping is

the same as /*, for velocity resonance. The expressions for the frequency fha for

amplitude resonance and for /A/ in the case of free damped vibrations are given below.

These expressions are applicable to all types of vibration in which the frequency is

associated with a definite wave velocity. /A/ anoT/Aa converge upon/A0 as the damping
approaches zero.
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It will be observed that these three frequencies are approximately equally spaced:

/AD
-

fkf fkf
-

fha
gJjT,

*
gQJj

(94)

For all resonators of low damping these differences are extremely small, measurable

only by methods of high precision. The frequency usually observed by electrical

measurements on piezoelectric resonators is / (or /*<>), modified somewhat by the

parallel capacitance of the resonator, as explained in 275.

60, Relation between Mechanical Wavelength and Length of Bar. It is

characteristic of longitudinal vibrations in bars, as in the analogous elec-

trical case of transmission lines containing uniformly distributed resist-

ance, inductance, and capacitance, that with forced vibrations at any

given frequency the distributions of displacement and of strain along the

rod at any given instant are very nearly sinusoidal, becoming strictly

sinusoidal in the absence of damping. This fact is readily shown for the

case of negligible damping by setting a = in Eq. (75). This equation

then gives the amplitude of mechanical displacement at any x directly:

v / \ A f \ Xoc . <&x . I I\ . 2irx /r..v

-&>(*) = ~A(x) =-
-j
sm = -

( ~ ) sin
-y- (95)

qa> cos ^ ,

^ '

where the mechanical wavelength is X = c/f and %o(l/2) is the amplitude

at the ends of the bar.

The amplitude of the strain at any x is found from Eq. (95) :

, N d (z) 2x
,.
/ 1\ 2irx , ,na .

**o(x) - "dV
- Y *

(2)
cos

"x" (96)

At the fundamental resonant frequency, X = 21, so that the last

equation may be written

*,(*)= * cos (97)
I \4/ I

This expression gives the sinusoidal distribution of strain at resonance

in the absence of damping. For the strain in a damped bar see 230.

According to Eq. (96) the strain at the ends of the rod vanishes at the

frequency of resonance, i.e., when I is an integral multiple of X/2. This

is for zero damping; if the damping terms in Eq. (75) were retained it

would bfc found that o(Z/2) remained always different from zero and

that there was no frequency at which the strain at the ends of the rod

quite vanished.

The relation between the displacement f and length of rod I is shown

in Fig. 19, in which a fixed frequency is assumed, corresponding to a

fixed wavelength X along the X-axis. Rods are pictured having the
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lengths aa' and W. In the case of aa' the length is so short in com-

parison with X/2 that the distribution of displacement is almost linear,

showing that at relatively low frequencies the deformation of the rod

approximates that caused by a static stress. On the other hand, rod

bb' is considerably longer than X/2, and the displacement has a maximum
value at a certain distance from each end.

When the length of the rod is an odd multiple of X/2, the condition

is that of resonance. Since the amplitude then depends primarily on the

damping, Eqs. (95) and (96) are no longer valid. Nevertheless, when the

damping is small the strain at the ends of the rod is exceedingly small,

and the form of the displacement curve is almost exactly that of a sine

wave, with greatest value at the ends of the rod, diminishing sinusoidally

to zero at the center, as represented, for the fundamental frequency, by

FIG. 19. Relation between length of rod and distribution of mechanical displacement.

the range from c to c' in Fig. 19. In most piezoelectric resonators the

resonance is so sharp and the variation in frequency that ordinarily need

be considered is so small that within this range, so far as the distribution

of displacement and strain is concerned, we may write X 21, or, for

overtone h, X 2l/h. From this it follows that, close to resonance, the

sinusoidal distribution represented by the equation

*) Q.
vxh

sm-p (98)

holds to a high degree of precision. We shall make use of this relation in

later paragraphs.

61. Resonator Amplitudes for Wide Ranges of Frequency. It is some-

times desirable to study the reaction of a piezoelectric resonator upon the

electric circuit over a range of frequencies too wide for sufficiently

accurate calculation in terms of the simple equivalent electrical network

discussed in Chap. XIV. We therefore require a formula that is at least

approximately correct over any desired range. So far as the purely

elastic side of the problem is concerned, such a formula is given in Eq. (77),
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but this is too cumbersome to be used conveniently. For most purposes
the problem is treated with sufficient accuracy by solving for the resonant

and non-resonant conditions separately. We first solve Eq. (77) for

frequencies well removed from resonance, the damping terms being

ignored [or we may set x = 1/2 in Eq. (95)]; and second we solve Eq.

(84) for the resonance frequencies themselves (cos 0* = 1). We write

o> = /iwo, where coo refers to the fundamental frequency and where h

may have fractional as well as odd or even integral values. Then,
noting that o>Z/c

=
irh, and that sin (coZ/e)

= 2 sin (<oZ/2c) cos (o>Z/2c), we
find for the maximum value of the displacement in the first case (non-

integral values of h)

(99)

and hi the second case (h = 1, 3, 5, . . .)

-'(0--G) (100)

If the frictional coefficient F were a constant independent of frequency
the amplitude at harmonic h would be only l//i

3 as great as for the funda-

mental. In practical resonators the

damping may be due to so many
causes that it is better to use the last

expression in Eq. (100), in which the

damping factor ah can be found experi-

mentally at any frequency. Since

there is experimental evidence (296)
that ah increases with frequency, it

can at least be said that with increas-

ing order of harmonic the amplitude

decreases proportionally to a power of

h greater than unity.

In schematic form the maximum

displacements at 1/2 are shown in Fig.

20 as functions of A, the driving force

having constant amplitude. The

exact form of the curve and, in par-

ticular, the height and sharpness of

the resonance peaks depend of course

upon the values of Z, c, g, and F. The value at w = can be calculated

from Eq. (78). In Fig. 20, F is considered constant.

It remains to add a word concerning even values of h (see also 63).

From Eq. (85) or (99) it is found that the amplitude A (1/2) is zero when w

I

Fio. 20. Maximum displacement at

the end of a longitudinally vibrating rod,

in terms of frequency, h /*//i, where

fh is any frequency, and /i is the funda-

mental frequency.
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is an even multiple of a>
,
as long as damping is neglected. By symmetry

there are also h 1 nodes of motion at intermediate points, between

which the rod is in a state of forced vibration when periodic forces are

applied at the ends. For example, the amplitude of the second harmonic

is found by setting x = Z/4 and == 2w in Eq. (75) ; A(Z/4) = XoC/qw*

There is no resonance, since the strain at each end is limited, the value

being xx(l/2) = X/q. There is also no external piezoelectric reaction

due to longitudinal deformations when rods with full-length electrodes

are excited at an even multiple of the fundamental frequency, since the

effects of compressions and extensions in the various segments cancel

exactly.*

62. Equivalent Resonating System with a Single Degree of Freedom.

When any feebly damped mechanical system that has many degrees of

freedom vibrates at or near one of its normal modes, it is sometimes

advantageous to deal with vibrational problems in terms of an equivalent

system having a single degree of freedom. 92 One may, for example,
visualize as the equivalent system a mass at the end of a weightless spring,

subject to a small frictional drag. It was the device of a simplified

equivalent vibrating system that led the way to the representation of

the piezoelectric resonator by certain equivalent electrical constants.

Whatever the type of vibrator may be, the selection of the three

equivalent constants for the single-degree system is determined by the

condition that at every instant the kinetic energies of the two systems
must be the same. That is, the systems must agree in amplitude, phase,

and decrement. This condition leaves us free to choose arbitrarily either

the equivalent mass M
9
assumed concentrated at a point (or more gen-

erally the equivalent coefficient of inertia), or the coordinate that deter-

mines the motion of M. Usually the motion of the concentrated mass

is taken as identical with the motion of that region on the boundary of

the actual vibrator where the driving mechanical force is assumed to be

applied. By this convention the value of M then becomes determined.

The present problem is to determine the equivalent mass, stiffness,

and frictional coefficient for the case of a longitudinally vibrating rod.

The fundamental frequency will be considered first. The concentrated

mass M is assumed to undergo the same motion as a point at the end of

the rod. The condition of equality of kinetic energies leads to the

assignment to M of half the actual mass of the rod, or M = %pble, where

6, 1, e are, respectively, the breath, length, and thickness, t The equivalent
stiffness is defined by G = Mu\ =

ir*beq/2l, and the frictional coefficient

*
Nevertheless, if the impressed frequency is lower than the resonant frequencies

of lateral vibrational modes, there can still be a piezoelectric contribution to the

polarization, as explained in 229.

f See, for example, H. Lamb, ref. B33, p. 13.
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W, from Eqs. (64) and (67), by 5 = 2w*F/P\*f W/2/M. M, TF, and (?

correspond to L, JR, and 1/C in a series electric circuit having lumped,
as contrasted with distributed, constants.

The equation of motion 13

Mi + TF + Gf = $o cos at (101)

where is written for (Z/2), the displacement at the end of the rod, and

$o is the maximum value of the force that acts on the equivalent mass M.
The steady-state solution of (101) is

=
o sin (

-
6) (102)

in which the maximum displacement is

{ p
*- = *L cos 6 (103)

j x / (7/w 2?rn n /</v . xand tan =-
Tjy

' = --- = --
(104)W w 5 a N

As previously, n = wo o>, and 5 = W/2fM TF/^fo^/. The mechani-

cal reactance is

Xc
= o>M - - -2Mn (105)

o>

From the foregoing equation for TF, together with Eq. (67), the

mechanical resistance may be expressed as

W = E2p = q=r = 2Ua (106)Z ^v^

The mechanical impedance is given by

72 172 i_ x2 = W2
4- ( wM )

= 4M2
(

2 + n2
) (107)**c ' c 1 ^ I \ i / \ /

On comparing Eq. (84) with (103) one sees that the conditions for

identity of the distributed-constant system with its equivalent lumped-

constant system are fulfilled. Equality of damping is ensured through

the definition of TF, and identity of phase from the definition of tan 6.

Equality of amplitude is attained by setting $ = 2X be.

Derivations of equations for the longitudinal vibrations of damped

rods, leading to results similar to the foregoing, have also been given by

Vigoureux
350 -351 ' 667 and by Laue309

(see 242).

63. Equivalent Lumped Mechanical Constanta for a Bar Vibrating in Harmonics.

We consider first the case in which the periodic driving stress is uniform throughout the
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bar. For all values of h the effective driving force is $ = 2XJbe, just as at the

fundamental frequency. The bar may be treated as consisting of h segments in series,

for each of which we may write Mi plbe/2h, G\ - MiwjA
2 -

hGf, where G has the

value given above for the fundamental frequency of the entire bar. Wi 2aiMi,

where a\ is the damping constant for a single segment.

As in 58, the solutions for odd and even values of h must be treated separately.

When h is odd, the effective mass for the complete bar is Mh = hM\ plbe/2 M;
Gh *JM* - hGi - h*G - **qbeh*/2l; <** -Wk/2Mk9 whence TT* - 2Ma*. The

mechanical impedance is

- 2AT(aj + D
*

(108)

Gh

<OA

By analogy with the alternating-current (a-c) equation / -
V/Z, one would

expect to find for the velocity at J/2 the value v (l/2) - $/Zk . In fact, Eq. (88) for *

can be reduced to exactly this form through the use of the foregoing expressions. As

in the case of a series resonant electric circuit, Zh has its minimum value at the resonant

frequency for which nh
= 0.

The situation is quite different when h is even. There is then destructive inter-

ference (180 phase difference) between adjacent segments of the bar. An electrical

analogy is the 180 phase difference between the inductive and capacitive branches of

a parallel (antiresonant) circuit. The current has a minimum value at resonance,

analogous to the minimum in vQ(l/2) according to Eq. (89).

In the foregoing discussion it has been assumed that the mechanical driving stress

was applied uniformly throughout the rod, from 1/2 to +1/2. We may anticipate

the results of the following section by remarking that, if the stress is applied from

(1/2 l/h) to 1/2 (or if it is applied to any other single one of the h segments), then

when h is even the destructive interference between segments is eliminated and a

maximum in velocity occurs at resonance. For application to the piezo resonator

see 238.

64. Rods Driven by Forces Applied Locally. Rod-shaped piezoelectric

resonators are sometimes excited by the use of electrodes covering only

a portion of the length, as indi-

_j- ====. cated in Fig. 21. The purely

|
I 1 elastic part of the problem of

Xj ^22 determining the amplitude at any

"FIG. 2i.-iu>d maintained in longitudinal frequency can be solved approxi-
vibration by equal and opposite periodic mately by assuming a uniformly
forces at *i and *

distributed stress from xl to x2

or its equivalent, iriz. 9
a force X = XQ cos at per unit area of cross

section, applied at xi, and an equal and opposite force at x2 . We consider

first only the frequency region close to the fundamental and omit the sub-

script h. The excitation of overtone frequencies is discussed in 238.

An approximate solution can be reached by several routes:

1. By first deriving an expression for (l/2) when the applied forces

are symmetrically situated at l'/2, where V < I. The solution for

V = xi is then subtracted from that for /' = #2. The final value of
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(Z/2) is half of this difference and is identical with that derived by
method 2.

2. On the assumption that I = X/2 and that the strain is sinusoidally

distributed, an expression can be derived for the average input of power
to the rod in terms of Xo and o(/2)i,8 where the latter quantity denotes

the maximum displacement at x = 1/2 when the forces are applied at

xi and #2- The average power is found to be P = w 0(^/2)1,2 XoSu cos 0,

where 812 s i f sin ~-
2

sin ^y-
1

1> and has the value in 57. A second

expression for P is then derived representing the expenditure of energy
in the rod, viz., P = 4

ZFo(Z/2)i,2/4c
2
. Upon equating these values of P

one obtains o(Z/2)i,s
- AlXoSu cos 6/w*o>F. If, as formerly, (J/2)

denotes the displacement at 1/2 when the driving forces are at the ends,

we find for the instantaneous displacement afr 1/2 with forces at Xi and

#2 the equation

W/2)i,i = *o0/2)i, sin (< - 0)
= Si&(l/2) sin (* - 6) (110)

The reduction in amplitude caused by driving the rod at points not

at the ends is thus expressed by the factor $12. When x\ and Xz are at

the ends, Siz = 1 and the equation becomes identical with (82). When
Xi and x2 are symmetrically placed, so that Xi = #2, $12 = sin vxi/l.

3. A more rigorous treatment takes account of the fact that in a piezo-

electric resonator the wave velocity in the portion of the rod between

the electrodes is less than in the exposed parts (241). Two different

values of Young's modulus must therefore be included in the correspond-

ing elastic problem. The rod has to be divided into three regimes,

viz., from 1/2 to xi, from x\ to #2,
and from xz to +1/2. At Xi and x*

the medium undergoes a discontinuous change in elastic constant and in

strain, but the stress is continuous. The method of attack is analogous
to that discussed by Mason,835 - 336 by Quimby,* and by Crandall.89

The author has derived the equation for the motion of the rod, but the

form is too complicated to make the plotting of a resonance curve at all

convenient. Moreover, the velocities in the three regimes are so nearly

equal, at least in the case of quartz, that the result differs but little

numerically from that given in Eq. (110). It need only be stated that

the resonance frequency, defined for a homogeneous rod by 1// = 21/c,

is given by the following equation when account is taken of the change in

elasticity at Xi and z2 :

i-j+^
where V = x^ a?i, c = velocity between x\ and x% and c\ = velocity

outside of this region.
*
S. L. QUIMBY, Phys. Rev., vol. 25, pp. 558-573, 1925.
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65. Effect of Cross Section on Frequency of Rods. Rayleigh's well-

known equation for the frequency of longitudinal vibration of an iso-

tropic cylindrical rod of length I, radius r(r < < I), Poisson's ratio <r,

gives, to the first approximation,

h being the order of the overtone. For example, if <r = i amd I 4r,

the frequency is about 2 per cent less than if the radius were negligible.

With other than circular cross sections and with anisotropic mediums

the obstacles in the way of theoretical formulation multiply, but the

order of magnitude of the correction is not very different from that

indicated above. For isotropic bars of rectangular section (length /,

breadth 6, thickness e) y
the following equation is given by Giebe and

Scheibe: 171

f ___ i_ _ i_ . .~ /iTT' ~ 8> 2

V
1 + * 4~~ T~ 24?

where /i is the fundamental frequency. These authors find that (113)

fails to give values in agreement with experiment for quartz bars. Their

experimental and theoretical investigations are treated in Chap. XVII.

The effect of cross section on longitudinal vibrations has also been

treated by Ruedy.*
The basic equations from which the effect of lateral inertia on the

longitudinal frequency of rectangular crystal bars in any orientation can

be found have been derived by R. M. Davies. 120 The only application

made by Davies is to bars from crystals of Group III (Rochelle salt),

the length I of any given bar bisecting the angle between two of the crystal

axes and the dimension e being perpendicular to both these axes. He
finds the corrected frequency fa for overtone h to be given (in the notation

of the present section) by an equation of the form

where (fii)o *s the frequency for a bar of negligible cross section and b

is the third dimension of the bar, which may be greater or less than e.

The subscripts in Eq. (114) are for a bar having its 6, 1,
and e dimensions

* R. RUEDY, Can. Jour. Research, A, vol. 14, pp. 66-70, 1936.
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parallel, respectively, to the Z'-, F'-, and Jf-axes. Bars of this type are

called elsewhere in this book the "-Y45-cut." The transformed axes

are obtained from the matrix in 41 by setting ai = 1,

i = 7l = a2 = a3 = , & = fo = 7s = l\2, 72 = -

The expressions for the clastic coefficients are given in Eqs. (43).

By analogous axial transformations the equations for F45- and
Z45-bars may be obtained. More simply, they are derived directly

from (114) by permuting the subscripts according to the rule following

Eqs. (31) in 42.

For an X45-bar of square cross section, with b = e J/4, the cor-

rection given by Eq. (114) amounts to about 2 per cent. If b = e = Z/6,

the corrections for h = 1,2, 3, and 4 are roughly 1, 4, 8, and 14 per cent.

For the effect of cross section on quartz resonators, in which there

are pronounced departures from the Rayleigh correction, see 349.

66. Thickness Vibrations in Crystal Plates. The general theory
will now be outlined. Later, in 93 and 253, the application of the

theory to special problems will be considered.

The following paragraphs have to do primarily with plates of infinite

area, in which the same motions are shared by all particles having the

same coordinate in the direction of the normal. It is strictly not enough
to specify that the lateral dimensions shall be great in comparison with

the thickness. When the plate is finite, coupling effects between various

yibrational modes distort the wave front. Attention will be paid in

Chap. XVII to these coupling effects. In any event it is important to

study the nature of the vibrations in the ideal case. For the application

to the piczo resonator see 243.

For isotropic solids the velocity of compressional waves is

/(X + 2n) _ fc

V P
~
V?

the elastic constants X, n, and c having the meaning indicated in 31.

The velocity of transverse waves (waves of distortion) is \/n/p. From
the matrices of the crystal groups in 29 one might infer that the same

equations held for crystals, on substituting the appropriate CHK for c and n.

This statement is hardly a rigorous proof, and indeed it is not generally

true; moreover it fails to indicate the direction of vibration for trans-

verse waves.

The general theory of the propagation of plane waves in anisotropic

mediums, of which the foregoing equations are particular cases, was
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first given by Green.* He showed that for any direction of propagation

there are in general three possible types of wave, each with a different

velocity, the three vibration directions being mutually perpendicular.

67. The form of the theory now to be considered is due to Christoffel.t

Calling J, m, n the direction cosines of the normal to the plane wave

surface and s the distance of this surface from an arbitrary origin, we
have s = Ix + my + nz. The displacement of a point on the surface

from its normal position is {, with components u, v, w and direction cosines

a, 0, 7, so that = au + &v + yw.

The general equations of motion, analogous to (61) in the absence of

damping, are

_ d*u_dX. dXv dX.~

with similar expressions for v and w.

Christoffel shows that these equations can be written in terms of u,

v, w, and s instead of stress, by introducing new moduli Fn TM,
which

are functions of the elastic constants CHH and of I, ra, n. Equation (115)

then becomes

p

where! T 12
= T 2 i, r ls

= ri, r23
== r32 ,

and

* G. GREEN, "Mathematical Papers," London, 1871. See also Lord Kelvin's

"Baltimore Lectures," London, 1904.

f E. W. CHRISTOFFEL, Annali di matematica pura ed applicata, series II, vol. 8, p.

193, 1877. Christoffel's method was applied to the piezo resonator by Koga270
-271

and later by Mason, 386 Bechmann,
32 - 89 and Atanasoff and Hart. 12 See also Love, ref.

B34, p. 298.

t The six moduli Fu . . . Tu correspond to the six types of strain that can be

present in thickness vibrations. They are as follows: one strain of type L shown in

Fig. 15 (p. 56), viz., a compression normal to the surface of the plate; two strains of

type T
7

'; two of type S; and one of type S', All other strain components are pro-
hibited by lateral inertia. As an illustration consider an X-cut, for which I 1,

m = n = 0. The r are then reduced to the six fundamental constants Cn, Cee, CSB, c8 e,

Cu, and Cie, which will be recognized as belonging to the types mentioned above. The
last three of these c are the cross constants corresponding to the first three. For an

X-cut these are the only fundamental constants that play a part in thickness vibra-

tions. Analogous statements may be made concerning other cuts, including those in

oblique directions,
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2mnc56

r22
= I*CM + m*cn + n2c44 + 2mnc24 + 2nfc46 + 2Zwc26

2mnc34 + 2nZc86 + 2Zmc45

wn(c23 + c44) + nl(cu + c86)

+ Zm(c46 + c25)

c86) + nZ(c8 i + 055)

(116)

514)
t

C i4)

The quantity sought is the stiffness factor q for insertion in Eq. (59).

It enters the scene in the following secular equations, which, as shown by

Christoffel, give the relations between stiffness, direction cosines, and T^:

(117)

The values of q for quartz and Rochelle salt, derived from the solution

of (117), are treated later.

There are three possible values of q, all of which are real; they are the

roots gi, g2, q* of the cubic equation, expressed in terms of known quanti-

ties:

q

T 22
-

q r

r 28 r 88

28 - (118)

To each of these roots corresponds a different set of values for a, 0, 7,

and hence a different direction for the displacement . The three

vibration directions are found from Eqs. '(117).

When plane waves corresponding to one of the roots of Eq. (118) are

propagated at a resonant frequency in a plane-parallel crystal plate of

infinite area, in the direction of the normal to the plate, a condition to be

satisfied at the surfaces is that the strain d/ds = 0. For each root a

system of stationary waves is theoretically possible for a crystal plate

in any orientation, at a fundamental thickness frequency or at any

overtone. Such vibrations can be realized in those cases where the piezo-

electric properties of the crystal are such that the strain d/ds can be

piezoelectrically produced.

Any one of the three roots of Eq. (118), say qm ,
can be used in the

fundamental wave equation
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from which follows, in the usual manner, for the normal frequencies of a

plane-parallel plate, with vibrations propagated in the direction of the

thickness e, the formula

(120)

where h is the order of the harmonic.

When Eqs. (117) are solved for a, 0, and 7, it is found in the general

case that each of the three displacements, which we shall call 1, 2 , 3,

has components both normal and parallel to the surfaces of the plate, so

that no one of the waves is purely compressional or purely transverse.

It is only in isotropic solids and in certain special cases in crystals that

one of the three waves is strictly longitudinal and the other two strictly

transverse. If the substance is isotropic, the velocities of the two trans-

verse waves coincide and the transverse vibratory motion can have

any direction whatever in the wave front, while the third wave is com-

pressional, with displacements normal to the wave front. The general

condition that one vibration direction shall be normal to the surface (com-

pressional wave) is that a =
Z, =_ m, 7 = n. For a vibration direction

to lie in the surface the condition to be satisfied is al + flm + 771 = 0.

Elastic vibrations of the transverse type in solids are often called shear

vibrations.

68. The Christoffel theory has been applied in the determination of

vibration directions and frequencies, as well as of elastic constants, in

plates of quartz, tourmaline, and Rochclle salt. The excitation takes

place piezoelectrically, the plate being placed between plane-parallel

electrodes that are connected to a source of alternating current of the

right frequency for producing resonant vibrations. It is possible to

excite any one of the three vibration modes that involves a strain capable
of being caused piezoelectrically by an electric field; the latter is usually
normal to the plate. The criterion can also be expressed thus: The
vibrational deformation must be such as to produce a piezoelectric

polarization in the direction of the driving field. Obviously, the essential

question in any particular instance is whether there is a piezoelectric

coefficient satisfying this condition. Examples are considered in 351

following and 378.

In the precise measurement of elastic constants by means of thickness

vibrations it is desirable to use h-f overtones rather than the fundamental

vibration. This fact has recently been made evident in the case of quartz

by Atanasoff and Hart,
12 who point out that at high harmonic frequencies

the effects of gap, boundary conditions, and coupling between different

modes are eliminated. The procedure for deriving the elastic constants

from observational data is described in 93 and 252,
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The elastic properties of a non-piezoelectric solid can be studied experi-

mentally by cementing to a flat face of the solid a plate of piezoelectric

crystal. High-frequency compressional or transverse waves generated
in the crystal can then be propagated in the solid, as described in 512

below.*

69. In the days when light was treated as waves in an elastic solid, the two trans-

verse waves mentioned above became the two waves of polarized light in crystals.

In isotropic media the two waves had the same velocity, the vibration direction could

have any orientation in the wave front, and hence the medium exerted no polarizing
effect. Compressional waves were removed from the discussion by conferring on the

ether such properties that their velocity was either infinite or zero.

Even with the acceptance of the electromagnetic theory of light, the analogy with

elastic waves still remains valid. It is not inappropriate, for example, to regard the

two transverse waves in crystals, each with its own velocity, as an instance of elastic

double refraction. Elastic wave propagation in crystals, however, is more compli-
cated than the propagation of optical waves. This is partly due to the presence of the

compressional wave, so that in all there are three wave surfaces to consider as against
two in optics; and in addition there is the fact that, while three parameters (the princi-

pal refractive indices mentioned in 528) suffice to describe the optical properties of

crystals, the number of elastic parameters in crystals, for the general case, is much

greater. That is, there is in general no unique elastic ellipsoid in terms of which the

wave velocities in all directions can be expressed! (527). All 21 elastic constants

play a part in determining the velocity. In all crystals except those of lowest sym-

metry, special wave directions can, however, be found for which certain constants or

groups of constants are zero; as has been stated, use is made of this fact in certain

oblique cuts in quartz.

One respect in which elastic waves are somewhat simpler than optical waves is

dispersion. The only effect of frequency upon wave velocity, at least so far as mechan-

ical waves of ordinary frequencies are concerned, is an extremely small diminution

with increasing frequency due to friction, as indicated by Eq. (65). Molecular fric-

tion or viscosity plays a part in optics, but in a quite different manner, namely, in

causing anomalous dispersion.

70. Damped Thickness Vibrations. The theory of the piezoelectrically

driven resonator vibrating in a thickness mode, with due regard to damp-

ing, overtones, space between crystal and electrodes, and the effect of

piezoelectric reaction on the elastic constant, is given in Chap. XIII.

For the present it is necessary only to indicate briefly how the equations

* The fact that elastic waves in crystals can be propagated in a given direction

with any one of three different velocities finds an interesting application in explaining

the modified lines that are observed in the spectrum of light scattered while passing

through a quartz crystal. This effect was found by E. Gross (Compt. rend. acad. sci.

U.R.S.S., vol. 18, p. 93, 1938), who thinks it due to local variations in the index of

refraction caused by strains accompanying heat waves, according to the theory of

Debye.

t Nevertheless, corresponding to any given direction of the wave normal there is a

certain ellipsoid, the principal axes of which give the vibration directions and velocities

of the three elastic waves (G. Green, reference on p. 104; Love, ref. B34, p. T
" "
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for longitudinal vibrations in damped bars may be adapted to the treat-

ment of thickness vibrations of plates. This purely elastic theory will

then serve as the basis for the later discussion.

When applied to thickness vibrations, Eq. (61) assumes the form

in which the displacement may make any angle with the plane of the

plate and x represents the distance parallel to the thickness dimension e

(the s-direction in 67) from the nodal plane at the center of the plate.

qm is the stiffness coefficient corresponding to the particular type of thick-

ness vibration [see Eq. (119)].

Since the theory of thickness vibrations in damped plates runs exactly

parallel to that for lengthwise vibrations in rods, it is unnecessary to

repeat it. Just as in our theory of rods we have disregarded

the effects of cross section, so here the assumption of plates of infinite area

disposes of the complication due to boundary conditions. When applied to

actual plates of relatively large area, the theory is still accurate enough to

be of great usefulness, yielding frequencies that agree with observation

to the order of 1 per cent.

Most of the equations and discussion in 56 to 63 apply equally to

plates, provided that the symbols I and e (length and thickness) are inter-

changed (see, for example, 254).

When thickness vibrations are used for the stabilization of radio

frequencies, the lowest, or fundamental, mode is commonly used. Plates

vibrating in high overtones have also recently found an important

application as h-f oscillators. In crystal oscillators for the production
of ultrasonic waves it is common practice to employ high overtones of

compressional thickness vibrations. In the case of piezoelectrically

driven plates only odd harmonics can be excited.

71. Conservation of Angular Momentum in Shear Vibrations. The
following remarks are applicable to all shear vibrations, whether of the

thickness type, in which the plane of shear is at right angles to the major
surfaces of the plate, or of the "contour" type, in which the shear is in

the plane of the plate.

A circumstance that must not be overlooked when plates of finite

area are vibrating in a shear mode is the principle of conservation of

angular momentum. A shearing strain involves rotation of linear ele-

ments in the crystal about a certain axis. If the vibrating plate is free,

a compensating periodic rotation of the body as a whole must take place,

in order to keep the total angular momentum zero. With increasing
lateral dimensions the moment of inertia of the plate increases; hence,
the amplitude of angular movement of the plate as a whole diminishes,
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(a)

approaches zero as the area becomes indefinitely large. Thus, it is only
with plates of relatively great area (if vibrating with perfect freedom)
that the two major surfaces remain so fixed in orientation that the

instantaneous deformation is a simple shear.

Under a static shearing stress the rectangular section ABCD of a

flat plate, shown in Fig. 22a, would become deformed into the parallelo-

gram A'B'C'D' or A"B"C"V". ^ D c ^
If the stress alternated at very
low frequency, these two configur-

ations would take place alter-

nately, the nodal plane EF
remaining approximately fixed.

But if the frequency had the value

for the fundamental thickness

vibration in direction e = BC,
the distribution of strain and of

displacement would be sinusoidal,

as indicated in Fig. 226, provided

that the dimension AB was so

great that the rotation of the plate

as a whole about an axis per-

pendicular to the paper at could

be ignored. One may also assume

that the plate is so mounted that

the nodal plane EF is fixed in

space. The sinusoidal distribu-

tion is exactly analogous to that described in

vibrations.

The rotation of the body as a whole that tends to accompany the

alternating shearing strain is represented in Fig. 22c, where for simplicity

the strained figure is shown as a parallelogram. If the unstrained figure

were a square, the strain would be "pure."

The effect of this periodic rotation of the body as a whole is to make

the frequency of shear vibration higher than it would be if there were no

rotation, t'.e., if the nodal plane EF remained invariant. Considering

only the case of the fundamental shear mode in a rectangular plate of

length a and breadth b, it can be proved from simple dynamic principles

that, when the body vibrates freely, the diagonals of the rectangle remain

invariant in direction and also that the frequency is higher by the factor

I/cos a than it would be if the median line EF remained fixed. Since

I/cos a = (a
2 + 62)*M it is evident that the increase in frequency

approaches zero when a b, as is usually the case with thickness

vibrations, where the dimension called b here is the thickness.

Cc)

FIG. 22. Deformation of a plate by a

shearing stress: (a) static, (6) in resonant
vibration with nodal piano EF fixed, (c) in

vibration without constraint.

60 for extensional



110 PIEZOELECTRICITY [72

If c = (g/p)*, where q is the stiffness constant for the shear mode and

p is the density, the frequency is

(122)J 26 cos a 2ab

This formula can be extended to overtone frequencies, where frac-

tional parts of a and b have to be taken. By a different method Mason332

derived an approximate equation, which as modified by Sykes
498 has the

following form:

""
+ *2

J
2

(123)

where a, fc, and c are as in Eq. (122) and m and n are positive integers.

k is an experimental constant dependent on m and n, with value unity
when m = n. In the latter case

(123) reduces to (122).

Shear vibrations of the type
we have just discussed, as well as

other vibrational modes in finite

crystal plates, have recently been

treated theoretically by H.

Ekstcin,
131 who compares calcu-

8

4

0.5

0.1 0.2 0.3 0.4 0.5

lations based on his theoretical

formulas with the experimental
results of Mason and others.

72. Comparison of Wave Velocities

for Various Types of Vibration. This

comparison has a bearing on the dimen-

sioning of resonators. The velocities

concerned are cr in a thin rod, cc and c8

(compressional and shear) in a plate of

large area. The ratios cc/cr and cs/cr

are not the same for all materials, even isotropic, but depend on the relations between
the elastic constants.

For isotropic solids, damping being ignored, the velocities as given hi 56 and 66

can be expressed by means of the equations in 24 and 31 in the form

FIG. 23. Dependence of ratios of veloc-

ities of compressional and shear waves on
Poisson's ratio.

(124)

The ratios between the velocities are thus expressible as functions of Poisson's ratio a.

It will be noted that this quantity does not affect cr,
since the rod is assumed extremely

thin. The ratios have been computed for various values of <r by F. Auerbach,
* and

the results are shown graphically in Fig. 23. Following are the main conclusions:

1. The smaller <r is, the more nearly does the velocity of compressicnal waves in

an extended medium approach that for a thin rod. With increasing <r, ce increases;

* Ref. Bl, p. 289.
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this may be interpreted as due to the fact that in an extended medium lateral expan-
sions and contractions are inhibited, so that the effective stiffness coefficient becomes

greater.

2. As <r approaches zero, c, approaches cr/\/2; with increasing r, ca decreases

somewhat.

3. cc has a value approaching c, \/2 as <r approaches zero, and the ratio cc/c rises

rapidly with increasing <r.

Qualitatively, similar relations may be expected in crystals. It has not been
found feasible to express wave velocities in crystals quantitatively in terms of Poisson's

ratio, since in the general case this quantity is anisotropic and its introduction into

the equations would present grave difficulties. In a few special cases, as, for example,
with quartz bars or cylinders parallel to the Z-axis, a single value can be assigned to <r.

Such "quasi-isotropic" vibrational conditions are considered in 382 and 400. The

bearing of Poisson's ratio on the coupling between different vibrational modes is men-
tioned in 349, 357, and elsewhere.

73. Flexural Vibrations. Just as the comprcssional vibrations of rods

and the compressional or transverse thickness vibrations of thin plates

may be regarded as systems of stationary waves with characteristic

velocities, so the subject of flexural vibrations may be approached by
first considering the velocity of propagation of flexural waves. In con-

trast to the wave types previously considered, pure flexural waves have

velocities proportional to the square root of the frequency [Eq. (126)

below], as long as the thickness of the plate is small compared with the

wavelength. With increasing frequency, as was shown by Doerffler,
124

there is a gradual transition from pure flexural waves to transverse waves

of constant velocity. Pure flexural waves bear a certain analogy to

ripples on the free surface of a liquid.

The simplest equation for the velocity of a flexural wave in an indefi-

nitely long rectangular bar of solid isotropic material of breadth b, the

vibratory motion taking place in the direction of thickness e (Fig. 24), is

(125)

where X = wavelength, Y = Young's modulus, p = density, k = wave-

length constant = 2ir/X, and r = e/(2 \/3) = radius of gyration of the

cross section be with respect to an axis through its center, normal to the

plane of flexure (Fig. 24). This equation takes no account of rotational

or compressional inertia. Nevertheless, it is fairly precise as long as

e < < X and was used by Doerffler 124 in experiments on quartz bars.

In terms of frequency, since c = f\, Eq. (125) becomes

(126)

In the foregoing equations, as also in all the following expressions for

flexural vibrations, the breadth 6 does not appear, as its effect is negligible.
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A somewhat more accurate expression, including the effect of rota-

tional inertia, is given by Lamb:383

c =
kr /F

+"/cV
2 \P (127)

Further equations for velocity are given in Geiger and ScheeL*

Coming now to flexural vibrations in bars of finite length, we are con-

fronted first with the fact that the terminal effects are very ly:ge, so that

it is not permissible to assume that the length of the bar is even approxi-

mately equal to an integral number of half waves, except for flexural

modes of high order. Only vibrations in bars free at both ends are here

considered. The equation commonly employed is

mV /P
J

~~
0^72 \/ (128)

in which Z is the length of the bar and m a coefficient depending on the

order n of the mode. For rela-

e tively thin bars, m = (2n + l)7r/2

approximately, where n may be

any positive integer. The num-
ber of nodes is n + 1, as shown in

Fig. 24 for n = 2. The funda-

mental mode n = 1 is shown in

Fig. 47 (page 239).

For the first three modes of thin bars, the values of m, together with

the theoretical distances d of the first nodes from the ends of the bar,

expressed as fractions of Z, and the relative frequencies, are:

FIG. 24. Flexural vibration of a bar of

length I, thickness e, with three nodes.

First overtone, n = 2. The plane of the

diagram is the "plane of flexure."

Doerffler124 recorded flexural vibrations in quartz plates with orders

as high as n = 32.

A small ratio of e to I is by no means a requirement for the existence

of flexural vibrations. They have been observed when e was of the order

of magnitude of I. A more -complete theory, taking account of both
rotational and compressional inertia, has been developed by Mason, 333

who gives equations and curves (Fig. 25) from which the coefficient m,

* Vol. 8, p. 195.
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for insertion in Eq. (128), can be precisely found for any ratio of e to I up
to 1. The only point at which the special properties of crystals enter

is in the expression for Poisson's ratio. Mason shows that, as e approaches

I, the flexural frequency gradually merges into that for compressional
vibrations.

Still another formulation of the theory for isotropic materials, in

which Mason's expressions are simplified and extended, with curves to

aid in calculations, has been made by Thomson.*
74. Torsional Vibrations. AQ

Torsional vibrations are encoun-

tered, not only in rods of small

cross section, but also in reso-

nators of many shapes. Like flex-

ural vibrations they are frequently

present in experiments with vi-

brating plates, and they contribute

both to the complexity of the

experiment and the perplexity of

the experimenter. Owing to the

presence of cross constants con-

necting extensions with shears,

coupling is likely to occur between

flexural and torsional modes. In

the following equations coupling

effects are disregarded, as are also

the second-order effects of warp-

ing of transverse planes.

In investigations on torsional

vibrations, end effects are less

serious than with flexural vibra-

tions, so that with sufficient pre-

cision the frequency can be

expressed simply in terms of wave

velocity and length of specimen,

the latter being assumed cylindrical or prismatic in form. In general,

the theory of longitudinal vibrations in rods can be applied directly

to torsional vibrations.

Calling N the dynamic torsional stiffness [corresponding to q in Eq.

(58)] we have for the torsional wave velocity

(129)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fia. 25. Curves for computing flexural

frequencies of bars, from Mason. Abscissas

are the thickness: length ratio e/l. Upper
curve (ordinate scale at the left) gives m for

n = 1; lower curve (scale at right) gives m
for n 2.

* W. T, THOMSON, Jour. Acoustical Soc. Am., vol. 11, pp. 198-204, 1939.
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where N, is the static torsional stiffness as defined in 35 and /i is the

moment of inertia about the axis of torsion for unit length of the resona-

tor. For a circular cylinder of radius r, /i = irpr
4
/2; for a rectangular

bar of breadth 6 and thickness e, Ii = p6e(6
2 + e2

)/12. In the case of a

circular cylinder, solid or hollow, N = 1/7* (35).
For a cylinder or prism of length Z, the fundamental frequency is

fi
= c/2L The overtones stand very closely in harmonic relation to the

fundamental as long as the cross-sectional dimensions are not too large.
182

Hence, for the harmonic of order h,

=l,2,3, -

-) (130)

Two expressions for the static torsional stiffness N, = Q/T can be

obtained from Eqs. (11) and (12), for the special cases represented by
these equations. For a discussion of the more general case in which the

axis of torsion may have any orientation the reader is referred to Voigt.*
In the case of bars of rectangular section the general expression for the

static torsional stiffness is

N. =
(131)

where A is a function of e/b as denned in 35 and n is the effective rigidity

(reciprocal of the torsional compliance). For an isotropic solid n is

the ordinary rigidity; for crystals it is a function of certain of the funda-

mental elastic constants.

The torsional frequency equation for a rectangular bar of any e and I

is found from Eqs. (130) and (131) to be

+
To a degree of approximation sufficient for the identification of the

torsional mode, n may be taken as the reciprocal of i(s44 + 555), the

primed compliances referring to transformed axes and the length I lying
in the Z'-direction. For example, if the specimen has its length parallel

to Z, n is 2/(s44 + $65); for length parallel to X, n = 2/(s 55 + See).

For still other vibrational modes see 359, 360, and 379.
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CHAPTER VI

ELASTIC CONSTANTS OF CRYSTALS

And oft in the hills of Habersham,
And oft in the valleys of Hall,

The white quartz shone, and the smooth brook-stone

Did bar me of passage with friendly brawl,
And many a luminous jewel lone

Crystals clear or a-cloud with mist,

Ruby, garnet and amethyst
Made lures with the lights of streaming stone

In the clefts of the hills of Habersham,
In the beds of the valleys of Hall. LANTER.

In this chapter will be given the results of observations of the funda-

mental elastic constants of those piezoelectric crystals for which data

are available, arranged according to the elastic groups. Other elastic

properties of interest are included, although some matters having to

do with elasticity are so closely related to the piezoelectric properties

that they must be reserved for later chapters.

It is impossible, however, to avoid some reference in the present

chapter to the influence of piezoelectric reactions upon the observed

elastic constants. For a fuller understanding of these reactions Chap.
XII should be consulted.

76. The Measurement of Elastic Constants. In general, three differ-

ent methods may be used for measuring the elastic constants of solids :

1. By static deformations of specimens cut in various orientations,

employing a mechanical or optical technique or a combination of the

two. For details the original papers must be consulted. The results

when reduced by means of the transformation equations given in Chap. V
yield the isothermal values, and they are assumed to be for zero electric

field (of significance only with piezoelectric materials). There is reason

to suspect that in some cases, notably with Rochelle salt, insufficient

precautions were taken to ensure this condition. By making the cor-

rections noted in 37, the adiabatic can be computed from the isothermal

values.

2. From observations of frequency, dimensions, and density of

resonating devices made of or containing the material to be^tested. Fre-

quencies are usually so high that the elastic conditions are essentially

adiabatic. Care must be taken to avoid or allow for coupling between
116
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various vibrational modes. With piezoelectric resonators, the electrical

state (dependence of elastic coefficients upon piezoelectric reaction) is

dependent on the air gap, as explained in 235 and 248, and also on the

relative dimensions and orientation of the specimen. The effect of a

gap on the piezoelectric reactions is always to increase the effective

stiffness. It is therefore to be expected that dynamic values of the

compliances, uncorrected for such reactions, will never be greater than

the static values, and the dynamic values of the c's never less than the

static values.

3. From the optical effects of ultrasonic waves, as described in Chap.
XXX. Although the method is indirect and complicated, it appears
to be capable of yielding results of precision comparable with those

mentioned above. Not enough precise data on piezoelectric crystals

have thus far been obtained to warrant inclusion here.

Method 1, the static method, gives primarily the shk constants, since

they occur in the equations relating a single component of stress with the

resulting strain. From them the Chk's are computed as explained in 26.

By method 2, whether the quantity derived from observation is a com-

pliance or a stiffness constant depends on the form of the resonator.

Methods 2 and 3 are called vibrational or dynamic methods.

Considering not only observational errors and limitations imposed

by methods of measurement but also the impossibility of preparing test

pieces in exactly the right orientation, possible defects in test pieces, and

variability of different crystals, there is probably some uncertainty in

the third significant figure, at least in most cases. Where more than three

significant figures are given in the following paragraphs, it is mainly to

focus attention on the differences between isothermal and adiabatic

values. Room temperature is to be understood unless otherwise stated.

76. In anticipation of the discussion in 199 a word should be said at

this point concerning the "electrical state" of crystals. To a greater

or lesser extent this must be taken into account in expressing the elastic

constants of all piezoelectric crystals. While with most crystals, for

example quartz and tourmaline, the influence of the electrical state on

the elastic constants is a second-order effect that need be regarded only

in work of precision, it becomes an effect of first order when the piezo-

electric reactions are abnormally strong, as is the case with Rochelle

salt. Hence, the following precautions become less urgent as the mag-
nitude of the piezoelectric constants diminishes.

A definite physical meaning can be attached to the elastic constants

when
1. The electric field is held constant when a stress is applied. In

static observations this condition is usually sufficiently met by allowing

a short time to elapse for the neutralization of surfaoo pnUrization charges
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of piezoelectric origin. With Rochelle salt, owing to the magnitude of

the piezoelectric effect and the great relaxation time, many minutes

may elapse after the application of stress before the final steady state of

strain, with all charges neutralized, is reached. The time can be short-

ened by coating the entire specimen with a conducting film so thin as

not to have an appreciable stiffness of its own.

In dynamic measurements, the field may be regarded as virtually

constant when the electrodes by which the resonator is driven from an

external source are in immediate contact with the surfaces of the crystal.

2. The electric displacement is held constant when a stress is applied

(see 199).

In order to prevent the displacement from varying, there must also

be provided an electric field in the crystal of the right strength and in

the right direction. With relatively thin bars and plates the field is

parallel to the thickness; and if the polarization also is in this direction

and no conductors are in the neighborhood, the displacement remains

practically zero. Under these conditions* constant-displacement coeffi-

cients of elasticity can be measured, both statically and dynamically.

If the polarization is not parallel to the field, only the component of dis-

placement parallel to the field remains constant. The observed elastic

constant is then s*k or CA*, given by Eq. (273) or (272). From these

values the isagric, constant-potential, and constant-displacement values

can be calculated. For the procedure in the case of thickness vibrations

see 252. It would be excessively difficult to apply to the crystal a

compensating field such as to hold the total displacement constant in

the general case when the polarization was not parallel to the field.

3. The electric polarization is held constant when the crystal is under

stress. The constant-polarization elastic constants are used according to

the polarization theory discussed in Chap. XI. They are of practical

importance chiefly in the treatment of the Seignette-clectrics. As is

pointed out in 200 and 211, their numerical values agree with those at

constant displacement, within the usual limits of experimental precision.

In estimating the precision with which a specimen should be oriented

in order that its elastic constants may be measured with a desired

accuracy, account must be taken of the fact that the variation of any

given constant with angle of cut may depend greatly upon the axis about

which the rotation is considered. For quartz, this variation is illustrated

in Figs. 31 to 36 and in Fig. 38. In measuring Young's modulus parallel

to the F-axis of quartz by measurements on a bar, the error due to

incorrect orientation of the length of the bar in the FZ-plane is much

greater than that incurred, when the modulus parallel to X is to be deter-

mined with a bar parallel to X, by incorrect orientation in the X-plane,
This subject is treated more fully by Giebe and Scheibe. 171 Calculations
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for all rotations and all crystals can be made with the aid of the trans-

formations treated in Chap. IV.

The effects due to coupling between different modes will be considered

later, in various special cases.

In general, the values of compliance coefficients SM are expressed in

square centimeters per dyne, those of stiffness coefficients chk in dynes

per square centimeter. In the reduction of all static measurements to

cgs units it does not matter appreciably whether g be taken as 980 or

981 cm/sec.
2 As a rule the value adopted is 981.

Among piezoelectric crystals complete elastic data are available only
for Rochelle salt, sodium ammonium tartrate, quartz, tourmaline, and
sodium chlorate.

Unless otherwise stated, all numerical data in this chapter are for

constant-field conditions.

GROUP III (RHOMBIC)

As may be seen from the table in 29, this group has nine of the pos-

sible 21 fundamental elastic constants, each independent of the rest.

The rules for the axes in Class 6, to which the crystals here discussed

belong, are given in 5. Unlike quartz, the crystals in Group III have

qualitatively similar elastic properties with respect to all three crystal-

lographic axes. This symmetry is already apparent in the array of con-

stants in the table in 29. Equations for transformed axes are in 44

and 45.

77. Rochelle Salt (Class 6, symmetry F). It is with Rochelle salt

that consideration of the electrical state of the crystal becomes of prime

importance in elastic measurements. It is stated in 76 that values of

the elastic constants having a definite physical meaning can be obtained

only when one of the following quantities is maintained constant when
strain is applied: either the electric field, or else the electric displacement,

or, as is nearly the same, the electric polarization. In the case of Rochelle

salt this precaution is particularly important in all measurements

involving s65,
s66f and especially s44 ,

since these are the quantities that

occur in the expressions for piezoelectric deformations. The elastic

"constant" associated with the piezoelectric coefficient du and the

dielectric constant i?i in the description of the much-discussed anomalies

is s44 or its reciprocal c44 . The observed isagric values of these two

quantities depend to a very marked degree on temperature and electric

field (466 and 474).

The first measurements of all nine constants were made by Mandell,
m

.by a static

method, in which the bending or torsion of bars cut in various orientations was

observed. The constants were calculated from appropriate transformation equations

such as are given in 44. Unfortunately no information is given concerning either
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the temperature (except that it was held constant) or the completeness with which

disturbing effects of electric fields caused by the applied stresses were eliminated.

One can only assume that these very careful and painstaking observations were made

at room temperature, a few degrees below the upper Curie point, and hope that suffi-

cient opportunity was given for the piezoelectric surface charges to become neutralized

by leakage. Doubt on this score has been expressed by Mueller. 878 MandelPs

original results, together with the adiabatic values based on them, are given in Table

IV (page 122).

Static measurements of the elastic compliances have been made more recently by

Hinz,
Mj> whose method differed from that of Mandell in that by means'of compres-

sion apparatus (optical lever) he observed the shortening of rods subjected to endwise

pressures, at room temperature, stress about 30 kg/cm. 2 Rods were cut parallel to

the crystal axes and also in directions bisecting the angles between pairs of axes. Care

was taken to prevent disturbing electric fields of piezoelectric origin; hence, Hinz's

values may be considered as isagric. For the theory of this method the original paper

should be consulted. Hinz claims a precision of 2.5 per cent.

Davies 120 derived equations for Young's modulus for bars in lengthwise vibration

in the KZ-plane at 45 with the 7- and Z-axes, the applied alternating field being

parallel to X, and also for bars similarly oriented in the ZX- and .XT-planes with fields

parallel to Y and Z, respectively. We designate these as X45 -, F45 -, and 45-bars,

and the corresponding values of Young's modulus as F(*46), F<i/46), and F(45). The

formulas will be found in Eqs. (45).

Unfortunately, Davies's metallic electrodes made only light contact with the

crystals, so that the effective gap was pretty certainly not zero (214). His values of

Y would therefore be expected to lie between those at constant displacement and those

at constant field, approximating somewhat more closely to the latter. His final

results are corrected both for adiabatic conditions and for lateral inertia (65). The

values at 15C are entered in Table VI (page 125).

Frequency measurements on a large number of F45-rods have been made by
Mattiat ;

3W the frequencies were corrected for lateral inertia, but the nature of the

electrodes is not mentioned. From his data, presumably at room temperature,

Young's modulus for this direction (in the ZX-plane at 45 to the Z-axis) is found

to be 10.4(10
l

) dyne/cm 2
(see Table VI). His curves show the dependence of

frequency on the b:l ratio and also the variation with orientation of the bar in the

ZX-plane.
The most reliable dynamic measurements of elastic constants of Rochelle salt, and

indeed the only ones hitherto made that give all nine constants, are those of Mason. 835

His data are obtained from observations at 30C of resonant frequencies of lengthwise

compressional vibrations of rods and of thickness vibrations of plates in a shear mode,

piezoelectrically excited in both cases. For the former observations, the rods had

lengths lying in the three principal planes, at angles of 22.5, 45, and 67.5 with the

axes, the field in each case being normal to the principal plane; these 'measurements

yielded n, s22 , s*, and three relations among the remaining six constants. From the

thickness vibrations (page 127) were derived 44 1/044, $55 1/css, and s 68 l/cee,*

thus all nine compliances were evaluated and also the nine c's. All these are "con-

stant-charge" values (190), since the gap was large.

Following are the formulas for the stiffness coefficients qm in the thickness-vibration

experiments, derived by means of the theory outlined in 67. For each of the particu-

lar oblique cuts employed, certain of the moduli F vanish, whence it can be shown that

the vibration which is piezoelectrically excited has a vibration direction in the plane

of the plate. The electric field was normal to the plate in all cases. For a plate one



78] ELASTIC CONSTANTS OF CRYSTALS 121

edge of which is parallel to X, the normal to its surface making an angle with the

F-axis, we shall call the stiffness coefficient 9*0; when one edge is parallel to Y and the

normal is at an angle with the X-axis, the coefficient is qve; and when one edge is

parallel to Z, the normal making an angle $ with the X-axis, q,e. The formulas as

derived by Mason are then

qx$ cj, cos2 6 + cJ6 sin8 CJJ for rotation about X \

qv e cJ4 sin* + c*6 cos* $ c'6J for rotation about Y
J (133)

q*9
- c6*6 cosa

-f c*4 sin* c'6J for rotation about Z )

The values of used were 22.5, 45, and 67.5. From the observations of frequency,
the values of the q's are found by means of Eq. (120), letting h - 1.

The asterisks in Eqs. (133) indicate values at infinite gap, according to 207. In

solving for c*4 , cJ6 ,
and cJ6 ,

Mason assumed these quantities to have the same values

at each value of 8 and also for rotation about each axis. We shall show in 207 that

this procedure is not rigorously correct. Nevertheless, since the dependence of these

quantities on orientation is not known, Mason's values at constant charge, indicated

by "constant <r," are included without correction in Table IV, but they were not used

in calculating the values for Table V.

Two years after the appearance of Mason's paper it was shown by Atanasoff and
Hart 12 that precise values of the elastic constants of quartz, and hence presumably of

other crystals, from thickness vibrations, can be obtained only by the use of high
harmonic frequencies (250). With Rochelle salt Mason observed only at the funda-

mental frequency, and it is impossible to say how different the elastic constants

CAA, C68| and c would have been if derived from the frequencies of high overtone vibra-

tions. This circumstance is discussed further in 79.

78. The compliance and stiffness constants as determined by Mandell,

Hinz, and Mason by the methods outlined above are assembled in Table

IV. Mandell's and Hinz's isothermal values are taken from their

papers, and from them the author has calculated the adiabatic values

(at room temperature) from Eq. (17), taking data from 407 and 409.

The values obtained by Mandell and Hinz may be assumed to be approxi-

mately at zero field.

The first prominent feature in this table is the " softness" of Rochelle

salt as compared with quartz (Table IX). Next we notice that the

magnitude of the important constant $44 is not outstanding as being either

very great or very small (see 474).

Owing to the peculiar nature of Rochelle salt it is impossible to make
a complete comparison of the values without knowledge in every case of

the age and previous condition of servitude of the crystals used. The

results may be influenced also by faulty orientation and, especially in

Mandell's measurements, by the sources of error mentioned above.

Hinz's static compliances agree better with Mason's dynamic than

with MandelPs static values. This fact cannot be ascribed to tempera-

ture differences, for Hinz and Mandell must have observed at nearly the

same temperature, a few degrees below the upper Curie point, while

Mason worked at 30C, several degrees above this point. From all
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TABLE IV. ELASTIC CONSTANTS OF ROCHELLE SALT

available published data it appears that all the compliances except s44

decrease by an amount of the order of 0.2 per cent for each degree rise in

temperature over the range from to 40C (for 544, see 86). About half

of the difference between Mandell's and Mason's values can thus be

accounted for. On the other hand, one would expect the static values

of the compliances to be greater than the dynamic, owing to the greater

opportunity given the crystal to relax (428). Smallest of all should be

the dynamic values at constant electric charge, such as those of Mason.

This relatively low value of compliance is especially to be looked for in

the case of s44, and indeed Mason's value is very considerably less than

Hinz's. Why Mandell found 544 still smaller must remain a mystery.
It will be observed that MandelFs 23 does not agree even in sign with

the other values. This fact is probably related to his small value of $44,
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since these two constants occur together in the equations from which the

final values are derived.

All things considered, we are inclined to prefer Hinz's static values to

Mandell's, partly because of his greater attention to the elimination of

disturbing electric fields and partly owing to his better agreement with

Mason's results.

79. Best Values of the Elastic Constants of Rochelle Salt. All the

constants except s44, SM, and s66 vary but little with temperature, and
their variation with stress is probably also small. They are also subject
to no piezoelectric correction; hence, no distinction need be made between

their values at constant field, constant polarization, and constant dis-

placement. Since, as is shown in 211, the values at constant normal

displacement (which are practically the same as the constant-polarization

values s k) of s44 , SBS, and $66 are less dependent on temperature than the

isagric values, the values given below are those at constant normal

displacement.

For $11, $22, and $33 we adopt the average of the adiabatic values of

Hinz and those of Mason, from Table IV.

Mason derived his $4*4,
s*5 ,

and s*6 from thickness vibrations and

therefrom obtained s2 s, 531, and $12 by means of the experimentally deter-

mined compliances (2s23 + s?4) = 5.93(10~
12

), (28si + ?5 ) = 28.6(10-
12

),

(2si2 + S*Q)
= 7.02 (10""

12
). These three numerical values come from

measurements of frequency of lengthwise vibrations of bars in different

planes and different orientations, as stated in 77. The compliances of

the bars are s'22 fr m Eqs. (39) for rotation about X, with analogous

expressions for rotations about the other two axes. Since, for the reason

stated in 77 and 207, Mason's values of c*4 ,
c*6 ,

and c*6 from his observa-

tions of thickness vibrations are subject to correction of unknown amount,
his values of 23, si, and $12 cannot be accepted. Instead, we follow

Mueller's procedure* and adopt Hinz's values of s2 s, BI, and s i2 . Then

from Mason's values of (2s23 + s?4 ), etc., given above, the constants

s*4, 5*5, and s*6 are calculated, all at 30C. Their reciprocals give c*4 ,

c*B ,
and c*6 . These starred values hold only for X-, Y-, and Z-cuts,

respectively. For the reason given in 207 they cannot be used accu-

rately in equations involving other orientations.

We thus arrive at the following set of values at room temperature:

TABLE V
Compliance Constants of Rochelle Salt, X 1012

n - 5.1(8) $22 - 3.4(5) $83 - 3.2(8) 528 - -1.3(6)

* - -1.7(2) *!, - -2.2(0)

54

*
4
- 8.6(6) s?6 * 32.(0) S6

*
6
- 11. (4)

Stiffness Constants, X 10 10

cJ4 - ll.(6) c
fi

*
5
- 3.1(2) c?tt

- 8.(8)

* Ref. 378, footnotes 25 and 26.
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The numbers in parentheses are of uncertain magnitude. Future experi-

mentation may show that in some cases even the digits preceding the

parentheses should be changed. The value of cJ4 ,
at constant polariza-

tion, is of importance hi the polarization theory. Within the limits of

experimental error (see 211) we may write

c?4 c4
*
4
- ll.(6)(10

10
) dyne cm-2

(134)

The variation of cJ4 with temperature can be calculated from the

data in Table I of Mason338
(a portion of which is given in Table XXXII,

page 478) or from Fig. 28. From the values of frequency the author

finds, using the values of $22, $33, and 23 from Table V, a fairly uniform

decrease in c?4 from 12.5(10
10

) at - 12C to 11.0(10
10

) at 47.5C. Curve

Hii in Fig. 94 indicates that there is a very slight discontinuity in cJ4

at the upper Curie point.

The isagric compliance sf4 and its dependence on temperature can be

derived from sf4 by means of Eq. (273). If the calculation is made by
the use of du and A from Figs. 145 and 146, values of s?4 in agreement

with Fig. 146 are obtained. For sffi
and sf6 see 141.

Our knowledge of the elastic constants of Rochelle salt, even at small field

strengths, is still in an unsatisfactory state. There is need of more experimental data,

on many plates and bars in different orientations, with strong as well as weak fields

and over a wide range of temperatures including both Curie points. The resonant

and antiresonant frequencies with zero gap should be observed and also the frequencies

with infinite gap, together with the dielectric constants. Due attention should be

given to the piezoelectric terms in the stiffness equations. In observing thickness

vibrations of plates, high harmonics should be used. It is also desirable to make

static observations of the elastic and dielectric properties of the same specimens,

under carefully controlled conditions.

80. Young's Modulus for Bars in Various Orientations. Data for

Table VI are taken chiefly from the papers cited above. All values

were obtained from the resonant frequencies of lengthwise vibrations

except those of Hinz, who observed the moduli directly by his static

method, and of Mandell, whose values are derived from his fundamental

constants. Davies observed at 15C, Mason at 30C, Mikhailov at

15 to 19C, the others at room temperature.

The errors in the observed values of Y due to an error of 1 in orienta-

tion for bars in the three principal planes, with lengths at 45 to the axes,

have been computed by Davies120 as follows: in the ZF-plane about 1 per

cent, and in the YZ- and ZX-plaues about 0.5 per cent.

Hiltscher used very short electrodes (377) in his experiments, so

that his values, like Mason's, may be regarded as practically at constant

displacement. The best constant-displacement values are probably

those of Mason, the best isagric values those of Hinz. Cady's and
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TABLE VI. RECIPROCAL OF YOUNG'S MODULUS OP ROCHELLB SALT FOB BARS AT
45 WITH THE AXES INDICATED

(In cm2 dyne~ !
)

Fia. 26.Elastic constants of Rochelle salt R and sodium-ammonium tartrate A
(see 88) from Mandell. Upper diagrams: radius vectors are s'^, the reciprocals of Young a

modulus; radius of circle is 50(10-i) cm2 gm-i - 5.1(10-") cm 2 dyne' 1
. Lower diagrams:

radius vectors are the torsional compliance T\ radius of circle is 125(10-") cm* gm
~ 12.74 cm2 dyne.-i
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Davies* dynamic measurements were made under conditions approxi-

mating those at constant field, so that their results might be expected to

agree with those of Hinz, as indeed they do fairly well accept in the case

of the ZX-plane, where Davies' value looks suspiciously large.

In the upper part of Fig. 26 are shown polar diagrams of the reciprocal

of Young's modulus for all orientations in the three principal planes.

They are taken from Mandell's papers
326 - 327 and are based on his measure-

ments. The curves may be regarded as fairly representative, despite

such corrections as may have to be made to Mandell's values of the

elastic constants. The minimum of Young's modulus comes at about

42 with the X-axis, the value of the reciprocal being 8.50(10~
12

).

The diagrams in the lower part of Fig. 26 represent the modulus of

torsion T for circular cylinders with lengths lying in the three principal

planes. The values are derived from Eq. (10) after the latter nas been

specialized for the rhombic group.*

The three stiffness coefficients corresponding to the three possible

modes of thickness vibrations in Rochelle-salt plates have been computed

by Takagi and Miyake.
601 Values are shown in the form of polar

diagrams, for plates whose normals are perpendicular to the Z-axis, at

various angles with the X- and F-axes.

81. Crushing Strength of Rochelle Salt. The only data at hand are from a single

test in this laboratory.! An X-cut 45 plate 3.6 by 2.5 by 0.6 cm with carefully

machined ends was stood on end while increasing forces were applied from above.

Care was taken to distribute the stress as uniformly as possible. At about 130 kg/cm 2

the first crack appeared, running lengthwise. The plate was still standing up under

300 kg/cm 2 but fell apart in several pieces when removed. Apparently 100 kg/cm 2

is a safe compressional stress for the direction bisecting the F- and Z"-axes.

82. Compressibility of Rochelle Salt. A check on the relative reason-

ableness of the elastic constants as given in Table IV is provided by a

calculation of the linear compressibilities in the three principal directions

under uniform hydrostatic pressure, using Eqs. (15). These calcula-

TABLB VII. LINEAK COMPRESSIBILITIES

(In 10-" cm 2 dyne"1

)

* The simplified expression is in Voigt, p. 760, and also in Mandell's papers,

t This test was made by R. A. Richardson and M. C. Waltz.
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tions are given in Table VII. The values from Mandell326 and Hinz229

are isothermal. The last column gives the initial compressibilities,
derived by extrapolation from the observations of Bridgman,* which
covered the range from 2,000 to 12,000 kg/cm2

,
at temperature 30C.

The curious discrepancies in Table VII are attributable largely to

differences in the value of $23, which as has previously been pointed out
is closely associated with the anomalous "

constant
"

$44. On the whole,
Bridgman is found to be in best agreement with Mandell, although the

latter's values are somewhat greater. On the other hand, Bridgman is

in good agreement with Mason, and especially with Hinz, in the Z-direc-

tion. In the F-direction Hinz's data predict a slight expansion under
uniform pressure.

The last line in the table gives the volume compressibilities. The
values of Hinz and of Mason appear very low. One is tempted to wonder
whether their values of the cross constants, particularly Hinz's values of

$12 and 23> are not numerically too great.

83. Stiffness Coefficients for Thickness Vibrations. The following
values are from Mason,

336 obtained directly from observed frequencies
of shear modes. These are the q's which, by means of Eqs. (133), served

to determine his values of c44 ,
c65, and c 6e and thence su , 855, and s66 in

Table IV. The symbol X22.5F means a plate having one edge parallel

to X, its normal making an angle of 22.5 with the F-axis, and similarly

for the remaining cuts. All values are in 10 10
dynes/cm

2
.

With these may be compared the probably less reliable values (elec-

trodes and gap not specified) of Mikhailov :
867 Y45X, 12.3 (10

10
); Z45X,

6.83(10
10

) dyne cm-2
.

Using MandelPs data from Table IV the author has calculated from

Eq. 37 the stiffness coefficient c'u for various directions of the JC'-axis.

The maximum value 80.4(10
10

) is in the Z-direction. The minimum
value is 27.5(10

10
), with direction cosines approximately an = 0.707,

a* = 0.612, as = 0.354.

An idea of the configuration of the c'n-surface may be gained from

Fig. 27. The modelf shown here for viewing stereoscopically, has radius

* P. W. BEIDGMAN, Proc. Am. Acad. Arts Sci., vol. 64, p. 68, 1929.

tThis "pincushion" model, designed and constructed in Scott Laboratory, con-

sists of a carefully machined aluminum casting in the form of an octant, in which holes
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vectors (distances of tips of rods from center of sphere) proportional
to the square root of c^.

are drilled radially for various latitudes and longitudes. Threaded steel rods are

screwed into these holes, each projecting outward so that the distance from the center

of the sphere to the tip of the rod is proportional to the calculated value of the param-
eter in question. The rods are threaded and can be screwed in and out at will. The

apparatus is thus a universal contour model, capable of illustrating any physical prop-

erty of any crystal so far as is possible with a single octant.

The symmetry of Rochelle salt is such that every elastic property can be com-

pletely represented by a single octant ; three of the remaining octants are identical with

the first; the other four are mirror images.
If the model were set up to illustrate any elastic property of quartz, a range of

80 in azimuth (longitude) about the Z-axis would suffice, together with 00 in latitude.
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84. Variability of the Elastic Constants of Rochelle Salt with Stress.

Almost the only experimental data seem to be those of Iseley,
248 who

applied endwise compressions to a bar whose length bisected the angle
between the F- and Z-axes. The stresses Y'y (39) extended to 2.225

kg/cm2
[about 2(10

6
) dynes/cm

2
]. The strain is y'v

= -4^; the

compliance 4* from E(ls - (43 ), involves s22, sss ,
s2 s, and $44. The first

three of these coefficients should be sensibly constant; hence, any depar-
ture from strict proportionality between yg and Ye must be attributed

to s44 ,
which shares in the anomalies discussed in Chap. XXIV. Iseley's

curves, for temperatures 20, 22.5, and 30C, show a slight decrease in s'22

with increasing Y'y , indicating a somewhat more marked decrease in

s4 4. Although the interpretation of his data is difficult, still it can be
said that his results tend to confirm quantitatively the theoretical curves

in Fig. 142.

Ilinz's value of $44 in Table IV tends to confirm the view that this

quantity becomes smaller under large stresses. The value, obtained

presumably at zero field, is 9.63(10~
12

), the stress being about 30 kg/cm2
.

At small stresses, according to Fig. 146 the value is about 20(10~
12

) at

room temperature. Unfortunately, Hinz does not record the dependence
of his elastic constants upon stress.

Mandell326 states that he found it necessary after each observation

on the elastic constants of a bar of Rochelle salt to wait for the recovery
from fatigue before using the same bar again (time not stated).

85. Temperature Coefficients of the Elastic Constants of Rochelle

Salt. The behavior of 44 with varying temperature and stress is dis-

cussed later.* Further experimental results bearing on s44 will now be

given, together with data on the variation of the other elastic constants

with temperature.

Since the dielectric and piezoelectric anomalies of Rochelle salt are

confined to fields in the ^-direction and since the only elastic constant

related piezoelectrically to Ex is s44, one would hardly expect to find

anomalies in 55 or See at any temperature. Nevertheless, the evidence is

quite convincing that Sss and See (hence also CM and CGO) have anomalous

values in the neighborhood of the Curie points of the same order of

magnitude as that in 544 at infinite gap. The results of different observers

are in too good agreement, at least in order of magnitude, for the effect

to be attributed to faulty orientation of the Y- and Z-cuts employed.

Owing to the large values of du and 614 and their dependence on

temperature, the effect of the gap width w on s44 and on its temperature

coefficient is very pronounced, t For unambiguous results with X-cut

* See especially 462 and 474 and Figs. 142 and 146.

t Formulas for the effect of the gap on the elastic constants or on vibrational

frequencies are given in Eqs. (284), (330), (355), (370), and (336).
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plates the gap should be zero (with due regard to the precautions noted in

415 and 416) or else infinitely great; spacing of a few millimeters

between crystal and electrodes usually makes the gap effectively equal to

infinity. It is when w = that $44, and hence the effective stiffness

22 of -X"45-bars, shows very great dependence on frequency. The data

below are for bars with w large enough to give to $44 the value for constant

normal electric displacement.

With Y- and Z-cuts a consideration of the gap is not of jnuch impor-

tance, since the piezoelectric correction is relatively small and inde-

pendent of temperature. The dependence on temperature of all elastic

constants except 844 = 1/044 should be substantially the same whatever

the gap may be.

All the available data on temperature coefficients are from observa-

tions of resonant frequencies of bars or plates. The earliest results of

this sort, obtained in Scott Laboratory at intervals from 1928 to 1933 but

not published, were confirmed by the publications of Davies 120 and

Mason335 - 338
. In all this work, lengthwise vibrations of 45 bars were

used, leading to values of Young's modulus along lines bisecting the

F- and Z-, Z- and X-, and X- and F-axes. The driving fields were

parallel to X, F, and Z, respectively. All these cuts yield negative tem-

perature coefficients of frequency, in most cases with larger values below

the upper Curie point du than above it. On each side of Ou the relation

between frequency / and temperature t is nearly linear. There is an

anomaly over a narrow region close to 6U for each cut, usually involving
a kink in the /: t curve, with a reversal of sign of the temperature coeffi-

cient. This anomaly may be seen in Davies 7

diagrams and also in curve

HM of Fig. 94 taken from Mason's paper.

At low temperatures, observations made in this laboratory in 1929

by B. B. Doolittle, Jr., on an X-cut 45 bar, indicate a nearly constant

value of the temperature coefficient a/ = A///A t from 44 to +15C,
amounting to 920(10~

6
). This value agrees fairly well with that

calculated from unpublished data by W. P. Mason on a similarly oriented

bar (wide gap) over the range from 145 to +48C: the average for the

entire range is 980(10~
6
), with a very slight increase between the Curie

points.* The values of the effective compliance found by Mason are

2.625(10-
12

) at -145 and 3.225(10~
12

) at +48, with a nearly linear

relation between. On the other hand, Doolittle observed a flat region
in the neighborhood of the lower Curie point, where a/ became almost

constant.

* The author's thanks are due to Dr. Mason of the Bell Telephone Laboratories

for these data and also for those on ci4,
ce and the temperature coefficients of the

various elastic constants of Rochelle salt.
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For the regions adjacent to the upper Curie point, data are available

from Davies,
120 Mason (unpublished), and Kent.* They are given in

Table VIII.

TABLE VIII. TEMPEBATUBB COEFFICIENTS OF FREQUENCY FOB 45 ROCHELLE-SALT
BARS

The averages, calculated in round numbers, are probably fairly

representative from to 23C and from 24 to 40C. Most noteworthy
is the fact that below 6U an .X-cut bar has a lower coefficient than a

F-cut.

Reference has been made to the rather sudden increase in frequency

as the temperature rises through the upper Curie point. This change,

which is least with the X-cut, amounts to a few tenths of 1 per cent in

frequency, in a temperature interval of about 1.

Mikhailov866 has obtained values of a/ of the same order of mag-
nitude as those reported above, for both lengthwise and shear vibrations.

Owing to uncertainty in the identification of his vibrational modes his

numerical values are not quoted here.

The only further data that we find are from Mattiat,
366 who found

for F-cut 45 bars values of af from -600(10-
6
) at 14C to -2,300(10-

6
)

at 35C.
Most of the quantitative work on Rochelle salt, including the measure-

ments cited above, has been done with small fields (not over 10 volt/cm)

and small stresses. It is shown in Chaps. XXIII and XXIV that

under these conditions 544 and d\\ are most dependent on temperature.

Although observational data are lacking, it is to be expected that in

vibrational observations on Z-cut bars with large voltages, where

* G. H. KENT, M. A. thesis, Wesleyan University, 1933, unpublished.
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saturation conditions are approached, the temperature coefficients of

frequency will also diminish. Klein* has stated that he found no change

in wave velocity in X45-bars from 15 to 28C and no anomaly at the

Curie point. This finding, which is quite at variance with those of other

observers, is possibly due to the fact that his applied voltages were

relatively great.

86. From measurements of the frequencies of plates and bars with

large gap, Mason has obtained the following values of the .temperature

coefficients, corrected for the effect of temperature on dimensions and

20 40-140 -120 -100 ^80 ^60 -40 -Z

C
Fio. 28. Variation of c*4 and c*o of Rochelle salt with temperature, from Mason. Ordin-

ates are in dyne cm"2 X 1010
.

density. They are valid from 24 to 48C, the basic value of the elastic

constant being taken at 30 in each case. The temperature coefficients

are here designated by Ts\\y etc., expressed, as usual, as parts per million

(ppm):

Tsu = 1,230 !Ts44 = -1,660 Tsn = 5,240

!TS22 = 1,330 !TsB5 = 700 Tsn = 2,710

Tsn = 890 !Ts06 1,830 Tsn = -10,200

The curves in Fig. 28 show the measured values of cJ4 = l/sJ4 and

c*6 = 1/sJi, derived from the frequencies of plates cut in various orienta-

tions. The asterisk indicates constant normal electric displacement,

as explained in 207 and 253. Since the elastic constants under these

conditions vary from one orientation to another and are not corrected

* E. KLEIN, The Velocity of Sound in Rochelle Salt Crystals, abstract in Phys.

Rev., vol. 33, p. 1095, 1929.
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for the piezoelectric term in Eq. (358), they have neither the isagric nor

the constant-displacement values, though they approximate more closely
to the latter. The curves are of value mainly in showing qualita-

tively the probable dependence of the constant-displacement values on

temperature.
With the exception of c44 and ce the temperature dependence of the

elastic constants has not been determined below the upper Curie point.

The peculiarity in 5^2 for a F45-bar noted above is pretty certainly
attributable to an anomaly in c^ at tt . To account for the anomaly in

compliance for X45- and Z45-bars one would expect kinks at tt in the

curves in Fig. 28. Their absence may be due to the lack of sufficient

observations close to this temperature.
87. Heavy-water RocheUe Salt. The only published data are the

following, from Holden and Mason. 231 From observations of resonant

frequency on an X-cut 45 bar with wide gap, they find, for the reciprocal

s'j'J
of Young's modulus, a linear increase from 3.14(10"

12
) at 12C to

3.21 (10~
12

) at the Curie point, +35. At this point occurs a sudden drop
to 3.19(10-

12
), followed by a linear increase to 3.26(10~

12
) at 48C.

This dependence on temperature is similar to that for ordinary Rochelle

salt shown in Fig. 94, and the numerical values are of the order of 1 per

cent less than those for the ordinary salt.

To the constant s?4 is assigned the value 7.98(
10~12

), the same as that

given by Mason336 for ordinary Rochelle salt, but the temperature and

method of measurement are not stated.

The reciprocal s{* of Young's modulus was also determined from the

resonant frequencies of F- and Z-cut bars, at 30C. For the 7-cut,

s = 9.93(10~
12
); Z-cut, 4? = 4.2(1Q-

12
). These values may be com-

pared with those for the same cuts in ordinary Rochelle salt at 30,
from Mason:336

9.31(10~
12

) and 3.905(10-
12

), respectively.

88. Sodium-ammonium Tartrate. This crystal, NaNH^HiOe*-
4H 2O, is isomorphic with Rochelle salt, having the NH4 group in place

of K. The density is 1.587, and the axial ratio is

a:b:c = 0.8233:1:0.4200.

The elastic properties have been investigated by Mandell,
827

using

the same static method as for Rochelle salt. In the same paper are

comments on the method of growing these crystals; the process is more

difficult than with Rochelle salt. They have the same type of piezo-

electric constants as Rochelle salt, though of smaller magnitude. Piezo-

electric reactions are a less serious source of error in elastic measurements;

the long relaxation time and other anomalies characteristic of Rochelle

salt are absent. Following are Mandell's values, converted to cgs units:
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fill 522 $33 #44 #56 #66 $12 1 &28

10- X 5.37 3.84 3.73 8.74 36.0 11.8 -0.87 -3.43 -0.50 cm2 dyne-*
Cll C22 CSS C44 C66 C66 Cl8 Clj C2 3

1010 X 53.1 34.1 77.8 11.8 2.9 8.8 18.7 51.3 21.6 dyne cm'2

In Fig. 26 above are Mandell's polar diagrams for the reciprocal of

Young's modulus and for the modulus of torsion in the three principal

planes.

In a later paper Mandell829
gives results of experiments on the

resonant frequencies of 45 bars of this crystal in the three principal

planes. For the theory of these experiments and the effect of cross

section on frequency the original paper should be consulted. We give

here only the resulting adiabatic values of Young's modulus by this

dynamical method. In each case the direction is at 45 with the axes

named.

YZ, 27.9(10
10

) ZX, 9.54(10
10

) XY, 22.8(10
10

) dyne cm-2

The corresponding values calculated from the static measurements are

YZ, 26.2(10
l

) ZX, 10.45(10
10

) XY, 20.6(10
10

) dyne cm~ 2

89. Group IV. As shown in 29, this group has nine elastic constants,

as in the rhombic Group III, but in the present case $n =
$22, $13 = $23,

and 544 = $55, so that the number of independent constants is six, viz.,

$11, $12, sis, s33 ,
s44, and See- The crystallographic axes are defined in 5.

The only representative of this group on which measurements seem

to have been published is primary potassium phosphate, KH2P04. By a

dynamic method Liidy
323 has found, at 20C, the following values, in

square centimeters per dyne:

*ii = 1.9(10-") 538 = 2.2(10~
12

)

No data for the other constants are at hand.

GROUP VII

According to the table in 29, this group has 12 of the 21 possible funda-

mental elastic constants, of which only 6 are independent. For the axes

see 5.

90. a-Quartz (Class 18, symmetry Z>3). The crystallography of this,

the common form of quartz, as well as the conventions respecting axes

and angles for right- and left-quartz, are explained in Chaps. II and XVI.
Since quartz is piezoelectric, the application of mechanical stress, at

least in certain directions, to a crystal that is not artificially short-cir-

cuited gives rise to an electric field, which, in turn, affects the strain

and thereby the apparent stiffness. This fact must be allowed for in

measuring the elastic constants by vibrational methods, as indicated
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below. In static measurements it can usually be assumed that enough
time elapses for surface leakage to neutralize the electric field, so that

static observations of the constants yield values that are appreciably at

constant field.

TABLE IX. ELASTIC CONSTANTS OF QUARTZ.

In Table IX the first column of figures is from Voigt's static (iso-

thermal) observations.* The second column gives the adiabatic values

computed from them according to 37, for 0C; the same values hold

at all ordinary temperatures. The third column is from Atanasoff and

Hart,
12 as corrected by Lawson. 312 Mason's values340 in the last column

are also from resonant vibrations, both lengthwise and thickness, f

*
"Lehrbuch," pp. 752, 753.

t Atanasoff and Hart observed with high overtone frequencies, the advantages of

which are pointed out in 250. Overtones as high as the 87th harmonic were used.

Their quartz plates were carefully examined for twinning and oriented by means of

X-rays. The plates included X-cut, K-cut (with which they observed all three of the

theoretically possible thickness modes), #-cut (* *-- 30, - -51470, and a cut

with
(f>
= 0, 45. The electric field was in some cases in a direction parallel to

the major faces of the plate. They used air-gap mountings, but the effect of the gap
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There is no way of knowing how much the values in the foregoing

table are influenced by systematic and observational errors and by

peculiarities in the crystal specimens. The digits recorded in the table

TABLE X. DYNAMIC TEMPERATURE COEFFICIENTS OF ELASTIC CONSTANTS OF QUARTZ
1 dSwfc 1 dchk

* This value is for (344 + 2su), not e.

are taken from the original sources. Since the discrepancies between

the results of the various investigators are of the order of 1 per cent, it is

evident that in general the last significant figures are of little or no

was eliminated by restricting the observations to high harmonics. Their original

results give the elastic constants at constant normal displacement. By use of a

formula similar to Eq. (272a) (p. 271), Lawson converted them into the corresponding

isagric values, which are given in Table IX. Atanasoff and Hart's paper should be

consulted for their treatment of the theory of thickness vibrations as well as for

experimental details.

In his determination of the elastic constants of quartz given in Table IX, Mason

used AT-, BT-, and K-cuts for c4 4, c fl ,
and c&8 . The fundamental thickness mode with

zero gap was employed, uncorrected for the piezoelectric terms in Eq. (356) (p. 316).

These are the values in Table IX. If they were reduced to isagric values by applying

the piezoelectric correction, they would be diminished in amount by 0.2 to 0.3 per cent.

Mason's data for *u, i, and u were obtained with plated bars, which give the isagric

values directly. The remaining s's and c's were calculated with the aid of c*4, CSB, and

c0 and hence should be subjected to a piezoelectric correction.
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importance. A similar remark may be made concerning Table X,
except that here the discrepancies are relatively large as is to be expected
in the determination of quantities as small as temperature coefficients.

Table X gives the temperature coefficients of the elastic constants in

ppm per degree centigrade, valid for temperatures from 20 to 70C. In

all cases corrections were made for variation of density and dimensions

with temperature. The data are from Bechmann, 82 Mason840
(claimed

to be accurate within about 2 per cent from 20 to 60C), Koga,
272 and

Atanasoff and Hart. 12 These data are discussed in 91, For tempera-
ture coefficients of quartz resonators, see 92 and Chap. XVII.

Accepted Values of the Elastic Constants of Quartz. Beyond the

values given above, the most important elastic measurements are those

of $11 and s3s by Perrier and de Mandrot, discussed in 95. They are

probably more precise than Voigt's measurements of these constants.

Their isothermal values are sn = 1.272(10~
12

), s 33 = 0.972(10~
12

), from

which the adiabatic values are found to be

*n = 1.269(10-
12

) s33 = 0.971(10-
12

)

In this book we shall in general use these values, together with Voigt's

for the remaining compliances. On this basis the values of the stiffness

constants have been calculated,* with the results shown in Table XI.

TABLE XI. ACCEPTED VALUES OP THE ADIABATIC ELASTIC CONSTANTS OF QUARTZ
X 10-12 cm 2

dyne--
1 X 10 l dyne cm-2

5U - 1.26(9) CH - 87. (5)

533
- 0.97(1) C33 - 107.(7)

S 44
= 2.00(6) c 4 4

- 67.(3)

S 12
- -0.16(9) cu - 7.6(2)

- -0.15(4) c,, - 16.(1)

s14 - -0.43(1) c 14 - 17.(2)

56
- 2.8(8) C 6fl

- 39.(9)

The values above are all based on static observations. The first

three values in each column are probably reliable within less than 1 per

cent; considerably less reliance can be placed on the remaining values.

How accurately the data in Table XI may be applied in vibrational

equations is not yet certain. As stated on page 138, it is not impossible

that the stiffness coefficients are inherently greater (and the compliance

coefficients correspondingly smaller) in the dynamic than in the static

case. If so, it may well be that the values obtained by Atanasoff and

Hart should be used in all h-f calculations.

Other Determinations of Elastic Constants of Quartz. In the exten-

sive literature on quartz resonators many more or less trustworthy

determinations of certain of the elastic coefficients, especially sn ,
are

* The calculations were carried out by M. E. White.
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found. Some of the more noteworthy results will now be summarized,

although they do not seem to warrant a revision of the values given

above.

Giebe and Scheibe 171 determined au from dynamic observations on quartz rods

having lengths parallel to X or F. They found the measurements most trustworthy

when the rods were not too thin and when the elastic constant was calculated from

vibrations at the third or fourth overtone frequency. Their electrodes were so small

that the effective air gap was practically infinite, which necessitated, in the case of

rods parallel to F, applying a piezoelectric correction to the measured sn (235).

They computed, for rods parallel to X, sn X 1.2776(10-") 0.06 per cent; parallel

to Y (uncorrected), Sn = 1.265 6(10-
12

) 0.06 per cent. After the piezoelectric

correction has been made, the latter value becomes 1.277. We may take sn 1.277

as their best value.

From an extensive study of the effects of cross section the same investigators

derive for the ratio Sn/s 33 the value 1.149, in good agreement with Voigt's value of

1.145. By the use of the value 1.149 they calculate s 8S
= 0.968(10~

12
).

Giebe and Blechschmidt, 161 from the vibrations of a hollow quartz cylinder with

length parallel to Z, found sn = 1.256(10~
12
),s33 - 0.978(10~

12
), sls -0.130(10-12

).

In a later paper
162 on the lengthwise vibrations of bars, they give sn = 1.278(10~

12
),

s 44 = 2.016(10"
12

), Si 2
= 0.167(10~

12
). These values are not corrected for the

piezoelectric reaction discussed in 235. For the temperature coefficients they find,

forsi 2 , -l,200(10-) and, for s 44> +176(10-).

Osterborg and Cookson 406 excited compressionai lengthwise vibrations in the

X-direction in a large number of plates of various shapes. Although some of the

plates had breadths comparable with the lengths, all calculated values of n, for

"harmonics" as well as for the fundamental frequency, lie within about 1.5 per cent

of the mean, 1.27(10~
12

). From their observations on vibrations in the ^-direction

(excited through elastic coupling) one finds $ 83 0.963(10~
12

). In this latter work,

however, it seems doubtful whether s 33 was actually the only elastic coefficient that

came into action.

In a comparison of Voigt's static values with the dynamic values of

the foregoing constants it is noteworthy that in almost all cases the

recorded dynamic compliances are less than the static even after the

piezoelectric correction has been made. Whether the discrepancies are

due to the numerous sources of error or to something more deep-seated

cannot at present be determined. It should be noted that the dynamic
values of Sn and s33 are in better agreement with those of Perrier and

De Mandrot than with those of Voigt.

91. We turn now to a discussion of the temperature coefficients in

Table X.

Bechmann has made very thorough studies of the effect of temperature
on the adiabatic elastic constants of quartz, for which his papers* should

be consulted. Some of his results are shown in Fig. 30. He claims,

over a range from 20 to 70C, a precision of + 10 per cent in his measure-

ments of the temperature coefficients, in the reduction of which due
*
Z9, Hochfrequenztech., 1934; Zs. tech. Physik, 1935,
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allowance is made for the effects of temperature on dimensions and
density. One cannot be very confident that the same values would be
obtained from static observations at different temperatures, especially
since one cannot be certain that in each of his measurements of frequency
of plates in various orientations the effective elastic constant was of the

theoretical form, unaffected by coupling with other vibrational modes.

From measurements between 25 and 95C of frequencies of shear

modes of thickness vibrations with plates in different orientations,

Koga272 derived the values given in Table X. These values are all

greater than those of Mason and of Bechmann.
As is explained in 90, Atanasoff and Hart derived their temperature-

coefficients from observations of high overtone frequencies of thickness

vibrations. This procedure tends to minimize edge effects and coupling
with undesired vibrations, difficulties from which the measurements of

the other observers were less likely to be free. This fact, together with

the high precision with which the observations of Atanasoff and Hart

were obtained, justifies one in regarding their results as the most reliable.

Koga calculated also the average rate of change of three of the tem-

perature coefficients over the range studied, by taking the second deriva-

tives of his frequency equations with respect to T:

A= -6.1(10-') 1= -1.3(10-')

-kg*. -7.7(10-*)

It is of the greatest significance that some of the temperature coeffi-

cients are positive, others negative. By cutting a plate in such an

orientation that the effective stiffness coefficient q is a function of elastic

constants having temperature coefficients of opposite signs, it is possible

to obtain a resonator with frequency practically independent of tempera-

ture over a comparatively wide temperature range (358).

A careful search for an elastic aftereffect in quartz was made by Joff6.B3

His results show that, after secondary effects due to heating of the

crystal have been eliminated, no true elastic aftereffect can be detected.

Measurements of the volume compressibility of quartz up to 12,000

kg/cm
2 have been made by Bridgman.* Hydrostatic pressure produces

no piezoelectric polarization in quartz.

92. The Elastic Constants of Quartz at High Temperatures.

Although nearly constant at ordinary temperatures, the elastic coeffi-

cients undergo very pronounced changes in the neighborhood of the

- inversion at 573C. The most complete data are those of Perrier

* P. BBIDOMAN, Am. Jour. Sci., vol. 15, pp. 287-296, 1928.
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and De Mandrot,
418 illustrated in Fig. 29. These observers, using a

static method, by flexure of thin bars, found Young's moduli 1/sn and

l/33 to decrease rapidly to values near 3(10
l

) dynes/cm
2 as the inversion

point was approached, after which in the 0-quartz state they rose rapidly.

Above 573, l/s83 was found to be slightly smaller than at room tem-

perature, while l/sn became even greater than was l/s33 at room tem-

perature. At ordinary temperatures they found s33 to increase by 0.02

200 400 600 800 1000 C
FIG. 29. Dependence of clastic constants of quartz on temperature. Curves 1/sn

and l/i are from Perrier and De Mandrot; 1/s'ss from Lawson, for the ZX-plane, at

45 to the Z- and -XT-axes; C44 from Atanasoff and Hart, and Atanasoff and Kammer. The
crosses (1/sn) are from the observations by Fr6edericksz and Mikhailov.

per cent per degree rise in temperature, while for n the corresponding

change was less than 0.001 per cent. A similarly small dependence of

Sn upon temperature was also recorded by Fr6edericksz and Mikhailov,
150

who used a dynamic method.

In Fig. 29 is shown also a curve relating l/sjs with temperature, for a

F-cut 45 quartz bar, from observations by Lawson.811 The length of

the bar bisected the angle between the X- and Z-axes; in this plane, as is

clear from curve C in Fig. 33, it is immaterial whether the angle (here

45) is taken as positive or negative. The bar was provided with
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"platinized electrodes and vibrated piezoelectrically at resonant lengthwise

frequency. The piezoelectric effect was that represented by the equation

sj d'^Ey = duEy/2. From the observed frequency at each tem-

perature, with due regard to the density and dimensions, Young's
modulus l/sja was calculated.

Included in Fig. 29 is also a curve for c44 , from the observations of

Atanasoff and Hart and of Atanasoff and Kammer, obtained by the

method described in 90. The crosses in Fig. 29, representing l/sn,

are from a few data by Fr^ederieksz and Mikhailov,
180 from resonant

observations on an J-cut bar in lengthwise vibration parallel to Y.

93. Stiffness Coefficients for Thickness Vibrations. We learned in

66 that when plane waves are propagated in crystals, the three mechani-

cal displacements (vibration directions) corresponding to the three types
of wave are mutually perpendicular and that in the most general case

none of them is either normal or parallel to the wave front. The sym-
metry of quartz is such that for some types of orientation certain of the

Christoffel moduli T disappear, so that the vibration directions for those

modes lie either in the plane of the plate (shear vibrations) or normal to

it (compressionai vibrations).

As an example we consider the 7-cut, which, as is well known,
vibrates in a shear mode (352), with field Ev . In Eqs. (116), I = n =

0,

m =
1, and certain of the c's vanish for quartz, whence Fn =

Cee, Tn = Cn,

r33 = c44 ,
r 2s

= CH, Ti2 = r J3
= 0. The three roots of Eq. (118)

(the order of subscripts is arbitrary) are

'68 = ifcn - Ci 2)
= 39.1(10*)

c44) + Vi(cn - c44 )
2 + cl = 93.3(10")

[
(135)

C44)
- Vi(cn - CuY + cf"4

- 49.2(10
10

) J

Voigt's values of the fundamental constants, with the adiabatic cor-

rection, were used in this computation.

The vibration directions are found by solving Eqs. (117) for a, ft 7:
270

ai = 1 ft = 71 =
. a2

==
/32
= - 0.907 72 == -0.422

CLZ
-

03 = 0.422 73 = -0.907

The first of these vibration directions is therefore parallel to X and

the wave is transverse, with wave front in the plane of the plate and the

vibration direction also in this plane. This is the mode that is usually

excited piezoelectrically; the driving stress is Xy
= e^Ev . For the

other two modes the vibration directions make angles of about 25

and 65 with the normal to the wave front.

A similar analysis for the X-cut shows that one mode (that which is

commonly excited piezoelectrically) has its vibration direction normal
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to the plate; the two theoretical transverse modes have vibration direc-

tions in the plane of the plate, making angles of about 31 and 59

with the F-axis.

For F'-cuts (rotation about the A"-axis) the direction of vibration that

is excited in piezoelectric resonators can be shown to be parallel to X,
as in the F-cut. For this mode it is found that q is the same as FH,

which, for rotation about the X-axis (I
=

0), and remembering that with

quartz c8 i
= CIG = 0, reduces from the form given in Eqs. (116) to that in

Eqs. (51):

q = 6̂6
= TII = CQQ cos2 + c44 sin 2 8 + 2cH sin 6 cos 6 (136)

Here we have written sin for n, cos for m, 6 being the angle (+ or

according to the rule in 38) between the F-axis and the normal to the

plate.

The numerical values of the three stiffness coefficients q\, #2, qa in

plates with zero gap, for a large number of orientations in a quartz

crystal, have been worked out by Koga274 and are shown in Table XII.

They are based on Voigt's data, with the adiabatic correction. By sub-

stitution in Eq. (112) the three theoretically possible frequencies for all

these cuts can be found. Which, if any, of the three frequencies for any

given cut can actually be realized must be determined by consideration

of the piezoelectric constants of quartz. The direction of the normal

to the plate is given in terms of <p}
the angle of azimuth measured from

+X toward +F, and the colatitude 0, as shown in Fig. 17. In copying

the table from Koga's paper we have changed the values of
<f>

to conform

to the convention adopted in this book (51).

In all cases the q's repeat themselves every 120 in azimuth; that is,

120 may be added to every value of (p.

When values of <p at the foot of the table are used, the corresponding

values of are at the right.

The F'-cuts are those in the column for ? = 30. When = 90,

we have the F-cut, with q = c 6e = 39.1(10
10

). The last of the three

values for each belongs to the mode commonly observed with F'-cuts.

In order to correlate these values with those derived from Eqs. (51) for

rotation about the Ar-axis we must set <p
= 90 in Table XII. Since

90 = -30 + 120, we use the values of at the right of the table.

is then the same as the angle of rotation in Eqs. (51), for which we

set cos s
c, sin s s. The equation in (51) that applies in this case

is the one for c'66 ,
which is the same as Eq. (136).

The X'-cuts (rotation about the F-axis) are in the last column

(? = and 60). At = 90 we find the X-cut, with

q = en = 85.45(10
l

).
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The compressional mode persists as varies, at least for moderate

changes in 0.

In the same paper, Koga shows some of the numerical data from

Table XII in the form of polar diagrams.

For the X'-cuts a table has also been prepared by Bechmann,32'34

Fio. 30. Elastic and piezoelectric constants of quartz for thickness vibrations in

vibration-modes. To each q corresponds a temperature
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giving the three q'a for every 5 from 6 = to 6 = 90, thus filling some

of the gaps in Table XII.

In a later paper Bechmann85
published a series of curves for the three

Christoffel #'s, their temperature coefficients T q ,
and the effective piezo-

electric constants e, as functions of the polar angle 0, for azimuth <p
=

0,

60 120

various directions, from Bechmann. The three values of q are for the three possible

coefficient Tqt and an effective piezoelectric constant e.
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10, 20, and 30. These curves* are reproduced in Fig. 30, in which <?

and 6 specify the direction of the normal to the plate, as in Fig. 17.

The curves for q are calculated from Voigt's adiabatic values of the fundamental

elastic constants, as given in Table IX, uncorrected for piezoelectric reaction, but with

due allowance for linear arid volume expansion. They will be found to agree approxi-

mately with the values in Table XII, except that in some cases the values for curves

b and c are interchanged. If the piezoelectric reaction were included, it would increase

the values, at zero gap, by an amount varying from zero to about 0.2 per cent, depend-

ing on the value of . When <p
= 0, = 90, we have an X-cut. At ? = 30, 99,

it is a F-cut. For most of tho possible orientations, all three vibration directions make

oblique angles with the surfaces of the plate.
* In those cases, as in the X-cut, where

there is a pure compressional mode, the value of q is given by curve a.

Curve a for q at v = is the same as A in Fig. 34. Curves a, 6, and c for <p
= 30

correspond to A, B, and C in Fig. 32. The mode commonly employed for cuts of this

type is c.

The curves for Tq were derived from Bechmann's measurements of vibrational

frequencies at temperatures from 2p to 60C. In particular, they show the modes and

orientations at which Tq 0.

The curves for e show the values of the piezoelectric coefficients that are effective

in exciting the various modes for any orientation. It will be noted that vanishes

for the Z-cut (6 - or 180) and in certain other cases.

As an example may be mentioned the Ay-cut, of which Bechmann was one of the

independent originators. Tho normal to the plate is given by <p
= 30, = 55

(or <f> 90, = 55). At this orientation Tq
=

0; from the curve for y>
= 30,

is found to be approximately 2.8(10
4
), about half as great as for the Y-cut (for more

precise data on the A 1 -cut sec 358).

94. Diagrams of the Elastic Constants of Quartz with Respect to

Rotated Axes. The variations in the elastic constants of quartz with

rotation of the axial system about the X-, F-, and Z-axes are shown in

the following polar diagramsf (Figs. 31 to 36). The curves are plotted

from Eqs. (50) to (54), with Voigt's isothermal values of the fundamental

constants (Table IX).

In the polar diagrams the value of each SM, I/SM, or Chk is laid off as

radius vector corresponding to the angle of rotation Q] where there are

negative as well as positive values, the magnitudes are measured from an

arbitrarily chosen zero circle.

As an example of the use of the following diagrams we consider the

F'-cut, obtained by rotating a F-cut about the X-axis through the

angle B. For thickness vibrations the elastic coefficient, by 93, is c'
6fl

.

* Bechmann's values of the temperature coefficients of the fundamental elastic

constants in Table X are from the same experimental data as Fig. 30.

t These diagrams are made available through the courtesy of Dr. W. P. Mason of

the Bell Telephone Laboratories. In the present reproduction the sign of follows

the convention adopted in 51. A few of the diagrams, necessary to complete the set,

were prepared by the author.
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INDEX FOB FIGS. 31 TO 36

147

Elastic constants of quartz for rotations about the X-
t F-, and Z-axes.

Values of SM are to be multiplied by 10~u cm 2 dyne~ l
.

Values of out and I/SA* are to be multiplied by 10 lo dyne cm~2
.

It is shown in Eqs. (51) that cJG
= 0^(6 90); we therefore turn to

curve C for c 5 in Fig. 32. For any value of 0, the value of rJ is the

radius vector of curve C for 90. Thus, if 6 50, the value for

= -50 + 90 on curve C shows that c'
6tt

is approximately 32(1()
10

)

dynes/cm
2

. For a more precise value the equation should be used.

A glance at curve C shows the wide variation in the stiffness, and hence

in the frequency of F'-cut quartz plates as the angle is varied.

If, as is preferable, the orientation of the plate is specified in terms

of the normal to its major surfaces, we find 6 = 90 for the F-cut. A little

consideration shows that for any arbitrary angle beween the normal

and the Z-axis, curve C for c B may be used directly to give the stiffness

for thickness vibrations. By this convention the plate might more

properly be called a Z'-cut, with the field parallel to the Z'-axis. Whether

the F'-cut is regarded as a F-cut rotated 6 or as a Z-cut rotated 6 90

is a matter of definition.

95. Young's Modulus of Quartz. Approximate values for I'otation

about X can be obtained from Fig. 31, curves A, B, C, and for rotation

about F in Fig. 33, curves A, B, C.

Very careful static measurements of sn and 6-33 have been made by
Perrier and De Mandrot,

418 by means of the flexure of thin plates. They
observed Young's modulus ||Z, JLZ, also at 50 with Z in the FZ-plane.

Their values at 15C, in the units and terminology of Table IX (all X
10- 12

cm'/dyne), are sn = 1.272, $33 = 0.972, (J,)+BO = 0.781, (43)^o =
1.30. These values of Sn and s 3 s are about 2 per cent lower than Voigt's

isothermal values in Table IX. On the other hand, their value of ($33)1,0 is
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very close to that calculated from Voigt's data. This fact would seem to

indicate that, if their u and $33 are more nearly correct, Voigt's values

of 844, 5is, and $14, which enter into the calculation for oblique directions

(Eq. 55), are too small. All things considered, Perrier and De Mandrot's

FIQ. 31. Elastic constants of quartz for rotation about the X-axis.

values of su and s8s are probably more reliable than Voigt's, and they
are used in Fig. 38 and Table IX.

Young's modulus for various orientations is represented as a three-

dimensional model in the paper by Perrier and De Mandrot, here repro-

duced in Fig. 37. The topographical features of the model for 15,
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typical of all ordinary temperatures, have their counterparts in Fig. 38

below. The only geometrical feature common to all the models is the

fact that the equatorial section perpendicular to Z is circular. Below

573C, sections normal to X have only a center of symmetry. There is a

FIG. 32. Elastic constants of quartz for rotation about the X-axis.

pronounced maximum and minimum in each of these sections, as well

as a less pronounced secondary maximum and minimum, the latter being

parallel to Z (see also the polar diagram in Fig. 31, curve C).

Starting at ordinary temperatures, the models contract in all direc-

tions with rising temperature, especially in the directions of the principal

maxima. The maxima disappear completely at the transition point to
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0-quartz. Above this point the surface dilates in all directions, but

chiefly in the directions perpendicular to Z.

Fia. 33. Elastic constants of quartz for rotation about the F-axis,

96. From Fig. 38 the value of Young's modulus Y =
1/sJs for any

direction in space can be found.* Equation (55) was used for the com-

putation; for quartz it may be written in the form

4(1012) = 1,269
- 841 cos2 B + 543 cos 4 - 862 sin 8 6 cos0 sin3<?

* The calculations for these curves were made by M. E. White, using the funda-

mental constants from Table XI.
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The azimuth <p and colatitude 6 are defined according to Fig. 17. In con-

formity with the convention described in 327, Fig. 38 may be used with-

out change for either right- or left-quartz.

The threefold symmetry of quartz about the Z-axis is indicated by
the factor 3 in ski 3^. It will be observed that, at 6 = 90, Y has the

Fio. 34. Elastic constants of quartz for rotation about the F-axis.

same value for all azimuth angles: the elastic properties are the same for

all directions in the XT-plane. When <p
=

0, Y lies in the ZX-plane,

and the F-tensor is symmetrical about the Z-axis (see curve C in Fig. 33).

On the other hand, when <?
= 30, Y lies in the FZ-plane and is not sym-

metrical about Z (see curve C in Fig. 31, also Fig. 76).
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In applying Fig. 38 to values of ^ outside the range from to 30

the following rules may be found helpful for any given <? and 0:

If 30 < <f> < 0, use the ordinate for <p, with the sign of reversed.

If 30 < <p < 60, use the ordinate for 60 '-
?.

If -60 < <p < 30, use the ordinate for 60 + <f>
and reverse the

sign of 6.

FIG. 35. Elastic constants of quartz for rotation about the F-aris.

If 60 < <f> < 300, make use of the fact that Y is the same for

v? 120 as for ^ Hence, if 120 is added to or subtracted from <p,

the azimuth is brought within the range of one of the foregoing rules.

In particular, if <p
= 90, the curve for 30 is used, with 6 reversed.
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As may be seen from Fig. 31 or 38, the largest and smallest values of Y
fall in the FZ-plane. There are in this plane two maxima and two

minima:

0= 4836' -945' -714'
1010F = 130.8 103.0 103.2 70.3

FIG. 36. Elastic constants of quartz for rotation about the K- and Z-axes.

Measurements of the frequency of quartz bars have been published

by many observers. The most complete and trustworthy are those of

Bechmann 32 ' 36 and Mason, 840 from which their values of Young's modulus

can be obtained. BechmamVs papers include the temperature coeffi-

cients for bars in various orientations, as stated in 91.
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97. When a circular X-cut quartz disk is driven as a resonator, at rela-

tively low frequencies corresponding to compressional waves propagated
in the FZ-plane, it is found that for the lowest frequency there is a nodal

line across the disk (revealed by lycopodium powder, 366), making an

angle of about +19 with the Z-axis. This angle indicates a direction of

propagation parallel to the direction of minimum Y (Straubel
488

). In

addition to more complex vibrational modes that need not be discussed

here, there is also a simple compressional vibration at somewhat higher

FIG. 37. Models representing Young's modulus of quarts for all directions in space and at
four different temperatures, from Perrier and De Mandrot.

frequency than that mentioned above, corresponding to maximum Y,
with a nodal line about 42 from the Z-axis. No vibration can be

excited in the F-direction in a circular plate.

These facts indicate that compressional waves tend to proceed in a

direction normal to either the maximum or the minimum value of Young's
modulus. The effect was first observed by Meissner359 -880'861 with

rectangular plates having dimensions I, 6, e parallel, respectively, to

F, Z, and X. For the fundamental compressional frequency in the

F-direction the nodal line across the center of the plate was not parallel

to the breadth b
t but made with b (i.e., with the direction of the Z-axis)
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an angle that for broad plates approximated 19, becoming less for nar-

rower plates. Correspondingly, the observed frequency agreed with that

calculated from Young's modulus in the y-direction only when the

plate was in the form of a very narrow bar; with increasing breadth the

frequency as well as the nodal line gave evidence of wave propagation
that was no longer parallel to the length of the plate. This subject is

discussed further in 350.

98. Modulus of Rigidity of Quartz. The compliance s44 for any
svstem of axes is given by Eq. (36). Its reciprocal is the rigidity, or

-90 -60 -30 30 60 90"

FIG. 38. Young's modulus Y l/s'tt for quartz, for azimuth <f> from to 30, and polar

angle 9 from -90 to +90.

resistance against shear, with respect to the axes Yr and Zr
. By using

the formula for 544 in a somewhat modified form, with conventions of their

own respecting angles, Wright and Stuart 594 have derived values for

the rigidity with respect to axes 7' and Z' lying in planes containing the

Z-axis. Their Fig. 21 shows in the form of curves the rigidity for three

different azimuths about the Z-axis, in each case giving values for all

orientations in the plane containing this axis.

Polar diagrams of the modulus of torsion for rectangular bars in

different planes, with equations, are given by Voigt* and reproduced in

Auerbach and HortB1 .

* W. VOIGT, Wiedemann'a Ann., vol. 31, pp. 474, 701, 1887.
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99. Poisson's Ratio for Quartz. The general formula for Poisson's

ratio, as stated in 32, is crhk = ***/**; it is a measure of the lateral con-

traction parallel to h accompanying an extension parallel to k.. As long
as the directions h and k are those of two of the crystallographic axes,

<r is thus expressed directly in terms of fundamental constants. For

specimens in oblique directions the formula given above would require
a calculation of the primed compliances for each particular direction.

The calculation is simplified by the use of equations given by Wright
and Stuart. 694

Using Voigt's values for the fundamental constants, they
calculated a for axes lying in planes containing the Z-axis, making various

angles with this axis. Figure 22 in their paper shows the results, for

three different azimuths. They draw attention to the fact that some of

the more troublesome coupled vibrations can be avoided (for resonators

designed for cornpressional vibrations) by choosing an orientation for

which <r = 0. The absence of lateral motion also simplifies the problem
of clamping the resonator at a nodal region without hampering the

freedom of its vibrations.

From observations of frequencies of rods of varying relative dimen-

sions and in different orientations effective values of cr have been com-

puted by several writers, For example, Giebe and Scheibe 171 find

W*n =
- 132

> W*n =
- 120 - Khol's value 258 of aw/*n is 0.135.

From Voigt's data in Table IX one finds s 12/sn =
0.130, W^u = 0.119.

Further consideration of Poisson's ratio, in its relation to coupling
effects in piezoelectric resonators, will be found in Chap. XVII.

Other data on the elastic properties of quartz and of other forms of

silica are given in the books by SosmanB47 and Joffe*.B3

100. Tourmaline (Class 19, symmetry C3 ). The axes for this class

are defined in 5.

Below are the fundamental elastic constants, from static observations

recorded in Voigt.* The difference between adiabatic and isothermal

values is too small to change the last significant figure.

Dynamic values are available from various sources. For example,
the experiments of Osterberg and Cookson406 on tourmaline rodsf yield

u = 38.6(10~
14

), s38 - 60.0(10-
14

).

Observations of radial vibrations in circular 7-cut disks have been

made by Khol,
268 from which are derived the values

su 0.382(10-
12

) 0.5 per cent, <r */u = 0.323 3 per cent.

From similar observations by Petrzilka, Khol289 calculates sn =
0.383 (10~

12
), W*n - 0.327.

* P. 753.

f The quantities that they call en and cJ3 for tourmaline rods parallel to X and Z
should be written as I/SH and 1/saa, respectively.
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TABLE XIII
X 10- cm2

dyne-' X 10" dyne cm'8

u - 22

*M =
*44 $66

Sis

Sl3 = 28

u ~
24

Several observers have measured the frequencies of compressional
thickness vibrations of Z-cut plates. The following values of the

wave constant (frequency in cycles) times (thickness in millimeters X 10~6
)

were found: Petrzilka,
415

3.75; Matsumura and Ishikawa,
848

3.97; Fox
and Underwood,

148
3.77; Straubel,

487 3.52. Calling the average 3.75,

we find for the average dynamic stiffness coefficient c3s = 177(10
10

)

dynes/cm
2

.

Comparison with the static coefficients in Table XIII shows that all

dynamic measurements recorded above yield greater stiffnesses and

smaller compliances than those observed statically, just as is the case

with quartz. The discrepancies are too great to be attributed to piezo-

electric reactions alone.

Owing to the very small magnitudes of the cross constants, Poisson's

ratio has extremely low values for tourmaline. As a consequence almost

no correction for cross section is required for frequency in the longitudinal

vibrations of bars. Giebe and Blechschmidt 162 found the overtone fre-

quencies of a bar parallel to the Z-axis to stand in almost exact harmonic

relation to the fundamental.

The effect of temperature on vibrational frequencies is discussed in

400.

In the "Lehrbuch"* are polar diagrams for s83 in the YZ- and XZ-

planes, based on Voigt's static measurements. The similarity to the C
curves in Figs. 31 and 33 for quartz is close, the only qualitative differ-

ence being that, since tourmaline is not enantiomorphous, the terms

"right" and "left" have no meaning.

101. Group VIII (Hexagonal). This group has nine constants, of

which five are independent. The axes are explained in 5.

p-quartz (Class 24, symmetry D 6) is stable from 573 to 870C. The

only stresses that can be produced piezoelectrically are

and Zx = +614^ = -C56Z* = -cuzz (168)
The values at different temperatures of $n, $33, c44 = l/s44, and

533 (Y-cut 45 bar) have already been considered in 92. The first

* P. 755.
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measurement of c44 was published in 1935 by Osterberg and Cookson,
404

who used shear vibrations of types yt
= suY, and zx s&&Zx in

rectangular X- and F-cut plates, over the entire temperature range for

0-quartz. They gave as their best value, at 600C, c44 = 19.9(10
10

)

dynes/cm
2

. The value diminished rapidly as the a-0 transition point

was approached. The value at 600 is only about half as large as that

determined later by Atanasoff and Kammer. 18 As is pointed out by
these authors, and also by Lawson,

311 neither the vibrational mode
used by Osterberg and Cookson nor their theoretical treatment is well

suited to a precise measurement of c44 . We therefore give preference to

the work of Atanasoff and Kammer, whose results for c44 have already

been shown in Fig. 29. These investigators found, at 600C,

c44 = 35.76(10
10

) dynes/cm2
,

by the method described in 90.' Recently, b}' a somewhat different

method, Kammer and Atanasoff251 determined all the elastic constants

of 0-quartz at 600C, finding c44 practically identical with their former

value.

In this last-named paper, Kammer and Atanasoff used high-harmonic
vibrations of four different cuts, involving six different vibrational modes.

The driving frequency was modulated at 60 cycles/sec. Each time the

modulated frequency passed through the crystal frequency the quartz
was set into vibration and continued for a small fraction of a second to

vibrate at its own frequency while the driving frequency continued to

change (the method was thus in principle similar to the "click" method
described in 308). The resulting wave form was recorded on an

oscillograph, and the resonant frequency thereby determined. Their

results (all adiabatic) are cn 118.4, ci2 = 19.0, c13 = 32.0, c83 = 107.0,

c44 = 35.8, all X10 10
;

sn = 0.926, s 12
= -0.0802, s13 = -0.252,

$ss = 1.085, s44 = 2.79, all X10~ 12
. In the FZ-plane, 45 and 50 from

the Z-axis, s88
= 1.073(10~

12
) and 1.057(10~

12
), respectively.

Perrier and De Mandrot (92) found, at 600C, for s33 at 50,
1.075(10-

12
) and, for s33, 1.050(10-

12
) (isothermal).

In the observations discussed in 92, Lawson found, at 600C, J, at

45 to be 1.067(10~
12

) (adiabatic). In the same paper Lawson derives

for SIB the adiabatic value Q.226(10~"
12

). Since Lawson's method was

somewhat more direct than that of Kammer and Atanasoff, we are

inclined to consider his values of $13 and of s83 at 45 to be somewhat more

reliable, while accepting the results of Kammer and Atanasoff for the

remaining constants.

102. Group IX (Cubic). The axes for the cubic system are described

in 5. Crystals in this group have nine fundamental elastic constants,

of ,which only three have independent values.
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Sodium Chlorate (Class 28, symmetry T). Voigt's static values,*

reduced to cgs units, are

ll - 22 = 533 = 2.46(10-") *12 - *1S - *23 -
44 = $65 = 566 = 8.36(10~

12
) cm2

dyne-
1

cn = 022 c88 = 65.0(10
10

) cl2 == c18 = c2$ = -21.0(10 10
)

C44 = ess = c 6 = 11.9(10
10

) dyne cm~2

Zinc Blende (Class 31
X symmetry Td). One of Voigt's latest papers

was an account of his measurement t of the elastic constants of this

crystal. His values (static method), in cgs units, are

sn = 1.94(10-
12
) 528 = -7.30(10- 12

) s4t = 22.9(10~
12

) cm2 dyne" 1

en = 9.42(10
U

) c23 +5.68(10") c44 4.36(10
U

) dyne cm-2

* "Lehrbuch," p. 741.

t W. VOIQT, Nachr. Ges. Wiss. Gdttingen, Math.-physik. Klasse, 1918, pp. 424r-450.



CHAPTER VII

DIELECTRIC PROPERTIES OF CRYSTALS

Amongst the actions of different kinds into which electricity has conventionally
been subdivided, there is, I think, none which excels, or even equals in importance
that called Induction. FARADAY.

We summarize here the basic equations, first for isotropic media
and then for crystals, including the case in which the crystal plate is

separated by a gap from the electrodes. A short discussion is given
of the molecular nature of polarization, dipolc theory, and losses in

dielectrics.

103. When a flat slab of any solid dielectric of large area is placed in a

uniform electric field EQ, with its normal parallel to the field, the basic

dielectric equations are

D = koEQ - kE - E + 47rP (137)

where D is the electric displacement, EQ and E the field strengths outside

and in the dielectric (dynes per unit charge), fro and fcthe permittivities

of the surrounding medium and of the dielectric, and P the polarization

(electric moment per unit volume). E is also called the "potential

gradient" or in practical units the "voltage gradient" (volts per centi-

meter) The electrostatic cgs system of units is used except where it is

otherwise specified.

Since the surrounding medium is usually air or vacuum, k may be

considered as having the numerical value unity. Except with reference

to the dimensions of piezoelectric coefficients (128), we shall not be

concerned with the question of the dimensions of k Q or fc, and the terms

"permittivity" and "dielectric constant" will be treated as synonymous
In isotropic materials the polarization is always parallel to the field;

all quantities in Eq. (137) may then be written as scalars. In crystals,

however, P and E may have different directions.

104. Ignoring for the present spontaneous polarization (115), we
have the general relation between E and P,

P = ijE (138)

where r; is the dielectric susceptibility, analogous to the magnetic sus-

ceptibility (547).
160



105] DIELECTRIC PROPERTIES OF CRYSTALS 161

From Eqs. (137) and (138) follows the relation

k = 1 + 41HJ (139)

We have already seen in 21 that in piezoelectric crystals k depends
on the state of mechanical constraint. In later sections we shall use the

symbols k' and TJ' for crystals that are under constant stress, k'
1 and if"

for constant strain. So far as one can speak of the "true" dielectric

constant of a piezoelectric crystal, the value k" at constant strain is the

proper one to use. Strictly, "both the constrained (constant-strain)

state and the state of constant stress, including the relaxed state in which

all external stresses are removed, are idealized conditions, which cannot

be exactly realized in the laboratory. Rochelle salt is so extremely
strain-sensitive that an approximation to the relaxed state sufficient for

even roughly approximate results is difficult. Fortunately, with most

piezoelectric crystals the values of k' and k" differ by a very small amount,
so that the distinction is of small consequence. For quartz, in directions

perpendicular to the (optic) Z-axis, the difference amounts to about

2 per cent. For the present this distinction can be disregarded, since

the general relations hold whether the crystal is clamped or free. Except
in 114 it will be assumed that the dielectric coefficients are independent
of the field. For a discussion of differential permittivity see 430. The

quantities P and E, which are vectors, are related by the coefficient
r/,

just as in elasticity XH and xk are related by shk and in thermodynamics

quantity of heat and temperature are related by the specific heat C
(20).

At the surface of any dielectric, whether isotropic or not, in an

electric field, the quantities that are the same on both sides of the bound-

ary are the normal component of displacement and the tangential com-

ponent of field strength. Nevertheless, when this law of electric refraction

is applied to crystals, it is found in general, even when the field is

normal to the crystal surface, that the polarization and hence the total

displacement are in some oblique direction.

105. The general relation between polarization and field in a crystal

may be found by taking the derivative of f with respect to Ej in Eq. (2),

letting the mechanical stresses and the temperature remain constant :

1,2,3)

k

When this expression is expanded we have the following equations

due to Kelvin:*

*
VOIGT, p. 415.

In these equations, as in most cases throughout this book, the vectors are not
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Pi = rinEi + 1)12^2 + 113^3 1

(140)

Pg

The subscripts 1, 2, 3 refer to the orthogonal crystallographic X-, Y-,

Z-axes or, in transformed coordinates/ to the X'-, F'-, Z'-axes. Such

quantities as iihk(h ^ k) may be called cross susceptibilities, analogous

to the cross compliances shk in elasticity; they relate a field along one

axis to a polarization parallel to another axis. As will be seen, these

cross constants are present only in triclinic and monoclinic crystals. In

all cases i?
= y^.

Corresponding to Eqs. (140) are the following equations for com-

ponents of displacement:

D l
= kuEl + fcl2#2 + &13#3

}

Z>2 = kuEi + k^E* + k^E, \ (141)

The dielectric constants are related to the susceptibilities thus:*

kiA = *a = 47D7W (h * i) (142)

These equations make clear the distinction between the cross coefficients,

of form khi or T?W, and those of form khh or ijhh, which may be termed the

direct coefficients; any of the former may vanish for certain crystal

groups (as they do for isotropic substances), but the latter never. From

khi = Aw it is evident that the k's and r?'s are symmetric tensors.

The greatest possible number of independent TJ'S (or Fs) is six, but in

all systems except triclinic the number is less, becoming one for cubic

crystals. By combining the ellipsoidal symmetry inherent in the i?'s

(112) with the crystalline symmetry, Voigt shows that the constants

may be classified according to the seven systems, as follows:

TABLE XIV

printed in boldface type. There will be but little occasion to use the methods of

vector analysis, and wherever directional properties are considered they will be made

clear by appropriate subscripts.
*
VOIGT, p. 436.
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The same tabulation holds also for the fc's. The classification is

valid only with respect to the crystallographic axes: in general, when

rotated axes are used, the crystal loses some of its symmetry, and the

number of effective constants increases. Formulas for transformation

are given in 107.

106. We shall have occasion to express the components of field

strength in the crystal in terms of those of polarization. If Eqs. (140)

are solved for the E's, a new set of constants appears, which are functions

of the Vs and may be termed the coefficients of dielectric stiffness, x>

The three equations are

3

tff
= S Pft

=
X/i-Pi + XflPt + ? (j - 1, 2, 3) (143)

Here XM =* xw- In order to express any x>* in terms of the 17*8, the method

outlined in 26 is used. The general formula is

x -
jf

where D is the determinant of all the i?'s and S,% is the cofactor with

respect to 17,*. For example, xis = (17211732 isite)/^. The vanishing

of any i?# does not necessarily imply the vanishing of the corresponding

Xf*. Nevertheless, in systems of higher symmetry than monoclinic,

all cross susceptibilities (j 7* h) vanish, and x = 1A# as long as the

subscript refers to one of the crystallographic axes. With respect

to rotated axes, this simple relation no longer holds in general (see

107). In an isotropic material there is but one 17, so that x 1/1 for

all orientations.

Equations analogous to (143) can be derived from Eqs. (141), express-

ing the components of E in terms of those of the displacement D. The

coefficients 0,* in this case are of the nature of reciprocal permittivities,

called by Kelvin the "dielectric impermeability":*

3

EJ = OjhDh = 8,-iDi + OjzDz + 6j$D9 (j 1, 2, 3) (145)

Expressions for the Bjh in terms of the E, will be needed for deriving

the equations for elastic coefficients at constant electric displacement.

They are found in the manner indicated above for the x*- The general

formula is

*
VOIGT, p. 441.
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where D is the determinant of all the k's and S3h is the cofaetor with

respect to kjh .

For brevity, it is permissible to use a single subscript x, y, or z (or 1,

2, or 3) for k, y, and 6 whenever there are no cross constants, so that both

field and polarization are parallel to the axis indicated (see 112 concern-

ing the "principal susceptibilities" and footnote on page 44 for the use

of subscripts). Thus kx s kn ;
and for a transformed axis X' we may

write k r

xt etc. Where there is no ambiguity, the subscripts may be

omitted altogether.

107. Dielectric Constants with Respect to Rotated Axes. Since the

symmetry of crystals (excepting triclinic) is usually lowered when the

frame of reference is other than the fundamental crystallographic axes,

certain cross constants of form k}h and i?# (j 7* h) may be expected to be

present in the transformed system. In general, all coefficients are

altered by the transformation.

The transformed coefficients occur in the expressions for the elastic

constants at constant displacement and at constant polarization (Chap.

XII). They must also be taken into account when the resonator theory
is applied to oblique bars or plates.

By a method analogous to that outlined in 40, any n'ih can be derived.

The direction cosines of the rotated axes are given in 38. In terms of

the fundamental susceptibilities, the value of
i\\h in the most general form

is

n + Wfciha + W7ia) + Wy(toi + 7W722 +
+ n/ftusi + mkrj32 + n^as) (147)

For quartz, the only fundamental susceptibilities are r?n = Tj 2 2
~

i?j_,

and 1733
= % perpendicular and parallel, respectively, to the Z-axis.

i& = (Wh + MiWijOiU + *W? (148)

For a quartz plate, rotated through the angle about the X-axis, li
=

1,

12
= la

= mi =
tti
= 0,m2

= w 8
= cos 6 ss

c, n2
= w8

= sin 6 as s,

so that the only susceptibilities which contribute to the polarization when
the field is E'2 in the F'-direction (direction of thickness of plate) are

1/22
=

WlirjjL + n\n\\
= C2)?JL + S

2
77|| \

I?JL) > (149)

In quartz the difference (y\\ i?j.) is so small that the cross sus-

ceptibilities in oblique fields can usually be ignored.

Similarly, one finds for the permittivities that contribute to the total

polarization in a quartz plate rotated about the X-axis as indicated above,

the expressions

fc'as
"

cs(fc
- kjj (150)
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In general, any rotated permittivity k'
ih

is expressed by an equation
similar to (147) :

+ (nfakzi + n/w/ifcsa + n^k^) (151)

For quartz, the coefficient relating the polarization in any direction j

to an impressed field in the ^-direction, or vice versa, is

kjh
= (W* + m,mh)kji + n^k^) (152)

In most practical applications of quartz the effective dielectric con-

stant is expressed in terms of the constant k' for the free crystal, taken in

a direction parallel to that of the field (235, 247). The expression

for k' is found by setting j = h in Eq. (152), giving, for a field in the

/i-direction,

k( a V =
(II + ml}k + nffc|

=
fc'j. + i:J(fc'|

- t'J
= 4.5 + O.lwJ (153)

where nh is the cosine of the angle between the /i-direction and the Z-axis.

108. For crystals of symmetry higher than monoclinic, the total

polarization P produced by a uniform field E having direction cosines l
}

m, n can be found from Eqs. (140) :

P = E V(^ll)
2 + (?2 2)

2 + (tt7733)
2

In general, P is not parallel to E. The divergence is greater the wider

the disparity between TJU, Tj22 ,
and 1733. Equation (154) is applicable

also when the axes are rotated; in this case all electrical quantities should

be primed.
The dielectric constant in the direction parallel to the field is

where, for crystals of any class,

(155)

The subscript N denotes the direction of the normal to the plane-parallel

plate to which the field E, with direction cosines I, m, n, is applied.

Equation (155) can be used for rotated axes by priming all the Vs.

When the symmetry is higher than monoclinic, the polarization normal

to the plate is

where I?AT
= J

2m + w2
7?22 + n2*?33 (156)

Similarly, k = l*kn + m2
fc22 + n*kn (157)
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In order to calculate the coefficients (x#)' or (0#)' for rotated axes,

it is usually necessary first to derive the entire matrix of transformed

susceptibilities (T/#)' or (&/A)', respectively, as indicated above. The
desired coefficients are then found by means of equations analogous to

(144) and (146).

For quartz the calculation is relatively simple. For example, with

plates rotated through the angle about the X-axis (as in the AT-cut,

etc.), the only values that do not vanish are

(158)

where S'n = (i|)'(ito)'
-

fof,)'.

The corresponding (0,*)' may be reduced to the form

/a y _ __
(022) -_ .

(*)'"
2s

In Eqs. (158) and (159) the primes refer to rotated axes and do not

indicate that the crystal is mechanically free. On the contrary, in some
of those elastic equations in which these coefficients occur the crystal is

free, and in others it is clamped (see 206).

As an example we consider the coefficients (0Ji)' and (fl^)' for a

clamped quartz plate rotated 45 about the X-axis. Coefficients of this

type, with differing degrees of rotation, are used in deriving the elastic

constants from thickness vibrations of cuts of yl^-type. We have,
from 331, k" = 4.41, fc"|

=
k\\

=
4.6, cs = 0.5, so that

(0JI)'
- 0.226 (0'2

'

3)'
= -0.00465 (160)

The cross constant (02
'

s)' is small enough to be neglected in most
calculations.

109. Expressions for Energy in a Dielectric. In Eq. (1) we saw that

Voigt's expression for the energy per unit volume in terms of field com-
3 3

ponents was i 2) 5) tikmEkEm , corresponding to faE* for isotropic bodies.
k m

It can be shown from Eqs. (140) and (143) that the energy in terms of

components of polarization is

Energy = * W*P
k m

This expression corresponds to P2
/2n for isotropic bodies.
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110. Effect of an Air Gap on Polarization. A plane-parallel slab of

dielectric of permittivity fc, thickness e, and infinite area is placed between

parallel electrodes spaced at a distance e + w apart, w being the gap

width, air or vacuum. It is immaterial whether the gap is all on one

side of the dielectric, as shown in Fig. 39, or partly on

each side. Let Ew be the field in the gap, E that in the

slab, V the potential difference between the electrodes,

Vi the potential drop across the slab, and 0- the charge

density on the electrodes. Vectors are positive when to

the right. E and P are assumed to be normal to the slab.

1. The following equations hold universally, whether

the slab is piezoelectric or not, provided that the polar-

ization is parallel to the field. If it is piezoelectric, the

solution given in (2) can be superposed on that now to

be considered. As in Eq. (137), the electric displace-

ment is

D = kE V A kV*
Vw = 47T0- =

e w (161)

k
-Vr

For brevity, we let e' stand for e + kw; e' may be called

the "electric spacing" between electrodes:

e' e + kw

The following relations are easily derived:

kV

e'

kV

FIG. 39.-

Slab of dielectric

between parallel

(162) electrodes.

(163a)

(1636)

(163c)

(163d)

(163.)

It should be noted that when w =
>, <r = 0.

2. We now assume V = and that the slab is of piezoelectric crystal,

so strained as to produce a uniform polarization Pn, where the subscript

n denotes a polarization normal to the slab. It is obvious that there

will be polarization surface charges* Pn on the slab, equal and opposite

induced charges on the electrodes, a field Ew in the gap in the same

direction as Pn, and a depolarizing field Enj opposed to Pn,
in the slab,

* The effects of space charge in the crystal are treated in f249.
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The values are found to be

E. - ^= (164a)

En = =!"*!
(1646)

En gives rise to a counterpolarization Pf = qEn, and the total polariza-

tion is
'

When w = (electrodes adherent), P t
= Pn ,

and En 0. JWhen w = oo

(slab far removed from all conductors), Pt
= Pn/k and D = 0; the dis-

placement vanishes both outside and inside the dielectric.

If there is a potential difference V between the electrodes, its con-

tribution to the polarization, given by Eq. (163d), is added to that in

Eq. (165).

It should be noted that the field En in the crystal stands in the ratio

w/e to the field Ew in the gap, independently of the dielectric constant.

111. Impurities on Surfaces of Crystal. The static measurement of

dielectric constants involves a measurement of the charge flowing to the

crystal condenser on application of a known potential difference V to

the electrodes, or its removal. It is of the utmost importance that the

electrodes make immediate contact with the substance of the crystal.

Loosely fitting electrodes must be avoided (or else the gap w accurately

measured), and layers of cement, if employed, must be exceedingly thin.

These precautions are especially urgent with crystals of high k, as

Rochelle salt. With such crystals all surface impurities resulting from

the process of polishing or from dehydration must be removed (415)
if accurate results are desired.

The magnitude of the error to be expected when the crystal slab is

separated from the electrodes by a thin layer of foreign material of per-

mittivity kw and thickness w can be deduced from the foregoing para-

graphs. Under these conditions Eq. (161) becomes

* kwV"
e w

It follows that

1

f kw/k^e

If the area of the condenser is ^4 (assumed great enough for edge effects

to be disregarded), the observed charge is <rA. If the electrodes made
immediate contact with the crystal, the observed charge would be ir&A,

where o- = fc7/4ire. The ratio <T/<TQ is a, measure of the error incurred by
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having the foreign layer present. Table XV gives approximate values

of tr/ffo for various ratios k/kw and w/e.

TABLE XV

Considering the extraordinarily largo value of kx for Rochelle salt

in comparison with ordinary cements and with the dehydrated salt,

one sees clearly from this table how important it is to make intimate

contact between crystal and electrodes. For example, under the con-

ditions assumed in the next to the last line conditions quite likely to

occur when e is small the observed permittivity would be only one-tenth

of the true value.

The subject of suitable electrodes for such measurements as these is

treated in 416. At present all that is necessary is to point out the

difficulty in having electrodes closely adherent while at the same time

allowing freedom for deformation of the crystal when a field is applied.

Very thin deposits of metal, such as gold foil or plated electrodes are

best for this purpose.

112. The Dielectric Ellipsoids. The lack of parallelism between E and P is

expressed mathematically by the fact that y is not a scalar, but a symmetrical tensor.

Its magnitude varies with direction; it may be represented geometrically by an ellip-

soidal surface given by the following equation, which is written with respect to the

principal axes of the crystal:

1 (166)

Unless the cross constants vanish, the principal axes of this ellipsoid are not coinci-

dent with the principal (crystallographic) axes. By rotating the coordinate system
until it coincides with the principal ellipsoidal axes we obtain the equation

1 (167)

where yXf i)v , 17, are the principal susceptibilities. For ail except triclinic and mono-
clinic crystals these rfs are the same as the direct coefficients mentioned above.

The ellipsoid represented by Eq. (167) has the following property: If a radius

vector r is drawn parallel to E, then the polarization P associated with E lies in the

direction of the normal to the tangential plane drawn at the point where r intersects

the ellipsoidal surface. Parallel to the principal axes of the ellipsoid, and only in these,

directions, are polarization, and displacement parallel to the fielcU
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The reader familiar with physical optics will notice analogies between the foregoing

ellipsoid and the optical ellipsoids discussed in Chap. XXX. Indeed, if instead of the

static or radio-frequency (r-f) values of k we were to consider those at optical fre-

quencies, we should pass directly to the optical ellipsoids; an ellipsoid having & as

parameter would be the Fresnel ellipsoid. Furthermore, those crystals having the

three principal dielectric constants kx ,
ky ,

ks [corresponding to i)x , i) y , t\z in Eq. (167)] all

different (systems 1, 2, and 3 in Table XIV) are the optically biaxial crystals; those

having two of these constants identical (systems 4, 5, 6) are uniaxial.

The dielectric ellipsoid for quartz, from Eq. (167), would be slightly prolate, with

axis of revolution parallel to Z, and differing but little from a sphere. For Rqchelle

salt the ellipsoid would be a cigar-shaped figure with the long axis parallel to X.

113. The Molecular Nature of Polarization. The foregoing equa-
tions are perfectly general statistical descriptions of dielectric phenomena,
in terms of quantities that are observable outside of the dielectric. They
involve no hypothesis concerning the molecular nature of polarization.

We shall now summarize those statements concerning the internal field

and polarizability of which use will be made in the chapters on Rochelle

.salt and the other Seignette-electrics. For the remaining crystals, includ-

ing quartz and tourmaline, there are no dielectric anomalies; the per-

mittivities are so nearly constant over wide ranges of temperature, field,

and frequency that for practical purposes no appeal need be made to

molecular theory.

The actual field in a dielectric varies greatly from point to point, over

distances comparable with molecular dimensions. The internal field F
(also called the local or molecular field) is defined as that in a very small

spherical cavity from which the molecules have been removed,* according
to the Lorentz equation

F = E + yP (168)

where E is the statistical field (as ordinarily defined) in the dielectric, P
the polarization, and 7 the internal-field constant. If the medium is

isotropic or of cubic symmetry, 7 has the value 47r/3. In crystals of

symmetry lower than cubic, 7 has values differing from 4r/3, though
of the same order of magnitude; it is usually considered as independent
of temperature.

In the field F each molecule becomes polarized and assumes an electric

moment /* If is the average value of /* in the direction of F and a
the molecular constant known as the total molecular polarizability, we
have the simple relation

fi
= aF (169)

This linear relation suffices in most cases; non-linear effects are considered

*,This definition of F, as applied to piezoelectric phenomena, is discussed in Chap.
XXVI.
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later. Calling N the number of molecules per cubic centimeter, one has

also

p = NIL (170)

The quantity a is the sum of the constituents ae + <xa + d, where

ae and aa are due to displacements of electrons and atoms, respectively.

The terms a + aa may be abbreviated to aea ; they are called the induced

or lattice polarizability, Lorentz type of polarizability, or polarizability by
distortion. This type of polarizability, and hence the portion of the dielec-

tric constant dependent on it, is essentially independent of temperature.
The contribution due to structural dipoles, when they are present

(i.e., permanent dipoles that are characteristic of the structure even in

the absence of external field, causing polarization by orientation) is a*.

Polar structures of higher order than dipoles need not be considered here.

The constituents of ju are fLea
= oteaF and fid

= otdF- In the second of these

equations the bar is of special significance, since in general the directions

of the permanent dipole axes are widely distributed in space. The bar

in the first equation is in recognition of the fact that the polarization in a

crystal is not necessarily parallel to the impressed field.

In applying the foregoing expressions, especially in Chap. XXVI,
the only type of dipole that will be explicitly considered is the permanent

dipole, capable of rotation in an electric field, and designated above by
p.d . We may therefore drop the subscript d and write simply /* for the

moment of a permanent dipole.

The total, polarization may now be expressed as

P = Nfi = N<xF = Pea + P* = Nut* + Nfa = N<xeJF + NaJF (171)

For those dielectrics in which y =
4ir/3, the well-known Clausius-

Mosotti relation can be deduced from Eqs. (168) and (171), upon setting

E =
47rP(fc 1), where k is the dielectric constant:

FT5-T* (172)

Although in this equation a was originally meant to comprise only

the lattice polarization <xeo,
it has been extended by several writers to

include dipole polarization as well (485).

The following relation between susceptibility and molecular polariza-

bility, derived from Eqs. (170), (171), and P t[E, will be used later,

in 486:

tf = T-r ' whence iy
-

t

y*
(173)

1 + 71? 1 - yNa.

114. Polarization Due to Permanent Dipoles. The theory is due to

Debye,
B16 'B16 who adapted to the study of dielectrics Langevin's theory
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of paramagnetism. The latter is described in the Appendix, and the

application of the Langevin-Debye-Weiss theory to the Seignette-electrics

is considered in Chap. XXVI. We give here only those essential equa-

tions which are of a more general nature.

In brief, the theory postulates that a dielectric having a temperature-

dependent dielectric constant contains dipoles which normally are in a

state of disorder owing to thermal agitation. Upon application of an

electric field the dipoles tend to rotate; the average rotation depends
on the amount of thermal agitation, being greater at lower temperatures.

A condition of statistical equilibrium is reached that determines the

dipole polarization a*. The polarization under weak fields is approxi-

mately proportional to the field, but as the latter becomes large a state of

saturation is approached.
The Langevin function L(d), employed in the Appendix with respect to

phenomena involving magnetic dipoles, can be used also in the dielectric

case, by the substitution of electrical for magnetic quantities. It then

expresses the theoretical ratio of the average [Eq. (169)] to the moment /*

of the individual dipole, the latter being regarded as constant and inde-

pendent of temperature. The parameter a is nF/KT, where K is the

Boltzmann constant and T the absolute temperature. In its original

form the Langevin function is

-i
(174)

where P is the polarization in infinite field, when the dipoles are com-

pletely aligned. The form of the L(a):a curve is shown in Fig. 165

(page 748).

A useful approximate form of this equation, sufficiently accurate

as long as F is small enough so that a 1, is Eq. (556a), which we give
here as well as later; it is obtained by retaining the first two terms in the

expansion of (174) in powers of a.

.

45 \KT

Equation (174), hence also the numerical coefficients in (175), is

based on the assumption that the orientation of the dipoles is unrestricted

in space (552). In solids certain restrictions are present, but in all

cases as long as the field is not too great one can write a generalized

Langevin function in the following approximate form, from Eq. (562):

^^ - /,

M~ P Kf~ q
\KTj "Nji (176)

For the original function, p and q assume the values i and A, respectively.
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Equation (174) indicates that the polarization Pd approaches satura-

tion at high fields. It follows that the dielectric susceptibility is not a

constant but decreases with increasing field strength. In paramagnetism,
saturation is observable only in rare instances and with great difficulty

(548); but it is an important characteristic of ferromagnetic substances.

As in the analogous magnetic case, the dielectric properties of the

Seignette-electrics in weak fields are of importance. In such cases the

first term or at most the first two terms of the expansion of L(a) in powers
of a suffice.

When F is small enough for the first term to be used alone, one may
write

where i^F/KT is the dipole contribution to the molecular polarizability.,

The total polarizability may now be written as

= + P (177)

The contributions to the polarization made by the two terms are the

polarization by distortion and polarization by orientation mentioned

above.

As a rule, dielectrics of large permittivity possess a structure contain-

ing dipoles. What confirms the diagnosis is the dependence on tempera-
ture shown in Eq. (177). Dipoles are aperiodicaily damped, and they

play no part in the permittivity or refractive index at frequencies as

high as in the infrared.

The following expression for polarization will be used in 484. Ao
F becomes indefinitely large, approaches /z, and from Eq. (174) L(a)

approaches unity. We then have, for the saturation value of the

polarization by orientation in an infinite field, PO = Np and, for the

total polarization at any F,

P = NoLaeF + PoL(a) (178)

Although most investigations on saturation effects have had to do

with freely rotating dipoles, still saturation is also known to occur in

dielectrics containing no polar molecules (ref. B15, Chap. VI). We shall

encounter instances of this among the Seignette-electrics. In such

cases the Langevin function can be extended to include the aa type of

polarization.
*

In this chapter it is unnecessary to discuss further the effect of tem-

perature on polarizability. The subject will be taken up in connection

* For the most part we shall use the Langevin function in the generalized form

[Eq. (176)].
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with the theory of Rochelle salt. It need be remarked here only that

any dielectric with a very large and temperature-dependent polariza-

bility may be suspected of having a Curie point like that of Rochelle

salt.

116. Brief mention should be made in this chapter of spontaneous

polarization, which is important in the theory of Rochelle salt. When a

spontaneous polarization P is present, it is to be added to the polarization

P due to E. P is associated with a spontaneous internal field FQ = yP.

Calling FE the term due to E, we have for the total internal field
^

F - Fo +FS - E + 7(P + P) - 7P + E(l + -n) (179)

In problems such as ordinarily arise in connection with dielectrics

the only polarization is that due to E, viz., P =
i\E. On the other hand,

pyroelectric crystals may have a spontaneous polarization P, and piezo-

electric crystals when in a state of strain have a polarization that we shall

call Ph. Both P and Ph (disregarding Seignette-electric anomalies) are

independent of E\ in any case they differ from zero even when E = 0.

Piezoelectric crystals may be either polar or non-polar. In the

former case the application of a suitable strain produces a polarization

both by distorting the lattice and by rotating the dipoles: both aae and
ad are affected. If the crystal is non-polar, only lattice distortion takes

place.

When an electric field is .applied to a clamped crystal, in which all

externally observable deformation is prevented, one may assume that

both types of polarization are present, though to a reduced degree. We
shall see in 468 that reasons have been advanced by Mueller for believing

that a clamped crystal of Rochelle salt shows no observable "ferro-

electric" properties.

116. Dissipation of Energy in Dielectrics. A condenser may be repre-

sented as a pure capacitance in series with a small resistance, or in parallel

with a large resistance, or both together. The materials selected as

dielectrics for condensers usually provide a capacitance that is nearly
constant over wide ranges of frequency and temperature. On the other

hand, the resistance is often found to depend greatly upon these two

quantities.

While the permittivities of a considerable number of piezoelectric

crystals have been measured, in most cases no special need has arisen for

the measurement of their dielectric losses. The only examples with which

we shall have to deal are quartz and Rochelle salt. In quartz, the inher-

ent losses, chiefly elastic, set the ultimate limit in the construction

of resonators of low damping. Usually the damping introduced by
mounting, air friction, etc., is greater than that characteristic of the

quartz itself.
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In the case of Rochelle salt both the permittivity and the internal

losses vary greatly with field, temperature, frequency, and other factors

as well. Rochelle salt belongs among those substances for which the

relaxation times have been investigated. The effect is usually found

among materials containing polar molecules. Although a full discussion

of relaxation times lies outside the scope of this book, the following

features may be briefly summarized.*

If an alternating field of constant amplitude is applied to a substance

containing dipoles, as the frequency is gradually increased, certain absorp-
tion bands in the frequency spectrum are traversed, within which, owing
to something of the nature of molecular friction, the polarization and

hence also the permittivity decreases, remaining relatively low on the

h-f side. For each of these regions there is a certain characteristic fre-

quency wo/27T, defined by the equation o> = 2KT/b = 1/r, where K
is BoltzmamVs constant, T the absolute temperature, b a frictional

constant, and T the relaxation time.f The permittivity begins to

diminish at the beginning of the absorption band, at which point the

frequency may be only a fraction of o>o/27r. For Rochelle salt, absorption
bands in the infrared have been dealt with by Valasek. 546

Several observers claim to have found certain characteristic relaxation

times for Rochelle salt, in some cases at extremely low frequencies.

References to their work will be found in 428.

Another type of absorption of energy, closely analogous to that

encountered in the piezoelectric resonator, is found in the infrared and

in the optical spectrum. This type is due to natural vibrational periods

associated with electrons, molecules, or the crystal lattice, and is accom-

panied by anomalous dispersion (in the range of optical frequencies the

refractive index, and hence the dielectric constant, normally increases

with increasing frequency).

If all types of absorption are taken into account, the result is a progres-

sive diminution in permittivity with increasing frequency, with the excep-

tion of rapid increases as the frequencies of natural vibrational modes

are approached. If the dielectric is a preparation from a piezoelectric

crystal, mounted without too much mechanical constraint, it will have a

large number of natural vibrational frequencies depending on its dimen-

sions, in the neighborhood of each of which it will react upon the driving

circuit. The variations in electric current in such a region are exactly

as if the dielectric possessed a permittivity and absorption that varied

* See refs. at the end of this chapter.

t In terms of static fields one may say that, when a constant field is impressed on

the dielectric, the dipoles are held in a certain statistical state of order. Upon the

sudden removal of the field it can be proved that this state of order sinks to 1A of its

initial value in a time equal to the relaxation time.
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with frequency. As will be shown below, it is possible to represent

the behavior of a piezo resonator in terms of a complex permittivity,

just as is customarily done in the case of molecular vibrations. In each

case the phenomenon may be described as
" anomalous dispersion/'

Whatever the nature of the energy absorption may be, unless the

loss is small it has a perceptible effect upon the measured permittivity.

117. From observations made with a bridge, the permittivity of any
dielectric can be deduced from the equation C = kA/4ire (A =

area,

e = separation of electrodes, which are assumed to be in contact with

the dielectric) ; and the equivalent parallel resistance R can be calculated

and thence the equivalent conductivity of the material. If the observa-

tions are such that the measured quantity is the admittance, erroneous

values of k may result if it is assumed that the losses can be neglected.

In such cases the observed permittivity is the quantity known as the

complex permittivity, which we shall designate as kc and which is a function

of k, R, and frequency.

The equation for complex permittivity may be derived thus: If the

"complex capacitance" Cc is defined in terms of the observed admittance

by the equation Y = juCc
= Q jb, we have

Ak 1

Cc
=^ = -

(6 + jg) (180)
47T0 0)

where kc is the complex permittivity, b the susceptance, and g the con-

ductance. Hence

where, when the losses are small, k is the ordinary permittivity, given

by the equation C = kA/kire = 6/w. The dissipation term appears
here as an imaginary quantity, instead of occupying its conventional

place as the real part as in a-c theory.

Since for any network the resultant values of g and b can always be

derived at any given frequency, it follows that any network can be repre-

sented as a condenser with complex permittivity. If the network is

inductive, the reactive part of the permittivity will appear as negative.
In particular, the equivalent network of a piezo resonator can be so

represented, as will be seen in 258.

The theory of losses in dielectrics has been treated most extensively

by Debye. His theory is used by Mason388 in the treatment of dielectric

hysteresis in Eochelle salt.
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CHAPTER VIII

PRINCIPLES OF PIEZOELECTRICITY

It would be interesting to know whether this development [of charges by stretching

rubber], and that produced by compression, is progressive or sudden, whether the

electrification produced by each of these operations is the same or different [in sign],

what part the molecules in the interior of the body and those on the surface take in

the total production; it would be especially curious and perhaps rather easy to investi-

gate in crystalline minerals, where the aggregation of the particles, however regular
in its assembly, presents in the different directions in the crystal known differences

which can influence the ease, great or small, with which the electricity is separated.
A. C. BECQUEREL, 1820.

118. Introduction. The statements in Chap. I concerning the piezo-

electric effect may be summarized and extended in the following manner:
A piezoelectric crystal may be denned as a crystal in which "elec-

tricity or electric polarity" is produced by pressure; or, more briefly,

as one that becomes electrified on squeezing; or as one that becomes

deformed when in an electric field. The first two definitions express the

direct effect, while the third expresses the converse effect.

These definitions are correct as far as they go, but they require further

explanation. In the first place, if the pressure is replaced by a stretch

(i.e. 9
a reversal in sign of the pressure) the sign of the electric polarity

becomes reversed, also. One may ask how the crystal knows which way
to become electrified. The answer is that a piezoelectric crystal must

have a certain one-wayness in its internal structure; in other words,

it must have a structural "bias" that determines whether a given region

on the surface shall show a positive or a negative charge on compression.

In the converse effect, the same one-wayness determines the sign of the

deformation when an electric field is applied to the crystal. It is this

reversal of sign of strain with sign of field that distinguishes piezoelec-

tricity from electrostriction (137).
Of the 32 crystal classes, there are 20 that possess this one-wayness.

With all the rest there is nothing to determine the direction of the

polarity on compression; hence they do not become polarized at all.*

The second consideration has to do with the relation between the

applied stress and the resulting polarization. The stress may be a com-

pression or an extension, as stated above; but it may also be a shearing

stress, which, as shown in 27, is closely related to a compression. There

* This statement ignores the tensorial piezoelectricity mentioned in 525, which is

too feeble to require consideration at this point.

X77
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is one crystal class in which a random stress of any type will produce a

polarization, the direction and amount of which will, of course, vary with

the stress. This is the asymmetric triclinic class, the one of lowest

symmetry, of which more will be said presently. With all other classes

it is only certain particular types of stress, standing in particular relations

to the crystal axes, that can produce a polarization. There is no class

in which the piezoelectric polarization has one and only one direction,

but there are several classes in which the polarization is confined to a

certain plane. Conversely, an applied field must have at least a com-

ponent in this plane in order to produce any piezoelectric deformation.

Since there are six possible components of stress and three of electric

polarization, it is evident that there are 18 possible relations between

the mechanical and electrical states of the crystal. These relations are

expressed by the 18 piezoelectric constants, whose values are independent

and differ from zero except when (as is always the case outside of the

triclinic system) the symmetry of the class is such as to make some of the

constants have identical values, including zero. In some of the classes

of relatively high symmetry there is but one independent constant, but

it is associated with at least two types of stress and strain and with at

least two components of polarization and field. However high the sym-

metry, as long as a crystal is piezoelectric at all, there is wide latitude

in the choice of stresses, field directions, cuts, and vibrationai modes.

The principles that underlie the production of various types of vibration

by piezoelectric excitation are treated in Chap. X.

Although the foregoing statements refer mainly to the direct effect,

they can be equally well expressed in the language of the converse effect.

If in the direct effect a mechanical stress of type h produces an electrical

strain (polarization) in the m-direction, then by the converse effect an

electrical stress (applied field strength) in the m-direction will produce a

mechanical strain of type h. For each crystal class there is complete

reciprocity between the two effects.

119. This chapter has to do chiefly with the presentation of Voigt's

phenomenological theory of piezoelectricity. It includes a tabulation

of the characteristic effects for the 20 piezoelectric classes of crystals

and the equations for the piezoelectric constants with respect to rotated

axes. The representation of piezoelectric properties by means of sur-

faces and diagrams is discussed, as an introduction to the graphical

methods employed in the next chapter for showing how particular crystals

vary as the axial system is rotated.

In the early part of the chapter is given a brief survey of the pioneer

researches of P. and J. Curie in this field, together with Lippmann's

prediction of the converse effect.

At the close is a brief section on electrostriction.
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120. An Illustration of Piezoelectric Effects and Reactions. If an

electric field in some arbitrary direction were applied to a hemihedral

triclinic crystal, a number of things would happen. Each of the three

components of field strength would excite six independent components of

internal stress, known as piezoelectric stress. The total stress system
would consist of 18 different terms, 3 terms for each of the six com-

ponents of stress. The resulting strain would involve all the possible

types of deformation: the lengths of all edges and all angles between

edges would be changed.

Yet even with this complex state of affairs the story would by no

means be at an end. On the surfaces of the crystal, if the latter were

not in contact with the electrodes, would appear polarization charges

due to the state of strain, from the direct piezoelectric effect, giving rise

to an additional set of field components whereby the entire stress and

strain systems became altered, and this in turn would cause still other

polarization charges, and so on. The final configuration would depend

on all these circumstances.

Beyond this, since our crystal is also necessarily pyroelectric, the

electric field would cause certain thermal changes through the electro-

caloric effect, and these in turn would both alter the elastic constants

and thereby affect the deformation and also, through the pyroelectric

effect, have an influence on the state of polarization. Lastly, the crystal

could not escape having its state of deformation still further altered

through the effect of electrostriction; and through the converse electro-

strictive effect the polarization would undergo still further modification.

A complete description of the final state of the crystal would include these

thermal and electrostrictive effects. Fortunately they can usually be

ignored.

121. It is the object of piezoelectric theory to analyze such situations

as that described in the foregoing section. The piezoelectric forces are

examples of the class of forces known as "body forces," acting directly

on the entire substance, rather than applied mechanically to the bound-

aries from without. As will be seen, the problem can be solved com-

pletely when all conditions are homogeneous, i.e., when all elements of

volume have exactly the same temperature and the same components of

field and of strain. Whenever boundary conditions have to be taken

into account, the problem becomes so complicated that solutions are

possible only in certain special cases.

The triclinic hemihedral class of crystals was chosen as an illustration

because it represents the lowest degree of crystalline symmetry, although

almost no experimental work has been done on it. The other triclinic

class, having a center of symmetry, is not piezoelectric.

For generality it is customary to write the fundamental piezoelectric
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equations in terms of all 18 possible coefficients. Each of the 20 piezo-

electric classes is characterized, with respect to suitably chosen axes,

by a definite number of coefficients, which become fewer with increasing

symmetry, until in a few classes the number of independent constants is

reduced to one. Except for the triclinic hemihedral class, in which the

choice of axes is perfectly arbitrary, the fundamental piezoelectric coeffi-

cients for each class are expressed with reference to a system of orthogonal

axes based upon the elements of symmetry present in that class; hence

they are fewer in number than they would be for any other axial system.

}f, as often happens, a crystal specimen is cut in an oblique direction,

a new system of axes has to be adopted, involving usually a great increase

in the number of coefficients. That is, any transformation of axes

may be expected to reduce the crystal effectively to a position of lower

symmetry.
122. The Researches of the Brothers Curie. As a prelude to Voigt's

theory we shall survey briefly some of the principal piezoelectric researches

of Pierre and Jacques Curie.* In Chap. I an account has been given of

the discovery by the two brothers in 1880 of the direct piezoelectric

effect (electric polarization caused by mechanical deformation) and their

verification in 1881 of the converse effect, following Lippmann's prediction.

They found that from quartz crystals it is possible to cut plates

in such a way that the polarization in a certain direction can be produced

by a compression both parallel to this direction (the longitudinal effect)

and in a suitable direction perpendicular to it (the transverse effect).

Their only quantitative results were on the constant dn of quartz
and c?33 of tourmaline. Only quartz will be considered in this brief sum-

mary. They applied pressure parallel to the thickness of an X-cui quartz

plate and measured the resulting charge with an electrometer, finding

d\\ = 6.32(10""
8
) esu, in close agreement with the best later values.

In measuring du by the converse effect they applied to the electrodes

of an X-cui quartz plate a potential difference from an electrostatic

Holtz machine and observed the dilatation in the F-direction by means

of a delicate amplifying lever, f Considering that the voltage was

measured by means of a spark gap, it is remarkable that the value of

dn by this method agreed within 4 per cent with that determined by the

direct effect.

Among the quartz plates used in their various experiments were some
8 cm long and only iV ram thick.

In the
' '

(Euvres
"
are described several ingenious piezoelectric devices,

intended for various types of static measurement. One of them, the

* From ref. BIO, "CEuvres de Pierre Curie." In the present section this book is

referred to as "CEuvres."

t "(Euvres,
11

p. 45.
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piezoelectric manometer,* employed the longitudinal effect: compression
of an X-cut quartz plate in the direction of its thickness caused a deflec-

tion of the electrometer. This apparatus was intended for the measure-

ment of pressures (for example, the stresses due to magnetostriction)
and was the forerunner of some of the present-day applications mentioned

in Chap. XXVIII. When the pressure was caused by the application

of a large potential difference to an auxiliary system of quartz plates in

contact with the one described above, the device could be used for the

measurement of large potential differences. The theory of this arrange-
ment is given in Voigt.f

A second device, which also finds occasional use today (354, 396),

was the quartz bilame, or double strip. $ Two long narrow -X"-cut quartz

plates were cemented together like the bimetallic strips used for ther-

mostats. In one form, the X-axes of the two plates were opposed, so

that, when equal and opposite charges were placed on electrodes (films

of silver) covering the outer faces of the double plate, one of the com-

ponents became elongated, the other contracted, and a flexure ensued.

In another form, the X-axes were not opposed, but between the two plates

was placed a third electrode connected to one terminal of the high

voltage to be measured, the other terminal being joined to the two outer

electrodes in parallel. This device could therefore serve as a piezoelectric

electrometer. Voigt's theory of its action is in the "Lehrbuch."||
The simplest and best known of these early devices, for which there

is still a field of usefulness, is the quartz piezotlectrique. If It consists of a

single thin, elongated plate of quartz, which in the original design

measured 100 by 20 by 0.5 mm parallel to the F-, Z-, and X-axes, with its

major faces silvered or coated with tin foil for electrodes. To each end

was attached a strip of metal, and it was suspended vertically in a

grounded metal box, with a scalepan fastened to the lower end on which

weights could be placed, for applying any desired degree of tension to the

quartz. The instrument thus utilized the transverse effect. The
electrodes were connected to an electrometer. The device has been used

for producing known charges, for the measurement of capacitances,

voltages, and pyro- and piezoelectric effects, and in radioactivity.**

*
"CEuvres," p. 38.

t P. 904.

t "CEuvres," p. 49.

French patent No. 183,851, May 27, 1887.

||
P. 906.

f First described in Jacques Curie's doctoral dissertation, Paris, 1889 ("CEuvres,"

p. 554).
**

See MMB. CURIE, "Traite" de Radioactivity
"

Gauthiers-Villars & Cie, Paris,

1910.
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123. Fundamental Piezoelectric Theory. In the development of the

fundamental theory only isothermal processes will be considered. It is

assumed throughout that the state of the crystal is homogeneous, both

electrically and mechanically, and that the equations are linear. The
latter condition expresses a generalized Hooke's law, or a proportionality

between stress and strain for electromechanical as well as for purely

elastic phenomena. Under ordinary conditions this is found experi-

mentally to be the case with all crystals tested, with the important

exception of the Seignette-electrics.

The fundamental piezoelectric relations are derived from the third

term in Eq. (1). The genesis of this term is best understood in the light

of Lippmann's theory. As we pointed out in Chap. I, Lippmann's impor-
tant contribution to piezoelectricity was the prediction of the converse

effect. 816 His papers, which were devoted to the application of ther-

modynamic methods to electrical phenomena, with special reference to

the problem of electrostriction and its converse, are remembered today

chiefly because of that portion in which he states that the same

reasoning, when applied to the direct piezoelectric effect discovered by
the Curies, leads to the conclusion that a piezoelectric crystal when

placed in an electric field must undergo a deformation. He predicted

the same numerical value of the coefficient for the converse as for the

direct effect.

As applied to piezoelectricity, Lippmann's reasoning may be expressed
in the following manner: A piezoelectric crystal is placed in an electric

field of strength E and at the same time subjected to a mechanical

stress X. There are then present in the crystal an electric polarization P
and a strain x. If now the field and the stress are varied by small

amounts dE and dX, the total change in energy dU may be expressed as

an exact differential, dU = P dE x dX. The effect of electrostriction

is considered in 137. Assuming the process to be reversible, we write

(see 187)

Since it is found, over wide ranges of pressure and with most crystals,

that the relation is linear, we may set dP/dX =
5, where 5 is the

piezoelectric strain constant. This represents the direct effect, and
the equation above says that there is a converse effect dx/dE, having
the same constant 5 with sign reversed. It is this prediction which was

promptly confirmed by the Curies.

Accepting Lippmann's conclusions, Pockels, Duhem, and later, in

more precise and general form, Voigt formulated the thermodynamic
potentials for piezoelectricity. The physical meaning of the ther-



1241 PRINCIPLES OF PIEZOELECTRICITY 183

modynamic potentials is that, when any one of the three components of

electric field strength is present simultaneously with any one of the six

components of strain or stress, there is, in the most general case, a new

contribution to the energy stored in the crystal, which is zero only when

the corresponding piezoelectric coefficient vanishes.

124. Fundamental Piezoelectric Equations. The method that will

now be employed for deriving the fundamental piezoelectric equations

makes use of all the first three terms in Eqs. (1) and (2) (the remaining

terms are absent because the process is assumed to be isothermal).

This leads, in a more simple and perspicuous manner than that of Voigt,

not only to the important primary equations for the direct and converse

effects, but to the expressions for the secondary effects as well. It thus

becomes easy to determine with full generality the effect of piezoelectric

reactions upon the elastic and dielectric constants. The axes are the

orthogonal crystallographic axes. Transformations to other axial sys-

tems are considered in 134/.

From Eq. (1) are obtained the fundamental piezoelectric equations

in terms of strains. The derivatives with respect to strain and field

(at constant T) are

3

== (Xh) (converse effect)

k h

The meaning of (Xh) is explained in 126.

The 18 quantities emh are the piezoelectric stress coefficients (Voigt's

"piezoelectric constants ")

Similarly the derivatives of Eq. (2) lead to the fundamental equations

in terms of external stresses :

3

A - V dn*En = -ft (converse effect) (184)
jr

V
t m
3 6

J?- = V r,'kmEk
-
J)

d *X = P- (dirCCt effect)

k h

11" and rf are the clamped and free susceptibilities (204).

The 18 quantities dmh are the piezoelectric strain coefficients (Voigt's

"piezoelectric moduli")-* By analogy with i/ they might well be called

the piezoelectric susceptibilities.
* In English it is customary to define a modulus as the quotient of a stress by a
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In the foregoing equations, s& and cfa are isagric elastic coefficients

(at constant #); this type of elastic coefficient is tacitly assumed by

Voigt and is required by the fact that E is the independent variable in

the expressions for electrical energy.* The compliance s at constant E
is analogous to the susceptibility vfkm at constant mechanical stress

(204), while s&, the isopolarization compliance, is analogous to t]"m) the

susceptibility at constant mechanical strain.

For all crystals except the Seignette-electrics the values of c& and s

may be regarded as practically independent of the magnitude of E.

125. Interpretation of the Energy Equations. It is desirable at this

point to show how the total energy becomes allocated among the terms of

Eqs. (1) and (2). Only the first three terms in each equation need be

considered, since thermal changes are here ignored. The principles

involved will stand out more clearly if subscripts and summations are

omitted; the same conclusions are reached when the expressions are

written in full. In this abbreviated form we have

= ic*s + WE* + eEx . (185)

f = i-s*X
2 + WE* - dEX (186a)

As was stated in 23, the crystal plate, with adherent electrodes con-

nected to a battery, is assumed to be subjected simultaneously to a stress

X of any type and to an electric field E normal to the surface of the plate.

The total strain, due jointly to X and E, is x. The two equations above

are alternative ways of expressing the energy stored in the plate by X
and E together. In the case of Eq. (185) we may suppose that x is

strain. Now from Eqs. (184) and (184a) it is evident that dmh is of the nature of

a strain divided by a stress; hence it is emh rather than dmh that should be called a

"modulus." On the whole it seems most appropriate to call the d's the piezoelectric

strain constants (or strain coefficients') and the e's the piezoelectric stress constants (or

stress coefficients), respectively. This terminology will be used throughout the book.

It is perhaps worth noting that e2 has the dimensions of stress X permittivity.

According to systematic tensor notation the cJ's and e's should be written with three

suffixes instead of two, since they express relations between vectors and second-rank

tensors and are therefore tensors of the third rank. Nevertheless, following Voigt's

notation, which has become almost universally adopted and is in all cases sufficiently

explicit, we shall use only two suffixes. Wooster866 introduces the fundamental

piezoelectric equations in full tensor notation but later finds it expedient to abbreviate

the suffixes to two symbols. Unfortunately his abbreviated suffixes are not the same

as Voigt's. In 26 we have already explained the use of a single suffix instead of two

for the stress and strain tensors.

Recently a very compact matrix notation for piezoelectric and other constants of

crystals has been introduced by W. L. Bond. 64

"The use of the isopolarization coefficients is associated with the polarization

theory (192). The relations between isagric and constant-polarization coefficients

are given in 208.
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produced by the application of X while E =
0, the plate being short-

circuited. The work done per cubic centimeter is represented by the

first term in Eq. (185). The application of X causes a polarization

P =
ex, which persists after E is impressed. We next clamp the plate

so that further deformation is prohibited, leaving x fixed; since no motion

is involved, the clamping forces do no work. Now let the battery be

connected to the electrodes, producing a field E in the plate. The battery

does work per cubic centimeter equal to ^'E*/?, on the dielectric; ajad

since the field E is also associated with the polarization P =
ex, there

is in the crystal an additional energy eEx per cubic centimeter. The
second and third terms in Eq. (1) are thus accounted for.

For Eq. (185a) one may suppose a field E to be impressed at the start,

the crystal being mechanically free. A polarization PE = t{E is set up,

and the electrical work done is vi'E*/2. The mechanical stress X is then

applied, the mechanical work being s
B
X*/2. This operation causes a

contribution P = dX to the polarization, with a corresponding addi-

tional flow of charge from the battery, involving an additional expenditure

of electrical energy dEX. Thus the three terms in Eq. (185a) are

accounted for.

In a non-piezoelectric crystal d and e vanish, rj

f =
ij", and in Eqs.

(185) and (185a) the two surviving terms represent mechanical and

electrical energy, which are now entirely unrelated.

126. Interpretation of Eqs. (183) to (184a). Equation (183) states

that the total stress (Xh) is made up of two parts: first, the externally

applied stress that would produce the prescribed strain if E = 0; second,

the stress caused piezoelectrically by E (a body stress, as distinguished

from an external stress). That is, the second term is equal and opposite

to the external mechanical stress that would have to be added to the

mechanical stress responsible for the first term, in order to hold the strain

constant when the field was applied. With both strain and field pre-

scribed, the total external mechanical stress component Xh is therefore

not the (Xh) in Eq. (183), but rather

Xh - - ** + ***- = <**> + 2
h

i

The fact that (Xk) is not the external stress, but the sum of two stresses,

one external and the other internal, must be kept in mind in all uses

that are made of Eq. (183). Failure to observe this distinction has led to

discrepancies in the signs of certain terms in the various handbooks.

No such source of confusion exists in Eqs. (183a), (184), and (184a).

Equations occur frequently in which the only stress is the internal

(Xk) caused by E. In such cases, where there can be no ambiguity, the

stress symbol will be written without parentheses.
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Equation (183a) gives the polarization as the sum of two contribu-

tions, viz., dielectric (as for an unstrained or clamped crystal) and piezo-

electric (due to the strain). With most crystals, for which all relations

are practically linear, t\" is independent of the strain and of the field

strength. With the Seignette-electrics i?" is itself a function of the

field strength as will be seen in 456. If there is no external stress, the

strain component xh in Eq. (183a) is all piezoelectric, due to the electric

field, so that Pm is then the polarization in the free crystal, as shown in

Eq. (260).

Similarly, Eq. (184) expresses the strain when an externally applied

stress X and field E are both present. In Eq. (184a) the first term is the

contribution which the applied field E makes toward the polarization in

an unstressed (free) crystal; the second term is contributed by any stress

that may be impressed from without. In most crystals i\' is independent

of field and of external stress (as long as the latter is held constant when

the field is applied); in the Seignette-electrics this is not true (Chap.

XXII).
As will be seen later, in the case of such a crystal as Rochelle salt,

which has different symmetry elements at different temperatures, if the

same piezoelectric equations are to be used at all temperatures, it is

necessary to specify clearly the particular configuration of the crystal

at which the strain is taken as zero. With Rochelle salt this considera-

tion leads to the concepts of "rhombic" and "monoclinic" clamping

and to the proper introduction of the spontaneous polarization P in the

equations. Although this distinction is first discussed in relation to the

polarization theory, it could also be made in Voigt's formulation as

treated in the present chapter. Nevertheless, in all applications of

Voigt's formulation that we shall have occasion to make to the Seignette-

electrics, it will suffice to employ the "normal method" of 458, whereby,

at any temperature, the crystal is in a state of zero strain when it is in its

undisturbed configuration, free from all stress when in zero field. By
this means the Voigt equations can, for example, be applied at once to the

problem of the piezoelectric resonator, without explicit introduction of

either the spontaneous strain or the spontaneous polarization in the

equations*

All the elastic, dielectric, and piezoelectric coefficients are more or

less variable with temperature. Formal recognition might be given to

this fact by retaining the fourth terms in Eqs. (1) and (2), but it is

simpler to assume isothermal processes and to treat the temperature

variations separately. This method is the more justifiable since for most

crystals at all ordinary temperatures the piezoelectric coefficients are

nearly constant.
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127. We now write the piezoelectric relations in full, by expanding
the summations in the second terms of the four equations (183) to (184a)
and setting the first terms equal to zero. For the direct effect, the result-

ing expressions yield the polarization due to mechanical stress in the

absence of an electric field; for the converse effect, they give the con-

tributions to the stress and strain due to an impressed field, on which

may, of course, be superposed the contributions due to mechanical forces.

Since with most crystals the piezoelectric coefficients are independent of

field and stress, it follows that, when either or both of these latter effects

are present, the first terms in Eqs. (183) to (184a) can be retained without

affecting the values of the second terms. On the other hand, there are

crystals, notably Rochelle salt, in which the direct and converse piezo-

electric effects are non-linear in X and E. The theoretical treatment

of such cases demands the inclusion of terms of higher degree in the

expressions for the free energy (23); this procedure is indeed carried

out for Rochelle salt by Mueller (448), but in the case of most crystals

it would only overcomplicate the treatment.

From Eqs. (183a) and (184a) are obtained the principal equations

for the direct effect.

x
= enxx

Pv
= ezixx + ewyv + e^zz + e^yz + e 2&x + e^v \ (187)

Pz

-Px = dnX, + dnYy + duZ. + duYz

-Pv
- daiX. + d22Yy + dnZ. + duY, + dz&Zx + d^Xy (188)

-P. = dnX, + dnY, + dnZ* + duYz + cfoZ. + dX, )

It will be observed that Eqs. (187) and (188) express the electrical

strain induced by a mechanical strain or stress.

Similarly, the principal equations for the converse effect, giving the

mechanical stress or strain caused by an electrical stress, are derived from

Eqs. (183) and (184).

-Xx

Zx
=

Xy = CloEx + etsEy +

(189)

In these last equations the quantities on the left are the internal

stresses due to the l's. Henceforth the parenthesis introduced in Eq.

(183) will in general be omitted, with the understanding that, unless
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otherwise specified, the stress symbols in piezoelectric equations like (189)

will signify internal stress components.
The equations for strain are

Xx = dnEf + dtiEv +
yv

(190)

As one may infer from the equations above, the d's and e's are related

by elastic constants. This relation is obtained by first expressing each

component of stress in Eq. (188) in terms of components of strain, by
6 6

Eqs. (6); the result is Pm = % dmlc?hxh . This expression agrees with
t h

Eq. (187) or Eq. (183a) if one writes

Similarly, it is easily proved that

*a =
2)

c s*

In expanded form, Eqs. (191) and (191a) become

(192)

(192a)

where m =
1, 2, 3; h = 1, 2, . . . 6.

In these equations all elastic coefficients are at constant field. In

general, whenever Voigt's piezoelectric equations are used, isagric values

are assumed for the elastic constants.

128. From the foregoing equations it is seen that the dimensions of

dmh are polarization/stress, charge/force, or the reciprocal of electric-

field strength: in the electrostatic system of units this is [M-*L*T&],

The dimensions of e^ are those of a polarization, [M*L-*T~W]. It is

important to note that the only dimension of the product emhdmh is [k].

Using the practical system of units, we may express dmh in terms of cou-

lombs per kilogram weight and emh in coulombs per square centimeter.*

* The conversion factors for passing from the electrostatic cgs system to other

systems are as follows: The parentheses indicate the units in which the quantities
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It is more customary, however, to use the electrostatic cgs system, with

dmh in statcoulombs per dyne and emh in statcoulombs per square centi-

meter.

It will be observed, with both the d's and the e'a, that the first figure

in the subscript indicates the direction of the field or polarization, while

the second expresses the type of stress or strain. Hence it is not true, as

with the elastic constants, that dmh = dhm > For example, if d^ has a

value different from zero, this means that an electric polarization parallel

to Y is associated with a shear in the FZ-plane. Whenever any d equals

zero, the corresponding e also necessarily vanishes and vice versa. In

the case of coefficients associated with shears (i.e., when the second

figure in the subscript is 4, 5, or 6), it is possible, owing to the presence
of both + and signs in the c's and s's, for dmn and emn to have opposite

signs.

129. From Eqs. (187) to (190) the following useful qualitative rule

can be deduced. It holds universally for all piezoelectric crystals, irre-

spective of the signs of the d's and e's.

The direction of the polarization (i.e., the algebraic sign of P) associated

with a given strain is always the same, whether strain and polarization are

due to mechanical forces (direct effect) or to an impressed electric field

(converse effect).

For example, if a tourmaline crystal is compressed in the X-direction,

xx = Xi is negative. Since for tourmaline #21 and dzi are positive, it

follows from Eqs. (187) (Py = 6212:*) that the component of polarization

in the 7-direction is negative. Now let a field Ev in the negative F-direc-

tion be applied: again Pvt which in this case is r?22^y ,
is negative, and from

Eqs. (190) (x9
= dziEy) we see that xx is also negative. The rule can

also be verified for the Z-component of polarization (for a strain xx,

PI = in tourmaline) ;
and the rule can be expressed in terms of stress

instead of strain.

130. Effect of Spontaneous Polarization on the Piezoelectric Constants.

A crystal belonging to any pyroelectric class has a single polar axis, which

implies the presence of a spontaneous, or permanent, polarization P.
The question suggests itself whether, even in an isothermal process, an

alteration in the surface polarization charges may not take place when

the crystal is deformed, owing to a possible dependence of P upon the

are expressed.

[g]
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strain. Such alteration would affect the value of one or more of the

piezoelectric coefficients. As ordinarily measured, the latter include

this effect whenever it is present.

The theory is discussed by Voigt,* with the conclusion that any
abnormally large piezoelectric coefficient may owe its magnitude to this

effect. The criterion is whether P is large in comparison with e. Data
for tourmaline indicate that spontaneous polarization does not have a

dominating effect on its piezoelectric properties. In Rochelle saltP,
while large, is small in comparison with en, hence the hugeness of the

piezoelectric effect cannot even in this case be attributed solely to P.
The part played by P in Rochelle salt is treated in later chapters.

131. Specialization of the Constants for the Thirty-two Crystal

Classes. The twenty piezoelectric classes have already been indicated

in Table I, 6. As stated there, all are devoid of a center of symmetry
(hemimorphic) ; they are also all either hemihedral or tetartohedral.

The matrices of the piezoelectric coefficients f are shown in Table

XVI. It should be recalled that the first figure in the subscript indicates

the direction of the electric vector, the second the component of elastic

strain or stress. For all classes not listed below, all d's and e's are zero.

The coefficients are arranged in the same order as in Eqs. (187) and (188),

the subscripts indicating independent values, as in 29.

TABLE XVI
TBICLINIC SYSTEM

Class l
t Asymmetric, Ci

en 612 Ci u 6is 6i dn dw dn dn dit die

e^i 622 62$ 624 626 62* dti dn dn (24 dn dn
631 682 6SI 6*4 635 68 dt\ dn dn dn dn dn

en en en
e2i 622 en

RHOMBIC SYSTEM
Class 6, Digonal Holoaxial, V

614 dn
6,5 <*2*

en dn

*
"Lehrbuch," pp. 815, 842, 871.

t In Voigt's tabulation in his "Lehrbuch 1 '

(p. 829), there are a few misprints.
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Class 7, Didigonal Polar, Ca,
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Class 22, Ditrigonal Equatorial, DM
en 611 0000 dn dn 000000000 -cn 00000 -2du000000 000000

Class 23, Hexagonal Polar, C
614 615 000 dn, dn
615 -614 di6 -du

631 631 e38 dsi dn c?33

Class 24, Hexagonal Holoaxial, D
614 dn0000 -en 0000 -dM .000000 000000

Class 26, Dihexagonal Polar, Cev

ei6 dn
615 dis

esi esi ea dzi dsi daa

CUBIC SYSTEM
Class 28, Tessera! Polar, T

614 di4

e 14 dn
eu dn

Class 31, Ditesseral Polar, Td

614 dn
614 dn

en du

Voigt's method* for determining the matrices given above consists,

in brief, in writing the general equations for the piezoelectric surfaces

(136) and then applying to them the various elements of symmetry
of the different classes; for example, if a crystal has an n-fold axis of

symmetry, the equations must be invariant for a rotation of 2ir/n of the

system of reference about this axis. Certain of the 18 parameters from

each class then vanish, excepting only Class 1. Owing to certain differ-

ences between the equations in terms of the e's and those in terms of the

d's (involving the definitions of the components of strain and stress),

it turns out that, while in most cases the matrices for the d J

8 are exactly

similar to those for the e's, exceptions occur in those classes having a

threefold cyclic axis of symmetry. These classes are Nos. 16, 18, 19, 21,

and 22; for each of them, in the last column of the ^-matrix, 2dn and 2d2 2

are the parameters corresponding to en and e22 in the e-matrix. It will

be recalled that an analogous situation exists with the s's and the c's

in the trigonal and hexagonal groups.

132. Discussion of the Piezoelectric Effects. The general piezo-

electric matrix is shown in symbolic form in Fig. 40, in which L and T
*
"Lehrbuch," pp. 820-833.
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stand for the longitudinal and transverse compressional effects, and

L. and T, may be termed the longitudinal and transverse shear effects.

This figure should be compared with the analogous one for the elastic

effects (Fig. 15, on* page 56).

FIG. 40. Tho four types of piezoelectric effect.

In place of the strain components at the top of the figure, components
Xx . . . Xy of stress might have been written; and Ex,

Ey ,
E (converse

effect) may replace the P's, which signify the direct effect; L, T, etc.,

may thus represent either the e's .or the d's. For example, in the upper

right-hand corner of the figure, T, may represent either Px = ei 6xy ,

Px = duXv ,
Xy

= e\sEXl or xv = di QEx.

If the coefficient corresponding to any one of the L's differs from zero,

then a compression in a direction corresponding to this L causes a polariza-

tion in the same direction. This is the longitudinal effect, which is present

in all crystals having dn, d&9 or ^33 or the corresponding coefficients for

rotated axes.

In the transverse effect T, the polarization is at right angles to the

associated compressional strain; these coefficients may be called the

transverse piezoelectric coefficients.

In effects of the type L9 we have the polarization parallel to the axis

of shear (27), i.e., normal to the plane of shear; these may be termed

longitudinal shear effects.

Finally T, represents a polarization in the plane of shear ("transverse"

to the axis of shear).

Coefficients of types T and T8 may appropriately be called the piezo-

electric "cross constants," by analogy with the elastic and dielectric

cross susceptibilities (32, 105).

Among quartz resonators, as well as in other piezoelectric applications,

are found examples of all four effects.

All classes have at least two constants; Classes 12 and 24 have only

two, both of the L,-type, but they are numerically alike, so that they

have only one independent constant. Also, in Classes 22, 28, and 31 the

number of independent constants is one.

Four groups of classes have identical matrices (numerical values being

disregarded). They are Nos. 6, 11, 28, 31; 12, 24; 9, 26; 10, 23.
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133. Piezoelectric Effects Due to Hydrostatic Pressure. If a crystal

or crystal preparation, of any form, is under uniform hydrostatic pressure

II, it is easily proved that the components of piezoelectric polarization

are

-Pi = (dn

-Pa =

The remaining d's are absent, since uniform pressure introduces no shear-

ing stresses. Hence, crystals possessing only coefficients of the types
Lt and T9 shown in Fig. 40 do not become polarized under uniform pres-

sure. Even with crystals having coefficients represented in Eqs. (193),

the d'a may have such values as to make all three parentheses vanish.

If for any crystal class the components of polarization do not all

vanish under hydrostatic pressure, there is a resultant polarization in a

direction that Voigt calls the piezoelectric axis of the crystal. Just half

the piezoelectric classes have such an axis, viz., those which are also pyro-

electric. All other classes show no polarization under hydrostatic pres-

sure. For example, quartz does not show it, while tourmaline does

(piezoelectric axis parallel to the Z-axis; see the "Lehrbuch,*" and also

165.) The case of Rochelle salt is considered in 483.

Piezoelectric Constants for Rotated Axes. The process of deriving

the piezoelectric constants for any system of rotated axes is similar to

that for the elastic constants, as described in 40. Only the results

need be given. For convenience the scheme of direction cosines is here

repeated in Fig. 41.

134. General Transformation to Axes in Any Orientation. The only

expressions that have been worked out in full appear to be those given in

Voigt. f

<*2 (e23 2e84)]

(194)

* P. 878.

t Pp. 838, 840.
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The equation for d'u is obtained from that for e'u by substituting d
for e everywhere and omitting the factor 2 wherever it occurs. From
the equations for e'n and d'n , expressions for e'22 and d'22 or for 4s and d'^

are found by changing a to ft or 7, respectively, leaving all subscripts on

the right unaltered. The expression for dJ3 is given in Eq, (198).

Any transformed d'^ may be derived by the following method (an

analogous treatment would give e^) : The transformed coefficient niay be

defined Ly an equation of the form P'k = d'^X^

(k = 1,2, 3; h =1,2, 6).

The first step is to find the stresses Xx . . . Xv equivalent to X'h from

Eqs. (20). Then by means of Eqs. (188) we express Px,
Pv,

and P,

in terms of Xx . . . Xy and the fundamental piezoelectric strain coeffi-

cients; this gives the components of the polarization, due to X'h , parallel

to the original axes. From them are formed the expressions for the com-

ponents parallel to the rotated axes. Parallel to X 1
the component is

P'x = iP* + azPv + asP, = -d(\X( (195)

Since P*, Py , P* all contain X'h as a factor, d(h is thus expressed in terms of

direction cosines and fundamental piezoelectric constants, for any of the

six values of h. Similarly, by writing the equations for P'
y
and PJ, expres-

sions for d'2h and d'sh are found. A simpler method for deriving the trans-

formed constants for h =
1, 2, or 3 is given in 136.

135. General Transformation about a Single Axis. Following are

Voigt's equations for the transformed piezoelectric stress constants,

for rotation through an angle 6 about the Z-axis. The direction cosines

become reduced to a\ = fa = cos s
c, a2 = /?i

= sin 6 s s,

a
=

ft*
= 7i = 72 = 0,

73 = 1. The positive sense of 6 follows the rules given in 38.

From Eqs. (196), expressions for rotation about the X- or F-axis are

obtained by cyclical changes in all suffixes on both sides of the equations

according to the following table, leaving all else unaltered. For example,

the suffix 24 for rotation about the Z-axis

becomes 35 for rotation about the Z-axis and 16 for rotation about the

F-axis.
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- 2e26) + s 3
2i + C3

ei2 + c2
s(e22 2e^)

se28 e'14
= cs(e24

-
ei 6) + C2d4

- S2e2 s

2
02 4 + sc(ei4 + e26)

ii
-

ei2) + c(l
- 2s2

)ei6
-

s(l
- 2c2

)e26 + cs2(e22
-

en 2e26) + C3e2i
- $3

ei2 + cs2
(e22

- 2eu)

+ 2e26)

+ e25)

= C2
e26

- s*eu + cs(e24
- en)

= c(l
- 2s2

)e26 + s(l
- 2c2

)eu + C2s(e22
- e2 i) + cs2

(eu - eiJ

635
= ce36 + s<?34 e36

=
(c

2 - S2
)e36 + cs(e32

- e3 i)

(196)

The corresponding equations for the piezoelectric strain coefficients

d'n . . . d'36 for rotation about the Z-axis are obtained directly from Eqs.

(196) by simply writing dhfc in place of ehk, whenever h = 1, 2, 3 and

k = 1, 2, 3; but when h = 1, 2, 3 and A; = 4, 5, 6, dw/2 is to be written in

place of ehk. This rule applies to both primed and unprimed coefficients.

For example, d'36/2 = (c
2 $2)d86/2 + cs(d32 dn). The transition to

rotation about the X- or F-axis is made in the same way as with the e's.

When the general equation for any dhk or ehk has once been derived,

that for d
(*+i)<*+i) or <*+IH*+I> is found by changing a to ft ft to 7, 7 to

a,

leaving all subscripts on the right side of each equation unaltered. This

rule may be applied also to the equations for the general rotation spe-

cialized for any class, with the following important reservation: It is

not valid in those cases where two different constants have the same

numerical value and where for the sake of simplification a single symbol
is used for both. Thus, for example, in Eqs. (221) the rule is not appli-

cable because we have written e i4 for c2 5 and en for e26 ;
but it is

applicable to all equations for general rotation of axes in Class 6 or

indeed in any class where no two constants become identical.

The rule as stated is of course not applicable to the equations given

for rotation about a single axis.

The specialization of the foregoing equations to the various crystal

classes is given in later sections.

136. Piezoelectric Surfaces and Diagrams. For the purpose of

determining which piezoelectric constants differ from zero in the various

crystal classes, Voigt made use of three relations between the CM, also

three between the due, each of which could be represented by a certain

"piezoelectric surface." One of them is a trivector (tensor of the third

rank) surface, involving all 18 constants; it is of the third degree and
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essentially the same as the expression for e'u (or d'u) given by Eq. (194)
or that for d'38 that we derive below in Eq. (198). The other two surfaces

are represented by equations of the second and first degrees and need

not concern us further.*

The piezoelectric surfaces that are usually represented graphically,
as intersections with the three principal planes, and as illustrated in

later paragraphs, are derived from Eqs. (197) and (198) below. If a

pressure Z'g is applied, parallel to the Z'-axis of a rectangular system of

axes X', Y
1

,
Z 1

in any orientation, it follows from Eqs. (22) and (188) that

-Px =
-Pv

= Z'.(dnvl + dny\ + d^yl + d247273 + da67i7i + dujiy*)
|

(197)

-~Pg
= Z*(d3l7l + ^3272 + ^3373 + ^347273 + ^367371 + Am?*) J

If the pressure is parallel to X' or to 7', we write X'x or Y'y in place of

Z*z and a or in place of 7.

Next we find th component of polarization P'n parallel to Z'g \

P',
= P*7i + /VY2 + P,73

+ { W + ^35)71 + (^23 + ^34)72171

+ Wi4 + d<x + ^30)717273]
= -Z'A,

where d'n , given by the expression in braces, is the transformed piezo-

electric strain constant. The same equation can be used for d'n or dJ2

by changing 7 to a or /3; P'z then becomes P'x or P'y ,
and for Z'z we write

X'x or Yy. Equation (198) expresses the longitudinal effect for rotated

axes. It gives the electrical strain in any direction due to a mechanical

stress in the same direction and is the piezoelectric analogue to Eq. (34)

for Young's modulus. P'z is called the longitudinal polarization cor-

responding to a compression Zz in the direction 71, 72, 73.

Similar expressions may be written for the transverse polarizations

Px and PJ:

P'x = P.i + Pva* + P,<*z = -Z'A, (199)

P'v
= P*Pi + Pvfa + P* = -Z'&t (199a)

If the applied stress is X'x ,
the transverse polarizations are

Pi = PA + - - -XXi,

P'z = P*yi + . -
=

Xicfti; similarly, in terms of Yy we obtain the

expressions for d'u and d'^.

* For a more complete discussion of piezoelectric surfaces see Voigt, pp. 820/. and

840, also ref. B20, vol. 1, pp. 1
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These expressions for the polarization produced by uniform com-

pression in various directions are of special importance. As has been

stated, the components of polarization parallel and perpendicular to the

direction of compression represent, respectively, the longitudinal and

the transverse effects. For the longitudinal effect with respect to

arbitrary axes the strain constants are d'n ,
d'22 ,

and dJs- If we consistently

let the Z'-axis be the direction of compression, attention need be paid

only to d'83 ,
the variation of which, as the Z'-direction is allowed to vary,

will then completely describe the longitudinal effect for all orientations.

The constants d'u and d^ will then suffice for the transverse effect, since

they give the polarization components along the X'- and F'-axes. Illus-

trations of the distribution of these quantities in space will be found

in the discussions of particular types of crystal.

For a given value of ZJ, if PJ as given by Eq. (198) is plotted as a

radius vector with direction cosines 71, 72, 73, the resulting surface is the

trivector surface mentioned above; and if Zf

z
= 1 d^ne/cm2

, any radius

vector gives the numerical value of d33 . In this case we have, for any

given crystal, the characteristic piezoelectric surface for d33 . A similar

surface could be constructed for d'66 ,
and of course likewise for d'n ,

d'22 ,

d44 ,
and d'66 . It would not be convenient, however, to construct surfaces

for the remaining constants, since the polarization parallel to any radius

vector would then not have a value uniquely associated with that

direction.

Nevertheless, if the transformation of axes consists in a rotation

about a single axis, a polar diagram for any of the 18 constants can be

drawn in a plane perpendicular to this axis, in which the radius vector

gives uniquely the value of the constant for all orientations about the

axis. Such diagrams are shown later for some of the more important

crystals.

137. Electrostriction. In the most general sense, the term electro-

striction in dielectrics applies to any interaction between an electric

field and the deformation of a dielectric in the field.. With this broad

interpretation, the word includes the phenomena of piezoelectricity, and

indeed some writers have called the converse effect "electrostriction."

This usage can lead only to confusion and should not be encouraged.
Most authorities have adopted the wiser practice of reserving, the term

for those phenomena in which the deformation is independent of the

direction of the field and proportional to the square of the field. All

observed relations between field and deformation can be assigned either

to this type, which is properly called electrostriction, or to the type in

which the relations are linear, which includes the phenomena of piezo-

electricity. In the former type the relation between field and deforma-

tion is centrosymmetrical; in the latter it is not.
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In all references to electrostriction in this book the quadratic effect

is meant.

Quadratic electrostriction is the mechanical analogue of the Kerr

quadratic electro-optic effect. It is distinguished from the linear or

piezoelectric effect in two important respects. First, it is a common
property of all materials, whether gaseous, liquid, or solid. Second, the

effect is so minute that, although it is always present in piezoelectric

phenomena, it can usually be completely ignored. Only in fields stronger
than 20,000 volts/cm can it be comparable with the effects of piezo-

electricity. Its presence in quartz has been studied by Tsi-ze, as stated

in 159.

The deformation of a dielectric in an electric field, apart from the

piezoelectric effect, is determined partly by the Maxwell stresses, which
are the only ones mentioned in reference to electrostriction in many
textbooks, and partly by any dependence that the dielectric may have

upon the strain. In an electric field the dielectric tends to assume a

configuration such as to reduce the total energy to a minimum. If, as is

usually the case, the dielectric constant decreases as the volume increases,

the Maxwell stresses and the varying dielectric constant conspire to

make the volume increase when a field is applied. With some substances,

however, the dielectric constant decreases with decreasing volume. In

such cases, the state of minimum energy may be accompanied by a

diminution in the volume despite the Maxwell stresses. *
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CHAPTER IX

SPECIAL PIEZOELECTRIC PROPERTIES OF CERTAIN CRYSTALS

Ich after schneyd Edelgestein

Auff meiner scheiben gross und klein,

Als Granat, Rubin und Demut,

Schmarack, Saphyr, Jacinthn gut,

Auch Calcidonj und Perill,

Schneyd auch der Fursten Wapen viel,

Die man setzt in die Pettschafft Ring,
Sunst auch viel Wappen alter ding.

HANS SACHS.

For those piezoelectric classes that include crystals on which quanti-
tative observations have been made, the general expressions given in the

last chapter will now be specialized and the outstanding piezoelectric

features described. Numerical values of the piezoelectric constants will

be given, so far as they are recorded in the literature and appear to be

trustworthy. For quartz and Rochelle salt, however, the data presented
in this chapter are supplemented by the more detailed discussion in

chapters devoted to those crystals.

For each class that is now to be considered, the characteristic piezo-

electric features, based on Table XVI, will be summarized. The equa-
tions for rotated axes are taken from various sources; some of them
have been worked out by the author. Wherever necessary, these

equations have been modified to conform to our conventions respecting

the sense of rotation and the positive directions of axes, as shown in 51.

When any class is mentioned as being also pyroelectric, the combined

effects of primary and secondary pyroelectricity are meant; all piezo-

electric crystals have tertiary pyroelectric properties (515).
The piezoelectric properties of each class can be presented equally

well by Eqs. (187), (188), (189), or (190), with the aid of the matrices

in Table XVI. Equations 189, for the converse effect, have been chosen

here, owing to their importance in the theory of resonators.

The precision in the measurement of the piezoelectric constants

may be inferred from the number of significant figures. Hardly any
data are available concerning systematic errors and differences between
individual specimens. Measurements are so difficult, and the results

are so uncertain, that in many cases one cannot even be sure of the first

significant figure.

200
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For some of the classes a few crystals are named as examples, with

which positive results have been observed, though only qualitatively.

Reference to qualitative observations on a large number of crystals is

made in 172. All values are in electrostatic cgs units (128).
138. Class 3, Monoclinic Digonal Polar (Hemimorphic) (symmetry

C2). This class is also pyroelectric. There are eight independent piezo-

electric constants. The equations for the converse effect are

euEx
' - ra v - ' (200)

Further data, including expressions for the components of polariza-

tion produced by pressure in various directions, are given in Voigt.*

Pavlik411 shows how an orientation can be found for which certain

piezoelectric shearing stresses vanish; he also gives some transformation

equations for constants of Classes 3 and 4.

Tartaric Acid, C4H606. The following values are from Tamaru:503

= -24 eZis
= 28 d24

= 28.5 <225 = -36.5 x 1Q
_8

dsi = 1.95 d32 = 5.95 d33 = 6.45 d3e
= 3.8

Despite its strong piezoelectric properties this crystal, perhaps on

account of its comparatively easy cleavage, has not found piezoelectric

applications, beyond that suggested below.

Cane Sugar, Ci2H22Oii. Holmann232 finds

du = 1.3 d = -1.3 du = -7.2 d^ = -3.7

dn = +2.2 eJ32
= +4.4 d33

- -10 d^ - -2.6

By applying hydrostatic pressure to tartaric acid and cane sugar, Lawson

and Millerj have observed the quantity (dn + d32 + d33) for each of

these crystals, finding good agreement with the values given above.

For resonator experiments with beet sugar see 381.

TerpstraJ has recently found that crystals of brushite, CaHPO 4 ,
are

piezoelectric and that they should be assigned to Class 3. Other exam-

ples of this class are milk sugar, lithium sulphate, and the tartrates of

Na, K, and NH4 .

139. Class 6, Rhombic Digonal Holoaxial (Hemihedral) (symmetry

F). This is the class to which Rochclle salt in the parelectric state (434)

belongs. The class is not pyroelectric. There are three piezoelectric

constants, all independent. The three stresses associated with them are

*
Pp. 873/.

t A. W. LAWSON and P. H. MILLER, JR., Piezometer for Transient Pressure, Rev,

Sci. Instruments, vol. 13, pp. 297-298, 1942.

J P. TEEPSTHA, Z. Krist., vol. 97, pp. 229-233, 1937.
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Whatever the direction of the electric field, the only strains that it

can cause, with respect to the X-, F-, Z-axes, are the three indicated

by the equations above. Similarly, only stresses that involve one or

more of these three components can produce an electric polarization.

In general, a compression in any oblique direction causes a polarization

having a component parallel to this direction (longitudinal effect).

Only in special cases can the total polarization be made parallel to the

direction of compression.

If ei4, e26 ,
and eu (and hence du ,

d25, and d* 6) do not all have the same

sign, there is always a component of polarization at right angles* to the

compression; this fact was first pointed out by Pockels428 for Rochelle

salt. That is, there is in this case no axial orientation for which both

d(2 and d'13 in Eqs. (201) can be made to vanish.

Following are the equations for d(k, axes in any orientation (direc-

tion cosines as in Fig. 41) :

= (l7273
-

01710*25
- d

=
[<*i(0273 + 0372)

(201)

- du)
-

02720*36
- du)

~

717273014 + ^25 + ^36)

*26
-

du) + 0272^36
-

^14)

[7i(203 + 3 2) + 72(a30i + ai03) +

M - du)

By following the rule given in 135, one can obtain the equations for

all the remaining d'hk directly from the expressions above. As an

example of this we have included the equation for dJ6 ,
which is arrived

at by permutation from that for d'u.

The rule for writing the equation for any 4* from the corresponding

4* in Eqs. (201) is as follows: Substitute CM for dhk (both primed and

unprimed) when h ~ 1, 2, or 3 and k = 1, 2, or 3; when A,=.l, 2, or 3

and k = 4, 5, or 6, substitute 2eA* for d^.
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Any one of the equations for d'n ,
d'22 ,

and 4a may be taken as an

expression for the longitudinal effect.* For example, d'n occurs in the

equation Px
= dfnXxt showing that a compression X'x in any arbitrary

direction i, 2, 3 causes a polarization Px in this same direction. Theo-

retically, the longitudinal effect vanishes only with the vanishing of at

least one of these direction cosines, i.e., when the direction of compression
is perpendicular to at least one of the crystallographic axes. Practically,
the effect is relatively small until i, a2, and 3 become approximately

equal (see 140).

Equations (201) and the corresponding equations for e^ hold also

for Classes 11, 12, 24, 28, and 31.

Equations for e'hkj Rotation about the X-axis, ai = 1,

01 = 7l = Q 2
=

8
=

0,

02 = 7a = c, Ps = ~
72 = s. The corresponding expressions for d'hk are

obtained by writing dhk in place of ehk when h = 1, 2, 3 and k = 1, 2, 3;

but when h = 1, 2, 3 and k =
4, 5, 6, efofc/2 must be written in place of

eik- This rule applies to both primed and unprimed coefficients.

4i = e'12
= 2cseu e'13

=
ei4

==
(^

2 s2
)0i4 ci&

=
ci6

= o

621
== C22

==: 623
= 624

=
625

= C2026 S
2
C3 6 (202)

By changing the suffixes cyclically according to the scheme in 135,

the equations for rotation about the Y- or Z-axis may be derived from

Eqs. (202).

If the angle of rotation about the X-axis is 45, s = c = l/\/2> and

we have the transformed constants suitable for use, for example, in

problems dealing with vibrations of X-cut 45 bars:

j .__ e J = e d' = df = (203)

For an electric field parallel to X these are the only constants. Similar

equations hold for 45 rotations about Y or Z.

The relations between the piezoelectric strain and stress coefficients

are especially simple for crystals of Class 6. Since c44 = l/s 44 ,
c 66

= l/s B 5,

c66 = 1/S66, Eqs. (192) and (192a) reduce to

* The existence of a longitudinal effect in crystals of this class seems to have been

generally overlooked, in spite of the fact that the Curies probably employed it in their

discovery of piezoelectricity in Rochelle salt; moreover, it is clearly implied in the

equations subsequently derived by Voigt. The author was guilty of this oversight in

1930 (ref. 102), and it appears in the literature as late as 1937 (ref. 228).
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(204)

There is nothing very critical in the orientation of X-cut 45 bars of

Rochelle salt. An error of a degree in any angular parameter reduces

the piezoelectric effect to an extent not over about half of 1 per cent.

On the other hand, Y- and Z-cut plates should be oriented with great

care if effects due to du are to be excluded.

140. As an illustration of the use of formulas for rotated axes may be

mentioned the "Z/-cut," in which the normal to the crystal plate makes

equal angles with all three crystallographic axes. The direction, of the

normal is taken as the X'-axis; the F'-axis lies in the JTF-plane, at 45

to the X- and F-axes. According to Fig. 41 the direction cosines of the

normal are a\ = a2
=

3
= 0.5774. The general equation for the

longitudinal effect in this class is found, from Eqs. (201), to be

(205)

(206)

In the present case this reduces to

<fn - 0.192(du

Equation (206) shows that a longitudinal effect exists in Rochelle

salt for all orientations in which aio^a differs from zero, reaching a

maximum when a\ = 2
=

3. The same statement is true of all

crystals in Classes 6, 11 28, and 31
;
for Classes 12 and 24 the right side of

Eq. (206) vanishes.

Experiments with Rochelle-salt oblique cuts of this type are described

in 378 and 504.

141. Rochelle Salt, NaKCJl4O 6-4H sO. Outside the two Curie

points (approximately 18 and +24C), this crystal clearly belongs to

Class 6. Its monoclinic character (Class 3) between these points is

discussed in Chap. XXV. It possesses primary pyroelectricity in the

monoclinic form, but not in the rhombic. We consider first d^s and dse,

which show no anomalies.

d2 6 and d3 e have been measured by Pockels428 at room temperature,

by Valasek545 at 0C (both used static compression of 45 bars), and by
Mason335 at 30 by the antiresonance method* described in 311.

11 Dr. Mason informs the author that his latest observations give d25 176(10~8
).
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Valasek also observed the variation with temperature, finding an

increase in the numerical values from 60 to +30C amounting . to

0.68(10-*) per degree for d25 and 0.031 (10~
8
) for d3 e. These results,

together with the dependence of du on temperature, are shown in Fig. 106.

When the foregoing results are reduced to 0C by the use of Valasek's

temperature coefficients (assuming Pockels's data to be at 20C), the

following values are found:

Again using Valasek's temperature coefficients, we find for the

average values at 20C

= -160(10-
8
) 36(10-

8
) (207)

in close agreement with Pockels's original data.

Values of the piezoelectric stress coefficients e25 and e3 e are obtained

from Eqs. (204). We must first find the isagric values of s& and s?6 ,

starting with s5

*
6
= 32.0(10~

12
) and

* = 11.4(10-
12

) from 79, Table V
(the asterisks indicate that the values are for infinite gap). From

Eqs. (273), (205), and (488), it is found that at room temperature

*?8 = 35.3(10~
12

) ?e
= 1

From Eqs. (205) and (204) we obtain finally

e25
= -4.5(10

4
) 3.0(10

4
)

The first measurement of du was by Pockels,* who found values from

340(10~
8
) to 1,180(10~

8
). Further experimental data, obtained under

static and 1-f conditions, are treated in Chaps. XXI and XXIV. The

theory is discussed in Chaps. XT, XXIII, and XXIV, where it will be

shown that the piezoelectric constants according to the
"
polarization

theory" are nearly free from the variability with temperature and stress

for which du is notorious. The abnormal behavior of du is summarized

* Ref. 428. Pockels's results were obtained with three 3T45-plates, each 6 by 6 by

3 mm, compressed by a force of about ICO g parallel to a long edge. The temperature

is not mentioned. Pockels attributed the wide range of values to lack of uniformity

in the stress, but variations in temperature may well have been a contributing cause.
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in 370, 402, and 403 and Chap. XXV. Although there is no such

thing as a "normal" or "standard" value for either du or CH, fairly

definite values can be given to their counterparts bu and ai4 in the

polarization theory.

142. Piezoelectric Constants of Rochelle Salt According to the Polariza-

tion Theory. The constant 614 is obtained from Eq. (4956), bu = du/rfx9

and an from Eq. (495), aJ4
= 6ucJ4 . di4 and ifz are known within per-

haps 10 per cent for small fields and small stresses (initial values, with

linear relations), except close to the Curie points. Information is still

lacking on their dependence on mechanical and electric stress, and under

large stresses their values between the Curie points are complicated by

hysteresis. From the parallelism between du and ij'x ,
bu and au may

be expected to show but small dependence on YK and Ex . The values

given below are to be regarded as initial values.

From his treatment of Mason's vibrational Experiments Mueller378

calculates du (see 474) and thence finds, from 24.7 to 47.5C, values of

6U from 5.7(10~
7
) to 6.4(10~

7
), with an average of 6.2(10~

7
). Between

the Curie points, as is evident in Fig. 146, bu rises to higher values; the

same applies to a J4 . Provisionally, at least, the value of bu given below

may be accepted. The values of 625 and 6 3 c are calculated from Eqs.

(205) and (488a), by the use of Eq. (242): &25
= d^/^ bu = d^/n'z .

an is the same as Mueller's fu. From Mason's experimental data

Mueller calculated au from du, ??, and c 4 (or, in our notation, from 6 14

and c 4). The results are shown in Fig. 146, from which the average

value is seen to be around 7.5(10
4
). Mason's fu is expressed according

to his charge theory, as explained in 190. Mason's value, which we shall

here call /f4 (<r
= charge density), is 4?r times the value /?4 according to

the displacement theory. From 189 it is seen that/f4
= (k" l)ai4/A;",

where a^ is the constant according to the polarization theory, whence

au is about 1 per cent greater than /f4 .

Now for #4 Mason gives the value 7.8(10
4
) in his first paper

335 and

also in his book,
835

although in his second paper,
338 by a method appar-

ently less open to criticism,* he finds the value 7.5(10
4
); this value

was found to show no measurable drift with temperature from 10 to

+50C. Whatever value is adopted, it must satisfy the relation

__
If one accepts 6 J4

= 6.4(10~
7
) and cJ4

= 11.6(10
10

), one finds

^ a 14
= 7.4(10

4
).

'

* Mason writes /f4 * 4ireu/Ki, where K\ is the clamped dielectric constant. He

gets en from e\\ du/44, but apparently he uses sf4 instead of sf4 in this equation

[see Eq. (204)]. As may be seen from his equations (54) and (55), his KI is also in

error. The correct relation between Kp and KI [our k1 and &"; see Eqs. (521) and

(521&)] does not involve .
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In calculating a26 and aa e, we use the values of c 5s and c6c from Table V,
which may be assumed to be approximately the constant-polarization
values. Then from Eq. (ix), Table XX, we have a2s

= 625^5 and

The final values are as follows, all with a probable precision of 10

per cent:

c14
= 7.4(10

4
)

026 = -7.1(10
4
)

a36 = 4.7(10
7
)

bu = 6.4(10-
7
)

b26 = -23(10-0
& 36 = 5.4(10-

7
)

Not only are these constants nearly independent of temperature, but

all in the same column are of the same order of magnitude and, indeed,
of the same order as the corresponding constants for quartz. The close

relationship between piezoelectric and dielectric phenomena comes again
to light here: the 6-constants are functions of quotients (Voigt piezo-

electric strain constant) /(susceptibility), and since large values of dhk

are associated with large r/J the quotients are much more nearly alike

than are the dhk for different crystals and for different effects in the

same crystal.

143. Heavy-water Rochelle Salt. The properties of this crystal, includ-

ing dielectric and elastic, are described in 444. The piezoelectric values

below are derived from observations by Holden and Mason231 on 45

X-, F-, and Z-cut bars vibrating in resonance, du is calculated by means

of Eq. (452) (page 388);* similar formulas are used for d25 and dse. The
coefficient au of the polarization theory is derived from Eq. (495(2).

The form of the curve relating du with temperature, show in Holden

and Mason's paper, is similar to that for ordinary Rochelle salt. au is

nearly independent of temperature, with a mean value of about 7.3(10
4
),

approximately the same as for ordinary Rochelle salt.

* This formula is probably more accurate than that used by Holden and Mason

and yields values somewhat different from theirs. Values of 17, are from their Fig. 5,

in substantial agreement with Habltitzel's data, which are shown in Fig. 134.
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Holden and Mason find for d2s and d^:

d = -220(10-*) dt* = 40(10-
8
)

These two values are both somewhat greater than those for ordinary

Rochelle salt in 141. d25 shows a slight increase with temperature.

144. Sodium-ammonium Tartrate, NaNH 4C 4H 4O 64H20. Elastic

and other data for this crystal are given in 88. The following piezo-

electric constants were measured by Mandell,
328 who also measured the

elastic constants:

du = 56(10-
8
) d2 5

= -149.5(10-
8
) dn = 28.3(10~

8
)

This tartrate is isomorphic with Rochelle salt, but it shows none

of the piezoelectric anomalies of the latter, beyond a certain fatigue

effect and dependence on moisture in the surrounding air. Mandell

found no appreciable change in piezoelectric response from 17 to

-f30C. Above 30C the crystal gradually becomes conducting.

Mixed crystals of the Na(NH4) and NaK tartrates can be grown
in all proportions. Their properties are discussed in Chap. XXVII.

145. Class 10, Tetragonal Polar (Tetartohedral) (symmetry C4).

Not pyroelectric. There are seven piezoelectric constants, with four

independent values:

Yy

The only crystal in this class on which piezoelectric measurements have

been made is barium antimonyl tartratej Ba(SbO)2(C4H4 6)2*H2O.

Veen563 found dn = H(10-8
).

146. Class 11, Ditetragonal Alternating (Hemihedral with Inversion

Axis (symmetry Fd). Not pyroelectric. There are three piezoelectric

constants, of the same types as those in Class 6, but two of them have

identical values:

-F, = euEx -Zx = euEy -Xv e36Eg (209)

All the transformation equations given above for Class 6 hold for

Class 11 also.

At the present time the importance of this class, from the piezo-

electric viewpoint, lies in the fact that some of its representatives have

Seignette-electric properties related to those of Rochelle salt. As shown

by Busch88 these are the primary phosphates and arsenates of potassium

and ammonium. Their dielectric properties and the possible transitions

to other crystallographic classes at certain temperatures are treated in

Chap. XXVII.
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The piezoelectric constant du of KH2PO4 has been measured statically

by Ltidy
322 by means of a string electrometer, and by Bantle and Caflisch,

2'

who used a ballistic galvanometer. At the Curie point, 122K ( 151C),
a value as high as 60,000 (10~

8
) was determined. With increasing

temperature the value falls, very rapidly at first and then more slowly, to

50(10~
8
) at 20C. Below 122K the value decreases to 10,000 (10~

8
)

at the temperature of liquid air. It is in the region below 122K that

KH2PC>4 takes on Seignette-electric properties, analogous to those of

Rochelle salt between the Curie points. In this region dst depends
on stress as well as on temperature, as is shown by the fact that the

polarization: stress curve is non-linear, with an approach toward satura-

tion when the stress is around 40 kg/cm2
.

Similar results with the converse effect were obtained by Arx and
Bantle. 11 They found that below the Curie point, exactly as with

Rochelle salt, an alternating electric field gave rise to a hysteresis loop.

From this it appears that dzQ is not a single-valued quantity below 122C,
except with very weak fields. As with Rochelle salt, there is a "

Curie-

Weiss law" for ds6 in the neighborhood of the upper Curie point.
26 The

properties of KH2PC>4 are described further in Chap. XXVII.
147. Class 12, Tetragonal Holoaxial (Enantiomorphous Hemihedral)

(symmetry 1)4). Not pyroelcctric. There is only one independent

piezoelectric constant, 614 = 625. The transformation equations given

above for Class 6 become especially simple when applied to Class 12.

Classes 12 and 24 possess a unique piezoelectric property, which

follows from the fact that for both of them e25 = e\\ and e 3e
= 0.

The result is that for these two classes there is no direction in which a

compression can be applied which will cause any component of polar-

ization parallel to the compression: there is no longitudinal effect in Classes

12 and 24. This conclusion follows at once from the equation for d'n ,

d'n, or 6^3 in (201). On the other hand, the transverse effect with respect

to transformed axes does not vanish; this may be seen, for example,

from the equation for d f

12 in (201).

The only representative of Class 12 that need be mentioned is nickel

sulphate, NiSO4
:6H20. Its cleavage is so easy and its instability is such

that it cannot be recommended for piezoelectric applications.

148. Class 18, Trigonal Holoaxial (Enantiomorphous Hemihedral)

(symmetry D3) . Not pyroelectric. The chief representative is a-quartz.

There are five piezoelectric constants, with only two independent values:

-Xx = euEx
- Yv

= e 12Ex = -cnJE?,
- F, = euEx

Of these equations, the first represents the longitudinal effect, the

second the transverse effect, discovered in quartz by the Curie brothers,
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The first gives the driving stress for thickness vibrations, the second

that for lengthwise vibrations, in X-cut plates. The last equation plays

a part in thickness vibrations of F-cut plates. In the theory of oblique

cuts various combinations of the constants occur. The possible vibra-

tional modes that can be excited piezoelectrically in quartz are discussed

in Chap. XVII.

Following are the expressions relating the piezoelectric stress and

strain constants, specialized from Eqs. (191) and (191a) :

en = dn(cn - Ci2) + duCu (211)

en = 2dnCu + dudt (21 la)

dn = en(sn - Si2) + Ci4Si4 (2116)

du = 2ensu + ei4S44 (21 lc)

Equations (188) become reduced to

-Px = dn(Xx
- Yy) + duY, ^ -Pv

= -(duZ. + 2dnXy)

Px
= (212)

For crystals in this class the summation in Eq. (265), for fields

parallel to either X or Y (m = 1 or 2), becomes reduced to

6

(213)

This expression occurs in the relation between the free and clamped
dielectric constants. For fields parallel to Z the piezoelectric effect

vanishes, so that k'z
= k".

Let the dimensions of an Jf-cut plate be e, I,
and b parallel to the

X-, F-, and Z-axes, e being small in comparison with b and I. Then
if a compressional force Fx = blXx is applied, the piezoelectric charge on

electrodes covering the major faces is

Qx = blPx - -
|

= -dP. (214)

If the applied compression is Fy
= beYy ,

the charge is

Q, = blP, - *& = ?
(215)

06 G

Equations (214) and (215), which express the longitudinal and

transverse effects respectively, were verified by the Curie brothers.

It should be noted especially that in the longitudinal effect the charge is

independent of the area to which the force is applied, while in the trans-

verse effect the charge-is proportional to the ratio of length to thickness

of plate.

149. In the measurement of dn a, question may arise concerning the

effect on the precision with which dn is determined, when the pressure
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is applied to a small portion only of the surface and also when the elec-

trodes do not cover the entire FZ-faces. So far as the longitudinal effect

is concerned, if the force Fx and the total charge Qx are observed, the

constant dn is given by Eq. (214): dn = QX/FX. In order that all

of the piezoelectric charge may be observed, the* electrodes must cover

at least as much of the crystal as is in a state of strain; but it is not neces-

sary to assume that all lines of elastic stress are parallel to the X-axis,

Nevertheless, in order to minimize the danger of producing a flexure of

the plate, with the attendant polarization, it is better to distribute the

pressure uniformly over the entire surface and to let the electrodes

extend to the edges of the plate.

When, as is more common, dn (= diz) is measured by the trans-

verse effect, it is customary to apply a pressure, parallel to F, to an

X-cut plate having its length and breadth parallel to F and Z, and pro-

vided with electrodes in immediate contact with the two faces normal to

X. The pressure may, of course, be either a compression or an exten-

sion. The latter is preferable, since bending or buckling of the plate is

thereby avoided. In order to avoid troublesome edge corrections, the

electrodes should cover the entire breadth of the plate, parallel to Z, but

they need not extend to the ends: it is sufficient to let the quantity I in

Eq. (215) represent the length of the electrodes.

Corresponding to Eqs. (214) and (215), the following expressions

hold for the elongations produced when a potential difference V esu is

applied to an X-cut plate having a thickness e parallel to X and length I

parallel to F:

Le = duV AZ = du ~ V = -dn - V (216)
& 6

An expression for du similar to Eq. (215) can be written if it is assumed

that the applied stress is F*. Such a stress could theoretically be

realized with an X-cut plate by impressing upon the two faces normal

to the F-axis a pair of tangential tractive forces Fy
= beYz,

the

directions of these forces being parallel to the Z-axis. From Eqs. (212)

there would result

Q.-WP.--^---'^ (217)

The similarity of this expression to (215) is obvious. In practice, such a

shearing stress as this is usually attained by applying a compression to

an obliquely cut plate. It was thus that Voigt determined du for quartz,

using X-cut rectangular plates rotated 22 and 45 about the X-axis.

Calling Z'x the impressed stress, we have for the resulting polarization,

from Eqs. (221),
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When dji has been determined by means of Eq. (214) or (215), du can

be calculated from the observed Px and Z'z .

150. Piezoelectric Constants, Class 18, for Rotated Axes. For the

transformation to axes in any desired orientation the methods of 134

are employed, retaining only those constants that are characteristic

of this class. For example, from Eq. (194) it follows that

4s = 7iM - 37j)ii (218)

where y\ and 72 are direction cosines for the Z'-axis. In terms of azimuth

<p and colatitude 6 of the Z'-axis, as defined in 51, this equation* may be

written thus:

4a = en cos 3p sin3
(218a)

Similarly, from Eq. (194) or (198),

d33 = 71(7!
-

3-yi)dn = dn cos 3?> sin3 9 (219)

For this class hardly any general transformation formulas for the

piezoelectric constants, applicable to axes in all orientations, are avail-

able. In a recent paper Mason and Sykes
343

give the equation for d3l

for any axial system, the axial directions being specified in terms of the

angles <p, 0, and ^ according to 52:

d'81
= du sin 0[cos 3^(cos

2 cos2
<p sin2

^) sin 2^ sin 3<p cos 0]

- ^ (sin
2 sin 2^) (220)

The relations between <p, 0, ^, and the direction cosines are given in 52.

151. The most useful transformation formulas are those for rotation

about a single axis. They may be derived from Eqs. (196). About the

X-axis, the direction cosines defined in Fig. 41 become on = 1,

j3 1
= y l

== a2
= a3 = 0,

2
= ys

=.
c, /33

= 72 = s. The transformed constants are

[6 90] [6 90]
d'14

= 2csdn + (c
2 S2)di4 44 = csen + (c

2

d'26
= 2c5du - C2d14 4B

:

d'26
= ~2c2du - csdu 4e * -

dJi
= d32 = d33 = dJ4

= 4i ~ 4s ^
^33

^ 44 ~
7 Jf f A

I ___ /

[0 90
2

f

35

[0 90]

90] [0 90]

(221)
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Rotation about the Y-axis, fa = 1, fa = fa = a2 = 72 = 0,

dli = c8du
dia = -cdn 6i2

= CCn

[90 6]

d'16
= -csdu

d'23
= d

d'n
= -(c

2 -

s*du = 411 on
[90 e]

= (TSCu =
[90 8]

eia
= csei4

622 =
die 23

= 2c/16

sdu =
d!2 e24

= sen = c'12

[90 6] [90 C]

^31 ^15

^2 = 44

4s = s3en = 4i

[90

^36

[90 e] [90 6]

Rotation about the Z-axis. 73 = 1, 71 = 72 = s
= fa = 0,

(222)

dn cos

rfn sin

= en cos

^4
= 614

ie
= e2i

'

2i
= s(l 4c2

)en
= -eu sm30 (223)

22
= -4i
= 44

= o

e|2
= 4 =

el* = ei. =
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152. Polarization Produced in Crystals of Class 18 by Uniform Pres-

sure in Any Direction. Let the pressure be Z'z , parallel to a Z'-axis having

any direction cosines 71, 72, 7sJ the result may also be expressed in terms

of azimuth <p and colatitude 6 (Fig. 17). It follows from Eqs. (212) and

(22) or from Eq. (197) that the components of polarization are

(224)

P* = -IM ~
= [dn sin 2

0(cos
2

<p sin2
<p) + du sin & cos sin <f>]Z'z

= sin cos <p(2dn sin sin ?? + du cos 0)Z

Pz
-

The total polarization, given by P2 = PI + P%, lies always in the

XF-plane; it can be resolved into two components, parallel and perpen-

dicular to Z'. The former of these, which may be called PI, expresses

the longitudinal effect for oblique pressures in quartz or in other crystals

of Class 18.

+
where

as in Eq. (219).

When = 90

= -dn sin8 6 cos

= ^11 sm3 ^ cos 3^>

Z'z = -d'uZ'g (225)

(226)

FIG. 42. Longitudinal piezoe-
lectric effect for quartz in the

,3f-plane (from Voigt). Radius
vectors are proportional to ^'33.

and <p
=

0, 120, or 240, 4s =
^11, %', becomes Xx

parallel to one of the electric axes, PI

becomes Px . This is the maximum value

that PI can assume with given Z
f

z
- and in

these special orientations PI is also the

total polarization. In general, there are

components of polarization both parallel

and perpendicular to Z'g , except for certain

special orientations that will be considered

in the following paragraphs.
We pass now to the specialization of

Eq. (226) for the three principal planes.

For pressures in the YZ-plane, <p
= 90, and for all values of 6;

no longitudinal polarization Pi is produced by pressures perpendicular
to the X-axis, but only Px as given by Eqs. (224). If the pressure is in

the ZX-plane, <p
= and

== dn sin8 6 (227)

The polar diagram representing d'33 for quartz as a function of 0,

from Eq. (227), is shown in Fig. 42, in which the radius vector OP is

proportional to 4s and hence to P't = d^Z',. For negative values of

0, dJ3 becomes negative, but its numerical value is still correctly given
in Fig. 42.
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The trigonal character of this crystal class is evident from the occur-
rence of the angle 3<p in Eq. (226) and is nicely brought to light when we
consider the longitudinal effect in the XY-plane. Here 6 = 90, so that

das
= dn cos 3p (228)

The polar diagram (Fig. 43) is now in the form of a cloverleaf, with
d'83

= du when the pressure is parallel to one of the axes Xi, X2 ,
or X 3 .

With respect to any one of the three

X-axes, say Xi, d'33 takes on both +
and values as <p varies. These

changes in sign, as well as the

numerical values for quartz, are

shown in Fig. 44. If one were to

take X'x or Y'v as the pressure in-

stead of Z'z , Fig. 43 would of course

represent d'n or d'^.

One may imagine a model based

on Eq. (226) constructed to repre-

sent dg 3 in all orientations. Its

surface would be of the third degree,

viz., the trivector surface men-

tioned in 136, of which the in-

tersections with the ZX- and

.XT-planes are represented by Figs.

42 and 43. Such a surface would be like three almonds placed with their

small ends in contact.*

An interesting relation between polarization P and compressional

stress holds when the latter is normal to the Z-axis. Like the effects

described in the foregoing paragraphs, it depends on the fact that for this

class di2 = -dn. By setting 6 = 90 in Eqs. (224) we find

FIG. 43. Longitudinal piezoelectric ef-

fect for quartz in theX F-plane (from Voigt) .

Radius vectors are proportional to d'n.

px = cos

Pv
= dnZJ sin 2<p, whence P2 = PI + PJ = d^Z". From these expres-

sions it is seen at once that, when the pressure is parallel to either an

X- or a 7-axis (^>= 0), P is parallel to X] that, when the pressure is in a

direction 45 from an X-axis, P is parallel to Y\ and hence that, as the

direction of the pressure varies in the .XT-plane, P rotates in space while

maintaining always the same numerical value dnZ'r It is easy to show

that P rotates twice as rapidly as ZJ, and in the opposite direction. This

relation for the total polarization must not be confused with that for

* A photograph of the "almond" model is reproduced in a paper by G(mther."T
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the longitudinal polarization depicted in Fig. 43, which shows that as the

pressure is rotated through 360 there are six positions in which the

component of P parallel to the pressure vanishes.

163. Polarization Produced by a Uniform Field Normal to the 7-axis.

In the last paragraph it was shown that a compressional stress normal

to the Z-axis produces a polarization that is constant in amount, but not

parallel to the stress except in certain special azimuths. On the other

hand, a uniform electric field normal to the Z-axis causes a polarization

not only constant in amount but also parallel to the field. This fact

follows from the symmetry of this crystal class and is true whether the

crystal is clamped (constant strain) or free to deform itself in the field.

Hence a sphere of quartz or a circular cylinder with its axis parallel to Z,

mounted so as to rotate freely about the Z-axis and placed between

plane-parallel electrodes that are also parallel to the Z-axis and sufficiently

remote to ensure that the field is uniform, will show no tendency to

orient itself in any particular direction, except insofar as its cross section

departs slightly from the circular form as a result of extension or com-

pression along an X-axis. Even with fields of several thousand volts per

centimeter, xx is only of the order of 10~6
. If an orientation due to a

uniform field is ever observed, it is very much more likely to be caused

by some slight eccentricity in the mounting than to an increase in diam-

eter in the direction of one of the X-axes.

Since, according to most observers, the dielectric constant of quartz
is slightly greater along the Z-axis than at right angles to it, it follows

that a quartz sphere free to assume any orientation in a uniform electric

field will tend to set itself with the Z-axis in the field direction.

The assertion has been made* that a circular Z-cut quartz disk in an

electric field parallel to its plane tends to rotate so as to bring one of its

electric axes into parallelism with the field. Their explanation, based

on a hypothesis concerning the deformation of the unit cell in a uniform

field, is not valid. If experimental errors were eliminated in their

observations, one must attribute the rotation to non-uniformity in the

electric field. The electrodes were relatively small and close to the edge
of the plate on each side. The piezoelectric strain was small except
in the regions nearest the electrodes. The crystal was therefore effec-

tively in a state of partial constraint, neither uniformly clamped nor

entirely free. Near the electrodes the stresses are greatest, but they are

largely neutralized by elastic reaction from the neighboring regions.

The strain that may be expected to predominate is the extensional x, the

extension being nearly radial, in the direction of the X-axis that happens
to be closest to the line joining the electrodes. According to 204, this

strain provides a slight increment to the susceptibility in the X-direction,
* A. MEISSNER and R. BECHMANN, Z. tech. Physik, vol. 9, pp. 430-434, 1928.
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whereupon the disk tends to set itself with the direction of maximum
susceptibility parallel to the field.

154. Alpha-quartz. The crystallographic properties are described in

11, and the definition of the I.R.E. axial system, adopted in this book
for enantiomorphous crystals, is to be found in 327. All values given
below are in terms of this system, according to which the signs of dn
and du are the same for a right- as for a left-quartz, viz., the same signs
that Voigt would have assigned to a right-quartz according to his axial

convention. *

TABLE XVII. PIEZOELECTRIC STRAIN CONSTANT dn OF QUARTZ
(Static values)

In Tables XVII and XVIII are given those values of du and du
found in the literature, measured by static methods, that can be regarded

as representative. All are for room temperature. The fourth column

indicates whether the direct or the converse effect was employed and

also whether the impressed stress (or the observed strain) was parallel to

X (longitudinal effect L) or parallel to Y (transverse effect T). It can

be assumed that in no case was the deformation great enough to show a

departure from linearity.

* That the signs of dn and du, according to Voigt's conventions respecting axes, must

be reversed on passing from right- to left-quartz, is made clear on p. 861 of the "Lehr-

buch." Readers of the "Lehrbuch" have no way of knowing that the values of these

constants, given on p. 869, were obtained with Ze/J-quartz, unless they consult the

original paper of Riecke and Voigt.
438
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In about half the measurements listed in Table XVII the direct

longitudinal effect was used, with compression and polarization both

parallel to X. Where the transverse effect was employed, the polariza-

tion was produced in most cases by tension parallel to F, rather than by

compression, a procedure that is preferable in order to avoid bending

of the plate. The transverse effect gives du] all experimental data

confirm the relation dn = dn. Osterberg and Cookson observed the

deformations under a 60-cycle alternating field; this frequency is so low

that their result may properly be included among the static values.

Most of the systematic sources of error, such as faulty orientation

of the plate, twinning or other defects in the crystal, and imperfect

insulation, tend to make the observed values of dn too small. It is quite

probable that the larger values recorded in Table XVII from 1910 on are

due to more successful attention to these matters. Of all the observations

recorded, none seem to exceed Nos. 6 and 9 in care and skill; it is probably

not by mere chance that these are also among the largest values. Lan-

gevin emphasizes the fact that his large value was obtained only with

very perfect plates. He states, for example, that on removal of a small

twinned region from one of his plates the value of dn rose from 5.77(10~
8
)

to 6.83 (10~
8
). Though the details of his method are not given, his

results can be accepted as very reliable.

All things considered, the value dn = 6.9(10~
8
) seems a conservative

one to adopt, in agreement with the opinions of Sosman* and of Voigt

and Freedericksz. 576 More measurements of high precision, with

accurately oriented plates of greatest perfection, are much to be desired;

it may well be that such measurements will confirm the large value

observed by Langevin.
A critical discussion of some of the papers cited in Table XVII is

given in Bosnian's book. In the "Lehrbuch"f Voigt seems to accept the

mean of the observations of Riecke and Voigt and of Pockels as the best

value of dn, namely, 6.36(10~
8)4 Although still widely used, this

value should henceforth be superseded by that given above.

Measurements of dn have also been published by a number of other

observers. Those of Dawson 121 and of Fox and Fink,
143 while apparently

- less precise than those recorded in Table XVII, are of the same order of

magnitude. Gramont obtained dn = 6.37, 6.37, and 6.40(10~
8
) with

three different samples, but experimental details are lacking.

166. Experimental Values ofdnfor Quartz by Static Methods. Values

from various sources are given in Table XVIII.
* Ref . B47, p. 559.

t P. 870.

t The negative sign, as used by Voigt, arose from his convention respecting axial

directions, for which see 327.

Ref. B21, p. 51.
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TABLE XVIII. PIEZOELECTRIC STRAIN CONSTANT d14 OP QUARTZ
(Static values)

Owing to the comparatively small magnitude of c?i 4 and to increased

experimental difficulties, less precision can be expected in the measure-

ment of this constant than in that of dn. Observations 3, 5, and 6 were

made by applying torsion to quartz cylinders. Although less reliance

can be placed on such indirect data than on those obtained with flat

plates, still the uniformly high values are significant. On the one hand,
we have the fact pointed out above in connection with dn, that most

sources of error tend to make the values too small. On the other hand,
observations 1 and 2, yielding the lowest values, were made with especial

care and skill. The mean of observations 1 and 2, l.69(10~
8
), was

adopted by Voigt* and has been widely quoted. In view of the later

publications, however, it seems best to adopt for the present the value

du = -2.0(10-
8
).

156. The following are to be recommended as the best values to date

for the piezoelectric strain constants of quartz:

= +6.9(10~
8
)

= -2.0(10-
8
) (229)

The values according to the polarization theory are given in 158.

The piezoelectric stress constants of quartz are found from Eqs. (211)

and (21 la), using the values of dn and di 4 given above, together with the

elastic constants from Table XI :f

en = +5.2(10
4
)

- + 1.2(10
4
) (230)

157. The Piezoelectric Constants by Dynamic Methods. Some of the

more important results are given in Table XIX. They are derived by
methods described in 310. The first two data are of relatively low

*
"Lehrbuch," p. 870.

f In Voigt's "Lehrbuch" (p. 870), the values of en and eu as calculated from his

data are in error. They should read en - 4.69(10
4
), en 1.18(10

4
).
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precision and are included as of historical interest. The most trust-

worthy values are probably those of Van Dyke and Mason.

TABLE XIX. DYNAMIC VALUES OP THE PIEZOELECTRIC CONSTANTS OP QUARTZ

No theoretical reason is known for any difference between static and

dynamic values of the piezoelectric constants. Until the dynamic

methods have proved themselves further and it is certain that possible

sources of error have been eliminated, it seems best to adopt the values

of the constants given in Eqs. (229) and (230).

158. Piezoelectric Constants of Quartz According to the Polarization

Theory. From Eq. (242), together with the piezoelectric constants in

Eqs. (229) and (230) and the dielectric constants from 331, one finds

an = =

L1 = 2.5(10~
7
)

= 4 = -0.72(10
4
)

(231)

As in Voigt's theory, the other constants are ai2
~ a2e

= an, 612 =

169. Dependence of dn upon Stress. Under ordinary conditions this

effect is small. For larger stresses the results are conflicting. Nach-

tikal386 found that dn was linear in Xx,

dn = 6.54(10~
8
)
-

1.05(10-"):T, (232)

where, as usual, Xx is in dynes per square centimeter. According to this

equation, a load of 1 kg/cm
2 decreases dn by 0.16 per cent. The paper

by Clay and Karper
112 records dn as constant up to 10 kg/cm2

,
but

slightly less at 15 kg/cm2
. Finally, Karcher274 found dn to be constant

to within 0.1 per cent for pressures up to 3,500 kg/cm
2

.

In experiments on the converse effect, Tsi-Ze 823 found dn to decrease according to

an exponential law as E* increased, being nearly constant until E* reached a value of
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about 40 esu. In experiments with the transverse effect, at Ex = 20 esu, dn was
diminished by about 9 per cent, and at 500 esu the diminution was about 40 per cent.*

Values of the same order of magnitude were obtained with the longitudinal effect,

indicating that in both cases the deformation approached a state of saturation as the

field became very great. If his data are accepted, one must conclude that, for the same

deformation, the diminution in dn caused by the converse effect is very much greater

than that by the direct effect. For example, Tsi-Ze's Table V for the longitudinal

effect indicates, for a field strength of 268 esu, a strain xs 10~ 6
. To produce this

strain mechanically would require a stress Xx 8(106
) dynes/cm 2

;
and when this

value is inserted in Nachtikal's Eq. (232), dn is found to be diminished by only 1.2

per cent, whereas according to Tsi-Ze's data the diminution corresponding to this

same strain is 43 per cent. Evidently the piezoelectric effect in quartz under large

mechanical and electrical stresses merits further investigation.

No data are at hand concerning the dependence of dn upon stress.

160. Dependence ofdn upon Temperature. Although the observations

are somewhat less discordant than those on the effect of pressure just

described, there is so much disagreement among authors as to lead one

to suspect that in many cases it was not only the temperature coefficient

of dn that was being measured.

Qualitatively, most observers are agreed that dn is greater at room

temperature than at very low or very high temperatures, f Below room

temperature LissauerJ found dn to vary not over 2 per cent down to

192C (liquid air). Onnes and Beckman396 found dn to decrease about

1.2 per cent from room temperature to that of liquid air and 0.2 per cent

from that point to the temperature of liquid hydrogen. Langevin and

Moulin306 observed a greater rate of decrease, viz., a value of dn 5.8 per

cent lower at 60 than at 0C; these last figures indicate a temperature
coefficient a = 9.7(10-

4
).

Pitt and McKinley428 observed the dependence of dn on temperature
from 4 to 813K by means of both a static and a dynamic method. In

the latter a quartz X-cut plate 24 by 24 by 0.81 mm was in a piezo-

oscillator circuit By the static method dn was found to decrease by
1.3 per cent as the temperature fell from 296 to 83K; there was a total

decrease of 12 per cent in passing from 296 to 4.2K. Observations by
the dynamic method were made all the way from 4.2K to 540C. On

* At the larger field strengths Tsi-Ze found the deformations to be due in part to

electrostriction (137), the effect of which was eliminated by reversing the field. His

general equation for deformation as a function of field strength is open to criticism,

since it proceeds from the theoretically insecure assumption that the variation of dn
is proportional to the potential drop across the crystal rather than to the field-strength

and that the constant of proportionality is independent of the thickness of the plate.

fOsTEBBERG (Phys. Rev., vol. 49, pp. 552-553, 1936) asserted that the piezo-

electric "activity" increased as the temperature decreased from that of the room to

-175C.
t VOIQT, p. 862.
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cooling below 14K there was no change in dn down to 5.5K, at which

point a sudden decrease occurred, dn was nearly constant from 5.5K
to 200C, at which point a gradual decrease began, and the response

ceased at 540C. The authors think it might be possible, however, to

detect an effect up to <x-j3-inversion temperature. On the return from

high to low temperature they found no trace of the lag in piezoelectric

activity that had been reported by Dawson. 121
.

Above room temperature, du was found by Perrier412 to be nearly

constant to 200 and then to decrease until it disappeared at 579C,
reappearing with decreasing temperature at 576 (579 is Perrier's value

for the transition temperature from a- to 0-quartz; the value now usually

assigned is 573). A similar hysteresis on cooling was also reported by
Dawson,

121 who however recorded also a maximum in dn at about 60C,
followed by a rapid decrease, until the value became extremely small

between 300 and 480, differing results being obtained with different

crystals. According to Andreeff, Fre*edericksz, and Kazarnowsky,
4 dn

decreases by 17 per cent as the temperature rises from 15 to 500C;
Fre*edericksz and Mikhailov 150 found dn to be practically constant to

187C, followed by a rapid decrease. A linear decrease of 10 per cent was

observed by A. Langevin
304 as the temperature increased from 20 to

200C, beyond which his observations did not extend.* Langevin's

results yield a temperature coefficient a = 5.5(10~
4
), in fair agreement

with 3.5(10~
4
) computed from the data of Andreeff, Frdedericksz, and

Kazarnowsky quoted above. A still smaller temperature coefficient was

measured by Clay and Karper,
112 who found, from 17 to 90C,

= -7(10-');

this result is in substantial agreement with Perrier's observations and

those of Fre*edericksz and Mikhailov. Roentgen and Joffe*,
440 whose

apparatus was capable of detecting a change as small as 0.1 per cent,

could observe no effect of temperature on dn from 15 to 25C.
Observations of the lengthwise frequency of an X-cui quartz bar

(length parallel to Y) have been made by Van Dyke553 at temperatures

from 80 to +40C. He finds the effective piezoelectric coefficientf

to decrease from 5.57(10
4
) at 80, slowly at first, then more rapidly,

reaching the value 5.27 (10
4
) at 40. The temperature coefficient is ten

"This result was obtained by a zero-deflection (constant-potential) method.

Langevin tried first a -deflection method, which yielded a maximum in dn at about

60C. He attributes this maximum, as well as that recorded by Dawson, to errors

introduced by deformation of the apparatus.

t It follows from 228 that the effective piezoelectric coefficient for a quartz bar

in this orientation is not en, as stated by Scheibe (ref . B45, p. 70) but e dn/Sn. The
difference between and en, though small, is not negligible.
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times as great at 40 as at -80, having the value a =
fle/c dt = 10(10~

4
)

at room temperature. From this and the relatively small temperature

coefficient of n one finds for du a value of a<fu around 10(10~~
4
).

On the whole, it seems probable that the piezoelectric constant du of

quartz has a very flat maximal value around room temperature and that

the rate of decrease is of the order of magnitude of 0.1 per cent per degree

down to the lowest temperatures on the one hand and up to approximately
200 on the other. It is also certain that du = at the alpha-beta

transition point, 573C.
As to duj no observations on the temperature dependence seem to

have been made. One can be certain, however, that du does not vanish

at 573 C but carries on as the surviving coefficient of 0-quartz (168).
161. Effect of Radiation from Radium on du for Quartz. Laimbock*

exposed a quartz plate to the beta and gamma rays from 94 mg of radium.

The value of du was found to increase at a rate roughly proportional

to the time, the total increase in 7 days amounting to about 12 per cent.

The constant gradually returned to its original value. The effect was

less pronounced after repeated radiation.

162. Piezoelectric Constants of Quartz for Rotation about the Three

Axes. The curves shown in the succeeding figures are calculated from

Eqs. (221) to (223), with du = +6.9(10~
8
), du = -2.0(10-

8
).

Figure 44 gives d{2 , d{ 4) d'2b ,
and c^e for rotation about X, and d'n for

(0 180)

rotation about Z. The following rules apply to this figure:

For rotation about X, the ordinate for any 6 is the same as for

(0 180).

For rotation about Z, the ordinate for any 6 is the same as for (6 120).
Of the constants d'hk for rotation about X not shown in Fig. 44, the

value of d'13 for any 6 is the same as that for d"12 at (6 90); similarly,

the values of d 5 and d'36 for any 6 are the same as those for d 6 and d'26 ,

respectively, at (8 90). All the remaining d(k vanish except

Of the constants for rotation about Z not shown in Fig. 44, all vanish

except d'u =
rfj e

= -d'u and d'u = d'2l
=

-rf{2

- = du cos 3(0 + 30).
That is, the value of d{6 , dji, or d 2 for any 6 is the same as that of d'n
for (0 + 30).

The curves for dhk for rotation about Y are given in Fig. 45. If the

desired angle of rotation lies outside the range from 90 to +90, the

*
J. LAIMB^CK, Mitt. Inst, Radiumforschung, No. 221a, 1928.



224 PIEZOELECTRICITY [162

following rules* are observed: For d'n ,
d'l2 , andTdJ8 ,

the value for any 6 is

the negative of the value for (0 180). For c?14 ,
e?16,

and 45 the ordinate

-90' \
-40 20 -10

-2

-6

-10

-12

K

10

^x^cfe

20 30 40 50 W7 90

FIG. 44. Piezoelectric constants of quartz for rotated axes, rf'ia, d'u, d'm, and d'ze are

for rotation about the ^f-axis, d'u for rotation about the 2-axis.

I I I I I I 1-8 I I I I I I I I

FIG. 45. Piezoelectric constants of quartz for rotation about the F-axis.

for any is the same as for (0 180). For the remaining constants one

finds, for any given 0,

d'1B ,
twice the value of <f13 for (90 0)

J/ O^/ A* _ OJ''

26
= 2d'12^26
= ^tt12 35

== ^"13

J24 and (4, same as d'n for (90 0)

du, same as di8 for (90 0)

dJ3 ,
same as d'n for (90 0)

d'86 , same as d'l4 for (90 0)
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Other Crystals in Class 18. Veen868 measured dn for the following

crystals in this class:

Benzil, Ci4H 10 2 24(10""
8
)

Patchouli camphor, CuHeO 0.14(10~8
)

Rubidium tartrate, Rb 2C4H 4O6 8(10-)

163. Class 19, Trigonal Ditrigonal Polar (Hemimorphic Hemihedral)

(symmetry Csv). The most important example is tourmaline. Crystals
in this class are pyroelectric, the Z-axis being the polar axis. Table XVI
shows that there are eight piezoelectric constants, with four independent
values 615, 622, 31, and 633:

-X.-

(233)

Z _ T71 "\7"

x == Glb&x -A-v

The large number of constants offers a wide selection in the manner
of producing a desired deformation and in exciting the various vibrational

modes. Nevertheless, owing to the high cost of large specimens, the

only effect that has hitherto been put to practical use is the longitudinal

effect parallel to the Z-axis, since in this case only a small amount of

crystal material is required.

164. Piezoelectric Constants, Class 19, for Rotated Axes. AH the

transformed constants can be derived by the methods described in 134.

Only a few of the results need be given here.

For a Z'-axis in any direction, with direction cosines 71, 72, 73, the

constant for the longitudinal effect is

$3 = 73(7! + 7i)(<*31 + <*) + 72(71
-

375)C*22 + 7l<*33 (234)

When expressed in terms of the colatitude and azimuth <p, as in

Fig. 17, Eq. (234) becomes

d'zz
=

(dzi + di&) cos sin2
^22 sin8 sin 3^> + ^33 cos 8

(234a)

From this equation, for any crystal in this class a three-dimensional

model could be constructed, the surface of which would be the surface

of the third degree mentioned in 136. We shall consider only the

intersections of this surface with the three principal planes.

For pressures hi the FZ-plane, <p
= 90, and we have from Eq. (234a)

^33
= 8*dn H~ C8

da3 -f" CS2
((^3i -f" (^15) (235)

where c = cos and s 5 sin 0.

For pressures in the ZX-plane, <?
= 0, whence
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If the pressure is in the X F-plane, U
= 90, so that

[164

(2355)

Equations (235) and (235a) are shown graphically in Fig. 46.* It

will be observed that Eqs. (235) and (235a) differ only in the term con-

taining dz2 t
and this constant is so small that curves (a) and (b) in Fig. 46

are nearly alike. The presence of dn makes curve (a) slightly unsym-
metrical, with a short segment below the F-axis.

In interpreting Fig. 46 (a) it must be remembered that, since Zz is a

tensor, the polarization P'z produced by Zz at any 6 has the same'sign as

at 180; that the Z'-axis is positive in the direction outward from the

b

X
(a) (6)

FIG. 46. Longitudinal piezoelectric effect for crystals of Class 19 (Caw). Radius vectors

are proportional to d'w.

origin at any 6] and that P'z is positive when in the direction of +Z f

.

It thus becomes clear that Fig. 46(a) gives a complete picture of d'33 ,
and

hence of P'9 = d^Z'ZJ for all possible directions of pressure in the

FZ-plane and that (for tourmaline) the positive direction of Pg is always
toward the origin. Similar remarks are applicable to (6) and to the

diagram for the -XT-plane.

The entire piezoelectric surface of tourmaline, of which Fig. 46 shows

two of the principal sections, would look like a slightly unsymmetrical

apple standing on its calyx end. Grouped around the calyx end would be

three very small bulges, with depressions between.

* The curves in this figure are based on Voigt's diagrams for tourmaline. In order

to emphasize the asymmetry, the effects of the d22-terms have been purposely exag-

gerated by the author; hence the curves are only qualitatively correct. For other

crystals of this class, with constants of different signs and relative magnitudes, (a)

and (6) might present a quite different appearance. The diagram for the X F-plane
would always consist of three lobes, like those for quartz (Fig. 43), but with the X-
and F-axes interchanged. The radius vectors in the XT-plane depend on dw alone;

owing to the smallness of this constant, the diagram (for tourmaline) would be very
much smaller than (a) and (&).



165] PIEZOELECTRIC PROPERTIES OF CERTAIN CRYSTALS 227

165. Tourmaline. This crystal has already been briefly described

in 13.

In measuring the piezoelectric constants, Riecke and Voigt
435

applied

pressures in various directions to plates whose edges were parallel to the

X-, F-, and Z-axes and also to plates having one edge parallel to X, the

other edges of the parallelepiped being at 45 to Z. They used

Brazilian tourmaline, as did also Rontgen,
439 who made a similar deter-

mination some years later. Different specimens yielded values differing

by about 2 per cent. Rontgen's measurements, as is admitted by

Voigt,
572 are probably the more accurate.

Other observers have measured only d33 . Nachtikal888 found

d33
= 5.6(10-

8
)

at small pressures, while at larger pressures he stated that

dn = 5.60(10-
8
) +

where Zg is in dynes per square centimeter. Not much importance can

be attached to this observation of the effect of pressure, in view of the

work of Keys,
257 who found d33 to be only 5.4(10~

8
) at 100 atm pressure.

Veen563 found an average of d33
= 5.3 (10~

8
) for different crystals, and

Fox and Fink143 an average of 5.1(10~
8
); a recent measurement on black

California tourmaline by R. C. Cook* gives d33 = 4.8(10~
8
). Consid-

ering the variability in the composition of tourmaline, these differences

are not surprising. For good crystals, there are probably no better data

at present than those of Rontgen.
In the paper referred to above, Cook also describes a determination

of the quantity (dn + d32 + d33)
= (2d3 i + d33), which by Eq. (193)

is the coefficient in the expression for the polarization produced by

hydrostatic pressure. The measurement was made by a dynamic
method on a black California tourmaline, the hydrostatic pressure being

due to acoustic waves in the air surrounding the crystal. The resulting

value for (2dn + d3s) was 6.7(10~
8
), in fair agreement with 7.3(1Q-"

8
)

* R. C. COOK, Bur, Standards Jour. Research, vol. 25, pp. 489-505, 1940.
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calculated from the data of Riecke and Voigt and 8.0(10~
8
) from Koch's

observations.* Both Koch and Riecke and Voigt used green Brazilian

tourmaline.

Keys, in the paper cited above, also computed the pyroelectric polar-

ization due to adiabatic heating of the tourmaline crystal when hydro-
static pressure was suddenly applied and found it to be only -sfa of the

piezoelectric polarization.

The coefficient dw was found by Lissauerf to be constant within 2 per
cent over a temperature range from +19 to 192C.

166. Piezoelectric Stress Constants of Tourmaline. By applying

Eq. (191) to tourmaline, with dh taken from Table XIII and dmi from the

values of Riecke and Voigt above, we findf

+7.40(10
4
)

022 = dn(cn - c 12)
-

di&r 14
= -0.53(10

4
)

en = dsi(cn + CM) + d33ci3 = +3.09(10
4
)

= +9.60(10
4

)

167. Lithium Trisodium Molybdate. Veen563 found this crystal quite

strongly piezoelectric: dn = 14(10~
8
).

168. Class 24, Hexagonal Holoaxial (Enantiomorphous Hemihedral)

(symmetry Z> 6). Not pyroelectric. There is only one independent

piezoelectric constant, du di$, as in Class 12. The absence of a

longitudinal effect in any direction for this class has already been men-
tioned under Class 12 (147).

The piezoelectric equations are

Yz
= &uEx ~~ZX = e^Ey = euEy

The only representative of this class that need be considered is

0-quartz. The transition of quartz from the alpha to the beta form at

573C has been discussed in 14. The atomic structure is treated in

Chap. XXXI.
The erroneous statement has sometimes been made that 0-quartz

is not piezoelectric. Still, the fact that /3-quartz belongs to this class is

enough to make it certain that shears in the YZ- and ZX-planes can be

produced piezoelectrically, provided that en is sufficiently large to give an

observable effect.

The effect has been observed by Osterberg and Cookson,
404 who

succeeded in making resonators of 0-quartz vibrate from the transition

* P. P. KOCH, Ann. Phyiik, vol. 19, pp. 567-586, 1906.

t VOIGT, p. 866.

t "Lehrbuch," p. 870.
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temperature to 847C. Both X-cut and F-cut plates were made to

vibrate piezoelectrically, in t/*- and ^-modes, respectively.

Lawson310 observed the piezoelectric effect in 0-quartz qualitatively

by the powder method (172). He also made use of the effect in his

determination of the elastic constant $13, described in 92 and 101.

No measurements of the magnitude of du for 0-quartz have been

published.

169. Class 28, Cubic Tesseral Polar (Tetartohedral) (symmetry T).

Not pyroelectric. There are three piezoelectric constants, all of the

shear type and of the same numerical value,

Yf
= euEx Zx = e^tEy = euEy ~~Xv = ^uEz

= e\JE9

The equations for rotated axes are the same as for Class 6.

Mention need be made here only of sodium chlorate, NaClOs, the

optical and piezoelectric properties of which were investigated by
Pockels. 428 His measurements gave

du = -4.8(10-*)

170. Class 31, Cubic Ditesseral Polar (Hemimorphic Hemihedral)

(symmetry T*). Crystals in this class have no primary pyroelectricity,

but strong secondary effects have been reported for boracite. The

piezoelectric constants are the same as for Class 28.

Zinc blende, ZnS, is one of the forms of zinc sulphide, known also as

sphalerite. Another form, wurtzite, belongs to Class 26 (see 522).

Two measurements of du for zinc blende have been made. The first

was by Veen,
663 who measured d'n for compression in a direction normal

to (111), that is, making equal angles with all three axes. His average
value for two specimens was 4.75(10~

8
). From Eq. (206) one finds

du = 8.24 (10~~
8
). From the fact that his du for quartz recorded in

the same paper (see Table XVII) was very low, it seems probable that

his value of du for zinc blende is also too small. The negative sign has

been verified by Coster, Knol, and Prins,
114 who also showed that the

polarity of the axis normal to (111) was indicated by differences in the

X-ray reflections at the opposite ends of this axis.

The second measurement of du was by Knol,
282 who found the value

9.8(10~
8
). Laying greater weight on this value we adopt for zinc

blende

du = -9.7(l(h
8
)

From this value, together with the elastic constant c44 from 102, we
find by the use of Eq. (191)

-4.2(10
4
)
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Zinc blende has the distinction of being the first crystal for which a

value of en was predicted from the lattice theory ( 546) . Born calculated

e14 = 2.3(10
5
), about five times the observed value; to have arrived

at the same order of magnitude at all was an achievement.

Ammonium chloride, NH4C1, which was known to have an anomaly
in the specific heat at 30.5C, was found by Bahrs and Engl

15 to become

piezoelectric when the temperature was lowered to this point, the full

value of du = 0.337(10~
8
) being attained at -32.5C.

171. Boracite, BieOsoC^Mgr, is one of the crystals in which piezo-

electricity was first observed by the Curie brothers. No quantitative

measurements of du seem to have been made.

The crystal boracite is usually assigned to the present class, T&- In

fact, it has sometimes been given as the typical example of the class.

However, optical and pyroelectric investigation have revealed that

boracite crystals at ordinary temperatures really consist of rhombic

domains (Class C^v)
* with the polar axes parallel to any one of the four

space-diagonals of the unit cube of the apparent cubic symmetry.
Above 275C the crystal is truly cubic. The indication is that all

apparently cubic crystals of boracite have developed above the tempera-
ture of 275C. The analogy to the strictly hexagonal habit of quartz

crystals grown above 573C is obvious.

The elastic and dielectric properties of boracite do not seem to have

been investigated hitherto. The transition from a pyroelectric to a non-

pyroelectric class at 275C leads one to suspect the possibility of Seignette-

electric properties (471). The preliminary search for such properties,

now to be described, has given negative results.

Six boracite crystals, all from Sehnde near Hanover in Germany, were studied in

this laboratory in 1937. t The crystals showed the cubic dodecahedron with an indica-

tion of one of the tetrahedra that reveal the symmetry T*. Three of the crystals

were clear and free of any but minor surface intergrowth. The distance between

opposite dodecahedron faces was 5.1 mm in the smallest and 7.2 mm in the largest

crystal.

A plate was cut from one of the crystals with its major faces perpendicular to a

cube diagonal, and the dielectric constant of this plate determined as a function of

temperature from room temperature up to 315C. The expectation of finding a

dielectric anomaly near the transformation point (275C) was not fulfilled. The
dielectric constant was found to be about 6 at room temperature with an average

temperature coefficient of -fO.10 per cent per degree centigrade without any irregu-

larity near the transformation point. It did not seem necessary to repeat the experi-

ment on plates of different orientation, since, above the transformation point, the

crystal is truly cubic and should have the same dielectric constant in all directions.

* GROTH B*Z. see also the papers by Mehmel, Z. Krist., vol. 87, pp. 239-263, vol. 88,

pp. 1-25, 1934.

t These observations were made by Dr. H. Jaffe.
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The clear crystals in an uncut state were submitted to the "click" test for piezo-

electric resonances (308). The "spectrum" of frequencies, in kilocycles per second,

for a crystal with a distance of 5.1 mm between opposite dodecahedron faces was as

follows: 841, strong; 1,050, several, weak; 1,356, strong; 1,442, strong; 1,670, several;

also 2,630 and other responses at higher frequencies. Change of orientation produced

only minor changes in the frequencies and some shift of relative intensity. The other

crystals gave very similar spectra, with the individual frequencies shifted inversely

proportional to the linear dimensions. If we regard the lowest strong resonance,

841 kc, as a fundamental resonance related to the thickness of the crystal, we obtain

a frequency constant of 4,250 kc-mm. The same value 1 per cent was found with

the other two crystals studied. From this value and the thickness of the crystal the

velocity of wave propagation is found to be around 8.5{10
5
)cm/sec, indicating an

clastic stiffness even greater than that of quartz.

It is unfortunate that clear crystals of boracite, larger than those described above,
are very rare.

172. Piezoelectric Investigations of Other Crystals. One of the

author's earliest observations on resonating crystals, in 1919, was that

of the click heard in a telephone receiver in an oscillating circuit of

variable frequency to which the crystal electrodes were connected,

whenever the frequency was tuned through a natural frequency of the

crystal.
93 In these experiments it was found that clicks were heard

even when a small irregular fragment of quartz, of unknown orientation,

was placed between the electrodes. This click method (308) was later

developed by Giebe and Scheibe 164 into the "powder method" for

detecting piezoelectric properties in a large number of crystals of differ-

ent kinds. By using an oscillating circuit of sufficiently liigh variable

frequency, they were able to secure responses when very small granular

fragments of the crystals were placed between the electrodes.*

The wide applicability and simplicity of the powder method gave

great impetus to the search for piezoelectric properties. Whenever
resonant responses are obtained, it can reasonably be assumed that the

crystal is piezoelectric. Negative results may indicate that the crystal

in question belongs in a non-piezoelectric class; on the other hand, they

may be due to too great conductivity of the crystal, to excessive damping,
or to the fact that piezoelectric properties, though present, are too weak
to be detectable. These uncertainties are doubtless responsible for most

of the discrepancies among the results of different observers. The
method of Giebe and Scheibe has become of great value, on the one hand

for identifying the piezoelectric property in crystals already supposed
to belong to piezoelectric classes and for determining whether it is

"strong" or "weak," and on the other hand, within limits, for determin-

ing the class to which a given crystal should be assigned; for example, the

existence of the piezoelectric property is a sure sign that a crystal has no

* For a discussion of apparatus and circuits see Scheibe.048
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center of symmetry. The method has also been used to throw light

on the relation of piezoelectric properties to chemical constitution and

on the structural changes that take place at certain transitional tempera-

tures; for example, Hettich221 found evidence of such transitional effects

with camphor, potassium iodate, and pentaerythritol. The last-named

crystal has been the object of much discussion, but it now seems clear

that it belongs in Class 14.*

Mention may also be made of iodyrite (silver iodide, Agl), which at

ordinary temperatures belongs in Class 26 (hexagonal, CQv) ;
it becomes

cubic around 145C and is also cubic "at low temperatures."f" Up to

145 it has a negative coefficient of expansion. In spite of the fact that

it is a semiconductor, Hettich and Steinmetz recorded a strong response

by the method of Giebe and Scheibe.

The class to which topaz is usually assigned is not piezoelectric.

Yet Alston and WestJ have reported traces of piezoelectricity in this

crystal.

By the methods mentioned above the different kinds of crystals exam-

ined for piezoelectric effects are now numbered in the hundreds, including

many organic substances. A few examples have been mentioned in

previous paragraphs. A complete list would be of little value with-

out the accompanying discussion, for which reference must be made

to the original papers, to the book by Scheibe,
B45

to various hand-

books,
B19>B20 'B54 and to the "International Critical Tables," ||

in which

references to the literature are given.

The most recent addition to the list of piezoelectric crystals is that of

Bond,
68 .who used the powder method for testing several hundred differ-

ent minerals. Among those with which he obtained positive results, the

* See H. MARK and K. WEISSENBEBQ, Z. Krist., vol. 65, p. 499, 1927, and Z.

Physik., vol. 47, p. 301, 1928; H. SEIFERT, Berl Ber., vol. 34, pp. 289-293, 1927;

A. SCHLEEDB and A. HETTICH, Z. anorg. allgem. Ghent., vol. 172, pp. 121-128, 1928

(etch figures on pentaerythritol crystals are shown in this paper); A. HETTICH,
221

;

and W. A. WOOSTER, Z. Krist., vol. 74, Referatenteil, p. 105, 1930.

t GBOTH B

j N. A. ALSTON and J. WEST, Proc. Roy. Soc. (London) (A), vol. 121, pp. 358-367,

1928; see also WOOSTER, ref. B56, p. 230.

Among the various investigations, in many of which use was made of the powder

method, are the following: E. GIEBE and A. SCHEIBE;IM A. HETTICH;.* A. HETTICH

and A. ScHLEEDE; 223 '224 A. HETTICH and H. STEINMETZ, Z. Physik, vol. 76, pp. 688-706,

1932; S. B. ELINGS and P. TERPSTBA, Z. Krist., vol. 67, pp. 279-284, 1928;

W. SCHNEIDEB, Z. Physik, vol. 51, pp. 263-267, 1928; E. HEBTEL and K. SCHNEIDER,

Z. physik. Chem. (B), vol. 12, pp. 140-150, 1931; G. GREENWOOD and D. TOMBOULIAN,
Z. Krist., vol. 81, pp. 30-37, 1932; G. GREENWOOD, Z. Krist., vol. 91, pp. 235-

242, 1935; H. SEIFERT, Z. Krist., vol. 81, pp. 396-468, 1932; W. A. WOOSTER, Z.

Krist., vol. 74, Referatenteil, p. 105, 1930; A. L. W. E. VAN DER VEEN, thesis, Delft,

1911; R. LUCAS, Compt. rend., vol. 178, p. 1890, 1924.

||
Vol. 6, p. 209, 1929.
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following do not appear to have been recorded hitherto as responding

piezoelectrically, although some are known to be pyroelectric : clino-

hedrite, cronstedtite, edingtonite, epistilbite, epsomite, langbeinite,

leucophanite, meliphanite, shortite, stibiotantalite, struvite, tieman-

nite, wurtzite, and zunyite. Bond recorded negative results with

iodyrite, which had been reported by Greenwood and Tomboulian (foot-

note, page 232) as active; and, contrary to the observations of Hettich

and Steinmetz and of Greenwood and Tomboulian, he found scolecite

to be active.

173. Somewhat similar to the method described in 185, in which the

direct effect is used for the testing of small crystal fragments, is that of

Bergmann:
52 a periodic pressure at audio frequency is impressed upon a

single fragment or on a collection of fragments. The pressure is derived

from the stem of a tuning fork, either struck or electrically driven.

Electrodes placed above and below the crystal specimens are connected

to an amplifier. Observations on single fragments make a rough deter-

mination of the piezoelectric axes possible.

Still another variant of the powder method is described by Engl and
Leventer. 132 Small crystal grains, screened to approximately the same

size, were immersed in benzene in a small glass "calorimeter" with a

capillary tube in which the rise in height of the liquid indicated a rise in

temperature. An electric field of variable high frequency was impressed,

which caused a slight increase in temperature when the grains vibrated in

resonance. The results are claimed to be of greater quantitative value

than those by the usual powder method.

174. Piezo- and Pyroelectric Effects from Non-crystals. A short

account will now be given of certain investigations with substances

which are commonly considered amorphous or which at least do not have

the structure of homogeneous crystals. References, indicated by num-
bers in brackets, will be found at the end of this chapter.

Electrets. It was Heaviside who first suggested this term for materials

having a permanent electric polarization, by analogy with "magnets."
The word is now generally applied to certain waxes, solidified while

in a strong electric field (usually several thousand volts per centimeter),

the properties of which were first discovered by Eguchi.W The material

is usually a mixture of carnauba wax and resin, sometimes with the

addition of beeswax. The preparations are usually in the form of flat

plates, having a permanent polarization in the direction of the thickness.

Unlike pyroelectric crystals, in which the permanent polarization is

normally screened by compensating charges on the surface, the electret

has uncompensated positive and negative surface charges on its opposite

faces that give rise to an external field persisting for years. If the charges

are annulled by short-circuited electrodes, recovery takes place some
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hours after the removal of the electrodes. In a very moist atmosphere
the external field due to the electret is diminished, but it recovers in dry
air. The full charge density is of the order of 10 esu/cm

2
. This is twice

as great as can be produced by friction on hard rubber.^16!

Uniform heating or cooling causes a change in the polarization and

hence in the surface charges. This is a pyroelectric effect, the polariza-

tion in general becoming weaker with increasing temperature. 111 For the

effect of hydrostatic pressure, see ref. [14].

A piezoelectric effect has also been reported :W upon transverse pres-

sure or extension, a change takes place in the surface charges, dependent
on the sign of the stress. The order of magnitude of the effect is the same
as with crystals.

131

X-ray studies of the structure of electrets have been made by Brain,W

Ewing,M and Good and Stranathan.M

The most commonly accepted theory of electrets is that molecular

dipoles in the molten wax become oriented by the electric field and hold

their parallel orientation after the wax sets. The experiments of Thies-

sen, Winkel, and Herrmann, E16J however, indicate that the polarization

may be a space-charge effect due to the wandering of ions before solidifi-

cation of the wax. A serious problem is the explanation of the persistence

of an external field in spite of leakage and of ions in the surrounding air.

Adams 1 1] suggested that this effect may be due to very slow decay in the

polarization. On reasonable assumptions he found that the presence of

uncompensated surface charges and their recovery after removal could

be accounted for if the decay amounted to only 1 per cent in a year.

Applications of Electrets. Gemantf7^8! mentions possible applications

to electrometers and as a bias for the grids of electron tubes. Nishikawa

and Nukiyama1111 describe the use of an electret in a condenser transmitter.

175. Other "Piezoelectric" Effects from Non-crystalline Materials.

Several observers[3l' [12li[l6] have noted that mechanical pressure causes

the appearance of electric charges on the surfaces of rubber,* paraffin,

glass, and other materials, including even wood. Considering the

erratic and qualitative character of most of this testimony and the

likelihood that the results were due largely to contact potentials, such

observations should not be taken too seriously as indicating anything
that can properly be called a piezoelectric effect. One reads even of
" muscular piezoelectricity," with the suggestion that the closing of the

sensitive plant[4l and the activity of the electric eel[13] may be manifesta-

tions of piezoelectricity!

It has been stated by Meissner and Bechmannf that electrets possess-

* A microphone made from frozen rubber is described by E. Gerlash in U. S. patent

2,231,159.

t See footnote *, p. 216.
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ing marked piezoelectric and pyroelectric properties can be made by
impregnating a wax (especially asphaltum) with powdered quartz and

letting it harden while in a strong electric field. Whatever contribution

the quartz made to the pyroelectric effect in their experiments must
have been due to a temperature gradient. As for the piezoelectric effect,

these authors found that the presence of the quartz powder rendered

the electrets more permanent rather than more responsive to pressure.
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CHAPTER X
PRODUCTION AND MEASUREMENT OF

PIEZOELECTRIC EFFECTS

Es beruht also auch die durch Druck&nderungen erzeugte Eleklrizitdt duf einem

besonderen Vorgange, und ich hdbe sie deshalb als Piezoelektrizit&t unterschieden.

HANKEL.

The last two chapters have dealt with the general phenomena of

piezoelectricity. The basic equations and their specialization to some

of the crystal classes have been given, as well as the numerical values of

piezoelectric constants.

We shall attempt in the present chapter to outline certain practical

considerations that may be of service to the experimenter, in the selection

and orientation of specimens and in the arrangement of electrodes,

for the production of piezoelectric deformations of any desired type.

Although experimental details are outside the scope of this book, meth-

ods of measurement and qualitative testing are briefly treated at the

end of the chapter.

176. Orientation of Specimens and Location of Electrodes for Pro-

ducing Piezoelectric Deformations. The rules that will now be given

are stated from the point of view of the converse effect, whereby a

deformation is produced by applying an electric field to the crystal.

Whatever arrangement is effective for the converse effect is also equally

advantageous for the direct effect.

The deformations fall into two groups, resonant and non-resonant,

which require somewhat separate treatment, although the basic principles

are identical. In either case, when the kind of crystal, type of deforma-

tion, and size and shape of specimen have been chosen, the first consider-

ation is the orientation of the specimen with respect to the crystal axes,

i.e., the manner in which the specimen is to be cut from the available

parent crystal. The decision often depends on the size of the given

crystal, as well as on the available piezoelectric coefficients and on the

desirability of selecting a mode of excitation that permits the use of

electrodes spaced only a short distance apart, in order to produce as

strong a field as possible with a given voltage.

Usually the first step is to seek, in the table of piezoelectric coefficients

for the particular class (131), a coefficient <h* such that a field Eh will

produce the desired strain xk (k = 1 to 6, Fig. 40). Often one must
236
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resort to oblique cuts, using the formulas for rotated axes given in 134

and elsewhere.

Non-resonant deformations include static deformations and also those

vibrational devices in which the frequency is so far below the resonant

frequency of the specimen that the deformation is essentially the same
as in the static case. In simple extensions and shears, the strains are

so nearly uniform that they are most effectively produced by applying
electric fields that are uniform throughout the specimen, by the use of

electrodes that completely cover the faces normal to the field.

Resonant Deformations. For exciting vibrations in any desired mode,
the orientation of the specimen and direction of field are governed for

the most part by the same rules as those for non-resonant deformations.

Except for the purpose of generating ultrasonic acoustic waves or of

studying vibrational modes, piezoelectric resonators are designed for

producing certain electric reactions on the circuit in which they are placed.

They function then purely as circuit elements, and the mode of vibration

is important only insofar as it affects the problem of mounting the

crystal in such a way as to secure the least frictional damping. Never-

theless, it is always true that the amount of reaction on the circuit is

proportional to the amplitude of vibration. Hence, in most cases

maximum effectiveness is secured when the electrodes cover as much as

possible of the area of the crystal. In general, the field is most effective

at an antinode of strain (node of vibrational motion).

For experimental research and for other special purposes, although
not often in practical applications, very small electrodes are sometimes

used, covering only a small portion of the crystal surface. In fact, if

full-sized electrodes are not used it is better to make them as small as

possible, for this reason: As has already been stated in 64, the elastic

stiffness is not the same in the region between electrodes as in the region

outside, a fact which complicates the relation between observed and

calculated frequencies unless the electrodes are so small or else so

remote from the crystal that the stiffness is essentially the same as

that of an electrodeless crystal.

In general, it may be said that any electric field of suitable frequency,

of large or small extent, uniform or not (unless it happens to cause, in

different regions, piezoelectric stresses that cancel one another), will

excite vibrations if there is a dhk relating a component Eh of the field to a

strain Xk characteristic of or bound by coupling to a possible vibrational

mode. The actual distribution of vibrational stresses and strains in all

cases is essentially that which is typically associated with the vibrational

mode, irrespective of the region where the field is applied.

177. Compressional Strains. These call for piezoelectric constants

of type L or T (Fig. 40) ;
both types, of forms dhh and dhk (h and k = 1, 2,
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or 3), are found in 12 classes of crystals; Class 14 has two constants of

type T but none of type L. Thus with 13 classes there is at least one

crystallographic axis parallel to which a field can be applied so as to

produce an extension at right angles to the field (transverse effect), and

in all but one of these classes the same field produces also an extension

(+ or ) parallel to the field (longitudinal effect). Each of the remain-

ing seven piezoelectric classes has at least one constant of type L8 ;
with

all, a transverse extensional effect (T-effect with transformed axes)

can be realized on application of an oblique field; with all but two (Classes

12 and 24, 147), the longitudinal effect can also be thus realized. The

corresponding constants are found by means of the transformation

formulas; examples will be found in 184 and 139.*

Compressional vibrations can be produced with the field parallel

to the vibrational direction (L-effect), or perpendicular to it (T-effect).

The first of these arrangements is used for obtaining thickness vibrations

in plates of relatively large area, with electrodes covering the entire

major surfaces. It can also be used for generating lengthwise vibrations

in plates or rods, but it is inefficient for this purpose owing to the large

separation between electrodes. For lengthwise vibrations it is customary
to use the !T-effect, with the field parallel to the thickness of the specimen.

With either manner of exciting lengthwise vibrations, overtone frequen-

cies as well as the fundamental can be produced; but here again the

jf-effect is to be preferred, since the length of the electrodes can then be

made to fit the desired overtone. The latter type of excitation is

illustrated in Fig. 53.

Sometimes it is desired to excite compressional vibrations in crystals

such as Rochelle salt, which have neither an L-effect nor a !T-effect with

respect to the crystallographic axes. In such cases, as has been stated

above, various oblique cuts may be used, so oriented that with respect

to the transformed axes the original L,- or TVshearmg effects give rise

to longitudinal or transverse compressional effects. The application of

this principle is made in 139 and elsewhere.

178. Shearing Strains. Shearing strains can be produced piezo-

electrically by the L,-effect (Fig. 40), with field parallel to the axis of

shear, or by the TVeffect, with field parallel to the plane of shear.

Thirteen classes have at least one L.-coefficient with respect to the

crystallographic axes; for the remainder, an L,-effect can be secured by
rotating the axial system about one of the axes, except in Classes 9 and 26.

So far as mechanical effects are concerned, shearing strains are useful

chiefly for producing flexure and torsion in elongated crystal plates.

* It will be recalled from 27 that an extension can always be regarded as a com-

bination of two shears, and vice versa. Whether a piezoelectric deformation is repre-

sented in one way or the other is a matter of convenience.
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Examples are considered in 354, 356, and 380. Among piezoelectric
resonators (Chap. XVII) those of the shear type are now of the greatest

importance.

179. Flexural Strains. It has been shown in 34 that the chief

elastic characteristics are a compression in one half of the specimen
(usually a plate or bar), an extension in the other half, and shearing
stresses in the plane of flexure. These features are shown in Fig. 47, in

which the plane of the diagram is the plane of flexure and also the plane
of shear. Flexure can be produced piezoelectrically by means of either

(1) compressional stresses in the ^-direction, applied to the upper or the

lower portion of the plate (or to both, if one of the stresses is compressional
and the other extensional) ;

or (2) two opposite shearing stresses applied
to the right and left halves of the plate shown in Fig. 47, the axes cor-

responding to the shear being parallel to I and e. If we assume that the

compressional strain, with respect to the crystal axes, is of type Xk and

M

FIG. 47. Plate in a state of flexure.

that the shear is of type #t ,
then it is clear that flexure can be produced

by a field having a component in the direction h, if the piezoelectric

constant dhk or dhi differs from zero.

Non-resonant applications of flexure have to do chiefly with the con-

version of electrical impulses or 1-f currents into mechanical movements,
or vice versa. Much greater movements are thus obtainable than by
the simple compressional effects. For this purpose, instead of producing

flexure piezoelectrically in a single plate, it is usually found more effective

to use a double plate of the type first introduced by the Curie brothers

(122). The two thin crystal slabs are so oriented and the field in each

is so disposed that one slab becomes elongated while the other contracts,

thus meeting the requirements stated above for the production of flexure.

This device, called a "bimorph," now consists usually of two plates of

Rochelle salt and is described in 503.

Flexural Resonators. The flexural-vibration frequencies of thin plates

are far lower than those ordinarily obtainable by compressional or shear-

ing modes. Many different types of flexural resonators have been investi-

gated, of both quartz and Rochelle salt, and some have found practical

application in piezo oscillators of relatively low frequency and in the

production of acoustic waves (396).
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Flexural vibrations in quartz and Rochelle salt are treated in Chaps.

XVII and XVIII. The theory of these vibrations is considered in 73.

180. Torsional Strains. As we have seen in 35, when a solid is in a

state of torsion, the particles are displaced in planes normal to the axis

of torque, and shearing strains are set up; the plane of shear (Fig. 13)

at any point contains a line parallel to the axis of torque and the line

along which the particle moves; it is not the plane normal to the axis.

These two directions correspond to the axes of shear (27). Since the

material is sheared in opposite senses on opposite sides of the axis of

torsion, it is evident that, if a single piece of crystal is to be*brought

piezoelectrically into a state of torque, the electric field producing the

shears must have opposite directions on these two sides; at least, the

field must not have the same direction and magnitude in both regions.

For piezoelectric excitation of torsion it is therefore necessary to choose

such a dhk that a field Eh in the proper direction will produce the requisite

shearing strain Xk. The desired end cannot be attained if Eh is uniform

throughout the crystal or if it is directed uniformly through the specimen

in a direction normal to the axis of torsion.

This difficulty can be overcome in various ways. One method,

applicable at least to quartz and mentioned in 356, is to use a specimen

in the form of a hollow circular cylinder with cylindrical electrodes

inside and outside, so that the field is radial. Another expedient,

described in 356, is to apply oppositely directed fields to different

portions of the specimen.

A third method, which finds practical application in the Rochelle-salt
"
twisters," makes use of two elongated flat plates cemented together

with a common electrode of metal foil between (503). The polarities

of the plates are both in the same direction; but since the electric fields

are in opposite directions, two opposing shears are produced, which result

in a torsion of the combination.

This third method is used in various 1-f devices; the other two methods

have been employed both statically and for resonant vibrations. As will

be seen in Chap. XVII, it is possible by suitable placing of electrodes to

excite overtone torsional vibrations as well as the fundamental mode.

The equations for torsional deformations and vibrations are given in

35 and 74.

181. Special Forms of Vibrating Devices. In addition to the crystal

plates, rods, and cylinders mentioned above, other forms have been

made to vibrate piezoelectrically. They include spheres (360), tuning

forks (385), and saucerlike shapes (508).

The use of obliquely cut plates for special purposes has already been

referred to in 50. It need only be added at this point that the decrease

in the piezoelectric effect which often accompanies the use of oblique
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fields is much more than compensated by the advantages offered by such

cuts. Moreover, the low decrements that can be attained by suitable

mounting of specimens, especially in the case of quartz, is of greater

importance in resonators than an especially large piezoelectric effect.

182. Disturbing Effects in Crystal Resonators. At certain frequencies,

compressional, shearing, flexural, and torsional vibrations, in fundamental
or overtone modes, singly or in combination, may be present in specimens
of almost any shape. For the production of any one type of vibration

it is by no means necessary that the electrodes be placed for most efficient

excitation. If the driving current is of the proper frequency, a stray

component of alternating field is likely to be present somewhere in

the specimen in such a direction as to cause a mechanical stress of^the

type necessary to excite vibrations of any of the four types. Moreover,

through the presence of elastic cross constants (32), purely mechanical

coupling effects exist between different types of vibration, so that modes

may occur that are not directly excited by piezoelectric action. An
example of such indirectly excited modes is the compressional vibrations

parallel to the Z-axis in quartz (348).

Considering the multiplicity of possible vibrational modes, the variety

of ways in which they can be excited, and the fact that close coupling

between modes can affect the vibrations over a considerable range of

frequency, it is no wonder that very complicated vibrational patterns

have so often been observed by means of dust figures or otherwise and

that the frequency spectrum of a resonator is so complicated.

We leave this subject with two words of admonition to all who

attempt to identify vibrational modes in crystals. First, when the

crystal is connected as a resonator, it is very important that the tube

generating circuit be so well filtered that only a voltage of a single fre-

quency is impressed on the crystal. Second, it is generally rash to assume

that a particular mode is present because a resonant frequency of the

right value has been observed. It is always desirable, and usually not

difficult, to locate the nodal regions by one or more of the methods

described in 366 to 368 and thus to determine the mode in which the

crystal is vibrating and whether other modes are also present. In no

branch of crystal experimentation is self-criticism a more important
virtue than here.

183. The Measurement of Piezoelectric Constants. In 75 it is

stated that elastic constants can be measured by either a static or a

dynamic method. The same is true of the measurement of piezoelectric

constants, but there is a wider range of methods. For whereas in elas-

ticity there are only mechanical stresses to be applied, in piezoelectricity

observations can be made by applying either a mechanical stress (direct

effect) or an electric stress (converse effect). For most crystals, with the
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exception of quartz and Rochelle salt, the values were obtained only

by the static direct effect, yielding the piezoelectric strain coefficients

dhk. As will be seen in Chap. XXI, the constant du of Rochelle salt

has been observed both statically and in a 1-f alternating electric field

by the converse effect. In Chaps. XV and XVIII we shall consider the

derivation of the piezoelectric constants of quartz and Rochelle salt from

observations on resonators, which involve a combination of the direct

and converse effects, and sometimes yield Chk rather than efofc.

It is beyond the scope of this book to go into detail concerning the

experimental methods of measuring the piezoelectric constants statically,

although certain precautions, which to a large extent are applicable to

all crystals, are pointed out in 411 and 417. Theoretical details are

given in Voigt's "Lehrbuch," and excellent accounts of experimental

methods, with diagrams of apparatus, will be found in references B45
and B51. Measurements are made by the use of a ballistic galvanometer,

electrometer, or thermionic voltmeter or, for the converse effect, by
observing the deformation of the specimen. Those who undertake the

precise determination of piezoelectric constants would do well to examine

as many as possible of the original papers from which the values given

below are derived.*

184. A word should be said, however, concerning the measurement
of di4, ^25, and d3 e, since reference will be made to it later, especially

in connection with Rochelle salt. It is enough to consider di4 ,
since the

treatment of ^25 and dse is exactly analogous. The constant du occurs

in equations of the type Px = duYz or yz
= d\\Ex ,

which means that in

order to observe du a shearing stress Yz or an electric field Ex must be

applied to an X-cut plate, the resulting Px or yz being observed. The
second of these equations was used by Sawyer and Tower,

449 who observed

the strain yz directly; the spontaneous yz in Rochelle salt has been

observed by Mueller. 378

In the main the direct effect has been utilized, with Px = duYz .

Owing to the difficulty in applying a simple shear to a crystal plate it is

customary to apply an endwise compression to a rectangular plate, the

length of which bisects the angle between the positive senses of the

Y- and Z-axes. If this direction is called Y' and the compressional stress

Y'y ,
one can easily prove by simple geometry that Px = duY'y /2,.

This equation also follows from 39, where it was shown that for 45

cuts Yz
=

Yy/2. The same result is also reached by expressing the

piezoelectric constant in terms of transformed axes Yf and Z', these axes

resulting from a rotation of 45 about the X-axis. We then write

* The reader is referred especially to the paper by Liidy,
322 for measurements by

the direct effect. For the converse effect, various techniques are described in the

references mentioned in Chap. XXI (see also L. M. Myers386
).
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P* = d'12Yv and find from Eqs. (203) that d'12
= dx4/2. This equation

for Px expresses the transverse effect in a 45 Z-cut plate.

If the direction of pressure is rotated 90 in the FZ-plane, so that the

compression is parallel to the breadth of the plate, the equation is

Px = - d
; 3z; =

<*"%

by Eq. (203). The sign of the shearing strain yt is thereby reversed.

For the same pressure the same value of Px results, but with reversed

sign.

This simple method for measuring du, c^s, and ds& is not in general

applicable with crystals having still other piezoelectric constants, since,

as may be seen from Eqs. (196), such constants may cause a further

contribution to the polarization.

In all measurements of piezoelectric coefficients by application of a

stress Xh, it is essential that the crystal be free from all other mechanical

constraints. According to Eq. (188), any such constraint may con-

tribute to the value of Pm and therefore to the observed dmh .

When the strain coefficients dhk for any crystal have been determined,
it is necessary to know the values of the elastic constants before the

ehk can be calculated, and vice versa. Equations (192) and (192a) are

to be used for this purpose. If these equations are applied to rotated

axial systems, the primed values of elastic as well as of piezoelectric

constants must of course be employed.
For dynamic methods for the determination of piezoelectric constants

are 310 following.

185. Qualitative Tests of Piezoelectric Specimens. In the methods

now to be described the direct piezoelectric effect is used. The specimen
is subjected to compression, which may be either static or of low fre-

quency. In either case the crystal does not resonate. Methods making
use of the resonating property are described in 172 and 308.

If the crystallographic class of the specimen is known, the specimen
can be so oriented and the electrodes so placed, in accordance with the

principles outlined earlier in this chapter, that a suitable compression

will liberate charges on the electrodes. In the absence of such knowledge,

various positions -of electrodes and directions of compression must be

tried until an arrangement is found that works. The compressional

method has been used mostly with Z-cut plates of quartz, which can

by this means be explored for twinned regions and defects.

In the form most commonly adopted, the plate to be tested lies on a

large horizontal electrode, and pressure is applied locally on the upper

surface by means of a rod carrying at its lower end a metallic knob

that serves as the other electrode. This knob is connected either to a
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string electrometer, as in Dye's arrangement*, or to a sensitive electronic

voltmeter, in which case a stage of amplification can also be employed.
Due attention must be given to the problems of insulation and screening.

Devices of this sort have been described by Dawson, 121
Meissner,

861 and
Tsi-Ze. 624

If a pulsating pressure is applied to the plate, a vacuum-tube detector

and telephone receiver or loud-speaker can be substituted for the volt-

meter. This device was described by the author94 in 1922. The periodic

pressure was derived from a glass rod in contact with a small buzzer,
and it was shown that the device could be used for testing a single

plate, for comparing an unknown plate with a standard, or for match-

ing two plates with respect to polarity. Similar arrangements, using
i tuning fork or loud-speaker mechanism in place of the buzzer, were

later described by Bergmann52 and by Rosam.f

*
VIGOTJREUX, ref. B51, p. 21. See also SCHEIBE, ref. B45, p. 4.

t S. ROSANI, A Ita Frequenza, vol. 3, pp. 643-649, 1934.



CHAPTER XI

ALTERNATIVE FORMULATIONS OF PIEZOELECTRIC THEORY

A theory of physics is not an explanation. It is a system of mathematical proposi-

tions, deduced from a small number of principles, which have for their aim to repre-
sent as simply, as completely and as exactly as possible, a group of experimental laws.

P. DUIIEM.

186. Voigt's theory, while fully capable of giving a phenomenological

description of all piezoelectric effects, is not the only possible formulation.

It offers the advantage of mathematical simplicity, and for this reason,

as well as because of its almost universal adoption in the literature, it is

employed throughout most of this book.

In recent years three suggestions have been made toward a new
formulation. In each case the purpose was to give a more reasonable

description of the anomalous behavior of Rochelle salt than was afforded

by Voigt's theory. Mueller376 in 1935 proposed that the piezoelectric

strain should be regarded as proportional to the molecular field F rather

than to the macroscopic field E
t while later Mason335 considered the

piezoelectric stress proportional to the density of charge on the electrodes.

In view of the experimental results of Mason and others, both Mueller378

and Mason338 have more recently treated the stress as proportional to the

polarization.

These hypotheses, calling for a revision of the entire formulation of

piezoelectric theory, are so important as to require careful consideration.

For, however anomalous the behavior of Rochelle salt may be, it seems

most reasonable to assume that its fundamental piezoelectric properties

are of the same nature as those of other crystals. The fact that with

Rochelle salt these properties are so largely dependent on conditions

easily realized in the laboratory then serves to determine the most

reasonable form of theory, not alone for Rochelle salt, but for all other

piezoelectric crystals as well.

No new form that may be given to the theory can be expected to

reveal new truths, so long as both forms are founded on the same funda-

mental principles. One form differs from another only in the choice of

parameters, and they are mutually convertible. In each case the same

raw materials go into the mill, and the only difference in the product

is that it appears in different packages. The criterion is to be sought in

experiment: that form of theory will survive which defines its piezo-
245
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electric, elastic, and dielectric coefficients in such a way that they are

found experimentally to be most nearly constant under varying conditions.

187. The formulation of modifications of Voigt's theory can best be

introduced by means of the differential expressions for the thermodynamic

potentials involving elastic and electrical effects. The potentials them-

selves, which represent the free energy of the crystal in terms of strains

() or of stresses (f), were discussed in 23; use has been made of their

partial derivatives in 26, 105, and 124.

On the assumption that all processes are reversible and isothermal,

we may write the exact differentials in the following equations in terms

of the fundamental electrical and mechanical quantities :

- Xdx (236)

db.x ** E dP - X dx (236a)

dfBlX
= EdP -xdX (2366)

dfp.x = P dE - x dX (236c)

These four equations are analogous, respectively, to the well-known

thermodynamic expressions for the internal energy, the Helmholtz free

energy, the Gibbs free energy, and the enthalpy of a reversible system;

the quantities P, E 1 x, and X are analogous, respectively, to absolute

temperature, entropy, volume, and pressure in ordinary thermodynamics.

Although the foregoing equations are not written in vector notation,

it is of course understood that E and P are vectors, while X and x are

second-rank tensors. The nature of these parameters is made explicit

when appropriate suffixes are introduced.

Since each of the equations (236) to (236c), like Eqs. (1) and (2),

is an exact differential, we may take derivatives and write a set of equa-

tions analogous to Maxwell's relations. Just as each derivative in

Maxwell's relations represents a thermomechanical constant character-

istic of the material, so in Eqs. (237) to (237c) each derivative represents

a characteristic electromechanical constant*:

(),=- (),--> <>

*
Equations (237) to (237c) express the differential values of e, 6, a, and 6 and are

valid whether the electromechanical relations are linear or not, as long as they are
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Equations (237) and (237c) express the converse and direct piezo-

electric effects according to Voigt's theory, with and 5 as t;he correspond-

ing coefficients (see also 123). In the other two equations the

foundation is laid for the polarization theory, with coefficients a and b,

which is further discussed in 192.

It must be emphasized that Eqs. (236) to (237c) no more predict

a piezoelectric effect than the thermodynamic equations referred to

above predict the existence of a coefficient of thermal expansion. Their

service consists in giving expression to the relation between the effect,

when it exists, and its converse. The material world is so constituted

that the thermomechanical effects are universal, while a linear electro-

mechanical effect is a very special property. Nor do Eqs. (237) to

(237c) establish the law relating electrical to mechanical phenomena.
If the relations were quadratic, the equations would represent the electro-

strictive effect and its converse (137). This effect is so small that we

may disregard it. The assumption that we have to do only with a linear

effect is based on the experimental fact that, with almost all piezoelectric

crystals that have been tested, direct proportionality has been observed.

There is but little doubt of the general validity of this assumption except

among the "Seignette" crystals.

The foregoing equations are special cases of a general reciprocity

theorem: among reversible processes, whenever there are two primary
effects m = aiM, n = biN, together with a secondary effect m = a2N,
then there exists also the supplementary relationship (converse effect)

n = 62M. 316 This theorem can be further generalized to include any
number of primary effects.* Some of its consequences have already

been considered in 20.

188. Still other formulations of piezoelectric theory are possible,

depending on the choice of parameters for the dielectric term. We make
use of the following relations :

D==kE = *P =*L F (238)
17 A

In the last of these expressions F is the molecular field and K is an abbrevi-

reversible. When the relations are linear, these four quantities are constant (at a

given temperature). For the linear case, the equations give relations identical with

those expressed in Eqs. (183) to (184a) and (244) to (245o). The only* difference is

that they are in abbreviated symbolic form, without explicit introduction of the

various components. Each subscript indicates the quantity that is held constant.
*
"Lehrbuch," p. 189. The special form assumed by this theorem in the piezo-

electric case is as follows: We let m = P, n m X, M m E, N ss x, ai ss
77, bi sm

c,

where c is an elastic stiffness constant. Then the primary effects are P yE and

X ca:; according to the theorem, if there exists the relationP *x(e a*), then

there exists also the converse relation X - ~E.
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1 + 47ri7 (see 113). D is theation for (1 + 71?), by analogy with k

electric displacement.

A few of the ways in which the thermodynamic potentials may be

expressed with the aid of Eq. (238) are now given. A single accent

(17', &', K') denotes the value at constant stress, a double accent the

value at constant strain.

*&. =
7'
1

i?'

- Xdx

-xdX

-Xdx

-xdX

~rf PdF -Xdx

-g,PdF
- xdX

(239)

(240)

(241)

Equations (239) correspond to (236a) and (2366) ; they are basic for

the polarization theory. Equations (240) and (241) are the fundamental

expressions for two other possible modes of treatment, which may be

called the displacement theory (D-theory) and the molecular-field theory

(F-theory).

189. The relative merits of the various formulations will be dis-

cussed below. Anticipating the conclusion that the polarization theory

(P-theory), is to be preferred on theoretical grounds (though not always
for practical use), we summarize its main equations, in parallel columns

with Voigt's, in Table XX. For the P-theory a and b denote coefficients

corresponding to Voigt's e and d, while the superscript P attached to the

elastic coefficients means at constant polarization.

For each crystal class the matrix of the a's and 6's is exactly the same
as for the e's and d's, as are also the equations for transformation to

rotated axes; this fact is made evident in Eqs. (xi) and (xii) of the table.

The meaning of the symbol (Em) is explained in 194.

The equations for the P-theory are based on Eqs. (237a) and (2376).

Equation <xi) in Table XX is derived by equating the expressions for
3

Xh in (iv) for the two theories and settingPm = ] rj^Eh. By an analo-

gous process Eq. (xii) is derived from (vii).

By the use of Eq. (143) it can also be shown that

and 5m* (242)
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TABLE XX. CHIEF EQUATIONS OF THE VOIGT AND POLARIZATION THEORIES

(xi)

(xii)

3

2)

It is unnecessary to give the full tabulation for the other forms of

theory that have been mentioned. The equations for the D-theory are

obtained from those for the P-theory by writing k' and k" in place of i?'

and 17", and D in place of P; for the F-theory we substitute k' = 1 + yif

for V, k" = 1 + 71?" for 17", and F for P. Otherwise, the equations are all

identical. For Mason's charge theory
836 - 340t B36 one would substitute

*74 for 17', *"/4r for ij", and the charge density <r for P.
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As was stated in 186, that form of theory is to be preferred which

defines its piezoelectric coefficients in such a way as to be the most nearly

constant under varying physical conditions. The principal clue to

the search is Mason's observation836 that the resonant frequency, and

hence the stiffness, of a 45 X-cut Rochelle-salt plate separated by a wide

gap from the electrodes is nearly independent of temperature, while

when the electrodes are adherent [so that no depolarizing field (199)

can be built up] there is a very pronounced temperature dependence.

According to Voigt's theory the piezoelectric reaction upon the stiffness

varies from zero at zero gap to a limiting value at infinite gap* Mason's

result could then be explained only on the not too plausible assumption

that the temperature coefficient of stiffness was just such as to neutralize

that of the piezoelectric reaction with large gaps.

190. Abandoning Voigt's theory, Mason336 assumed that the true

stiffness, unaffected by piezoelectric reaction, was that observed with the

widest possible gap; the decrease in frequency with decreasing gap he

ascribed to piezoelectric reaction, i.e., to a piezoelectric stress proportional

to the charge on the electrodes, since the charge increases (at the same

electrode voltage) as the gap diminishes. He thus arrived at a new

definition of the piezoelectric stress coefficient, fu = Y^*, replacing

Voigt's en = - YZEX .

Although Mason's original elaboration of his theory is open to serious

criticism,
378 one of his outstanding results consists in finding /u, as he

defines it, practically independent of temperature. Taken together with

his results concerning the stiffness, this fact suggests very strongly that,

if the piezoelectric stress is not proportional to the charge on the elec-

trodes, it is at any rate proportional to some closely related quantity.

The employment of the charge or charge density tr as a parameter

seems unreasonable on theoretical grounds, because

_ D _ (E + 4dP)

thus involving implicitly both E and P.
'

One must recognize, as is pointed out in 199, that, as the gap between

resonating crystal and electrodes increases indefinitely, the electrical

quantity that approaches zero is theoretically the displacement, so that

at wide gaps the observed stiffness is very approximately that at zero

electric displacement. From a purely pragmatic point of view this fact

points to the adoption of the charge theory or the equivalent displace-

ment theory, just as Voigt made the pragmatic assumption that stress

is proportional to field. Nevertheless, one should not confuse that

which is most easily measurable with that which is most fundamental;

and if the proportionality of stress with field has to be abandoned, it
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appears fundamentally more logical to assume proportionality with

polarization than with a parameter that involves both P and E. By the

same argument the use of the displacement D or of the internal field F
as parameter is ruled out. A step in the direction of the F-theory was
taken by Mueller376 when he assumed the polarizability of Rochelle

salt to be due partly to piezoelectric strain and this in turn to be pro-

portional to F. Nevertheless, he did not develop this concept further.

191. We are thus left with the polarization theory as the one to be

preferred, as an alternative to Voigt's theory. It has been put to experi-

mental test only with Rochelle salt, and here its fundamental hypothesis,
that stress is proportional to polarization, is almost identical with that

of the charge theory, according to which stress is proportional to charge.

For the charge is proportional to the electric displacement, and owing
to the very high susceptibility of Rochelle salt the displacement is very

nearly proportional to the polarization. Moreover, when the stiffness is

derived from the frequency of crystals vibrating with a wide gap, as in

Mason's measurements, the depolarizing effect is so strong that the net

polarization, like the displacement, is almost zero, so that both forms

of theory give practically identical values of the "true" stiffness. The
small difference is discussed in 211.

We may therefore accept Mason's dynamic measurements of the

elastic constants of Rochelle salt, use of which has been made in 79,

as being free from appreciable piezoelectric reaction. The advantages of

the P-theory over Voigt's theory in the case of Rochelle salt are that the

coefficients au and 6u are more nearly independent than are Voigt's

ei4 and du of both temperature and field (474).
With normal piezoelectric crystals any -one of the foregoing forms of

theory could also be applied. For such crystals <r, E, D, F, and P are

proportional, not because of large values of fc, but because with them k

is practically constant. It is this constancy of k, along with that of the

piezoelectric constants, and the very low piezoelectric reaction on the

stiffness, that makes well-nigh futile any thought of using observations

on normal crystals to decide whether any alternative theory is preferable

to Voigt's. For such crystals it is more expedient to continue to employ
the Voigt theory. The special field in which the polarization theory is

appropriate is that where there is pronounced variability in at least one

of the coefficients dmh with temperature.
192. The Polarization Theory. It is an interesting historical fact

that in formulating for the first time the general equations for the converse

effect, Pockels427
expressed the piezoelectric strains in terms of com-

ponents of polarization. Not until later did Duhem and Voigt come to

use the field instead of the polarization in their equations. At that

time, however, the reasons for advocating a general polarization theory
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were unknown. In his lattice theory, discussed in 546, Born expressed

the piezoelectric and elastic relations in terms of polarization.

When written in terms of polarization instead of field, the two thermo-

dynamic potentials for isothermal changes [Eqs. (1) and (2)] become*

km

* ***** +
At Am

h

-it & *p z*

m A *

These two expressions for the free energy contain only linear terms.

The non-linear term that describes saturation effects is introduced in

451.

When the energy equations are applied to the Seignette-electrics,

recognition must be given to the fact that between certain temperatures

there is a spontaneous polarization, associated with a spontanepus strain,

which makes a contribution to the energy. The introduction of this

contribution in the equations, as well as the inclusion of a term represent-

ing non-linear effects, can be presented most clearly in a specific case.

We therefore refer the reader to the treatment of Rochelle salt in Chaps.

XXIII and XXIV and pass at once to the fundamental piezoelectric

equations of the polarization theory, analogous to Eqs. (183) to (184a) in

Voigt's formulation. They are derived from Eqs. (243) and (243a).

-(**)

+

.- -xh

Jr

(244)

(244a)

(245)

(245a)

* After the author had developed this general theory, Mueller's 1940 papers,
878 380 381

appeared, introducing for Rochelle salt a coefficient fu identical with the author's ai4.

Mueller here adopts the principle of the polarization theory, but he does not go beyond
the consideration of the special constants for Rochelle salt with fields parallel to x.

He recognizes the effect of piezoelectric reaction on 844 and c44 ,
but his use of 44 for

constant field and of c\\ for constant polarization is confusing. As far as they go,

his results agree with the present treatment. Following is the correlation between

Mueller's symbols and the author's:
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The piezoelectric terms in these equations are the same as in Table

XX, Eqs. (iv), (v), (vii), and (viii).

Equation (244) may be regarded as the basic equation of the polari-

zation theory. As Mueller has pointed out, it has a certain logical

superiority over Voigt's corresponding Eq. (183), in that it involves only

the internal parameters XH and P.

If there is no spontaneous polarization, the P's in the foregoing equa-
tions are components of polarization due to the impressed field, at con-

stant strain in Eqs. (244) and (244a) and at constant stress in (245) and

(245a).

193. Dimensions of a,mh and bmh. These quantities correspond to

Cmh and dmh of Voigt's theory, the dimensions of which were given in 128.

The dimensions of amh are [M*L~*T~ l
k~X\, the same as for a field strength.

bmh is of the nature of field strength/stress, with dimensions [M~*L*Tk~*],
the same as for the reciprocal of a polarization. In the practical system
of electric units amh may be expressed in volts per centimeter and bmh in

volts cm dyne~ l
. In general, we shall use electrostatic cgs units, as

in the case of dmh and Bmh.

Following are some of the conversion factors relating the piezoelectric

constants according to the Voigt theory (emh and dmh)) the polarization

theory (amh and bmh), the displacement theory (a^ and &&), and Mason's

charge theory (fmh and gmh) (see 189). Special conversion factors for the

Voigt constants are given in 128. For simplicity we confine the dis-

cussion to crystals that, like Rochelle salt, have only one piezoelectric

constant with respect to a field parallel to any one of the crystallographic

axes; each summation in Table XX that concerns us here is thus reduced

to a single term.

With all quantities in electrostatic cgs units the following relations

hold:

4
"-JTT Umh

Converting to practical electrical units,

~Y5?*1 = ono/, r^5tv?^l

volt cm"l OAn, Fstatvolt cml
3(K

J

["volt -cm"] F statvolt cm")

dyne
= m*
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194. Interpretation of Eqs. (244) to (245a). To Eq. (244) the same

reasoning applies as was used in 126 in explanation of Eq. (183); for

the present case it may be paraphrased as follows: In (244) the total

stress component (Xh) is made up of two parts: (1) the externally applied

stress that would produce the prescribed strain if P = 0; (2) the part

caused piezoelectrically by P. The latter is a body stress, as distin-

guished from an external stress. That is, the second term is equal and

opposite to the external mechanical stress that would have to be added

to the mechanical stress responsible for the first term, in orcfer to hold

the strain constant when the polarization was applied. With both

strain and polarization prescribed, the total external mechanical stress

component is therefore, not the (Xh) in Eq. (244), but rather

Xh = -Sc&* + SaWfcPw = (Z) + 220^ (246)

We see also that, when (Xh)
=

0, there must be an external stress

Xh = 22amhPm ,
with a strain given by -Zc&r,- = 2a^m . The fact

that (Xk) is not the external stress, but the sum of two stresses, one

external and the other internal, must be kept in mind in all uses that are

made of Eq. (244).

'

Just as in Eq. (244) (Xh) is not an externally impressed stress com-

ponent, so in Eqs. (244a) and (245a) (Em)" and (Em)' are not components

of the actual impressed field. In (244a) (Em)" is a component of the field

that would produce the same total polarization in a clamped crystal that

is given by the prescribed values of the Pk and x^ If all xh = and

if there is no spontaneous polarization, we have simply the dielectric

equations (143) for a clamped crystal, and (Em)" = Em, the actual field;

and if all Pk = 0, (E^" is a component of the field that would cause

in a clamped crystal the polarization due to xh .

In Eqs, (245) and (245a), the X's are externally applied stresses.

The interpretation of (EmY is analogous to that of (Em}" above.

195. The following considerations will serve further to make clear the

relation between (Em)" and the actual field Em . We restrict ourselves

to the case in which the only component of the actual field is Em and

assume that there are no cross susceptibilities, so that in the unstrained

(clamped) crystal the only polarization is Pm = ^mEm . Then if an

arbitrary strain is also impressed, the total polarization, from Eq. (183a),

according to Voigt's notation, is

(P.)i
- ^mEm + 2 **fe - Pm + e^xh (247)

H h

whence Em = *!LCP.)i
-

x * - idLfm (248)
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On the polarization theory, the corresponding expression, Jtrom Table

XX, Eq. (xi), is

Em - 3&.(ft.)i
-

2) *** = xiLP- (248a)
A

Under the same conditions Eq. (244a) becomes

(Em)" - *JLP + 1 o*** (248Z>)

Then, since Pm is the polarization due to Em alone, we have Xmnfm = Em ,

whence the following relation holds:

(Em)" = Em + a^ = x!L(P-)i (248c)

The equivalent field (#,)" is thus seen to be the sum of the actual field

Em due to the potential difference between the crystal surfaces and the

quasi-field due to the deformation. It is also easily proved that

(Emy _ (pj,
Em Pm

'

Analogous expressions are readily derived for the case where an

arbitrary stress system is impressed, the crystal being free to deform itself

when E is applied. Corresponding to Eqs. (247), (248a), and (248c), one

finds

Em = xln(Pm). + 6rtZ = vLf* (250)

- 2 6^X* (250a)

As before, we find also that -^-' = -^-
f
-

X&m * n

From Eqs. (248c) and (250a) it is evident that (Em)
= Em in two

special cases: (1) when the crystal is clamped so that there is no strain,

i.e., when a mechanical stress system is applied such as to prevent

deformation when the field is applied; (2) when the crystal is entirely

free to deform itself in the field, i.e., when all impressed mechanical

stresses vanish.
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Equations (247) and (250a) give the actual field Em in the crystal

when the strain (or stress) system and the total polarization are pre-

scribed. By introducing the cross susceptibilities these expressions can

be generalized to the following forms, supplementing Eqs. (244a) and

(245a):

J7I X^ ff /T> \ ___ V^ /OP1 ^

k h

=
2) tim (P*)t + 2)

bmhXh < (251a)
k h

Since the foregoing equations are to be applied in 452 to Rochelle salt, with the

field in the X-direction, we can set m =
1, h -

4, XH = Y, } Xh = y, and drop the

subscript m from P, E, 17, and x< The following expressions are valid only for small

stresses and fields. Otherwise, non-linear effects are present, for which see 452.

For a crystal under a prescribed strain ys and field E,

Pt - i"E + e^y, (252)

E - x"Pt - x"ei4V, - x"Pt - a l4yg (253)

(E"} - x"P + any* - E + ai#. - x"tt (253a)

where P is the polarization due to E when ys 0.

For a crystal under prescribed stress Yz and field E,

Pt -
ij'E

- d 14F, (254)

E x'^t + x'rfuF, - *'P + 6 14F, (255)

(EY - X
;P ~ &i 4 K, - J5?

- 5 l4y, - XT (255a)

where P is the polarization due to E when P* ~ 0.

Whether the crystal is clamped or free, (E) is related to E by the equation

W ..

We can now derive, in terms of the polarization theory, expressions

for the components of polarization in the direct effect, analogous to Eqs.

(187) and (188) according to Voigt. We assume zero field in the crystal

and also P = 0* and therefore set Pk = in (244a) and (245a), then

multiply each of the three components (Em) by the appropriate sus-

ceptibility and add them according to Eqs. (140). The three components
of piezoelectric polarization Pn (n = 1, 2, 3) are thus obtained:

3 36
Pn = ^ y"m(Em)" = 2} 5) i?n

/

mam*A (constant strain) (256)
m m h

3 36
Pn = 2) <00m)'

* -
2) 2) O*3T* (constant stress) (256a)

m m h

* The special expressions when P is present are worked out for Rochelle salt in

(459.
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From Eqs. (xi) and (xii) in Table XX, these expressions can be

reduced to Eqs. (187) and (188). As always, i/n
'

m and i/nm denote suscepti-

bilities at constant strain and constant stress, respectively.

When there are no cross susceptibilities, n = m, and the field and

polarization are parallel. For given strain and given stress the polariza-

tions are then

and Pm - -Ci 6.1X1 (257)

The same expressions can also be derived by taking derivatives of

Eqs. (243) and (243a) with respect to Em. Equations (256), (256a), and

(257) give the actual polarizations when the electrodes are adherent to the

crystal and short-circuited (field
=

0). Otherwise, the contributions

due to the field must be added.

196. Comparison of the Polarization Theory with Voigt's Theory.
From the point of view of the polarization theory, the positions of the

parameters "electric field" and "polarization" in Figs. 1 and 48 would

have to be interchanged. Although this alteration would logically

lead to corresponding changes in the formulation of pyroelectric theory,

we need not concern ourselves with this problem, since Voigt's formula-

tion seems quite adequate for this purpose.

When an electric field is applied to a piezoelectric crystal, it is in

general impossible to make direct measurements of both stress and polar-

ization. In observations of the direct effect, with electrodes closely

adherent to the crystal, this is possible, and here all forms of the theory

give identical results. With the converse effect, on the other hand, if we

attempt to measure the piezoelectric stress, as for example by observing
the externally applied stress necessary to reduce the strain to zero, we

thereby alter the polarization by an amount that cannot be measured

directly. Likewise, the polarization cannot be measured without

involving a change in stress. We are confronted with a sort of piezo-

electric "principle of uncertainty."

At this point we must pause to consider what quantities can be

regarded as observable. There is first of all the mechanical strain,

which, on paper at least, is perfectly determinate and measurable under

all circumstances. Next the electric susceptibilities, 17" at constant

strain and rf at constant stress, both of which are measurable (though
somewhat indirectly) and which have a perfectly definite meaning inde-

pendent of all theory. The field strength E is directly measurable with

flat plates of sufficient area and with adherent electrodes. The polariza-

tion, as has been stated, is directly measurable only with the direct

effect, using adherent electrodes.
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The piezoelectric stress has a value independent of theory only when
the crystal is so clamped that no deformation can take place. In this

case, for the same field, all equations of the type of (iv) hi Table XX give

identical numerical values, and the components of stress are equal

and qpposite to'those of the external constraint. The electrodes are

here assumed to be adherent and maintained at a fixed potential differ-

ence. If now the constraints are removed, the field remains unchanged,
but the polarization, by Eq. (v), is increased. According to the Voigt

theory the stress remains unchanged and there is still no piezoelectric

reaction, while the polarization theory asserts that there is a piezoelectric

reaction and that the stress is thereby increased. Now this increased

stress is that which would actually be observed if known forces could be

applied from without such as to reduce the strain to zero at constant

polarization. This particular effect, like all other piezoelectric phe-

nomena, can be described in terms of any of the alternative forms of

theory. Of itself it* furnishes no criterion whatever for choice between

the various forms.

The stress-strain relations according to the polarization theory may
be illustrated by a simple example. A stress XE is applied to a piezo-

electric crystal, producing a certain strain x. If the field is held constant,

as for example by short-circuiting the crystal so that E =
0, the observed

stress XE (at constant E) will be relatively small.

If the experiment is repeated with the polarization held at zero, the

observed .stress XP will be greater. According to the Voigt theory this

fact is explainable thus : The strain gives rise to a polarization P, which is

present when E = and which does not affect XE . To make P = it

is necessary to apply a negative field E' sufficient to produce a counter-

polarization P that will neutralize +P. This negative field also

causes a negative stress, to overcome which a stress XP greater than Xs

must be applied externally to produce the same strain.

According to the polarization theory this negative piezoelectric stress,

being proportional to P, is present when E = but not when P = 0.

Its effect is, by Eq. (vii) in Table XX, to increase the strain; hence, for

the same strain, Xe is less than XP by an amount equal to the piezo-

electric stress.

Equations for the elastic constants in terms of the polarization theory
are given in 208.

197. The following correlation between the Voigt and polarization

theories may be helpful. In comparing Eqs. (184) and (245), we may
assume that the crystal is subjected simultaneously to a stress system X
and a field E in any direction. There is then a polarization P due partly
to X, partly to E. If the resulting strain x is to be expressed in terms of

X and E, the Voigt theory is used, with isagric compliances and with
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piezoelectric constants dmh. On the other hand, when X and P are

given it is simpler to use the polarization theory, with compliances s&
and piezoelectric constants bmh. The fact that, for the same stress, field,

and strain, the two theories require the use of different compliances
follows from the circumstance that x is due in part to E as well as to X
and that the former of these contributions has a different form according
to whether it is expressed in terms of E or of P.

The exact equivalence of Eqs. (184) and (245) can be shown in general

form from the relations already given between the various coefficients.

A simple example is afforded by Rochelle salt (or any crystal in Classes F,

Fd, Z>4, DG, T, or Td). If the field is Ex,
the only piezoelectric coefficients

to consider are du and bu = du/ri' [Eq. (242)]. Assuming the only

mechanically impressed stress to be YgJ we have from Eq. (184), by
Voigt's theory,

-y. = fcF.
~ duEx (258)

and from Eq. (245), by the polarization theory,

-y* = *hY. - 6uP. (259)

On substituting d\\/tf for &H and making use of the relations s 4
=

sltfi"/if

from Eq. (520) and Px = t\'Ex
- d^Yz from Eq. (184a), we find

- = H7 +
3rt7

y*
"

Then since du/s^ = 614 from Eqs. (204) and 77'
=

ij" + eudu from

Eq. (264), the expression for yz is easily reduced to the form given in

(258). For simplicity, these expressions have been written without

regard to the phenomenon of saturation in Rochelle salt. The complica-

tions that arise from this cause are treated in Chaps. XXIII and XXIV.



CHAPTER XII

SECONDARY PIEZOELECTRIC EFFECTS

Primary causes are unknown to us; but are subject to simple and constant laws,

which may be discovered by observation, the study of them being the object of natural

philosophy. FOURIER.

Whenever a piezoelectric crystal is under mechanical stress, an electric

polarization is produced by the direct effect, which, except under special

boundary conditions, gives rise to an electric field. According to Voigt's

theory, this field, through the action of the converse effect, causes certain

components of strain in addition to those due to the mechanical stress.

Similarly, an impressed electric field causes a primary polarization, super-

posed on which is a secondary polarization due to the state of strain

produced piezoelectrically by the field. The state of affairs is fur-

ther complicated when electric and mechanical stresses are impressed

simultaneously.
These secondary effects are sometimes sources of great annoyance.

On the other hand, they can also be turned to good account, as for exam-

ple in the piezoelectric resonator, a device in which they play a very
essential part. Whether for good or ill, they are usually present, so

that it becomes important to examine somewhat closely their general

theory, as well as their operation under certain special conditions.

198. Correlation between Elastic and Dielectric Phenomena. In

the formulation of physical laws, close similarities between the state-

ments expressing widely differing phenomena are of very frequent occur-

rence. The correspondences are sometimes chiefly in form, as when
Ohm's law is compared with its magnetic analogy; and sometimes they

express identity of underlying principles, an illustration of which is found

in the application of electric-circuit theory to acoustic problems.
There are some interesting analogies between mechanical phenomena

in elastic bodies and the electrical effects in dielectrics. Since piezo-

electricity deals with a system of relations between these two domains,
it is worth while to inquire to what extent the relations can be made

symmetrical in form and also in how far the correspondences thus dis-

closed may be regarded as of more than merely formal significance. It

can be foreseen at the outset that full symmetry in the mathematical

formulation is impossible, for the following reasons:

260



198] SECONDARY PIEZOELECTRIC EFFECTS 261

1. Elastic stresses and strains are tensors, while electric fields* and

polarizations are vectors, the field being characterized by a potential

gradient.

2. Across the boundary between two media it is the normal elastic

stress that is continuous, while in the electric case the continuity is in the

electric displacement and not in the field. Furthermore, an elastic stress

is defined as force per unit area, while the electric stress, or field strength,

is force per unit charge.

3. An elastic stress exists only in a material medium; there is no
"elastic field" in a vacuum corresponding to the electric field. On the

other hand, an electric field can act directly on a charge without an inter-

vening material medium.

According to molecular theory, when a mechanical pressure is applied
to the plate, the outer electrons of adjacent atoms become crowded

together, and the thickness of the plate is decreased, while at the same
time certain other related deformations take place. The latter depend
on the form of the unit cell, i.e., on the crystal structure. In an ordinary
dielectric no polarization results. Equilibrium is reached when the

interatomic forces become equal and opposite to those caused by the

pressure. This complex of short-range, highly divergent inner fields

constitutes the elastic reacting stress and determines the compliance s.

In a piezoelectric plate, a polarization is caused by the deformation; the

resultant electric field depends upon conditions at the boundaries. It

is for this reason that the fundamental piezoelectric equations in Table

XXI (page 265) express the polarization, rather than the field, as a func-

tion of impressed mechanical stress.

If now instead of a mechanical stress we impress upon the plate an

electric stress, in the form of a uniform field, this field, which may
originate in distant charges, acts at long range upon the charges in the

dielectric, giving rise to a polarization P =
ijE. The quantities t\ and P

may be regarded as the dielectric "compliance" and "strain," respec-

tively, analogous to s and x in the equation x = sX. As in the mechan-

ical case, equilibrium is attained when the forces of restitution between

the displaced charges have become sufficiently great. If the plate is not

piezoelectric, no mechanical deformation takes place; we are here ignoring

the electrostrictive effect, which depends on the square of the field and is

usually negligible in comparison with the piezoelectric effect.

In a piezoelectric plate thus stressed electrically, the particles become

systematically displaced, in a manner depending on the crystal symmetry,

so as to deform the crystal. Equilibrium is reached when the restoring

elastic stress X' = ex balances the piezoelectric stress X = cE

(c and e are elastic and piezoelectric stress coefficients).

* The terms electric field, or field strength, and electric stress are used synonymously.
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199. Mechanical and Electrical Boundary Conditions. In piezo-

electric problems, the elastic boundary conditions are of importance when
an electric field is impressed, and the electrical boundary conditions when
a mechanical stress is impressed. Conditions are here assumed iso-

thermal throughout the present discussion. Just as an applied electric

field produces in a piezoelectric crystal a polarization that depends on the

state of mechanical relaxation, so when mechanical stress is applied the

amount of yield depends on the state of electrical relaxation; the anal-

ogous quantities in the crystal are the dielectric susceptibilities and the

elastic constants, i.e., the electrical and mechanical compliances.

With respect to elastic conditions the two standard states may be

defined as clamped and free. In the clamped state, whenever an electric

field is impressed a system of mechanical stresses is postulated such as

to prevent all alterations in strains (216). The crystal may then be

regarded as having all its surfaces firmly attached to a surrounding
medium of infinite rigidity. In the free state the surrounding medium
has infinite compliance (air or vacuum), a condition that can be approxi-

mately realized with suitable mounting; the crystal is then free from

external stress, and the piezoelectric strain x = dE can assume its full

theoretical- value. Measurements of dielectric constant are ordinarily

made with the dielectric approximately in this state. If all relations are

linear, the same value of the dielectric constant will be observed if the

mechanical stress system is not zero but maintained constant during the

experiment.

Electrically, by analogy, the crystal should be considered clamped
when conditions are suchlbhat there is no polarization or, more generally,

when the polarization is constant. This state can be brought about by
providing a counter-field of such intensity as to neutralize the polariza-

tion caused by mechanical stress [Eq. (290)]. To a certain degree of

approximation a crystal may be considered as electrically clamped when
it is isolated, i.e., so remote from all conductors that the depolarizing field

due to polarization charges on the surface reduces the net polarization

to a small value. In the case of such a crystal as Rochelle salt, in which

the dielectric constant is very large, this depolarizing effect reduces the

polarization almost to the vanishing point (211). An isolated crystal is

then practically in the "electrically clamped" state.

Of great importance is the electrically free state, in which the sur-

rounding medium has infinite dielectric susceptibility. This condition

is realized very simply by making the entire surface equipotential, as

by providing short-circuited electrodes or by allowing time for surface

charges to be neutralized by leakage. There is then no field in the

crystal; and if the crystal is piezoelectric and is mechanically stressed,

the piezoelectric polarization is not diminished by counter-polarization.
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Static measurements of elastic constants of crystals are customarily
made with the specimens in the electrically free state. The same values

would be observed (if all relations were linear) if the electric field were

different from zero but maintained constant throughout the experiment.
The values of elastic constants under constant-field conditions may be

called isagric values, with symbols s%k and c$k when it is necessary to be

specific.

Under certain experimental conditions the crystal when deformed by
a mechanical stress is in a state of constant electric displacement. This

situation is encountered, for example, when the stress is applied to a

relatively thin plate cut in such an orientation that the piezoelectric

polarization is parallel to the thickness, the plate being far removed from

all conductors. From the principle of continuity of displacement normal

to the boundary between two media, it is clear that in the crystal, as at

infinity, the displacement is zero. According to 214, there is still a

polarization in the crystal, which causes a contribution to the displace-

ment, but this contribution is neutralized by the depolarizing field.

Even in a thin crystal, however, the displacement never vanishes at the

edges. Fortunately, in most crystals, including quartz, the dielectric

constant is large enough so that edge corrections do not have to be made
with bars or plates that are reasonably thin in the field direction.

200. A serious complication arises from the fact that in crystals of

low symmetry and in oblique cuts from crystals of high symmetry the

polarization is in general not parallel to the field. In such cases an

impressed stress may cause a polarization, and hence a displacement,

with components at right angles to the field. If the specimen is in the form

of a thin bar or plate, the component of displacement parallel to the field

and to the thickness can become neutralized by the depolarizing field

when the crystal is sufficiently far from conductors. If the lateral dimen-

sions are relatively large, the other components are not neutralized but

are almost as great as in a short-circuited crystal. That is, while short-

circuiting makes the field zero, absence of electrodes does not ensure that

the displacement will be zero.

The foregoing remarks apply particularly to the determination of

elastic constants from observations of resonant frequencies. If, as is

often the case in such observations, the gap between crystal and elec-

trodes is zero, the deformation of the specimen is without influence on

the field in the thickness direction; for this is the driving field, impressed

from without. There is no lateral field except one of negligible mag-
nitude due to polarization charges at the edges. Hence no component
of the piezoelectric polarization is neutralized, and there is no depolarizing

field to contribute to the total stress or strain. That is, from observa-

tions at zero gap the isagric elastic constants are determined. As will
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be shown in Chap. XIII, their derivation from lengthwise vibrations of

bars is quite simple; on the other hand, certain piezoelectric corrections

have to be applied in the case of thickness vibrations.

When observations are made with a very wide gap, the effective elastic

constants as deduced from the resonant frequencies are essentially those

at constant displacement, if field and polarization are parallel. When the

polarization is not parallel to the field, the effective constants are those

for a constant-displacement component normal to the surfaces of the

plate; their value is then intermediate between the constant-displace-

ment and the constant-field values. Formulas for the latter type of

elastic constant, which should be used whenever the fundamental

(isagric) constants are to be derived from vibrational data, are given

below.

Numerically, the elastic constants at constant displacement are very
close to those at constant polarization (see the comparisons for Rochelle

salt and quartz in 211). Since, as we have seen, they cannot in general

be observed directly, it is advisable to consider the isagric values as

standard, as has indeed been the practice in the past. The only excep-
tions are the Seignette-electrics, for which there are good reasons for

considering the values at constant polarization as more fundamental

(191).
The formulas in the following pages are based on the assumption

that the area of the crystal plate is infinite. With finite plates, owing
to the lack of uniformity in field, polarization, and displacement near

the edges, the formulas offer only a more or less close approximation.
The greater the dielectric constant, the smaller can the lateral dimen-

sions be without introducing serious errors.

In summary, it may be said that the two principal mechanical states

are clamped (constant strain) and free (constant external stress, usually

zero) and that the two principal electrical states are isolated (subject to

depolarizing field) and electrically free (short-circuited, or electric field

held constant). Static measurements of dielectric and elastic constants

are usually made respectively with external mechanical stresses and
internal (macroscopic) electric fields as near zero as possible. In a vibrat-

ing resonator, the crystal is usually mechanically free with respect to

certain stresses but not to others.

201. Bearing in mind the general considerations that have just been

discussed, we turn to their mathematical formulation. The chief rela-

tions between electrostatic and mechanical phenomena for piezoelectric

crystals, so far as our present needs are concerned, are grouped together

in Table XXL On thie right side of each equation is the independent
variable in terms of which that on the left side is expressed. For the

sake of simplicity summations and subscripts are omitted, and all effects
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are assumed to be linear. The basic piezoelectric equations are (c),

(d), (c'), and (e'), the direct and converse effects being at the right and

left, respectively. Each equation in the table, including these four,

holds rigorously only for a specified state of the crystal. Thus the

familiar elastic equations (a) and (6), as well as (c') and (e
f

), assume the

crystal to be electrically free, so that the elastic constants s and c have

their isagric values. In (e), (/), and (a') the crystal is mechanically free,

so that T? and k are identical with the ij

f and kf

of Eqs. (264) and (265),

while (b') t (d
r

), and (/') are for a completely isolated plate of large area.

Beside each equation in one column is placed its counterpart in the other

column, with electric strain substituted for mechanical strain, etc. The
limitations of each equation, together with the effect of secondary reac-

tions, will be discussed below. In general, whenever a departure is made
from the standard state for each equation, piezoelectric reactions enter

in (secondary effects) that depend on boundary conditions, often adding
serious complications to the problem. The equations that may best be

regarded as fundamental are (a), (a'), (c), and (c
7

), all the rest being
derivable from them.

Voigt treats numerous special problems in which boundary conditions

are considered; but, except for a brief discussion of a plate under com-

bined electric and mechanical stresses ("Lehrbuch," pages 915-920), he

does not introduce secondary effects into his theory, although on pages

817 and 920 he recognizes that they wculd have a quantitative effect

on his results. In most of the special cases that he treats, secondary
effects are absent.

TABLE XXI. ELECTROMECHANICAL RELATIONS

Mechanical Effects Electrical Effects

x - -sX (a) P = 7)E (a')

X- -? (6) E~ -~P (&')

x - dE (c) P = -dX (c')

X = -eE (d) E -
~^ X (<*')

x~-P (e) P=ex (e
r

)
"n

x = --P co E - --^x cn
17 K

Eqs. (a) and (6), in which s and c are isagric, symbolize the funda-

mental stress-strain elastic relations at constant field. Corresponding

to (a) is Eq. (a') for dielectric stress and strain in a mechanically free

crystal.

Although Eq. (6') is of a more special character than (a
;

), it is included

in Table XXI, partly for the sake of the symmetrical relationships and

partly because we shall have occasion to refer to it later (214). In
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(&') the crystal is isolated and in zero external field, and hence the total

electric displacement must be zero; P is an impressed polarization, which

may be due to a mechanical strain (piezoelectric effect) or to a change in

temperature (pyroelectric effect), or the substance may be an electret

(174).

Equations (c), (d), (c'), and (e') are abbreviated forms of the funda-

mental piezoelectric equations (187) to (190). The fact that (d) and (e')

are not symmetrical, one being in terms of stress and the other of strain,

testifies to the lack of complete correspondence. Equation,(d') bears

the same relation to (d) that (6') does to (6). It holds for an isolated

piezoelectric crystal subjected to stress X and is derived from (6') and (c').

It is expressed more specifically in 207, 212, and 214. Equation (e)

is the complement to (e
f

), expressing strain in terms of polarization

(c/. 189). It is derived from (c) and (a') and is used in Chap. XXIII.

Equations (/) and (/') are included to complete the symmetry in Table

X ft XXI. Equation (/), which is the basic

equation of the polarization theory, is

derived from (d) and (a'), and Eq. (/')

from (&') and (e').

^ 202. The effects represented in

i
Table XXI are shown graphically in

\P Fig. 48, taken from the upper portion
f

of Fig. 10, in which the arrows indicate

the usual sequence from cause to effect.

/ The arrows X*P and x>P repre-

P sent the direct piezoelectric effect, from
FIQ. 48. Interaction between elastic Eqs. (/') and (e'), Table XXI, E > X

and electric effects. j v J.L. j.and E-+X the converse effect, from

(c) and (d). The arrows E >P, from (a'), and X > x, from (a), apply

normally to the electrically and mechanically free states, respectively.

Figure 48 shows also the genesis of the secondary effects. For exam-

ple, when the crystal is mechanically clamped and a field E is applied,

the resultant X and x are both zero and we havfe simply Eq. (a'). If

the crystal is mechanically free, the arrows E > x and x P indicate

a piezoelectric contribution to the total polarization [Eq. (263)]. The
surface charge <r due to P, or in some cases the space charge p, gives rise

to an additional component of E (or, if E is held constant, to an additional

charge on the electrodes), as indicated by the curved arrow, leading to

a change in the effective value of the dielectric constant (204). The
curved arrow corresponds to Eq. (&')

Similarly, when the crystal is electrically free (electrodes short-

circuited), the resultant field is zero and Eq. (a) remains unmodified.

On the other hand, if the crystal is isolated, the arrows X-*P9 P*E,
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E > x indicate the process whereby the strain, and thence the effective

elastic compliance, is influenced by secondary piezoelectric action.

The theory of these reactions, which are of great importance in the

piezoelectric resonator, will now be considered.

203. Theory of Isothermal Piezoelectric Reactions. The following

treatment corresponds in part to the paragraphs on secondary effects

in Voigt's "Lehrbuch,"* with certain changes in notation. It is assumed,
as is approximately the case except with the Seignette-electrics, that the

susceptibility and the piezoelectric coefficients d and e are constant, i.e.,

that all relations are linear. The peculiar characteristics of the Seignette-

electrics are considered in Chaps. XXIII and XXIV. In order to

minimize boundary effects, a plane-parallel piezoelectric plate of thick-

ness small in comparison with its other dimensions is assumed, the

electric field and polarization being normal to the large surfaces. A more

general solution would involve very grave complications, tending to

obscure the physical significance. So far as first-order effects are

concerned, the present treatment is applicable to most experimental situa-

tions. The equations are sufficiently general to apply under the condi-

tions specified above to a plate in any orientation, in any non-conducting

piezoelectric crystal, so long as linear relations between stress and strain

hold in both the electric and the elastic equations.

A system of orthogonal axes X
y F, Z in any orientation is assumed.

All elastic and electric coefficients are expressed with respect to these

axes. The six stress components Xx . . . Xv are denoted by X\ . . . XQ,

and the strain components by Xi . . . XQ.

204. The Piezoelectric Contribution to the Dielectric Constant.

Mention has already been made in 104 and 124 of the distinction

between the dielectric constant k" of a clamped crystal, and k
r
of the

crystal when mechanically free or under constant stress. The effective

k of vibrating plates usually lies somewhere between these two limiting

values. The unaccented symbols k and ij are used in this book where

there can be no ambiguity or where no special distinction is needed.

This was also the practice of Voigt, who used a primed symbol for the

dielectric constant of the free crystal in his brief treatment of secondary
effects, f

The very important relation between k" and k' is found by combining

Eqs. (183a) and (184) for the direct and converse effects. We assume

the fields to be in the A-direction and seek an expression, in terms of the

clamped susceptibility, for the polarization in the w-direction due to the

joint action of Eh and a stress XH. On substituting x* from (184) in

*
Pp. 916-919.

t "Lehrbuch," p. 917.
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(183a) and making appropriate changes in subscripts, one finds, by
means of Eq. (191a),

Pm = Eh (r!L + e-Af)
- **&**

V
i

'
i

= Ek U'm + y e*Ai)
- dm*Xfc (260)

x
t

'

Now, from Eq. (184a),

Pm = 77^ - dm&X*
*

(261)

From these two equations the desired result follows:

In most practical cases the polarization is exactly or very nearly

parallel to the field, so that h m, and for brevity a single subscript m
may be written in place of mm:

Pm =
rj'mEm - dmkXk (263)

(265)

* = 1 + W:
*

(266)

Equations (264) and (265) when applied to Rochelle salt for fields in

the X-direction take the following form, of which frequent use will be

made:

n*
=

iff + iA4 (267)

k'x
= 1 + 4^ = k'x

f + 4i4*4 (267a)

According to Eqs. (260) and (261), the value of vj

f

hm is independent
of the stress Xk- This independence holds whenever, as in the cases

here considered, all relations are linear. Then, and only then, can one

call v[ the susceptibility at constant stress, as in 124. In Rochelle salt,

for example, the relations are non-linear, and it is necessary to specify

the value of the stress usually zero in order to give rj' a definite meaning
(see 450).

If some, but not all, of the components of strain are prohibited,

as happens in certain vibrational problems to be considered later, the

corresponding terms in the summation disappear. The susceptibility

then has a value somewhere between ij' for a free crystal and i\" for a

clamped crystal.
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205. The Piezoelectric Contribution to the Elastic Constants. This

effect has already been mentioned repeatedly. As we have seen, the

elastic coefficients depend on the electrical state of the crystal, which in

turn is conditioned by the polarization due to the deformation.

The relations between the elastic compliance and stiffness coefficients

under conditions of constant field, constant electric displacement, and

constant polarization will now be derived in general form. The isagric

coefficients sjlk and cjk relate strain to stress when there is no potential

gradient in the crystal. Their values are commonly measured by static

methods, or by lengthwise vibrations when the field is perpendicular to

the direction of vibration, with full-sized electrodes closely adherent to

the crystal. The constant-displacement coefficients S& and c& hold in

certain cases for a completely isolated crystal*, while the constant-

polarization coefficients s%k and c k play an important part in the polariza-

tion theory (Chaps. XI and XXIII).
The constant-displacement and constant-polarization tensors have

the same form as the isagric tensor, with the same number of elastic

constants for a given crystal class. They transform to rotated axes in

the same way, permitting the use of the transformation equations in

Chap. IV.

206. Elastic Coefficients at Constant Electric Displacement. We con-

sider a piece of crystal of any form, subjected to a homogeneous stress

system in which all six components Xi . . . X G may be present. If the

entire surface of the specimen is kept at a fixed potential, for example

by a grounded metallic coating, the constants relating strain components
with stress components are the isagric sfi . . . s?6 . Although the

field in the crystal is zero, there is present a polarization with components

given by Eq. (183a).

The following equations can be applied to a rotated axial system by
expressing all parameters with respect to the rotated axes. In order

to obtain the coefficients &, one may in theory impress upon the crystal,

while it is thus stressed, a field in the proper direction and of such strength

as to maintain the electric displacement at the value zero. If the stress

system is left constant, this field will change the strain components

according to Eq. (184), and from the new strains the sgh can be calculated.

* The crystal may be bare and far removed from all conductors, or it may have

adherent coatings that are disconnected from the circuit and free from stray capacitive

effects. In the latter case one may say that the adherent electrodes are connected

to an infinite impedance. Thus, in a static field or with thickness vibrations, a crystal

plate may be plated on both sides and still be "isolated," with a compliance s%k . The

plated bar in lengthwise vibration requires a special treatment, as will be seen in 286.

The terms "plated" and "unplated" are, however, sometimes employed to denote

zero gap and infinite gap.
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The equations are derived most conveniently by assuming a single

stress component Xk, which gives rise to three components of piezoelectric

displacement of form Dm = 4dPm = -vdmkXk, by Eq. (184a). To
neutralize Dm we need D'm = Dm = kirdmkXk . To each DJ, there cor-

respond three components of the requisite field E'i

by Eq. (145). The accented 0' signifies a, free crystal (constant stress).

Each E'j causes a strain component x'h
=

djhEj. Hence for all three

components of E' we have

j m

This strain is to be added to that due to Xk at zero field, giving for the

total strain component of type Xh at constant displacement the expression

3 3

xh - -a* = -X(<& - 4r 2 efcMU (268)
j m

3 3

Hence, sgk = i - 4r
J) J)

dlhdmk6'im (269)
; m

An analogous expression for c%k is found by starting with the strain xk

given, in which case we use 0" to represent the dielectric impermeability
of a damped crystal:

(270)

If the crystal has no dielectric cross constants, all 0/m vanish except

those for which j m. Then, as in the analogous case of the suscepti-

bilities (106), dmm = l/km ,
so that '

Finally, if the only component of displacement is that in the m-direc-

tion,

(271a)

207. Elastic Coefficients at Constant Normal Displacement. These are

the effective constants for a resonator in thickness vibration with infinite



207] SECONDARY PIEZOELECTRIC EFFECTS 271

gap. From 199 it follows that, as the gap approaches infinity, the

component of displacement normal to the plate, which will be called D*,

approaches zero at all points in the crystal (thin bar or plate) and at

every instant during the cycle. The vanishing of D* in the crystal is

brought about by the fact that the piezoelectric polarization due to the

strain gives rise to polarization charges, from which all lines of force

turn back through the crystal, producing a depolarizing field of the right

magnitude to make the normal displacement zero both inside and outside

the crystal. Whatever the strain may be, there is no polarization charge
"free" (as there is when the gap w < <) to send lines of force across

toward the electrodes. For this reason Mason336 - 840 uses the superscript

Q to designate the elastic coefficients at "constant charge," when the gap
is infinite. We shall follow Lawson818 in writing s*k and c*k for the

elastic constants at infinite gap, corresponding to constant (usually zero)

D*. The significance of c^ as the effective stiffness in thickness vibra-

tions is treated in 248 and 253.

For c*k we seek the total stress Xh corresponding to a given strain xk .

Letting the thickness direction be w, we are concerned only with the

polarization component Pm = emkxk . Pm causes a depolarizing field

E'm = 4irPm/k'n = 4iremkXk/k'm, and E'm gives rise to a stress com-

ponent X'h = -emhE'm = 4iremkemhXk/k
f

^. k'^ is the clamped dielectric

constant (see 204). X'h tends to diminish xk ; hence, to hold xk constant,

we must write

f xk B

where c* =
cfc + ^jjr* (272)

It may be noted that iih j* k and if emk and ehk have opposite signs,

c*k is numerically smaller than cgk .

When h = &, we find

c^ = <& +^ (272a)

For the application of this equation to thickness vibrations see 250.

By an analogous method one finds, for the compliance coefficient

(for k'm see 204),

(273)

When h = fc, this expression becomes

/I x72

(273o)
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' Equations (273) and (273a) are identical with (298a) and (298) when
in the latter equations the gap w becomes infinite. c*k and sjjj. are identi-

cal with cj& and s& in the special case where the piezoelectric polarization

is parallel to the thickness, and there are no cross constants. This

statement can be verified by letting m have a single value in Eqs. (269)

and (270), with j = m.

When the foregoing equations are applied to an oblique bar or plate,

all symbols for physical quantities are to be primed. For example,

Eq. (272) becomes c'h% =
cjf + 4?re^/(O', where, as in the most general

case of thickness vibrations, h may specify a direction that is oblique with

respect to the rotated axes, while m specifies the direction normal to the

plate. This fact leads to a complicated expression for the effective e^
[see Eq. (344), page 311]. Fortunately, for most oblique cuts in com-

mon use h lies in the plane of the plate, at right angles to m, so that the

transformation equations for the piezoelectric constant given in Chaps.

VIII and IX can be used directly.

It is important to consider whether the elastic coefficients at constant

normal displacement constitute a transformable tensor system. For

example, one may ask whether it is correct, for rotation of a F-cut

Rochelle-salt plate about the X-axis, to write according to Eq. (40)

c =
cj, cos2 8 + c6

*
6 sin2 (274)

The answer is yes, provided that CgJ, cJ6,
and c*6 are all at constant dis-

placement with respect to a field making the same angle 6 with the Y-axis.

This condition would require special expressions for c?6 and c*5,
and

these expressions would vary with 6. No fixed values independent of

can be assigned to c*6 and c*6 such that these quantities can be used in

equations for rotated axes. The same is true of all the other stiffness

and compliance constants that involve a piezoelectric term.

From what has been said it is evident that it is impossible to derive

a set of single-valued elastic constants CM from observations of the

frequency of thickness vibrations of plates cut in different orientations

and driven by means of remote electrodes (as in Mason's experiments

with Rochelle salt, described in 77), unless suitable piezoelectric cor-

rections are applied, and even then each c h would have a value depending

on whether the field direction m in Eq. (272a) was parallel to X, to F,

or to Z. Observations made with a wide gap can be used to determine

the isagric constants by one of the methods described in 252; for the

reduction of such observations the formulas in this chapter are suitable.

208. Elastic Coefficients at Constant Polarization. The derivation is

3

exactly similar to that in 206, usingPm instead of Dn,
and Ej =

from Eq. (143). The result is
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(275)

(276)

Corresponding to Eqs. (271o) one has, for a single direction j = m,

(277)

(278)
7/m

If h = k, these equations reduce to

jo o

p E __ ^WAJ p __ # I fmfr (97cn

TVie constant-polarization coefficients in terms of those at constant normal

displacement. From Eqs. (272), (273), (277), and (278),

(280)

The two terms on the right in such equations as (273) or (277) cor-

respond, respectively, to the arrows X > x and X*P * E -* x in

Fig. 48. The latter path indicates the process of piezoelectric reaction

mentioned at the end of 202. There is an obvious analogy between the

effect of piezoelectric reactions on the elastic compliance in (273) or (277)

and its effect on the dielectric compliance (susceptibility) expressed in

Eq. (262). In each case there is a term arising from the combined

action of the direct and converse piezoelectric effects. The influence

of a depolarizing field on the elastic constants is analogous to that of

mechanical constraint on the dielectric constants. In the first case the

crystal becomes stiffer mechanically; in the second case it becomes

stiffer electrically.

A crystal of large k is electrically soft, just as large s means mechanical

softness.

209. An Important Special Case. If the deformation is of the type
L or S in Fig. 15, so that h = k, and if the piezoelectric class is such that

Eq. (191a) has but a single term, with i = h, then dmh = dmk = emhsgh

and, from Eq. (191), emh = dmhC^. Hence c& = l/s&, and Eq. (271)

reduces to
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Hence, from Eq. (265), we find

2& S& *
(281)

Under the same conditions and by use of Eqs. (277) and (262), we obtain

f& = * = 2
(282)

210. Relations between the Elastic Coefficients According to the Polariza-

tion Theory. All the foregoing expressions can be written m terms of

the polarization theory, by applying the same reasoning to the equations

in 192. Only the following need be given here:

Equations (521) and (521a), specialized for Rochelle salt, can be derived

from Eq. (283).

211. Specialization to Rochelle Salt and Quartz. In later chapters we shall have

to do with Rochelle-salt X-cut plates subjected to a stress F,, producing a strain

y, s44 Yz. It is therefore of interest at this point to compare the values of sf4, ?4,

and sf4 for this crystal. A similar comparison will also be made for n in quartz.*

For Rochelle salt, one finds, from Eqs. (271) and (279),

f.
= *?.-^ (284)

That these two values are practically identical is seen by writing

(284o)

At all temperatures this difference is of the order of 0.03(1(T), as may be verified

from Figs. 145 and 146. Since s 4 is of the order of l(Tn
,
it is evident that s?4 does

not differ from s 4 by more than about 0.35 per cent, an amount too small to distin-

guish experimentally. It is this fact which justifies us in accepting for c 4
= l/s^,

in 79, the value derived from observations on an isolated crystal. On the other hand,

the difference s?4
-

sf4 ( s 4
-

sf4) is very large, as may be seen by substituting

values from Figs. 145 and 146 in Eq. (279) or (283). For Rochelle salt, Eq. (283)

reduces to af4 f4(l + au&uifc). The smallest value of s?4 ,
at 47.5C, is greater

than * 4 by a factor of 1.35, and it approaches infinity (for small stresses) at the Curie

points.

Following is the relation between c?4 and cf4 for Rochelle salt according to the

polarization theory:

c?4 -<-% (285)
Km

* For the cases considered here the constant-displacement values are the same as

those at constant normal displacement, according to 207.
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where 17" and k" are the values for a clamped crystal. Similarly,

and cf,
-

cf,
-

In quartz, the piezoelectric effect is so small that flf sft, and *ft are identical within

about 1 per cent. Thus, from Eqs. (271a), aft is about 1.03 per cent less than flf
and eft is 0.87 per cent greater than cft . On the other hand, owing to the low dielectric

constant of quartz, the difference sf\ fx is not, as with Rochelle salt, negligible in

comparison with aft sf^ That is, to the degree of precision attainable in quartz,
the compliance at constant polarization cannot be regarded as practically identical

with that at constant displacement (isolated crystal). This fact is, however, of little

practical consequence, since the equations of the polarization theory are not com-

monly applied to quartz.

Neglecting edge effects, it follows from 199 that for an Z-cut Rochelle-salt plate

the coefficient sf4 is observed when the gap w is zero, while s?4 is observed when the

plate is isolated (w =
). The fact that s 4 is practically identical with s?4 is a conse-

quence of the large value of kx,
which causes the depolarization to be practically com-

plete when w = <. How nearly complete the depolarization is can be seen from

Eq. (294), according to which the net polarization in an isolated stressed plate is only

l/kx of the full value attained when w = 0.

212. Illustrations of Piezoelectric Reactions. As a background for

the treatment of various piezoelectric applications in later chapters,

the secondary effects present in some special cases will now be considered.

As before, we have to do with a flat plate of relatively large area. If the

electrodes are parallel to the plate, the field is normal to the plate, i.e.,

parallel to the thickness dimension e, which we have assumed to be in

the w-direction. In general, the polarization is not parallel to e, partly

because the material is anisotropic with dielectric cross constants fc#

[i 5* j, Eq. (141), page 162] and partly because any mechanical stress

causes a piezoelectric polarization with components perpendicular to e.

As a first approximation we regard the area of the plate as infinite, so

that the lateral components of polarization can be ignored. Throughout
the present discussion we need consider only the component Pm .

Inside the plate the field is Em ; outside, where the medium has a

dielectric constant k =
1, the field is E^. Then, if cr is the surface

density of any true charges (i.e., other than polarization charges) that

may be on the surfaces and Pm is the polarization in the plate, including

that of piezoelectric origin as well as that due to Em,
one may write the

general equation

Em as Em - 4irPm - 47T<r (286)

The sign of <r is to be taken as that on the face toward the positive direc-

tion of the w-axis. The free charges may be upon metallic electrodes in

contact with the plate, or they may be compensating charges resulting

from surface or body leakage.
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If now a stress Xk is impressed, while the crystal is still free to deform

itself in the field, the value of Pm from Eq. (263) may be substituted,

giving

Em = Em - 4ir(<n'mEm - dmkXk)
- 4

(287)

Throughout this chapter all elastic constants, unless otherwise

specified, have the constant-field values.

213. CASE I. Plate of thickness e in contact with electrodes on which

a stress Xk and a potential difference V = eEm are impressed. In Eq.

(287) the field E?m outside the electrodes has no effect on the conditions

between them, so that the charge density on the electrodes becomes*

CT " "~
. ""p" Cifrik-^-k (^Oo)

The strain is

Xk = -^ ~
s%kXk (289)

e

The polarization remains as in Eq. (263). The strain xk caused by Xk

can be reduced to zero by applying a field

Em = fL

k
Xk (290)

This field depends inversely on the piezoelectric strain constant, while

by Eq. (263) the field necessary to reduce the polarization to zero depends

directly on this constant.

If there is no external stress, the crystal is mechanically free and
behaves as a dielectric with

F
and 'Pm

For a clamped plate the polarization, from Eqs. (264) and (266), is

6

Pm - tfB. - EJyfm - 5) <*&<) (291)

If Em = (electrodes short-circuited), then under an impressed Xk

we have simply, from (263), (288), and (289), <r = dmkXk ,
Pm -dmkXk,

and xk = sJkXjc. This is the special case in which the fundamental

piezoelectric polarization equation holds without modification.!

*
Cf. VOIGT, p. 918, Eq. (298).

t VOIQT, p. 919.
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214. CASE II. Like Case I, only the electrodes are separated by a

distance e + w, leaving a total gap w (which may be divided between

the two sides) between crystal and electrodes. As before, both lateral

dimensions are assumed to be large in comparison with the thickness.

In Eq. (287) the free charge cr = 0, and both Em and Em are dependent
in part upon V and in part upon the surface polarization charges due to

Xk or X^ The quantity e + k'mw, which, as in 110, may be regarded
as the electrical distance between the electrodes, will be denoted by the

symbol e'.

The treatment of the problem is slightly different according to whether

there is impressed on the crystal a single stress Xk, as in Case I, or a single

strain Xk. As we shall see in 244, the assumption that the stress is given
lends itself most conveniently to the solution of the problem of the bar

vibrating lengthwise, while for thickness vibrations of a plate, owing to

the presence of lateral constraints, there is but a single strain to consider.

a. A single extensional stress Xk is impressed upon an elongated plate

or bar whose relatively small thickness dimension is in the direction m.

The only strain that concerns us is Xk, extensional, in the direction of

the length of the bar. The electric field is in the m-direction. For

example, with a quartz Jsf-cut bar having its length parallel to the F-axis,

the subscript k = 2, Xk = Yv, Xk = yy,
and the electric field is parallel

to X, so that m = 1.

We seek an expression for the effective elastic compliance of the crystal

in a gap. From Eqs. (164a) and (1636) the total field in the crystal,

including the contributions due to V and Xk, is

V
* -

7

where (PTO)
= dmkXk . By substituting this value of Em in Eq. (287)

and setting a = 0, we find for the field in the gap

p, _ k'mV m _ m mkk
(

.;___+ _---_ --
(293)

The second term on the right in Eq. (292) is the depolarizing field. As w
increases, the depolarizing field becomes greater, approaching as a limit

the value given below for w > .

When w-0, Eqs. (292) and (293) are both reduced to (286). In

the crystal the field is simply V/e, while in the (infinitesimal) gap it is

k'V/e
- 47rdmkXk.

When w while V remains finite, Em 4ardmkXk/k'mf and Em > 0.

This is the case for a stressed crystal completely isolated in space. It is

easily proved that the principle of continuity of displacement is satisfied,

the displacement approaching zero inside as well as outside the crystal.
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Nevertheless, the polarization does not then approach zero. Its value

at infinite gap is*

(294)

or only l/k'm of the value when w = and V =
0, as given at the end of

Case I. The analogy with the effect of magnetic depolarization upon a

magnetic shell is obvious.

In Eqs. (288) and (289) of the "Lehrbuch," Voigt treats tjie case in

which the crystal is placed in an external field of constant value E^.

His results, represented in Eqs. (295) and (296) with appropriate changes
in subscripts and on the assumption that the surrounding medium has a

dielectric constant of unity, can be derived from Eqs. (292) to (294).

The crystal plate may be considered as in a very wide gap, with V large

enough to produce an arbitrary E*m . It is then easily proved that

<295>

Pm = (VK - 4*Z) !

(296)Km

When Xk is constant, we see that the crystal behaves, with respect to

variations in E^, like an ordinary dielectric with dielectric constant k'm .

We return to the case where w is finite. The total strain component Xk

is due in part to the two field constituents in Eq. (292). With the aid

of Eq. (184) one finds

m ,

xk = ,
--

1,
----

-,

If, as is usually the case, V is independent of #*, the effective compliance

of a crystal with gap w, when a stress Xk is applied, may be written as

Similarly, one can derive the more general equation

(298a)

When the gap is infinite, the last two equations became identical with

Eqs. (273a) and (273), since the only depolarizing field is parallel to the

thickness of the bar.

*
"Lehrbuch," p. 917, Eq. (291).
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These equations show how the compliance departs from the isagric

value when there is a gap. For example, if w = or if the crystal has

no dmk, $jgb
=

sfc. As the gap increases, then if dmk ^ 0, the compliance

goes down, and, in the case of a resonator, the natural frequency increases.

As the gap becomes indefinitely large, Jk approaches the value given by
Eq. (2730). This condition may be very approximately realized when
w is still of the order of magnitude of e. Analogous equations may be

derived for the other compliance coefficients. When w =
0, Case II

reduces to Case I.

215. CASE 116. A thin plate of infinite extent, with thickness e in

the m-direction, is subject to a single extensional strain xm . This situation

will be encountered in the theory of thickness vibrations (243). Here

we consider only the static case, where xm is uniform throughout the plate.

As in (a), the plate lies between parallel electrodes, with a gap w. A
potential difference V is impressed on the electrodes, causing a contribu-

tion to the field in the m-direction in the crystal, of magnitude

where e" s e + kw (299)

The clamped dielectric constant k^ is used here, in accordance with 104,

because the strain is prescribed.

As in Eq. (292), there exists also in the crystal a depolarizing field

due to the strain xm,
of value 47rw(Pm)/e", where now (Pm)

= emmxm .

Hence the total field in the crystal is

The stress Xm required to produce the prescribed xm when V is given

is the sum of two constituents, one of which is that due to Em, while the

other is that causing xm at zero field. That is,

... 9. \

n (300)

The effective stiffness of a crystal of infinite area, thickness e, and gap

w, under a static pressure, is therefore

(301)

When w =
oo, this equation becomes identical with Eq. (272a)

(setting k = m), since, as w - <, w/e' = w/(e + kw) - 1/A& ,

216. CASE III. Crystal of any form, completely clamped, with field EH

impressed. A system of external mechanical stresses is applied, such
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that each of the components of stress Xk = -~ehkEh is neutralized by a

stress Xk , reducing the strain to zero. This does not reduce the

polarization to zero, for a polarization P& =
ri'h'Eh still persists. For all

crystal classes with which we are concerned, there are no polarization

components other than Ph for a given Eh, so long as Eh is parallel to one

of the three orthogonal crystal axes. For the general case, the compo-
nents of P are given by Eq. (140) [see also Eq. (154)].

217. CASE IV. Equation (292) may be used to derive the field and
resultant polarization in a stressed crystal having adherent electrodes con-

nected to an external capacitance, as, for example, an electrometer or the

deflecting plates of an oscillograph. It is necessary only to set V =
and to replace the capacitance of the gap Cw = A/4irw (see Case II

above) by the external capacitance C. A is here the area of the crystal,

and for the capacitance of the crystal we have Ce
= khA/4ve. From .

these two equations it follows that w/e' = Ce/k((C9 + Cw), whence
from (292) we have

The resultant polarization is dhkXk + Tf](Eh, or

(303>

When C =
0, Eq. (303) reduces to (294) ;

when C =
;
it becomes the

fundamental equation (c
f

) in Table XXL
218. CASE V. Crystal plate of large area A having adherent elec-

trodes on which fixed charges Q are placed. The charge density is

a = Q/A. If the plate is clamped, the field strength is EI = 4ir<r/k"

(specific subscripts are here unnecessary). When the plate is released,

the field becomes reduced to EI = kw/k' =
ir<r/(k" + 4?rSe<0

[cf. Eq. (265)]. We may say that the reduction in field strength is due

to the increase in the effective dielectric constant. It would be equally

correct to say that it is due to an induced counter-field, proportional to

the strain, of amount E' = (4.ir(r/k")(4ir2ed/k'), a relation that is easily

verified.

The foregoing paragraphs contain many instances of the piezoelectric

analogy to Lenz's law, which, as commonly understood, may be expressed

by saying that an induced current flows in such a direction as to oppose
the cause that produced it, the amount of reaction depending upon the

resistance of the electric circuit. In the case of the piezoelectric effect

the statement is as follows: A piezoelectrically induced field has such a

direction as to oppose the stress that produced it, the amount of reaction

depending upon the freedom of the crystal from mechanical constraint.
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219. Numerical Examples. The magnitude of the secondary effects will now be

illustrated, quartz being taken as an example of relatively low piezoelectricity and
Hochelle salt as the most strongly piezoelectric substance known. In each case an
X-cut plate of large area is considered, the electric field and polarization being in the

JST-direction. The values of di4, sf4 ,
and k'9 for Rochelle salt are taken from Figs.

145 and 146 at 5C and are typical for small electric and elastic stresses. The figures

for larger stresses near a Curie point would give a still more striking contract with
6

quartz. The symbol 2ed signifies the summation
2^eihdih,

which for quartz is

h

Zeudu -f 6i4di4[Eq. (213)], while for Rochelle salt it is simply ei 4du.

The table shows clearly how little influence the piezoelectric effect has on the

dielectric constant and compliance of quartz as compared with Rochelle salt. Con-

sider, for example, the effect of clamping on the dielectric constant. In quartz, k" is

about 2 per cent less than k'x ,
while in Rochelle salt, for the example cited, k, is only

about half as large as k'x . If the field in Rochelle salt were such as to bring the polari-

zation to the knee of the P:E curve, then between the Curie points k 9 would be but a

small fraction of k
f

x .

220. Piezoelectric Reaction on Elastic Cycles. It is helpful to an understanding
of piezoelectric reactions to consider the energy expended electrically when a piezo-

electric crystal is put through a cycle of stress and release, even though experimental
data are lacking. We shall here treat the problem as static rather than vibrational

and assume, to fix the ideas, that we have an m-cut plate with electrodes covering its

opposite faces, the electrodes being either left insulated or connected through a resist-

ance R. Energy lost through internal mechanical friction may be ignored. A uni-

form stress Xk is applied, where k may be identical with m. The piezoelectric polari-

zation is Pm dmkXk.

If the electrodes are insulated (R = >
) and there is no external field, the strain

Xk is given by Eq. (268),

Xk - -sX* (304)

where, by Eq. (271),

*?*
-

?*
-
^jr*

(304a)

For the field due to Pm we have
A J V

(304&)

It is this depolarizing field that is responsible for the second term in (304o).



282 PIEZOELECTRICITY [220

When the electrodes are connected through a resistance, unless the resistance is

extremely great, the depolarizing field Ek will disappear within a short time after the

application of X*. We have then the case represented in Eq. (289) when V 0:

Xk - -sffc-X"* (304c)

For simplicity we now drop the subscripts k and h and write '

*J$, s s A ,

x' - -s'X, Zo -A:, # - 47rSX/fc, and '-.- 4irV*.

When Jf is applied, the energy expended is, for electrodes insulated (R =* oo
),

W,
= - te'X - i'X - JX so - -~ (304d)

and, for short-circuited electrodes (R =*
0),

TFo - -
|s X - *so* (304e)

In neither of these processes is there any loss of energy. In the case of W* there is a

storage of both elastic and electrical energy in the stressed plate, all of which is

returned when X is removed. In the case of TF a current flows without loss of

energy, since R and the electrodes are at all times at the same potential.

The two processes are illustrated in Fig. 49, in which, for clarity, the ratio x*/x' is

greatly exaggerated. The lines OA and OB correspond, respectively, to Eqs. (304d)

and (304e), the energies being given by the areas of the triangles OAX and OBX. For

the electrostatic energy when R oo one finds, from Eq. (3046),

(304/)

Since this is identical with the second term on the right in (304d), it follows that the

energy stored electrically when R is the same as the excess of WQ over Wt. This

excess is represented by the area of the triangle OBA.
After the point 'A has been reached upon applying the stress while R

,
if the

electrodes are connected through a finite resistance R, the additional work in passing

from A to B depends upon R. If R = and if the circuit is non-inductive, the dis-

charge and consequent relaxation of the plate are instantaneous, so that the stress

drops at once to zero (point xr in Fig. 49). If the stress is applied again in such a

manner that its relation to the additional strain a?o x' is linear, the line x'B results,

and the additional work done is the area of the triangle x'BA. But this equals the

area OBA, which has been proved to represent the energy Wt. Thus in this special

case, and then only, the total work done is the same as if the crystal had been short-

circuited from the start.

For any value of R greater than zero, a further increment of work is necessary to

compensate for the loss Ji*R dt in the circuit. As R increases, the loss rises from zero

to a certain extreme value, which is attained when R is so great, and hence the rate

of relaxation so slow, that the full stress X is applied during the entire increase in strain

from x' to XQ. The additional work is then - (*
-

x')X, and this, by Eqs. (3Q4d) to

(304/), is just twice W<, being represented by the rectangle x'xoBA.

From these considerations it is a natural step to the construction of the ideal cycle

of operations represented by the parallelogram OABC in Fig. 49. Along OA mechani-

cal stress is applied while R ; along AB the electrodes are connected through a

high resistance; R o again along BC while the stress is removed; and finally a
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resistance is connected, allowing the crystal to return along CO to its unstrained state.

The total loss in energy is 2We ,
the area of the parallelogram. The points of analogy

with the Carnot cycle as well as the essential differences are sufficiently obvious.

Similarly, a hysteresis loop can be constructed for the case in which an alternating
stress is applied to a crystal having electrodes connected through a constant resistance.

The analogous problem of the energy losses when an electric stress is applied to the

crystal by connecting the electrodes to a battery suggests itself. Corresponding to

O

FlQ. 49. Relation between stress and strain for a piezoelectric crystal.

the insulated and short-circuited states in the foregoing treatment are, according to

199, the mechanically clamped and free states. Cycles similar to those described

above can be drawn, the coordinates being polarization and field strength. The

energy that disappears is accounted for partly by dielectric losses and partly by inter-

nal friction in the crystal and in the external system that controls the clamping.

Examples of this sort will be found in Chaps. XXII and XXIII.
In order to illustrate Lippmann's theorem, Poynting and Thomson* discuss a

piezoelectric cycle of a form somewhat analogous to Fig. 49.

* Ref. B42, p. 157.



CHAPTER XIII

THE PIEZOELECTRIC RESONATOR

They gather also peerles by the sea side, and Diamondes and Carbuncles vpon
certein rockes; and yet they seke not for them; but by chaunce finding them they cutt

and polish them. SIR THOMAS MORE.

221. Introduction. In the most general sense, a piezoelectric reso-

nator, or piezo resonator, is an elastic solid body consisting partly at

least of piezoelectric crystalline material, capable of being excited to

resonant vibration by an alternating electric field of the proper frequency.

In its simplest form it is a single piece of crystal, usually cut to a pre-

scribed size, shape, and orientation, but even a rough fragment or an

entire crystal can be made to resonate. When one or more pieces of

piezoelectric crystal are cemented to non-piezoelectric material, for exam-

ple a metal bar or plate, usually for the purpose of obtaining resonance

at relatively low frequency, we have a composite resonator. The field

is applied by means of electrodes, so situated that the field will be in the

proper direction to excite the desired mode of vibration. With all types

of resonator, the electrodes may be separated from the crystal by gaps,

or they may be attached directly to the crystal.

The electric field drives the resonator through the action of the

converse piezoelectric effect. When the crystal vibrates, the periodic

deformation causes periodic piezoelectric charges on the electrodes,

through the direct vffect, that react on the driving circuit. It is this

reaction, present only when the resonator is vibrating, that gives the

device its greatest usefulness.

The cooperation of the direct and converse effects has an analogy

in the electric motor, which is driven by an electric current and which

when running develops a counter emf that reacts on the driving circuit.

The analogy with the synchronous motor is especially close, since here,

as in the crystal, both the amount and the phase of the reaction have

to be considered. Where the analogy breaks down is in the fact that the

crystal, unlike the synchronous motor, can be "driven" to an appreciable

extent only at or near a definite frequency.* The phase relation in the

case of the synchronous motor depends on the load. With the piezo

* In most cases, as the applied frequency is varied, resonance occurs at a large

number of distinct frequencies, depending on the possible vibrational modes that can

be excited by a field in the given direction. The frequency corresponding to any one

of these modes may be taken as the "definite frequency."
284
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resonator the load usually includes only the losses in the resonator

itself. (Considered as a motor, the resonator "idles." The phase angle
between resonator-reaction and applied emf is determined by the differ-

ence between the driving frequency and the natural frequency of the

resonator, and at a given frequency it depends also on the losses.

The piezo resonator may also be thought of as a vibrating condenser.

At very low frequencies, including zero, it behaves as a pure capacitance,

at least for most crystals now in practical use, since in them the dielectric

losses at low frequency are negligible. There is, of course, some piezo-

electric deformation even in a 1-f field, but it is insignificant in comparison
with the deformation near resonance. That is, the resonator, like all

other vibrating systems, is in a state of forced vibration at all frequencies

of the driving force. As the applied frequency is increased until the value

corresponding to the lowest natural mode of the resonator is approached,
the amplitude of the deformation increases, passes through a maximum
at a certain frequency, and then decreases. With further increase in

frequency a whole spectrum of maxima of various heights is encountered,

corresponding to various vibrational modes and their overtones, up to

frequency values many times greater than that of the first maximum.
The mechanical vibrations in the neighborhood of a resonant fre-

quency depend on the inertia, elastic compliance, and damping losses

of the vibrating crystal. Similarly, its electric reaction on any electric

circuit to which it is connected is the same as if the crystal were replaced

by a certain "equivalent network," containing an inductance, capacitance,

and resistance, corresponding to the mechanical inertia, compliance,

and frictional resistance of the crystal and proportional to them.

From the engineering point of view, a piezoelectric resonator is an

electromechanical transducer.*

222. The usefulness of the piezo resonator in a wide range of practical

application arises from its extremely sharp resonance, together with the

lucky circumstance that crystals of convenient size can be made to

resonate at frequencies over the entire range from 50 to 3(10
8
) cycles

per second; this is a range of over 20 octaves. Still higher resonant

frequencies have been observed, but they do not yet seem to have

reached the stage of practical application.

To these advantages should be added the fact that in quartz crystals

we possess a piezoelectric material that combines almost ideal elastic

qualities with great mechanical strength and durability. By the use of

certain oblique cuts, quartz resonators for almost any frequency can be

made with frequencies practically independent of temperature over a

very broad temperature range.

* For a treatment of the piezoelectric transducer, both resonating and non-

resonating, see ref. B35.
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The most widely used resonators are in the form of rectangular

parallelepipeds with the electric field in the thickness direction If the

slab is relatively long and narrow, it is called a bar or rod and is used

mostly for lengthwise compressional vibrations of relatively low fre-

quency. For a given crystal and orientation the fundamental frequency

is inversely proportional to the length. Plates with both length and

breadth large in comparison with the thickness are used in one of two

ways. The first depends on the fact that certain cuts can be made to

execute thickness vibrations, the resonant frequency being inversely* pro-

portional to the thickness; such resonators are used in the higher range of

frequencies. Rectangular plates with breadth comparable with the

length can also be made to vibrate in a shear mode, the shear taking place

in the plane of the plate (contour vibrations). The frequency is of the

same order of magnitude as that of a bar of length comparable with the

length or breadth of the plate. The temperature coefficient of frequency

practically vanishes over a very wide range of temperature in the case of

properly oriented quartz plates vibrating in this mode.

223, Thus far we have spoken only of the piezo resonator, without

mention of the piezo oscillator or of the piezo stabilizer. In general,

every piezoelectric device that has a natural frequency and is not too

highly damped, when vibrated electrically at or near this frequency, is a

resonator. This statement is true even when the crystal controls the

frequency, as in a piezo-oscillator circuit. In a more restricted sense

it is sometimes called a
"
resonator

"
only when it does nothing but

resonate. This condition is realized when it is so loosely coupled to the

driving circuit that its reaction on the driver is negligible. Such circuits

are used in studying the properties of the crystal, and to some extent in

frequency measurement.

The term piezo oscillator is properly applied to an amplifying circuit

that of itself is incapable of oscillating because of too little regeneration

or an unfavorable phase angle, but that oscillates when a piezo resonator

is inserted in it or is coupled to it, the frequency being determined by
one of the vibrational modes of the resonator. Such a circuit is said to

be crystal controlled.

Sometimes a piezo resonator is connected to a circuit that is capable

of oscillating by itself, for the purpose of holding the frequency constant

within narrower limits than would otherwise be possible. The circuit is

then said to be piezoelectrically stabilized or crystal stabilized, and the

resonator operates as a crystal stabilizer.

The present chapter has to do with the theory of piezo resonators

consisting of bars in lengthwise vibration and plates in thickness vibra-

tion. It includes a discussion of the manner in which the dielectric

constants of a piezoelectric crystal vary with frequency. At the
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close is an account of the effect of piezoelectric vibrations on X-ray
reflections.

Further properties of the resonator, including those of crystals

vibrating in other modes, will be considered in later chapters, as well

as the application of the theory to particular crystals, with some experi-
mental results.

224. Notes on the History of the Piezo Resonator. The first to make an important

application of piezoelectricity was P. Langevin, who, in the investigation of his quartz-
metal "sandwich" described in 506, recognized the resonating properties as early
as 1917. A. M. Nicolson described experiments on resonance in Rochelle-salt crystals
in November, 1919, including observation of the effective series capacitance over a

certain range in frequency and of the minimum in current at the resonant frequency.
The publications of Langevin and of Nicolson say nothing concerning the fact that the

reaction of the crystal on the circuit makes possible the application of the crystal, when

vibrating in a normal mode, as a frequency standard, constant-frequency oscillator,

or filter.

The author observed the minimum in capacitance together with the reaction of a

Rochelle-salt plate on the driving circuit in August, 1918, and experimented with

his first quartz resonator in January, 1919. In the succeeding months he investigated

the properties and possible applications of the piezo resonator as well us methods

of mounting the crystal plates. The first public account of the device was given to

the American Physical Society on Feb. 26, 1921; on this occasion the uses of the

resonator as a standard of frequency, as a filter, and as a coupling device between

circuits were mentioned. At the meeting on Apr. 23, 1921, the piezoelectric stabilizer

for h-f generating circuits was first publicly described; and on Dec. 28, 1921, came the

first paper on the piezo oscillator, in which lengthwise vibrations of a quartz bar were

used.

The various steps mentioned above are described in the following patents:

(A) P. Langevin, French patent 505,703, application Sept. 17, 1918, issued Aug. 5,

1920; also British patent 145,691 of July 28, 1921.

() P. Langevin, U. S. patent 2,248,870, application June 21, 1920, issued July 8,

1941.

(C) A. M. Nicolson, U. S. patent 1,495,429, application Apr. 10, 1918, issued May
27, 1924.

(Z>) A. M. Nicolson, U. S. patent 2,212,845, divisional application Apr. 13, 1923,

based on the foregoing, issued Aug. 27, 1940.

(E) W. G. Cady, U. S. patent 1,450,246, application Jan. 28, 1920, issued Apr. 3,

1923.

(F) W. G. Cady, U. S. patent 1,472,583, application May 28, 1921, issued Oct. 30,

1923.

(A) is Langevin's original patent on the use of a vibrating quartz sandwich for

submarine signaling. In it he mentions tuning the driving circuit to the natural

frequency of the quartz -steel transducer but says nothing about the reacting or con-

trolling properties of the latter. Nicoison's first patent (C) had to do chiefly with

acoustic applications of Rochelle salt. One of these, illustrated in his Fig. 11, was

the use of a Rochelle-salt crystal, connected to an oscillating circuit, for modulating

a carrier wave. The circuit was not claimed to be vibrating in resonance with the

crystal. Nothing was said about the use of the crystal as a resonator. *

*
Recently the author was informed by Dr. Nicolson that he found in September,

1917, that the circuit represented in his Fig. 11 must have been oscillating at a fre-
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(E] is the original patent on the piezo resonator, in which the uses of the resonator

as a frequency standard, coupler, and filter are mentioned, together with an explana-
tion of the various effects. In (F), which followed soon after, various piezo-oscillator

circuits are described. Shortly after the appearance of (E), Nicolson filed a divi-

sional application based on Fig. 11 in (C), in which the doctrine of inherency was
invoked to claim that this figure embodied the principle of the piezo resonator,

oscillator, coupler, and filter. The result was (Z>). When patent (), on "piezo-
electric signaling apparatus," was issued, it contained claims for the use of a quartz

crystal as a "frequency-determining element." Litigation has resulted in legal deci-

sions in favor of Nicolson over (B) as well as over (E) and (F).

225. Alternating-current Notation. A few of the standard definitions

and symbols are given here, for reference in this and later chapters.

We consider a resistance R, self-inductance L, and capacitance C, in

series with an alternating emf. V = FO cos ut
t where o> = 2wf.

Reactance = X = wL ^
coG

Impedance = Z = 1 72
2 + ( L 79) }

I \ w^/ }

Vector impedance = Z = R + jX
n

Conductance g = &%

Susceptance == 6 = ^
Admittance = Y = -&

Vector admittance = Y = g jb (see below)

(305)

Maximum current = current amplitude = /o -^
= Vo

The emf is usually written in exponential notation as V
The vector current is

/ = V . VY = JV"(<7
~

jb) (305a)

The real part of this expression is the instantaneous current 7:

I 7 F cos (at
-

<f>) Uan <p
= ~ ^

J (3056)

For the peak value (maximum in a cycle or current amplitude), we have

Jo - F F.

quency determined by a natural mode of the Rochelle-salt crystal. It is most unfor-

tunate that the evidence was not published. In view of this statement, however, it

appears that Nicolson was the first to construct a crystal-controlled oscillator unless,

indeed, Langevin's circuit was to some extent crystal controlled. Such findings were

entirely unknown to the author in his investigations described above.
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Whenever the vector emf is written in the form V = TV"', it is

customary to regard the vector diagram as rotating counterclockwise

and to take as the instantaneous V the real part of V : V = Fo cos at.

Sometimes one finds the emf given as V = F e~JW*. In this case the vector

rotates clockwise, but the real part is the same as for V^*1"*. Never-

theless, as is clearly seen when time derivatives have to be taken, the

opposite sense of the rotation requires that the signs of X, 6, and <p be

taken as opposite to those when Foe"
1
"
7*'

is used. This fact is not always
made clear in texts on alternating currents.

A simple example will illustrate this statement. If the circuit is a pure capacitance

C in series with V V'&">"', then, if the instantaneous charge is Q,

/ - dQ/dt - CdV/dt - -juCV,

while if V * TV" we should write / +jaCV. The discrepancy is removed by
writing b +wC in the former case.

226. Theory of the Piezo Resonator. A rigorous theory for a crystal

resonator of any form and orientation, vibrating in any desired mode,
would have to take account of all boundary conditions, size and position

of electrodes, losses due to the dielectric and mounting, non-linear effects,

coupling between different modes of vibration, non-uniformity of electric

field, and, when the electrodes are separated by a gap from the crystal,

the effects of the gap, including possible resonance effects in the air

itself. While no such general theory has been attempted, special

problems involving most of these considerations have been attacked by
many writers. Some of these special cases will be considered later.

In practice, the commonest types of piezo resonator are the bar,

vibrating compressionally lengthwise, and the plate, in which the wave

propagation is normal to the major surfaces although the vibration

direction may have any orientation. Other types involve flexural

vibrations, torsional vibrations, and the contour vibrations mentioned

above.

In principle, it is always possible to express the amplitude of vibration

at any frequency in terms of the effective driving stress, together with the

physical constants of the material and the dimensions of the specimen.

The corresponding electrical problem is the calculation of the equivalent

electric constants in the neighborhood of a resonant frequency. Just

as the spectroscopist is interested in both frequencies and intensities of

spectral lines, so here the study of the resonator involves both resonant

frequencies and vibrational (or current) amplitudes. Resonant fre-

quencies are usually only slightly dependent on the damping. On the

other hand, in expressing such quantities as sharpness of resonance or

the shape of the resonance curve, on which the usefulness of the resonator

depends, the damping factor must be introduced.
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In the present chapter it is assumed that all stress-strain relations,

both electrical and mechanical, are linear. The treatment of non-linear

effects has been carried out only for Rochelle salt and will be considered

in Chaps. XXIII and XXIV.
We shall restrict ourselves to the theory of lengthwise vibrations of

bars and thickness vibrations of plates. While these two types of resona-

tor have much in common, they differ in such significant particulars

that they are better treated separately. Theories of the flexural jand
torsional resonator could be developed along the lines indicated for the

bar.

In all cases the resonator is assumed to be in the form of a parallele-

piped with edges parallel to the axes of reference and with the field

parallel to one of these axes. If the reference axes are the crystallo-

graphic axes, for any given crystal the elastic and piezoelectric constants

that come into play are given directly by the tables in 29 and 131.

For oblique cuts all parameters must be those appropriate to the particu-

lar axes employed; they may be computed from the transformation

equations already given in Chaps. IV, VI, and VIII.

LENGTHWISE COMPRESSIONS, VIBRATIONS OF BARS

227. The length I of the bar is in the n-direction, and the compres-
sional stress and strain are denoted by Xn and xn , respectively. As
in the treatment of lengthwise vibrations in Chap. V, we take the origin

at the center of the bar and denote the distance from the origin, along

the axis of the bar, by x. The section of the bar is rectangular, with

dimensions small in comparison with L The electric field Ei is in the

^'-direction, normal to a pair of the lateral faces.* The electrodes are

assumed to cover the entire surface of the bar normal to the z'-axis,

though they may be separated from it by a total gap w. The breadth

and thickness of the bar are denoted by b and e. We assume that

b I and that the ratio b/e is great enough to make the driving field

sensibly uniform over the cross section. For excitation it is necessary
that there be a piezoelectric constant d{n such that xn = d,n#,-.

228. The Driving Stress for Lengthwise Vibrations. This quantity is

defined as that alternating mechanical stress, denoted by (Xn)d, which,

applied uniformly throughout the bar, would produce the same vibration

of type xn as is actually produced by the alternating field E% . (Xn)d
then takes the place of the stress X in 57 following, while in place of

* Under certain conditions lengthwise vibrations can also be excited by placing
the electrodes so as to produce a field parallel to the length of the bar. In this case

the electric field is parallel to the direction of wave propagation, and the theory is

more complicated because of the presence of a space charge. As will be seen in 349,

quartz resonators of this type have been described by Giebe and Scheibe.
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Young's modulus Y we shall use the symbol q'
= l/<n ; this is the

effective value assumed by Young's modulus when there is a total gap w
between crystal and electrodes, as given below in Eq. (330).

In general, Ei causes six components of piezoelectric stress:

Through elastic coupling each of them contributes to (Xn)d . Thus X*
tends to cause a strain component s^Xh, and the sum of all six strain

components is xn = Ss^X* = -~sJn(Zn)d . We seek the value of the

effective piezoelectric stress coefficient c, given by (Xn)d
= ~e#. We

have

6 6

(*>< - p- X ** - - 5X ** = - fEt (306)
Snn *-1 Snn *-4

h h

Hence, c = - s*heth (307)

If the resonator is partly clamped (see 372) or if the dimensions are

such that some of the six stresses are prevented by inertia from becoming
effective, some of the terms in the summation will be absent. In a thin

bar undergoing longitudinal vibration all six terms are present (though
in most cases certain of the <?* vanish for the particular crystal used).

It follows from Eq. (191a) that, for a field parallel to t,

= 3 s

(308)
Snn

This expression will be used throughout in the theory of the bar. Its

value is independent of the gap.

As an illustration of the formula for (Xn)d may be mentioned the

quartz X-cut resonator with length parallel to F, which was the earliest

type and is still widely used. For it, when w =
0,

= du/sj2 = -dn/sfi,

while the driving stress is (Yv)d = etix = duEx/s^.

In all cases only the component of polarization parallel to the field

need be considered. From 110 it is seen that a potential difference V
applied to the electrodes causes a field strength Et

= V/e'r = V/(e +
(for ki see next section). Hence, from Eq. (306), on writing V
we have

(309)

229. The Dielectric Constant for Lengthwise Vibrations. At very

low frequencies the dielectric constant has the value fcj for a free crystal
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The lowest normal mode, leaving aside flexural and torsional vibrations,

is the fundamental lengthwise mode. As the frequency of this mode is

approached, the longitudinal strain xn due to the state of vibration begins

to be appreciable, becoming many times greater than the static strain

x* = dinEi that tends to be caused by the instantaneous Ei. Since the

normal modes corresponding to all the components of strain except xn

have frequencies that are high in comparison with the fundamental

lengthwise frequency, all such components of strain are practically

proportional to and in phase with Ei. With respect to these components,

then, the crystal is still free, and they all contribute to the value of the

dielectric constant. On the other hand, with increasing frequency the

static strain xl gradually merges into the vibrational strain xn ,
which is

treated in a separate equation. Hence the polarization ezf must be

subtracted from that characteristic of the free crystal in forming the

expression for the effective dielectric constant. We have therefore, for

the polarization due to Eij

/ J2\
',.
a nEi (310)

where the effective susceptibility is n =
rj( edt . The effective dielec-

tric constant is therefore*

i
- Trm - t TTC tn

-
c,

g^

In a quartz X-cut resonator ki is about 1 per cent less than kg. In

a Rochelle-salt X-cut 45 bar, ki is only about half as large as k'x .

The value of kt given by Eq. (311) is to be used everywhere in the

theory of lengthwise vibrations, except in the expression for the stiffness

q' t
as explained in 235. The symbol ki indicates the dielectric constant

that determines the driving field for lengthwise vibrations when a potential

difference V is applied to the electrodes. In terms of ki the "electric

spacing" (110) is

e
f

r
= e + kiw (312)

230. Polarization and Current in the Resonator. The instantaneous

piezoelectric polarization at any distance x from the center and at any

frequency is derived from the general expression for the strain xn (x) at

the same point. The .X-direction, which is that of the length of the bar,

may have any orientation with respect to the crystallographic axes.

For the lengthwise compressional vibrations here considered, xn means

the lengthwise compressional strain.

*This equation, for a quartz X-cut bar, was first derived by Vigoureux.*
67

Similar expressions have been used by Mueller378 and by Mason.B8B 840
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In order to find an expression of sufficient generality for xn we must

go back to 57, where the mechanical displacement at any x is given by
Eq. (68). With the aid of Eqs. (71) and (73) we find (writing q' in place
of q for the stiffness)

x (x\ - **(s) - (*)*> cosh
Xn(X) ~

dx
~

~7
where I is the length of the bar, q' is given by Eq. (330), and

is the instantaneous driving stress, taking the place of X in the earlier

section. At zero frequency (Xn)d becomes a static stress, the static strain

being approximately (Xn)d/q'. Equation (313) shows that the actual

strain at any point when the crystal vibrates is this static strain mul-

tiplied by the factor cosh yx/cosh (yl/2). This is the factor by which

the amplitude of vibration is in excess of the static elongation.

From the equations that follow it can be proved that, for the same

driving force, the ratio of the static to the resonant amplitude of mechani-

cal displacement is 6/4*-, where 5 = a/f is the logarithmic decrement

per period. The same ratio holds for the strain at the center and for the

current.

In terms of maximal displacement fo(J/2) at the end of the bar, the

maximal vibrational stress is irq'lJ-u(l/2).

The piezoelectric polarization* at any point is Pi(x) = txn (x). It

gives rise to a piezoelectric displacement Dpy which, when there is a gap,

is equal to the corresponding field (Ew) p in the gap, and is given by Eq.

(164a):

DP(x)
= (EW)M = 4irP<(x) J (314)

er

The total displacement D(x) at any x is the sum of Dp(x) and the

contribution due to the driving field Elt viz., hV/4 by Eq.(1636). The

current density at any x is dD/4wdt, and the total current / is the integral

of this expression over the breadth b and length I of the bar: from Eqs.

(309), (313), and (314) one finds

,
e . , y+ tanh

* In general, the polarization has components at right angles to the thickness e,

but they have no effect on the current.
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This equation holds at all vibrational frequencies up to those at which

coupling between overtone lengthwise vibrations and vibrations in lateral

directions begins to cause complications, and for any degree of damping
for which Eq. (74) in 57 is valid.

When w - (electrodes adherent), then as / -> 0,

. . / yl\ al
tanh ( -jr I n~>

y a/c, and by Eq. (311) h &', the value for a free crystal.

The quantity in the parentheses in Eq. (315), multiplied by Jw,

represents an electrical admittance. The first term is capacitive, while

the second is the vibrational contribution, which is variable in phase

with respect to 7. Use will be made of this fact in deriving the constants

of the equivalent electrical network.

A curve relating / with frequency would show a series of maxima like

those in Fig. 20. The relative heights of successive maxima would

depend on the nature of the damping. From the relations between F,

cL
y
and d in Eq. (67), it can be shown that the ratio of the maxinmm

occurring at the fundamental frequency /o (for which h = 1) to that

occurring at any harmonic frequency fh
= A/o is h 2

if F is independent of

the frequency; the ratio is h if 8 is independent of frequency; and the

current is the same at all harmonic frequencies if a is independent of

frequency.

Not much is known of the dependence of damping on frequency.

Usually the viscosity inherent in the crystal is overshadowed by losses

due to the mounting, and these may well vary more or less erratically

from one type of mounting to another. On the whole it can be pretty

confidently expected that the current maxima will diminish at a pro-

nounced rate with increasing order of harmonics.

By the use of a system of h pairs of short electrodes, properly con-

nected and distributed uniformly along the length of the bar, the current

corresponding to overtone h can be increased (see 239).

231. Equation (315) can be put into a useful approximate form, (1)

when the damping is negligible, (2) in the neighborhood of a resonant

frequency.
1. When damping is neglected, Eq. (74) reduces to y = jw/c = jVf/7/o,

where c is the wave velocity and / the fundamental frequency for maxi-

mum particle velocity and maximum piezo current (234). Since now

tanh (yl/2) tanh 0'Z/2c) = J tan W/2/ ), it is found from Eq. (315)

that
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This equation can be used at all vibrational frequencies, except that it

becomes infinite when / is an odd multiple of /o. The frequency for

parallel resonance, which we call/p ,
is found by setting 7 = and solving

for /. A more convenient expression for /p,
in terms of the equivalent

electric constants, is given by Eq. (398).

2. In making the approximations for frequencies close to resonance,

we denote the order of the harmonic by h (h = 1, 2, 3, . . . ), as in 58.

The fundamental frequency /i
= o)i/2v will, however, still be denoted

by /o
=B

wo/271". If the width b of the bar is not greater than Z/4, where I

is the length, a true harmonic ratio for overtones can be assumed to a

first order of approximation. The correction for the frequencies of over-

tones is given in 65. By Eq. (64) the damping constant is ah = Wot,

if the frictional coefficient F in Eq. (61) is regarded as constant. If,

as is probable, F varies with frequency, ah must be found experimentally.

For the factor y in the denominator of Eq. (315) one may write with

sufficient approximation jW/2/oZ. Near resonance, where HH < < WA,

one has WA = o^o nh [Eq. (81)]. After obvious reductions it is found that

With even integral values of h this expression becomes extremely small

and the current approaches that flowing to an ordinary non-vibrating

condenser. That is, when full-length electrodes are used, as is here

assumed to be the case, the response of the resonator is negligibly small

in the neighborhood of even harmonics. For the excitation of even

harmonics by short electrodes see 238.

In what immediately follows we shall be concerned only with odd

harmonics. When h is near an odd integer, Eq. (317) becomes

With these substitutions in Eq. (315) the equation for current is

, _ ftfrMW"** /. kt
,
4e<W a* + jnA ,Qlfi ,

1 -
3 v c + ?TOIF+^ (318)

On rearranging terms and making the approximation

one finds

kibll

s?J
' -

jb'
-

jb") m V^'Y[ (319)

where g' = 4e2
6ea/pZe;

j(l + ), V s -4**ben*/pU?(i + ?), and

6" = -



232. The Equivalent Electrical Constants. In Eq. (319), Y[ repre-

sents an electrical vector admittance, of which the first component is a

conductance gr', while V and 6" are constituents of a susceptance.
*

Since b' and g' contain n^ and oth, they must originate in the vibrations,

while 6" is a parallel susceptance independent of the state of vibration.

The electrical impedance corresponding to the vibrational terms is

z ; =
, _ v

= b

where, as is easily verified,

~~~7"'2

ik (320)

The negative sign results from the definition UK = fo*>o <*h and indicates

that on the h-f side of resonance, where UK is negative, the reactance

X'h \s positive.

Since wh is close to hwo, it follows that the reactance X'h, which must
be of the form whL'h !/*, can with sufficient accuracy be written

as X'h = -~2L'hnh. This expression leads at once to the equivalent self-

inductance L'h,

- ple
' 2

L( is independent of the value of h, just as was the case with the equivalent
mass M in 63.

The value of the equivalent capacitance C( in series with L( is found

from the relation <j3lJL'hC( = 1 :

In parallel with the R^LiC^ series chain is the capacitance C( repre-

sented by the last term in Eq. (319) :

C{ = (323)

All the foregoing electrical quantities are expressed in cgs electro-

static units.

To avoid confusion, we use the primed symbols g', R'k ,
L'k ,

and C'h for

the equivalent constants at harmonic h when there is a gap, as in Fig. 50.

When the gap is zero, the primes are omitted. The reason for the use

of the primes will become more apparent when we come to the two
alternative networks shown in Fig. 56.

* The symbol for susceptance must not be confused with the b that denotes the

breadth of the bar.
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When there is no gap, the expressions for the electric constants become

7? pfe r pfe

8e26Z hbl <324>

where now q is the stiffness at zero gap, with value l/sjn . The depend-
ence of the four parameters upon the gap w is expressed by the factor

e'r
= e + kiw and, in the case of C(, by the factor q'.

It should be noted especially that C'h decreases as the gap increases,

approaching the value zero at infinite gap, while L( approaches infinity.

The increase in frequency as the gap goes from zero to infinity is due to

the factor for mechanical stiffness in the expression for C'h,
which increases

from g when w = to q' q* when w = w. For quartz this increase

is small; for Rochelle salt (377) it is very large.

From the foregoing equations, together with Eq. (67), it is seen that

the damping constant ah can be variously expressed as

Qh and Sh would be constants of the material of the resonator if the

frictional coefficient F in 56 were constant. The dependence of Qh

on frequency, and hence on the dimensions of the resonator, is discussed

in 296.

Most, if not all, types of piezo resonator, vibrating in the neighbor-

hood of a natural frequency, can be represented electrically by a series

RLC- (or R'L'C'-) chain in parallel with a fixed capacitance. The net-

work is shown in Fig. 50, and the representation of the behavior of the

resonator by means of a circle diagram is considered in Chap. XIV.
233. The Electromechanical Ratio. In 62 expressions were given for

the equivalent lumped mechanical constants of the bar: Wh =
plbecth,

Gh = ir*Ybeh2
/2l, Mh = pble/2. As stated previously, Young's modulus

Y is denoted by q in the present discussion. Comparison of these quanti-

ties with the expressions for R'h , C(, and L( in Eqs. (320), (322), and (321)

shows that they are related in the following manner:

R( = rWh C'h = i L'h - rMh (325)

where r = j-
= (326)222 222

is the electromechanical ratio* and Zc is the motional impedance. When
the gap w =

0, the ratio is simply l/(4
26 2

). For every type of piezo reso-

* In a former paper
107 the author used the symbol r' for this ratio when there was

a gap between electrodes and crystal and r for the case of zero gap. It is simpler to

use r for all values of gap, including zero.
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nator, as with every transducer in general, there exists a corresponding
ratio expressing the relationship between the two forms of energy involved.

The expression for r in the case of thickness vibrations is given in 255.

From the foregoing equations it is clear that the quality coefficient Q
may be expressed as either <*Mh/Wh or wL(/R(.

The electromechanical ratio r may be taken as a measure of the

activity of the crystal as a resonator (for its relation to the capacitance
ratio Ci/C see 280). For example, the amplitude of the piezo current

IP in Fig. 50 is proportional to the coefficient 4 2
be/ple'r

* in Eq. (319),

and this coefficient, from Eq. (326), is 1/rplbe \/rM, where M is

the equivalent mass defined above.

234. The electrical network equivalent to the crystal bar with gap,

vibrating longitudinally in the neighborhood of harmonic h, is shown in

Fig. 50. Since all electrical quantities are functions of the properties

of the bar and independent of frequency, this network may be considered

as completely replacing the crystal in any circuit, so long as the frequency

lh

Fio. 50. Electrical equivalent of a piezo resonator in the neighborhood of harmonic h.

remains sufficiently close to fho. The frequency fM is that at which

nh = and the reactance X( =
co^oLJ l/co/ioC^ vanishes. At this

frequency the current has its maximum value. The alternative network,

with RhLhChCi in series with the gap capacitance Cz, is explained in

Chap. XIV.
The two components of the current /, represented by the two terms

on the right in Eq. (318), are now seen to be the currents I\ and Ip in

Fig. 50. Ip is the piezo current in the Lj^C^-branch, proportional to

and in phase with the vibrational velocity. For frequencies close to the

fundamental resonant frequency this fact is readily seen by comparing

Eq. (319) with (87). For this purpose the vibrational part of Eq. (319)

may be rationalized into the form

IP -
o!_^ cosM ~

ft) (327)
pie? V<*1 + nl

where tan 0* ( J

The velocity at the end of the rod is given by Eq. (87), which, on

writing (Xn)d
= V/e'r from Eq. (309) in place of X

,
becomes

2eVto , . A ^ /ooo\
cos (O>A Oh) (328)
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The velocity is in phase with /, and except at very low frequencies
it is also very nearly in phase with the total current I.

The ratio of the values of JP and v(l/2) is seen from (326) to (328)

to be

IP _ 2c6e _ I
,

,

(329)

It must be emphasized that the network shown in Fig. 50 is valid

only as long as the resonator can be treated as having a single degree of

freedom. It fails also when the frequency approaches zero.

235. The Effect of the Gap on the Elastic Constant in Lengthwise
Vibrations. In Eq. (298), a formula is given for the effective compliance
for compressional strains in the ^-direction, applicable to a bar lying

between short-circuited electrodes that are separated from the bar by a

total gap w. When the subscripts are altered to conform to the notation

in the foregoing paragraphs, this equation becomes*

o" -o* _>^rd> = I (330}snn snn T/
~

/ \pO\J)
e q

where e' = e + k'w.

Equation (330) gives the proper value of q
r
to use in all equations for

lengthwise vibrations when there is a gap, except in the case of a plated

crystal with gap, which is considered in 286.

According to Eq. (330) the compliance at zero gap is the pure elastic

constant s%n . This statement is in conformity with Voigt's development

of piezoelectric theory, which says that the piezoelectric reactions vanish

when the field is unaffected by the state of strain. That this is not the

only logical point of view has already been seen in Chap. XI, where

reasons are given for considering the "pure" elastic constants of Rochelle

salt as those observed at infinite gap. Moreover, the theory of thickness

vibrations in all crystals indicates that the elastic stiffness at infinite

gap, rather than that at zero gap, should be regarded as free from piezo-

electric reaction (251). For these reasons it is worth while to see what

form Eq. (330) assumes when the gap correction is measured from w = oo

instead of from w = 0.

* In Eq. (330) the proper dielectric constant is not fa, as elsewhere in the theory

of lengthwise vibrations [see the discussion of Eq. (312)], but has the value k' for an

unconstrained crystal. The reason may be seen from the derivation of Eq. (298),

according to which the field to which the piezoelectric term is due is proportional

to and in phase with the instantaneous stress. With respect to this field the crystal

behaves as if unconstrained, just as when an 1-f field is applied externally.
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At infinite gap s n assumes the value for constant normal displacement

given by Eq. (273a) :

(331)

From this equation and (330) one finds

,*snn

Thus, when s*n is taken as the pure elastic compliance, the value for

gap w is greater than s*n by 4ard%ne/k'e
f
. When w =

0, the compliance*

becomes, as before, simply sfn .

With the aid of Eq. (311), a relation can be found between s*n , sfn,

and the dielectric constants k' for a free crystal and ki for a bar in length-

wise vibration:

-IT
=
j (332)

This expression is analogous to Eqs. (281), (282), and (5216).

236. Since sfn and s*n are inversely proportional to the squares of the

resonant frequencies, /Q at zero gap and /*, at infinite gap, respectively,

we may derive from (331) the following equations, which will be used

later as a step in calculating the frequency of a Rochelle-salt bar at infinite

gap:

/2 # 1c' If,4s_l5ss_i *-K
l =

(333)
/o
2 ** *I *<C

This expression has an important relation to the frequency fp at anti-

resonance when the gap is zero. This frequency is the higher of the two

at which the reactance vanishes; when R is small, the current sinks

almost to zero. With good approximation, therefore, the condition for

antiresonance can be found by setting I = in Eq. (316). When w =
0,

we have e'r
= e and q

1 = q = l/s%n , giving, with the aid of Eq. (308),

where i specifies the field direction and n, at right angles to f, specifies

the direction of the length of the bar.

From Eqs. (333) and (334) we have finally

j&ootS&.i-fi (335)
4/0 4/0 Jo

* For a comparison with the effective stiffness of a plate, see 251.
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237. Effect of Gap upon Frequency of Lengthwise Vibrations. As

before, /AO denotes the resonant frequency (maximum particle velocity

and maximum piezo current) at harmonic h. For gaps w and we have

h2 h 2

where s%n is given by Eq. (330). It follows that

When din is large, as in Rochelle salt, this rigorous expression must
be used as it stands. It finds an important application in the deter-

mination of din- Usually observations are made first with zero gap,

and then with a very large gap (w > <), in which case

^
(336a)

With such crystals as quartz, /jj differs from /J by only a few tenths

of 1 per cent. Equation (336a) can then be reduced to the simpler form

fS -
/go _ A/M _ 27rdlw _ n w

To > g j =* u
-pJhO JhQ Snne e

where U = 2ird$n/snn is a constant for the crystal and e
f = e + k'w.

It will be noted that the relative variation of frequency with gap
is the same for harmonic h as for the fundamental frequency (see also

285).

The case of a plated crystal with gap is treated in 286.

238. The Use of Short Electrodes in Lengthwise Vibrations. Full-

length electrodes are desirable only at the fundamental frequency, when,
with a given alternating potential difference, maximum amplitude of

vibration or maximum reaction upon the electric circuit is to be attained

or sometimes, in the measurement of the physical constants of the

resonator, when it is important to apply the driving stress uniformly to

all parts of the crystal.

At thefundamentalfrequency, a shortening of the electrodes diminishes

the response of the crystal. Nevertheless, a very considerable shortening

can take place with relatively small loss in response, as long as the

electrodes are symmetrically placed. This fact is illustrated in Fig. 51,

in which the ends x\ and xz of the electrodes of length I' are at equal dis-

tances from the center. The curve represents the sinusoidal distribution

of vibrational stress, which has a maximum at the center; in the neighbor-

hood of resonance and with small damping, the curve falls practically to
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zero at the ends. The applied piezoelectric stress is most effectual over

the region where the vibrational stress is greatest. If the driving field

near the ends of the bar is absent, there is but little diminution in ampli-

tude of vibration.

Harmonic Frequencies. In 58 we learned that when the driving

stress is uniform over the entire length of the bar, as is the case with full-

length electrodes, large resonant amplitudes are built up only when the

FIG. 51. Excitation of lengthwise vibrations by short electrodes.

order h of the harmonic is odd. In Fig. 52 the curve shows the distri-

bution of stress in a bar when h = 3. The impressed field between the

electrodes tries to make the three segments AB, BC, CD vibrate in phase,

while the curve shows that, as long as the segments are parts of a con-

tinuous bar, there must be between adjacent segments a vibrational

phase difference of 180. Such a phase difference is impossible when the

electrodes are continuous. In effect, all segments but one neutralize

r
c

FIG. 52. Piezoelectrically driven bar vibrating at harmonic h = 3.

one another, so that the resulting vibration is substantially the same as

if the electrodes covered only one segment.

If h were even, the neutralization would be complete. For example,

in Fig. 52 one might imagine the bar to extend only from A to C, with

ft = 2. In each of the two segments there would be feeble forced vibra-

tions, as explained in 61, but the piezoelectric reaction on the driving

circuit would variish (see also 63).

239. By the use of short electrodes, however, intense vibrations, with

correspondingly strong electric reactions, can be secured at apy value

of ft, even or odd. For example, the fourth harmonic can be excited by
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means of any one of the four pairs of electrodes shown in Fig, 53. The
bar should be supported at one or more nodes of motion. More than

one
tpair

of electrodes may be used, suitably connected in series or parallel.

With a given voltage, if AB'CD' are connected to one side of the line and

A'BC'D to the other, a large amplitude results. From what has been

said above, the spaces between adjacent electrodes, as A and B, cause

but little loss in amplitude. The reac-

tion on the electric circuit is four times A & c &
that of a single short segment. r

Resonators like that shown in Fig. A1 Bf Cf D
53 with any number of pairs of elec- Fl - 53. Bar with electrodes for

* * , , ., excitation of the fourth harmonic
trodes can be prepared by silvering or frequency.

evaporating a uniform metallic deposit

on the opposite sides of the bar and then dissolving away metal in

the proper regions to produce the desired number of pairs of separate
electrodes.

An arrangement like that in Fig. 53 is discussed by Sokolov,
478

Hehlgans,
217 and Williams. 587

A bar with two pairs of electrodes can be used as a coupling device

between two circuits, in which case it serves as a very narrow pass band
filter (500).

By the use of a single pair of short electrodes at one end of the bar,

as at AA' in Fig. 53, the fundamental and a large number of harmonics,
both even and odd, can be excited. This arrangement was first described

by the author in 1925. 97 In the same year Giebe and Scheibe168 described

the use of short electrodes for the excitation of the luminous effects men-

tioned in 365. Since the intensity of the reaction on the driving circuit

diminishes as h increases (with short electrodes near one end of the bar),

it is found that the response for all values of h including unity is of the

same order of magnitude, as long as the length V of the electrodes is not

too much greater than the half wavelength of the vibration in the bar.

This fact makes such an arrangement useful as a reference standard

for a large number of nearly harmonic frequencies.

240. Theory of the Lengthwise Resonator with Short Electrodes. In

Eq. (110) it was shown that reducing the length of the electrodes from full

length I to (#2 %i) V (see Fig. 21) caused the amplitude of vibration

at the fundamental mode to be diminished by a factor 12, where

(337)

Evidently the fundamental mode can still be excited, though weakly,

with short electrodes close to one end. It is easily proved that, with /'

prescribed, 12 is a maximum when x\ and x* are equidistant from the
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center, thus confirming the statement made on page 302 concerning the

most effective position of the electrodes. For this symmetrical placing

of the electrodes, we may drop the subscript in Eq. (337) and write
^

S =
sinJ (337a)

Expressions will now be given for current and equivalent electric

constants at the fundamental frequency for a resonator with a pair of

symmetrical electrodes of any length separated from the crystal bar

by a total gap w. The derivation is exactly like that of Eq. (315) with

these exceptions: (1) the factor S must be applied to the driving stress;

(2) the integration must take place from 1'/2 to +l'/2. The result is

T el/ *,t- l
'

-i.
,~Q ,

/ - SVr*^ 4^ + "^r -jr+tf)
(338)

where, instead of ki as given by Eq. (311), we now have for the effective

dielectric constant, with short electrodes and gap,

(339)

The corresponding equivalent electric constants, in cgs electrostatic

units, are found, by the method of 232, to be

C' - S**lbeS*

~
' 2

,Q
.

(340)

where e'r
s e + ki>w.

These values agree with those deduced by a different method by

Starr,
478

who, however, disregards the losses (a and R are left out of

account) and considers only the case in which the gap w = 0. Starr

gives formulas for determining the proper value of I' when it is desired to

avoid the excitation of some one harmonic.

The foregoing expressions are applicable to a bar of length I vibrating

at any harmonic frequency, with h pairs of electrodes, each pair having a

length l{. It can be proved that in this case the electric constants for

each segment are

sin 2 (*lh2) 8ee sn
(340a)
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When h pairs of segments are connected in parallel, the values for the

entire resonator are

#' = 5i v = ^ C' - AQ C{ = ACi (341)

When the gap w =
0, it is necessary only to write e in place of e

f

in all the foregoing equations and to drop the prime accents from R f

,

L', C", and C{.

241. If calculations of highest precision are required when the elec-

trodes are of less than full length, account has to be taken of the fact that

in the regions covered by the electrodes the elastic stiffness is somewhat
smaller than in the exposed regions, as was pointed out in 64.

The optimum length of electrodes depends on the object in view.

For maximal amplitude of vibration with constant impressed alternating

voltage and for maximal control in a piozo-oscillator circuit at funda-

mental frequency, full-length electrodes should be used. In such meas-

urements as that of the frequency of a bar with infinite gap, a close

approach to the ideal condition of infinite gap can be made by the use

of very short electrodes. For the excitation of overtones short electrodes

are indicated, as explained above.

There remains the important class of cases discussed in 280, in which

it is desirable to make the ratio C:Ci as large as possible. It will now be

shown that in the case of bars a slight increase can be brought about by
making the electrodes approximately three-fourths as long as the bar.

From Eqs. (340), for zero gap (e'T
=

e) and fundamental frequency

(h
=

1), one finds

T3421
v (6 *

where 32e*l/irq ki> is practically constant and S is given by Eq. (337a).

On equating the derivative d/dl
f
to zero, we find that C/Ci is a maximum

when tan wl'/2l
=

vl'/l, whence V/I 0.75. In this case, S = 0.92

and C/Ci is about 14 per cent greater than when V = L

If I
1

is made still shorter, the ratio C/C\ begins to decrease again.

On the other hand, the ratio L/C becomes continuously greater as l
f

is diminished.*

242. Lane's Formulation of Resonator Theory. In 1925 Laue809
published a

thorough treatment of the problem of piezoelectric lengthwise vibrations in a quartz

X-cut bar with length parallel to F, subject, however, to the same limitations as in the

theory presented here, viz., that the bar is so thin that no correction for finite cross

section need be made, that there is no coupling with other vibrational modes, and

* For further discussion of the ratio l'/l see Mason888 and Starr. 478
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that overtone frequencies are harmonics of the fundamental. The electrodes are

assumed to be adherent to the crystal. The equation of motion is derived from a con-

sideration of the various potential and kinetic energies. The only losses appearing

in the equation are those inherent in the quartz. Two frictional coefficients are intro-

duced, viz.j a, a function of Voigt's frictional coefficients* 6* and of the elastic and

piezoelectric constants; and j3, a function of the ^^-coefficients and elastic constants.

Comparison of Laue's equation (16) with Eq. (61) shows that the frictional factor F in

(61) is identical with Laue's 0/ii- We have not attempted to express F in terms of

the fundamental frictional coefficients of quartz, since the latter usually play but a

small part in determining the actual damping. *

If sufficiently precise measurements could be made of resonance in a quartz bar

mounted without friction in a vacuum, Laue's equations would doubtless be found

useful for determining the frictional coefficients of the crystal. In particular, men-

tion should be made of his equation (23) for the amplitude at the ends of the bar,

(25) for the phase difference between motion and driving field, and (26) for the piezo-

electric capacitance.

In comparing Laue's theory (as Laue himself does) with that in the author's 1922

paper,
93 one must understand that the author was then concerned only with first-

order effects, with the object of providing an approximate theory for a new device.

In the form in which the author's formulation of the theory now stands, as set forth

in 227 to 231, equations are derived that are identical with Laue's (23), (25), and

(26), save for one point: his equations (25) and (26) contain terms in (a + ii), absent

in the author's theory, which have an effect on the phase angle and on the piezoelectric

capacitance. This expression arises from the assumption that the vibrations are to

some extent influenced by the shearing stress Ys
= -euEx [see Laue's equation (12a)].

The assumption rests on fundamental theory and is perfectly sound. Nevertheless,

this term involves only the losses in the crystal, which may ordinarily be completely

neglected. The assumption of perfect uniformity in the electric field and the ignoring

of the correction for cross section probably involve errors greater than that incurred

by the disregard of this expression.

The Laue method has been applied by Sokolov473 in the study of the production

of overtone frequencies in the lengthwise vibrations of bars, by Bechmann 39 in the

theory of thickness vibrations of plates, and by others.

THICKNESS VIBRATIONS OF PLATES

243. The first to deal with thickness vibrations of piezoelectric plates

was P. Langevin/ who in 1915 employed X-cut quartz plates for generat-

ing h-f acoustic waves (506). It was this work of Langevin's that

later led the author to investigate the possibility of using piezoelectric

crystals as resonators and oscillators.

The use of thickness vibrations for the control of frequency was first

described by G. W. Pierce428 in 1923. For this purpose he used an X-cut

quartz plate. With this cut the vibrations are compressional (93),

the plate becoming alternately thicker and thinner. The experimental

evidence of this mode of vibration is that acoustic waves in the air are

emitted from the surface; that small particles of sand or of lycopodium

*
"Lehrbuch," p. 792.
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can be seen to dance up and down when the plate is horizontal; and that

optical interference patterns can be observed, as described in 367.

The first general treatment of the theory of thickness vibrations for

all crystals and all cuts was published by Koga270 ' 271 in 1932. He
introduced the Christoffel method for calculating the stiffness, as well

as the piezoelectric contribution to the stiffness. Overtone frequencies

are included, but both gap and damping are assumed to be zero.

In the theory of thickness vibrations for a piezo resonator with gap
and damping, published by the author107 in 1936, expressions were derived

for the equivalent electric constants, the elastic* coefficients, and the

resonator current, including the gap effect. This treatment of the

theory did not include overtones. It was shown that at the funda-

mental frequency the polarization, space charge, and electric field have

approximately the distribution illustrated in Fig. 54. In the derivation

of the gap correction to the elastic constant, the residual strain due to the

field at the surfaces of the plate was recognized. This strain, although it

is responsible for the effect of gap on frequency, was nevertheless assumed

to be so small as to justify the assumption that in the vibrational equa-
tions the strain and space charge could still be regarded as sinking prac-

tically to zero at the surfaces of the plate. As will be seen, the more

rigorous theories of Bechmann and of Lawson, which take complete
account of the strain at the boundaries, show that the author's earlier

results are correct except for a negligible second-order effect.

In Bechmann's paper
89

general equations are derived for thickness

vibrations in plates cut in any orientation from any piezoelectric crystal.

Gap, damping, and overtone frequencies are all taken into account,

and the departure of the overtones from the harmonic relation is given.

Expressions are derived for the equivalent electric constants.

Lawson318 is concerned only with resonant frequencies (normal modes)
of the fundamental and overtones. The gap effect is included, but not

the damping. Like Bechmann, Lawson uses the Christoffel method for

finding the effective stiffness for any crystal and cut.

244. In the following treatment the plate is assumed to be plane-

parallel, with infinite lateral dimensions and with infinite plane electrodes

separated from the crystal surfaces by a total gap w. This assumption
eliminates the complications due to a finite boundary, and it ensures

that the lateral constraints due to inertia will prohibit all strains except

that which is involved in the thickness vibrations. The chief difference

between the theories of lengthwise and thickness vibrations is that in the

former case we deal, with a single stress and in the latter case with a

single strain.

The present theory does not take account of the fact that in a finite

plate the boundary conditions have a marked influence on the vibrations.
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In the first place the velocity of wave propagation is not the same near

the edges as in the center of the plate. Beyond this, coupling may exist

between the thickness mode and overtones of all other possible modes.

The elastic conditions are so complex that many resonant frequencies

can be observed, all comprised within a narrow band in the neighborhood

of the ideal thickness frequency. The frequency spectrum varies with

small amounts of edge grinding and also with temperature. One of the

most important and difficult problems in the technique of preparing

crystal plates for piezo-oscillator circuits is to lap a plate and grind its

edges in such a way as to give it an outstanding thickness response of

the desired frequency at a certain temperature, with the further require-

ment that changing the temperature shall not cause this response to give

way to another at a slightly different frequency.

At the fundamental frequency / the mechanical wavelength X is

approximately 2e (for the departure from exact equality see 250).

The velocity of wave propagation is Vtf/P Vo ^ 2e/ . q is the

effective stiffness, a function of the fundamental elastic constants, modi-

fied somewhat by space-charge effects and by the presence of the gap.

p is the density, and / the fundamental frequency, defined as the fre-

quency at which the velocity of a particle and the current Ip in the vibra-

tional branch of the equivalent network have maximum values. As is

shown in 255, the equivalent network is the same as that in Fig. 50.

When the plate is driven at the frequency of an overtone of order A,

the basic formula is

ft. *^ (343)

As will be seen, the overtone frequencies are not quite exact multiples

of the fundamental.

Since it is not possible, as it is with lengthwise vibrations, to apply

the electrodes to a single one of the h segments into which the plate may
be considered as divided, there is no means by which resonant vibrations

can be excited at even harmonics. Hence only odd values of h need be

considered, at least for perfect plates in uniform fields.

There are circumstances under which a plate may conceivably

vibrate in a thickness mode at or close to an even harmonic frequency.

The shape, size, and location of the electrodes may be such as to produce

a driving field in the plate that varies in the direction of the thickness.

Or the plate may be twinned or have other defects such that the excita-

tion is not uniform. Finally, the plate may be in contact with an

electrode of considerable mass, so that in effect one has a composite

resonator. It would appear that one or more of these circumstances
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must have been present in a recent observation by Parthasarathy,

Pande, and Pancholy.* In optical diffraction experiments according to

the method of Debye and Sears described in 511, using an X-cut quartz

plate as the ultrasonic source, these investigators found diffraction

patterns (of relatively low intensity) at frequencies that were approxi-

mately 2, 4, 6, and 8 times the fundamental.

A complication arises from the fact that, whereas a bar has only one

value of Young's modulus, a plate has in general three different stiffness

coefficients q for thickness vibrations, corresponding to three different

possible types of vibration.

245. The Three Types of Vibration. We learned in 66 that, when

plane waves are propagated in the direction normal to the surface of the

plate, the vibration direction, in which the particles move in simple
harmonic motion, must lie in one of three mutually perpendicular direc-

tions, which are determined by the elastic constants of the crystal and

the direction of propagation. In general, to each of these vibration

directions there corresponds a different wave velocity. Thus for a plate

in a given orientation any one of three different types of wave is theo-

retically possible, each traveling with a different velocity. The plate has,

in the most general case, not one fundamental thickness frequency,

but three; each of the three vibration directions may make an oblique

angle with the direction of propagation. It is only in certain special

cases which, however, are readily realized and are in wide use that

one of the vibration directions is parallel to the direction of propagation

(compressional waves) or perpendicular to it (transverse or shear waves).

In practice, when the fundamental elastic constants of the crystal

and the orientation of the plate are known, the three values of q and the

direction cosines a, , 7 of the vibration direction can be found from Eqs.

(117) and (118). If the plate is referred to an axial system X', 7', Z'
t

with X' as the direction of the thickness, the only strain (assuming
infinite area) corresponding to any q is d/dx', where is the instantaneous

mechanical displacement in the vibration direction. This strain can

be resolved into components x'x ,
z'x ,

and x(, which in turn can be resolved

into components with respect to the -3T-, F-, Z-axes.f If the crystal

has a "piezoelectric coefficient capable of exciting at least one of these

components, the vibrational type in question can be excited. In the

*
S. PARTHASAHATHY, A. PANDE, and M. PANCHOLY, A New Phenomenon in the

Piezo-electric Oscillations of a Quartz Crystal, Jour, of Scientific and Industrial

Research, vol. 2, no. 5, June, 1944, 2 pp.

f The strain xx respresents an extensional displacement normal to the surface,

while zx and x'v are shears in planes containing x'. Lateral inertia prevents all other

strains.
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general case, the effective piezoelectric stress coefficient, which we shall

call e, is a function of all the fundamental stress coefficients. The

formula for is given in Eq. (344). The numerical values of q for quartz

plates in various orientations have already been given 'in Table XII

(page 142).

In lengthwise vibrations, the trifling effect of damping being dis-

regarded, when the field is at right angles to the length of the bar, the

strain at the ends vanishes at the frequency of velocity resonance. Such

is not the case at the surfaces of a plate in thickness vibration* except

when the gap between plate and electrodes is infinitely great, on one

side at least. With a finite gap, as will be seen, the electric field at the

surfaces due to the space charge in the crystal causes a small residual

strain at all frequencies, even in the absence of damping. As the gap

increases from zero to infinity, the resonant frequencies undergo a slight

increase. The effect can be expressed conveniently as a contribution

to the effective stiffness.

In addition to the effect of the gap, the effective stiffness receives a

further contribution from the field in the interior of the crystal. This

piezoelectric contribution is independent of the gap.

The foregoing general statements will be better understood in the

light of the theory that will now be developed.

246. In the following formulation of the theory we shall use a proce-

dure as nearly parallel as possible to that for lengthwise vibrations,

assuming that the elastic stiffness is known. *

The thickness dimension of the plate lies in the s-direction, with

direction cosines Z, m, n. The electric field E is in the same direction.

The origin is at the center of the plate, and the distance from the origin,

in the s-direction, is denoted by x. The X-axis thus coincides with the

s-direction; in general, it is not the crystallographic X-axis. The surfaces

of the plate are at x = e/2, where e is the thickness.

Of the three possible types of vibration, that one will usually be

selected for which the effective piezoelectric coefficient e has the greatest

value according to Eq. (344). If we let (x) represent the mechanical

displacement of a particle at distance x from the origin, the strain is

x$
= d%(x)/dx, where the subscript denotes the strain corresponding

to the variation of in the X-direction. The direction cosines of
,

and hence of the vibration direction, are a, 0, 7 derivable from Eqs. (117).

The direction cosines of the normal to the plate are Z, m, n.

Under these conditions the effective piezoelectric stress coefficient,

as derived by Bechmann,
39

is

* For the determination of elastic constants from observations of frequency, see

252.



8247] THE PIEZOELECTRIC RESONATOR 311

a[enl* + e2fiw2 + e35n 2 + (e26 +
+ (en + ei&)nl + (^21

(e32 + e24)wn
(en + e26)M

(e34 + e^mn
(en + e35)nZ + (eM + e25)M (344)

This coefficient e is employed in expressing the piezoelectric polariza-

tion P =
ez$.

With the simpler cuts the procedure does not have to be so complicated
as that indicated above. For example, in the case of an X-cut quartz

plate, we know that a field Ex causes a stress e\iEXl whence we conclude

that the effective piezoelectric constant is en. This conclusion is con-

firmed on setting a = 1 and I = 1 in Eq. (344) and discarding the piezo-

electric constants that vanish in quartz. Also, thanks to the lateral

constraints in an infinite plate, the only strain is xxy so that from the

equation Xx = CnX9 we conclude that the value of q is Cn. This

finding is confirmed by application of the Christoffel method.

Similarly, in a Z-cut quartz plate Z = w =
0, n =

1, whence from Eq.

(344) since for quartz e3 s == eu = en =
0, it follows that c = and that

direct excitation of thickness vibrations is impossible.

247. The Dielectric Constant for Thickness Vibrations. This quantity
cannot be derived it the same way as for lengthwise vibrations, chiefly

because the polarization is not uniform in the field direction. Instead,

we make use of the fact that all strains except x$ are prohibited, so that

the only possible increase in the dielectric constant above the value for a

clamped crystal would be that due to the strain x$. According to the

method adopted here, the entire piezoelectric polarization appears in

the equations as a function of x$. Any piezoelectric contribution, of the

form of emidhi in Eq. (262), that the strain makes to the susceptibility

is thus taken care of, leaving as the effective susceptibility only the

clamped value v\" . The effective dielectric constant is therefore

k" = 1 + 4am"

The Clammed Dielectric Constant. Since the electric field, like the

thickness dimension, lies in the s-direction and the only component of

polarization with which we are concerned is in this same direction, we
can use Eq. (265), in the form

ti'--4rS;.A (345)
t

If the dielectric constant k't for the undamped plate is measured at a

low non-resonant frequency and the piezoelectric constants eti and dti
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are known (transformed to a rotated axial system if the plate is oblique),

k" can be calculated.

If the piezoelectric constants are not known, one can measure k"

directly by using a very high frequency, as explained in 374.

248. The Effective Stiffness. By the method described in 66 the

stiffness for thickness vibrations is deduced from the fundamental elastic

constants. If, as is usually the case, the values of the latter have been

measured at constant field, the derived value is also isagric jand will

henceforth be denoted by q
B

. Owing to the piezoelectric reaction that

is now to be considered, a correction term has to be added to q
E in order

to give q', the effective stiffness.*

The derivation requires no assumption concerning the distribution

of strain beyond considering the only spatial variation of strain to be in a

direction parallel to the field. It is assumed that c is known. In the

notation explained above, we let x^(x) be the strain at any x. Then,

in general, there is a space charge p(x) = 6P(x)/dx = edxs(x)/dx.

Poisson's equation gives

x _ _ dE(x) _
dx* dx k" k" dx

whence E(x) = - ^f^ + C (346)

where E(x) is the field at x due to the space charge. The constant C

is a function of the distribution of p from e/2 to +e/2. It represents

the field at the surfaces of the plate. In general, the distribution of p

is such that there is a polarization charge on each outer surface, with a

surface density o-, and the constant C may be regarded as the contribution

4xcr/k" made by <r to the field.

The field E(x) causes a piezoelectric stress X$(x)
= eE(x). X^ is

of the nature of a body stress, balanced by an equal and opposite elastic

restoring stress, f It is the latter that is to be added to the constant-field

elastic stress q*xs(x), where q* is the appropriate isagric elastic coeffi-

cient. The total stress at x is now

> / \ *

+ *C (347)

where q - if + j (347a)

* The expression for the effective stiffness was first derived by the author107 in

1936. The problem was attacked independently by Baumgardt80 in 1938, who,

however, failed to take all factors into account,

t See the discussion of Eq. (186), 126.
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E

A1 A x

This expression holds for all thickness vibrations, including overtones.

The term *C, not containing x$(x) as a factor, does not contribute directly
to this expression for the effective stiffness. As will be seen, eC includes

the effect of the gap, and its influence on the frequency can be expressed
either as an effective change in thickness or, indirectly, as a further con-

tribution to the effective stiffness.*

Equation (347a) is a special case of Eq. (272a), which expresses the

stiffness coefficient chh at constant normal electric displacement, relating
the stress Xh with the strain XH when the electric field in the crystal is

in the m-direction.

249. In order to evaluate the stress eC it is necessary to know the

field distribution throughout the plate. For this purpose we start with

the assumption that the distribution of strain x^ is sinusoidal in the

X-direction, passing through zero at intervals of X/2. The piezoelectric

polarization P = X$ has a similar

sinusoidal form, as is shown in

Fig. 54. For the narrow band of

frequencies in the region of reson-

ance the difference between the

thickness e of the plate and the

half wavelength is too small to be

appreciable in the figure. The
electrodes are at A' and B', with a

total gap w = A'A + B'B. The

potential difference between the

electrodes is here assumed to be

zero. In the actual resonator the

instantaneous driving field due to

the impressed voltage between the

electrodes would have to be added

to the values shown in the figure,

but this would not affect the present argument. Figure 54 represents

conditions at the fundamental frequency. For an overtone frequency

the portion from A to B may be taken as representing a single segment of

the plate. The following equations hold at the fundamental frequency

and odd (approximate) harmonics (h
=

1, 3, 5, . . . ). As a first

approximation it is assumed that e is AX, where X is the wavelength.

At any x the instantaneous strain (246) is x$(x)
= x$(0) cos (irhx/e),

where xt(0) is the maximum strain (this is a maximum in space, viz., at

the origin, and not the maximum in a cycle). The polarization due to

the strain is P = exs(0) cos (irhx/e). The space-variation of P gives rise

FIG. 54. Distribution of polarization P,

Bpaoo charge p, field strength E, and potential

V, in a resonator for thirrkness vibrations.

The origin is at 0, and the thickness of the

plate is AB.

* For a comparison with the effective stiffness of a 6<w, see 251.
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to a space charge,* of value

The field in the crystal due to this distribution of space charge can

be derived by a method previously given by the author. 106
t The value

at any x, for a crystal of thickness e, vibrating at such a frequency that

the wavelength of the elastic wave is 2e/h, is

/ v 4poe / ifhx 2e \ 4ircxt(0) ( irhx 2e \ /O /IQ\
E(X) = ~ TT77 I COS r~7 I

=
T// I COS r-> I (o48)v ' hk" \ e whe'r/ k" \ e irhe'J

where e'r has the value

e
'

r
= e + k"w (348a)

This expression is the special form assumed by Eq. (346) when the

distribution of x^ and of p is sinusoidal. Comparison with Eq. (346)

shows that

r % ex*$) v (?\ -. __
^*ff

At infinite gap C = 0.

From Eq. (347) the stress due to C is

(349)
K

Since the gap is included in e', it is clear that the stress eC is responsible

for the effect of the gap on the resonant frequency /o. The space charge

in the crystal affects / through the term 4ir
z
/k" in Eq. (347), while the

surface charge on the crystal affects /o through the stress eC.

260. The effect of this stress, or of the C-field, has been expressed in

various ways. Bechmann 89 shows that the resonant frequency is very

approximately expressed (in the notation of this book) by

where yh = .

6
, (Bechmann's 7.) (350a)

* Here we encounter a fundamental difference between thickness and lengthwise

vibrations. In the bar the instantaneous polarization varies sinusoidally at resonance

from one end of the bar to the other but does not vary in the direction of the field (as long

as the field is at right angles to the bar). Space charge is present in the bar only

when the electrodes are at the ends.

t The effects of space charge on the performance of resonators seem to have been

considered first by Laue,
309 who found it to be negligible in his theory of the bar vibrat-

ing lengthwise. The subject was considered later in papers by Giebe and Scheibe,
IM* 171

Kobzarev,*
68 and Koga.

870
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and h is an odd positive integer. The factor (1
-

7*) is very slightly

less than unity. The quantity yh diminishes rapidly with increasing h

and approaches zero (owing to e'r) as the gap approaches infinity. Hence,
for large values of h the overtone frequencies approach harmonic ratios, a

fact that was utilized by Atanasoff and Hart in their determination of the

elastic constants of quartz (90).
One may say that the effect of our constant C in Eq. (349) is to increase

the effective thickness of the plate from e to e/(l 7^). This concept
is used explicitly by Lawson,

818 who uses in place of e a length sr, given

approximately by

I = I _ 2>r _ eD*
(351)

Of /

where Dr = IGe2/^ 2^"^. Ignoring the term eD*, which is usually

negligibly small, one sees that Lawson's Dr is identical with Bechmann's

yh/e and that (1 yh)/e is identical with l/sr . We write

eh m Sr T-2 (352)
1 7A

to denote the effective thickness of the plate in the neighborhood of a

resonant frequency corresponding to any odd integral value of h. Then,
in agreement with both Bechmann and Lawson, we may express the

frequency thus:*

(353)

47TC
2

where, by Eq. (347a), q = q* + -pr

As an alternative to Eq. (350) one may put the factor (1 7*) under

the radical sign. Then, from Eqs. (347a) and (351),

_* M 1 ~ 7*)2 ^l
e V P \

32 2
<?

*

(354)

* At one point Bechmann's theory differs from that of all others who have derived

the piezoelectric contribution to the stiffness. In place of kirt*/k" he finds Sire
2
/&",

which must be regarded as an error. Moreover, as far as one can judge from experi-

mental values of stiffness, for example, those of Atanasoff and Hart,
12 it appears that

the isagric stiffness, when calculated from the observed q by the equation

g* - q
-

4**>/k",

agrees better with Voigt's static values than does <f - q &r 2
/fc".
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where the effective stiffness, including the gap effect, is, to a high degree of

approximation,

32 2e E ,
47T62 ,._,

(355)

This equation, with h =
1, is the one derived by the author107 by

another method, to express the effective stiffness q' for a plate with gap.

Within experimental errors it yields values of the frequency in agreement
with those derived from Lawson's and Bechmann's formulas.

At zero gap, e'r
=

e, and Eq. (355) leads to the following expression for

the effective stiffness q<>:

32 2 32e2
/OKPN

q
-
jfff (356)

where q has the value given in Eq. (347a).

When the gap is infinite and also when the order of harmonic h is

sufficiently high, the third term in Eq. (355) vanishes; q' then becomes

identical with q in Eq. (347a) and has the same form as Eq. (272a), as it

should, since, when w = oo
,
there is no electric displacement normal to

the plate. In the general case of thickness vibrations, however, it has

been shown in 246 that the mechanical displacement may make any
angle with respect to the coordinates. Hence, assuming as in Eq. (272a)

that the thickness direction is denoted by w, it is evident that the elastic

coefficient relating the strain <9/dra to the corresponding stress belongs

to an axial system different from that in terms of which the dimensions

of the plate are expressed. In those special cases in which is normal or

parallel to the plate, Eq. (272a) becomes identical with (347a), since

then simplifies to emh, the subscript h denoting the particular type of

strain. In the more general case the obliquity of is taken care of by
giving the proper value to

,
from Eq. (344).

When elastic constants are to be determined by observation of the

frequency of thickness vibrations, account must be taken of the fact that,

for the stiffness q occurring in the basic formula/ = (q/p)*/2e, the value

designated by q
1
in Eq. (355) is to be used. Whatever the gap may be,

this q
f
is neither the isagric nor the constant-displacement stiffness but

depends on the gap. The isagric value is q
K

,
while the constant-dis-

placement value q* is (f + 4ire*/k", as we have stated in the discussion

following Eq. (347a). Both these values can be found when q' , t, k",

e, h, and w are known.

251. A Comparison between the Elastic Constants for Thickness and Lengthwise
Vibrations. First it must be recalled that the elastic state of a bar in lengthwise
vibration can be described as involving only a single stress (57 and 244), while with
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a plate in thickness vibration we have to do with a single strain. It is for this reason

that compliance constants are appropriate for the bar and stiffness constants for the

plate.

The chief difference between the two types of resonator, with respect to the piezo-
electric reaction, arises from the fact that in the bar the strain is uniform in the field

direction (assuming the field to be perpendicular to the length of the bar), while in

the plate the strain in the field direction varies sinusoidally. For the bar an equa-
tion similar to (346) can be derived, but the boundary conditions are such that

the constant C, which depends on the gap, assumes at zero gap a value that reduces the

piezoelectric field to zero. It is for this reason that the compliance at zero gap has the

isagric value s%n. On the other hand Eq. (348) shows that in the plate the field does

not vanish at zero gap (set er
= e in this equation) ; the constant C is such that there

is no value of w at which the stiffness has the isagric value.

It has been shown that, if the stiffness of the plate is defined as q in Eq. (347a), it is

necessary in the frequency equation (353) to introduce an "effective thickness" en in

place of the actual thickness e. A similar process could be carried out in the case of the

bar, if for the compliance at all gaps one were to take the constant-displacement value

8*n given by Eq. (331); the correct resonant frequency would then be given by sub-

stituting in the frequency equation in 237 a suitable "equivalent length" fo in place

of /. The equation would then be (/j^)
2 = A2

/4$o$*n. When w *>, lh I.

In summary, it is seen that the stiffness q* at constant normal displacement [the

q of Eq. (347a) for plates or l/s*n of Eq. (331) for bars], when used in the equation
for frequency along with the actual dimension of the resonator (e or Z), gives the

correct value of the resonant frequency when the gap is infinite, for both plate and bar.

As w diminishes from *> to 0, if the dimension of the plate is left uncorrected in the

formula, the decrease in frequency has to be explained by saying that the effective

stiffness decreases from q* to q
E

l/Sn in the case of the bar and to the value #o in

Eq. (356) in the case of the plate. The objection to this explanation is that it makes

the stiffness, and therefore the wave velocity, depend upon both gap and order of

harmonic. If the wave velocity is to be regarded as an intrinsic property of the

material, it becomes necessary to consider q* as the true stiffness under all circum-

stances. This consideration requires us to insert a factor [(1 YA) in the case of the

plate] in the frequency equation to take care of the apparent variation in stiffness;

this factor may be interpreted as a small correction to the dimension of the resonator

in the direction of wave propagation.

For practical purposes it is convenient to regard the effective stiffness as variable

with the gap and, in the case of the plate, variable with the order of harmonic. No
correction factor is then needed for e or I. For the plate we use q' as given in Eq. (355).

For the bar, the effective compliance is s^, given by Eq. (330), a value that we have

used in the theory of lengthwise vibrations.

252. Procedure for Deriving the Elastic Constants from Observations

of the Frequency of Thickness Vibrations. Now that the effect of piezo-

electric reactions on the stiffness in thickness vibrations has been treated,

we are in a position to indicate how the fundamental isagric constants

(or, if desired, the constants at constant polarization) may be calculated

from measurements of frequency.

It is desirable to avoid having to make a correction for gap or for the

effective thickness eh in Eq. (353). According to Eq. (355) one can either

observe with a gap so wide that e'r
< or excite the plate at a high
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harmonic (h = 7 at least) or both. The equation for effective stiffness q

is then (347o). Plated crystals (w = 0) may be used, although the metal-

lic coating affects the frequency somewhat. With thickness vibrations

this source of error is eliminated by observing at a high harmonic fre-

quency. The lateral dimensions of the plate should be sufficiently great

to avoid coupling with other modes and to permit the use of the theory for

infinite plates. A safe minimum value for the ratio of lateral dimension

to half wavelength is perhaps 20. The shape of the plate, and the

orientation of its edges are usually quite arbitrary as long as they are not

such as to encourage coupling effects. Most investigators have used

square plates.

Unless otherwise stated, it will be assumed that the plate is between

two electrodes of large area, so that the driving field is normal to the

surface.

It is perhaps needless to say that for precise results the plate must

be made accurately plane-parallel, and its thickness and density must be

known to the necessary order of precision. The plate should be free from

optical and electrical twinning and so mounted as to leave the major
faces free from external stresses. A simple and satisfactory mounting
consists simply in standing the plate on edge. The orientation of the

normal to the plate should be accurately determined, preferably by
X-rays.

The oscillator circuit must be capable of fine frequency regulation and

sufficiently stable to prevent reaction from the crystal. The latter should

therefore be very loosely coupled to the oscillator. Theoretically, the

observed frequency fa, from which q is found by the use of Eq. (343),

should be that at which the current in the LCR-br&nch of the equivalent

network is a maximum. Practically, a sufficiently close approximation
is reached by observing either (1) the frequency for maximum current

to the resonator, for example by means of a vacuum-tube voltmeter, or

(2) the frequency at the bottom of the "crevasse" (316). To avoid

disturbances from varying temperature, the current to the crystal should

be extremely small.

253. First Method. It is assumed that the observed values of q have
the form of Eq. (347a), the gap effect having been eliminated. We have

seen that q is the effective stiffness at constant normal electric displacement.

Its value may be reduced to q* with the aid of Eq. (344), in which case

the solution of a set of equations of the form of (118) gives the isagric

constants at once. There must be at least as many values of q as there

are constants to be derived. Usually the same vibrational mode is used,
with cuts rotated by different amounts about some one axis. The
mathematical calculation is carried out in the same manner as in the

second method below. The coefficient 6 must be calculated for each
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orientation, a process that is often more laborious than that now to be

described.

A second method consists in leaving q uncorrected and applying the

correction to the coefficients CM separately.

Whichever method is selected, it is advantageous to express the T's

in Eqs. (118) with respect to a system of axes of which one is normal to

the plate. We may assume the X'-axis to be thus chosen; it is then, of

course, parallel to the thickness. Using primed symbols in Eqs. (116),

we now have/' =
1, ra' = n' = 0. Analogous and equally simple expres-

sions are formed by letting m' = 1 or n' = 1. When V =
1, all terms

but the first in Eqs. (116) vanish. In place of Eq. (118) we have, after

interchanging rows and columns in the determinant,

16

-
cie (357)

This equation is to be solved for q, giving in general three different

expressions for q, each being a function of the c(k . From a knowledge of

the piezoelectric properties of the crystal one usually knows by inspection

which of the three q's is effective in any given case. This is especially

true when Eq. (357) is factorable, so that one value of q is simply c'n ,

55, or c'66 . In any case the vibration direction
,
and hence the strain

af/da/ (67), can be found from Eq. (117).

If the first method mentioned above is used, the piezoelectric correc-

tion is applied to q. The c'hk in Eq. (357) are then isagric, and from

them the fundamental isagric constants can be found by means of the

formulas for rotated axes.

In the second method each c'hk ,
like the uncorrected q, has a value

corresponding to constant normal displacement, which in Eq. (272) has

been denoted by c*
fc

:

(358)

Each c'hk in Eq. (357) is to be replaced by the right-hand side of Eq. (358),

every cj$ having first been expressed in terms of the fundamental isagric

constants by the formulas for rotated axes. If in all there are n such

fundamental constants in Eq. (357), there must be at least n observed

values of q, each for a different orientation.

An example of the application of the foregoing theory to quartz is

given in 93 and to Rochelle salt in 77 and 207.

Sometimes the number of fundamental elastic constants that can be

determined with a given set of crystal plates in different orientations can

be extended by observing q with the driving field parallel to the surfaces
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of the plate. Other piezoelectric constants of the crystal are thus

brought into play, leading to another of the three possible solutions of

Eq. (357), which remains unchanged, whatever may be the direction of

the driving field.

254. The Electrical Characteristics of a Plate in Thickness Vibration.

The mechanical driving stress is

X, = -cBi = - l = -
(359)

where EI is the driving field, V is the impressed potential difference

between the electrodes, e is given by Eq. (344), and e'r
= e + k"w.

With the aid of this expression, a general equation for the amplitude of

mechanical vibration can be derived, by a method analogous to that in

57 for a bar. Of greater interest is the expression for the current to the

resonator, which will now be derived.

As in the case of the bar, the current per unit area is (dD/dt)/4ir,

where D is the vector sum of two components of electric displacement.

For the plate, one component is DI = k"Ei k"V/e'r ,
the displacement

in the damped plate due to the impressed field. The other component
is Dv due to the state of strain. From Eq. (348),

(360)

where Ew is the field in the gap.

The strain x^(0) at the origin is now to be derived from the general

equation (313). One replacing xn by x& I by e, and setting x =
0, one

has, with the aid of Eq. (359),

7o^ f

q' cosh (76/2)
"

q'e'r cosh (ye/2)

From Eq. (74) this expression, after obvious approximations,!

becomes
+ jnh , .

(361a)

where the fundamental frequency is /o
=

o>o/27r, an is the damping con-

stant at the frequency / = fn = ;*/2ir, UK = WAO w^, and /AO
= W^O/STT

is the resonant frequency (maximum particle velocity and maximum

piezo current) at harmonic h.

*
Advantage was taken of this fact by Atanasoff and Hart12 in their observations

with quartz plates.

f Since c 2f e - w e/T, Eq. (74) may be written as y 6rA> e)(a + ,/w). It is

then easily proved that cosh ye/2 (ir/2w ) (n + jot). At harmonic h, w has the value
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The value of x^(0) from Eq. (361a) is now substituted in (360) to

give Dv . From this and the foregoing expression for DI we obtain, for

the instantaneous current flowing to a plate of area A,

, _ 6iiA7ocft" / .,
, IGe^co^o an + jnh\~

4*4 V "*"

*<?W c$ + n*J

or, since & w^o = irc/i/e, where c = (g'/p)
1

,

Except for the difference in notation, this equation can be shown to

be in complete agreement with Bechmann's corresponding expression
40

[his equation (55)], if in place of n^ one writes nh(i 7*)
2

. For all

practical purposes the difference is negligible.

255. Equivalent Electric Constants for Thickness Vibrations. As

we did in the case of Eq. (319) for lengthwise vibrations, so here we write

Eq. (362) in the form

, t

where g

chAk"

For the vibrational terms (those containing a and w), the electrical

impedance is

where, on substituting q'/p for c2
,
one has

*'* 01 ?*?*.
(363)

The two expressions for Rh are valid, whatever may be the dependence

of the damping constant a or of the frictional coefficient F [Eqs. (61)

and (67)] upon frequency. If F is constant, Rh varies with ft
2

.

As in 232, one finds, with the aid of Eq. (354), for L'h and C( the

expressions
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For the non-vibrational branch of the network we have

lc" A 1c" A
yy/ IV *. IV jd

1
"""

4:ire'r 4v(e + k"w)

(364)

(365)

The discussion of the equivalent electric constants in 232 to 234

applies equally to thickness vibrations. In particular, the electro-

mechanical ratio r for thickness vibrations has a value that will now be

derived. We need first the expression for the lumped mechanical con-

stants, viz., the mechanical resistance Wh, stiffness Gh ,
and mass Mh ,

for any harmonic h. By the method outlined in 62 and 63 they are

found to be

Wh - PeAah

2e

(366)

On comparing these values with the equivalent electric constants from

Eqs. (363) and (364) we find for the electromechanical ratio

_~
(Z.)

~ Wh C(Gh Mh

where Ze is the mechanical impedance.
This ratio depends, through ej, on the gap, but it is independent of the

order of harmonic.

The equivalent electrical network for thickness vibrations is the same
as for lengthwise vibrations, illustrated in Fig. 50 and discussed more

fully in Chap. XIV.
In the table on page 323 are the values assumed by the mechanical

and electric constants for gaps zero and infinity.

Electrically, the crystal becomes a more and more feeble resonator

as w > oo
,
but the product L'hC( is always such that the resonant fre-

quency has the values given in the table.

256. Effect of Gap upon Frequency of Thickness Vibrations. As in

237 we let^JJ and/* denote the resonant frequencies at gaps w and zero.

For yh we write 7^ and 7?. Then, from Eqs. (350) and (350a),
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TABLE XXII

323

Constant

Wh

M*

L'h

Ao

to

pAe

tr*Afe /_ 32e*

2e

to

2e

If A'/w is defined as /jf /J ,
where /^J, at infinite gap is taken as the

basic frequency, the expression becomes

Lawson's analysis introduces a second-order term, according to which

the gap correction, in the present notation, is

*_ \

(369a)

Unless e is very large, the last fraction is insignificant, so that Eq. (369)

suffices for use in any investigation in which /ft is taken as the basic

frequency.

For experimental tests it is usually more convenient to use Eq. (368).

If, as is the case with most crystals, y% 1, this equation becomes^^ sC7
"

(370)
/AO vh2

qer h*er

where U = \e*/vq is a constant for the crystal. As will be shown in

353, the total change in frequency for quartz, as w increases from
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to oo
,
is of the order of 1 per cent at the fundamental frequency, when

* " L
Equation (370) shows that with increasing h the gap correction rapidly

becomes negligible. With h as large as 7 or 9, the frequency can usually

be considered as independent of the gap, and from then on the overtones

have practically harmonic ratios, as explained in 250.

From observations of the gap effect in thickness vibrations an approxi-

mate value of the piezoelectric constant can be derived by means of

Eq. (370).

For any given gap the ratio A'/AO//*O is very approximately equal to

CJ/2CJ. When w =
0, the ratio becomes C*/2Ci, where C\ and C\

are the values at zero gap. But, according to Eq. (401), Ch/2Ci is the

relative difference between the frequencies for parallel resonance and

series resonance. Thus the foregoing results for thickness vibrations

illustrate the general fact concerning series and parallel resonance stated

in 291 after Eq. (439a). For further statements concerning the ratio

C'h/2C{ and its relation to the electromechanical ratio r, see 280.

257. The Maximum Safe Resonator Current. The maximum current

depends on the maximum strain that the crystal can undergo before

breaking, and this in turn depends on the vibrational mode. As an

example of the calculation we consider the case of lengthwise vibrations

in an X-cut quartz bar, length parallel to Y. From the tensile strength

of 1,000 kg/cm
2
given in 328 and the elastic compliance *n = 1.30(10~

12
)

one finds for the breaking strain yv 0.0013. Rupture may be expected

to start at the center of the bar, where the strain is greatest. The

relation between (yv) at this point and the piezo current Ip can be found

with the aid of Eqs. (88), (97), and (329). At the fundamental resonant

frequency (h = 1) and zero gap one finds

Ip = 2ebc(yv) esu (371)

where c = V^/P and 6 is the breadth of the bar. For quartz the effec-

tive piezoelectric coefficient c is en = 5.2(10
4
), while c = 5.4(10

5
) cm/sec.

Hence, if (T/)O
= 0.0013, we have IP = 7.36(10

7
) esu = 246 ma. Thus,

if 6 = 1.5 cm, Ip = 36 ma. At resonance Ip may be taken as the current

to the entire resonator, since the portion in the parallel capacitance Ci

is then relatively small.

Since the piezo current Ip is approximately proportional to the

strain at all frequencies in the resonance range, the value calculated above

holds also when, as in most types of piezo oscillator, the crystal is vibrat-

ing near its antiresonant frequency. The only difference is that in order

to produce the same Ip the voltage across the crystal must be higher,

causing the current in C\ to be greater. Therefore, near antiresonance

the total safe current can be greater than at resonance.
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The foregoing estimate of Ip gives the maximum possible value at

resonance under ideal conditions. The value would be different for other
cuts and other modes of vibration. In actual cases overtones of various

modes, as well as defects in the crystal, are likely to produce localized

stresses sufficient to cause fracture at currents far below the ideal value.

In general, larger currents per square centimeter of electrode area

can be used with thickness than with lengthwise vibrations. With some
thickness resonators of average size, currents as great as 100 ma can be
used safely. Nevertheless, the experimenter would do well not to let

the crystal current exceed 20 ma/cm2 with thickness vibrations or 10

ma/cm2 with lengthwise vibrations. Not only does this precaution

safeguard the crystal, but it also avoids undue heating and consequent

change in frequency.
268. Anomalous Dispersion in the Resonator. Just as a crystal is

often regarded as a single large molecule, so the macroscopic dielectric

properties of a piezo resonator at radio frequencies simulate the molecular

behavior of matter in the infrared and optical regions. While this

similarity is shown to some extent also by such electromagnetic devices

as telephone receivers, the analogy is closer in the case of piezoelectric

resonators.

We saw in 116 that when the particles of which a substance is com-

posed have a natural frequency in the optical spectrum, the substance

exhibits anomalous dispersion for radiation in the neighborhood of this

frequency. The medium becomes highly absorptive, and the index of

refraction, and hence the dielectric constant, increases with increasing

frequency to a maximum, decreases to a minimum, finally approaching
a value somewhat lower than that on the 1-f side of resonance. Since,

in electrical language, the vibrating system possesses both reactance and

resistance, it is customary to express both the refractive index and the

dielectric constant as complex quantities, as is shown in Eq. (181) for

the dielectric constant.

In the following sections we shall first show how the equivalent

electrical admittance of the entire resonator can be expressed in terms of

a complex dielectric constant and then trace the dependence of this

constant upon frequency. The dielectric constant and resistance (or

decrement) of the resonator correspond to the refractive index and

coefficient of absorption in the optical case. The discussion will be con-

fined to lengthwise vibrations, but in principle it is applicable to piezo

resonators vibrating in any other mode.

In its most general form the complex dielectric constant ke would

be written as in Eq. (181), with 6 (susceptance) and g derived from Eq.

(315). Since such an expression would be complex in more than one

sense, it is simpler and equally instructive to take advantage of the very
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low damping in piezo resonators, by writing one expression valid at

frequencies sufficiently removed from resonance, and another for the

resonance region.

269. Except in the immediate neighborhood of a resonance frequency,

the parenthesis in Eq. (316) may be used to represent the complex

dielectric constant. It is assumed that the field strength is small, so

that we have to do only with the initial value. First it should be noted

that it is the real part of ke that represents the dielectric constant in the

ordinary sense. In Eq. (316) the imaginary term is omitted, since the

impedance of the crystal is almost exactly a pure reactance except over a

FIG. 65. Variation of dielectric constant kc with frequency of lengthwise vibrations.

Curve Q is for quartz, R for Rochelle salt. The curves are drawn approximately to scale,

except that the resonance for quartz is made to appear less sharp than would be the case

with a typical quartz resonator, and that the ordinates for quartz are multiplied ten times.

The data for Rochelle salt are from Mason's observations on a 45 X-cut bar, with low

field strength, at 5C. Energy losses, which limit the values of kc at resonance, are not

represented in this figure.

very narrow region close to resonance. kc is then given very approxi-

mately by the real quantity

ike
, n ,+ -^ tan (372)

The dependence of kc on frequency is governed by h = /// ,
where / is

the fundamental frequency, / is any frequency higher than the funda-

mental, and h is any real positive number, integral or fractional, greater

than unity. The equation shows that, as / increases indefinitely, ke

diminishes, with anomalous values in the neighborhood of frequencies

for which h is an integer. This ke is the value associated with the

equivalent series capacitance C. of the entire resonator (271).
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The variation of ke with frequency, for lengthwise vibrations in quartz
and Rochelle salt, is shown in Fig. 55 for values of h up to 3. Negative
values correspond to inductive reactance.

In the case of Rochelle salt it is evident that the "anomaly" due to

the fundamental resonance frequency (h = 1) extends over an extremely
wide range of frequency. This fact is the result of the large piezoelectric

constant of Rochelle salt. The quantity fc/, which we have called the

"effective dielectric constant," can be identified on the curve at h = 2,

where the crystal is driven at double frequency, as explained in 321.

At zero frequency kc
= k' = 190. Most noteworthy is the fact that the

crystal does not return to this value after the fundamental resonance, at

least not until the frequency approaches the value for which h = 3,

where the current has its second maximum.

Qualitatively the same behavior is shown by the quartz resonator.

The outstanding difference is that in quartz at all frequencies, except

very close to resonance, the departure of the dielectric constant from its

static value is hardly perceptible. This contrast with the more pro-

nounced curvature in the case of Rochelle salt has practically nothing to

do with relative energy losses. Except over frequency bands too narrow

to be indicated clearly in Fig. 55, the crystal, whether of quartz or of

Rochelle salt, is essentially a pure reactance.

260, The variation of kc close to resonance will next be considered.

For this purpose we may use Eq. (319) and the networkshown in Fig. 50.

Let the admittance of the #LC-branch, in the notation of 232,* be

denoted by Y =
g'
-

jb
f and that of d by YI = -#1 = jd. The

admittance of the entire resonator is then

-
j (Z

-
cod)

(373)

As in 232, the complex dielectric constant is found by writing

Y{ ss juCc = jfw6Zfcc/47re, whence from Eq. (373), for frequencies in the

neighborhood of resonance,

* - -
[(6

' + 6i) +jg>] - - - *+' (374)

With the aid of Eq. (320) the real part of this expression can be proved

identical with Eq. (372), as long as R can be neglected. Close to reso-

nance the effect of R becomes appreciable, in determining the shape and

finite height of the resonance peak.

* For simplicity the primes and the subscript h are dropped from R, L, C, d, and

Z in this section.
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A plot of the dissipation component jkiceg'/M of quartz against

frequency, with the scale used in Fig. 55, would appear as nothing more

than a horizontal straight line of very small ordinate value, rising abruptly

to high values at h = 1 and 3. In Rochelle salt the same is true if g'

is computed for the mechanical losses alone. * Nevertheless, this process

would not correctly represent the dielectric behavior of Rochelle salt,

owing to the presence of a resistance, which Mason calls R$, in the

Ci-branch of Fig. 50. Mason's 338
equation (63) amounts to an^expression

for the complex dielectric constant, but numerical data are not available

for its complete evaluation (see 375).

As the frequency is increased beyond the limit shown in Fig. 55,

other resonant values are encountered, at each of which the net value

of the dielectric constant on the h-f side is less than on the low. These

resonant values correspond to odd integral values of h up to the point

where other h-f modes, compressional, torsional, flexural, or shear,

depending on the lateral dimensions, begin to enter. Considering only

lengthwise compressional modes, one sees from Eq. (372) that with

increasing frequency the dielectric constant approaches the value h y

which by Eq. (311) is h =
fc{ 4ird?n/snn . This is also the value that

would be measured at all even values of h. At very high frequencies the

vibrational reaction due to lengthwise compressional vibration is neg-

ligible, even at odd values of h.

If a crystal had only one piezoelectric constant, namely, that associated

with compressional lengthwise vibrations, the value of ki given above

would be that of the completely clamped crystal: it would therefore be

expected to hold until the optical range of frequencies was approached.

In general, however, owing to the possession of other piezoelectric con-

stants, before extremely high frequencies are reached the bar resonates

in other modes, as stated above. As long as the frequency is low with

respect to these other modes, then as was shown in 229 the piezoelectric

strains corresponding to these modes are proportional to and in phase
with the driving field. They therefore contribute to the polarization

and to the effective dielectric constant. It is this effect which gives to

ki a value somewhat greater than that of the clamped dielectric constant.

When with increasing frequency these other modes come successively

into resonance, the crystal in effect becomes progressively more and more

clamped, owing to the inertial reaction of all modes of lower frequency,

until at very high frequencies, which for crystals of ordinary size are

of the order of 10 7
,
the only vibrations are high overtones of negligible

amplitude. When this stage is reached, the crystal may be regarded as

completely clamped. The best values of the clamped dielectric constant

* See Mason,*
88

Eqs. (57).
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k" are obtained by this method. Such measurements on Rochelle salt

are discussed in 442.

From the foregoing statements it is clear that the effective dielectric

constant ki holds for all frequencies within which only compressional

lengthwise vibrations need be considered. A theoretical formulation

that took account of other vibrational modes and of coupling effects

would lead to a different expression for kt.

If it were possible to increase the frequency up to that of the optical

range, the dielectric constant would be found to diminish still further,

suffering a drop whenever a characteristic molecular frequency was

passed,* until in the visible spectrum, where the refractive index is of

the order of 1.5, the dielectric constant would be reduced to the order

of 2.

261. Effects of Piezoelectric Vibrations on X-ray Reflections, f

a. Observations with Quartz. In 1931 Fox and Carrel observed that the

Laue spots due to a beam of X-rays passing through an X-cut or F-cut

quartz plate became more intense when the plate was vibrated piezo-

electrically. The effect was found with all vibrational modes investi-

gated by them, and it varied in amount with the amplitude of vibration.

This subject received considerable attention in the succeeding years.

On the experimental side, the fine structure of the spots, which appears
when the quartz plate is vibrating, has been studied by Cork^ and by
Barrett and Howe111

. The latter investigators made a Laue survey of

an entire X-cut plate vibrating in its thickness mode, which threw light

on the highly complex nature of this mode. For further experiments
on the effect of thickness vibrations see refs. [0], [9], [10], and [19].

The increase in intensity caused by the lengthwise vibrations of X-cui

plates (compressional waves in the F-direction) has been observed by
Bertsch12! and by Colby and Harris,^ using the Laue method. On the

other hand, Blechschmidt and Boas [2a] could find no change in intensity.

The foregoing results, obtained by the observation of Laue spots,

indicate that the cause of the increase in intensity lies in the body of the

crystal and is not merely a surface phenomenon. On the other hand,
when an increase in intensity is sought by Bragg reflections, it is found,

as would be expected, that the condition of the surface of the crystal is

important. No increase in intensity of the radiation reflected from a

polished surface is observed; but if the damage done to the surface by

* From the measurement of X-ray intensities II. Staubm has calculated a Rest-

strahkn wavelength in Rochelle salt of about 10(V Valasek843
predicted an absorp-

tion band at 55/*, while W. W. Coblentz (" Investigations of Infra-red Spectra,
1 '

Carnegie Institution of Washington, 1905-1908) recorded an absorption band at

Much remains to be done with Rochelle salt in the infrared.

t Reference numbers in this section are to papers listed at the end of the chapter,
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polishing is removed by etching in H2F2 ,
the crystal when vibrating does

show an increase in intensity, provided that the reflection does not take

place from a region on the surface where there is a node of strain. These

conclusions are confirmed by the observations of Colby and Harris.^

For observations by the Bragg method see also refs. [3], [6], and

[9].
*

On the effects of grinding and etching the surfaces, see refs. [1],

[4L [6], [9L an(* [16]. For plates in various orientations, see refs. [12]

and [19]; in the latter paper the modes of vibration are investigated by

X-rays.
The increase in intensity mentioned above is confined to the char-

acteristic radiation from the target. According to Jauncey and Bruce[14]

vibrations have no effect on the diffuse radiation. The characteristic

lines have been found by Colby and Harris^ to be widened as well as

increased in intensity by vibration. For a theoretical treatment see the

paper by Weigle and Bleuler. [21 J

From the first it has been recognized that the increased intensity of

the diffracted beam when the plate vibrates is due to a decrease in extinc-

tion. The strains due to vibration have an effect somewhat analogous

to that produced by polishing the surface, which destroys or disarranges

the lattice in the superficial layers and allows the X-rays to penetrate

more deeply. The best evidence indicates that vibration reduces the

secondary extinction, by setting up inhornogeneous strains, warping the

lattice, or causing disturbances among the inhomogeneities that are

normally present in the crystal.t
10^ 14^ 17^18^ 19]

There is evidence that static as well as dynamic strains cause an

increase in the intensity of the Laue spots from quartz crystals. The

effect was observed by Barrett and Howe111 and by Fukushima113! with

strains produced mechanically and by Sakisaka and Sumoto,*
20! who

employed thermal strains. The same effect was observed by Kakiuchtf16!

when the strain was caused by a static electric field.

Although it has nothing to do with the question of increase in the

intensity of X-ray reflections, mention may be made here of the fact that

piezoelectric strains have been calculated from their effect on Bragg

reflections, by Dolejsek and Jahoda.M The results were found to be in

agreement with the values derived from the field strength and the known

piezoelectric constant. The same method as applied to Rochelle salt

is mentioned in 422.

6. Results with Other Crystals. Both Rochelle salt and tourmaline

show an increase in intensity of Laue spots when vibrating, though the

effect is much weaker than with quartz.*

* For Rochelle salt see refs. [6] and [10]; for tourmaline, refs. [10] and [16].
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The use of X-rays in the precise determination of crystal axes is

mentioned in 341.
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CHAPTER XIV

THE ELECTRICAL EQUIVALENT OF THE PIEZO RESONATOR

Mit leisem Finger geistiger GewaUen
Erbauen sie durchsichiige Gestalten;

Dann im Kristall und seiner ewigen Schweignis
Erblicken sie der Oberwelt Ereignis. %

GOETHE.

262. Introduction. In the foregoing chapter we learned that the

electrical characteristics of a resonator for lengthwise or thickness

vibrations, in the neighborhood of any resonant frequency, can be

expressed in terms of four fixed parameters, represented in Fig. 50.

Most, if not all, types of piezo resonator can be represented by the same

network. In the present chapter some of the properties of this network

and of other equivalent networks will be considered, with special reference

to variations in frequency, gap, and the constants of the crystal.

The "equivalent network" of any electromechanical system is gener-

ally understood to mean an assemblage of /-, L-, and C-values, each

independent of frequency, so interconnected that when the assemblage

is substituted for the actual system in any electric circuit its effect on the

circuit will be the same as that of the electromechanical syvstem itself,

at least over a certain range of frequency. In the case of the piezo resona-

tor the electric constants of the equivalent network are chosen so as to

represent the electrical behavior of the resonator in the neighborhood of

a particular characteristic vibration frequency of the crystal. The fre-

quency range over which the equivalent electric "constants" may be

treated as actually constant depends largely on the nearness of other

vibrational modes. In general, a crystal resonator having a given form

and orientation possesses a large number of characteristic vibrational

modes, each occurring at a different frequency, for each of which the

resonator may be treated as if it had a single degree of freedom, with a

particular set of equivalent electric constants. The equivalent network

has different parameters for each mode.

Several years before the first resonators had been made from piezo-

electric crystals, it was shown theoretically by Butterworth* that any

mechanical vibrating device driven by a periodic emf across a condenser

presents to the driving circuit an equivalent electrical impedance con-

* S. BUTTEBWORTH, Proc. Phys. Soc. (London), vol. 27, pp. 410-424, 1915.

333
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sisting of a certain resistance, inductance, and capacitance in series, the

whole being shunted by a second capacitance. This paper had not come
to the attention of the author93 when he first dealt with the theory of

the piezo resonator in 1922; the existence of an equivalent electrical com-
bination was recognized, but the only combination arrived at was a

resistance and a capacitance, either in series or in parallel, with values

that varied with the frequency (see 271 and 273).

The equivalent network universally adopted for the piezo resonator

today was derived from the author's basic equations by Van Dyke547 - 560 ' 562

independently of Butterworth's work, but leading to the same network,
as shown in Fig. 50. The equivalent electric constants in Van Dyke's

network, as in ButterwortVs, are independent of the frequency.

A little later Dye,
127-*

starting with Butterworth's theorem, derived

the same network as Van Dyke and treated the theory of the piezo
resonator very completely, including the effects of the gap between crystal

and electrodes. Since then many papers have appeared on the subject,

to some of which references will be made in due course.

It has already been shown that the Butterworth-Van Dyke-Dye net-

work represented in Figs. 50 and 566 is applicable both to bars in length-

wise vibration and to plates in thickness vibration and also that, by proper
choice of the equivalent constants, the same network holds when there is

a gap of any width (but see 285 for the limitation in the case of unplated

bars). Although the detailed theory has not been worked out for other

types of resonator, there can hardly be any doubt of the universal validity

of Butterworth's theorem as applied to piezoelectric vibrators, in that

a piezo resonator of any type can be represented by the same form of

equivalent network.

263. We shall now consider the method introduced by Dye and

developed further by Watanabe, 581 by which the electric constants of a

crystal with gap are equivalent to those of the crystal with zero gap, in

series with which is still another condenser representing the gap. For

greater simplicity, consideration of overtone frequencies will be left out

of account for the present. The proper notation for overtones can be

introduced at any point if desired.

The crystal and its equivalent networks are illustrated in Fig. 56.

The total gap is w. The electrodes are connected to the external circuit

at p and q. The equivalent constants, the gap being taken into account,

* In this paper Dye shows as an alternative network a resistance, inductance, and

capacitance in parallel, representing the vibrational portion of the equivalent network

at zero gap, in series with which is a capacitance corresponding to d in Fig. 50 and

another capacitance representing the gap. For a general treatment of equivalent

networks see T. E. Shea, "Transmission Networks and Wave Filters," New York,
1929.
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are, as before, represented by Rf

, L', C", and C(\ they are the same as

the Ri, L
r

hy C, and C{ of 232 and 255. R, L, C, and Ci are the corre-

sponding values when w =
0, so that in Fig. 56c C2 represents the capaci-

tance of the gap. The relations between the constants in (6) and (c) are

given in 284.

Throughout this discussion the assumption is made that Rr

, L', C',

and C( are independent of the electric field strength and of the amplitude
of vibration. In other words, it is assumed that the fundamental elastic

and dielectric constants are actually constant. This assumption is fully

justified with such crystals as quartz or tourmaline, over all ranges of

stress encountered in practice. In the case of Rochelle salt, unless the

stresses are held at very low values, allowance must be made for the

non-linearity between stress and strain, both mechanical and electrical.

The diagrams b and c are two different ways of representing the

electrical characteristics of the crystal with gap shown in diagram a. As

rv

T\f j-t sjt n r

fa)^ (b) (c)

FIG, 56. A crystal with gap, and its two equivalent networks.

will be seen in 284, by proper choice of parameters the two networks

can be made equivalent, as long as the surface of the crystal exposed to

the gap is always an equipotential surface; for ia this case the crystal

acts as if it had adherent electrodes, while the gap is a simple air con-

denser. Such is indeed the case with thickness vibrations, at least if the

complications due to coupled modes are disregarded. As will be seen in

286, it is also the case with lengthwise vibrations of a bar when the

surfaces exposed to the gap are provided with a conducting coating; if the

bar is bare, the gap capacitance C% requires a correcting factor.

The electrical equivalents for the same crystal at several frequencies

may be combined in a single network. For example, if, in addition to the

vibrational mode represented by RLC in Fig. 56c, there are other modes or

overtones represented electrically by series chains RiLid, RJ^C^ . . .
,

these chains, all in parallel, may be connected in parallel with RLC. In

the neighborhood of any one resonant frequency the impedances of all

but one chain are practically infinite, unless two resonant frequencies

happen to come too close together. It must be recalled that Ci has a

slightly different value for each mode, as may be seen from Eqs. (311)

and (323).
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264. The Response Frequencies of the Resonator. There are several

cases to consider, most of which are of some importance in practice.

1. The crystal is set into vibration, electrically or mechanically, and
then left to itself, with the terminals p and q in Fig. 56 on open circuit

(or connected to an infinite impedance). To find the frequency of free

vibration and the rate of decay, one may imagine that an initial charge
has been- placed on the condenser C". The discharge takes place around

the path R'L'C' in series with C{. The frequency of free vibration is

given by o>
2 = 1/Z/C, - R'*/W*, where Cf

- C'C'J(C' +*C{). The

oscillographic record of the rate of decay of a vibrating quartz plate

described in 320 was obtained under these circumstances. Although
this frequency differs but little from the resonant frequency given by
o>2
= l/L'C'j still the distinction cannot be ignored.

2. The crystal is excited as in (1) but vibrates freely with pq short-

circuited. The R'L'C' chain is now connected to a zero impedance, Ci is

inoperative, and the frequency of the decaying vibrations is given by
o>

2 = 1/L'C'
- fi'V4/A a value slightly lower than that in (1).

3. The terminals p and q are connected to a generator of variable

frequency and zero internal impedance. This is the case assumed in the

theoretical treatment, where an alternating potential difference of con-

stant amplitude VQ is impressed on the network. It is approximately
realized in some experimental methods. The network has two degrees

of freedom, with two characteristic frequencies. These are the well-

known frequencies of series and parallel resonance, concerning which more

will be said later.

4. Usually the terminals p and q are connected to a circuit on which

the resonator reacts more or less strongly. The potential drop across the

resonator may then vary greatly with the frequency, but the character-

istics of the resonator, including the frequencies for series and parallel

resonance, are the same as in (3).

The further discussion of the electrical properties of the piezo resonator

can be better understood with the aid of the graphical representation, to

which we now turn.

265. The Resonance Circle. The use of a circular locus for repre-

senting admittances or impedances of resonators offers many advantages.
*

In schematic form it makes the performance of a resonator under varying
conditions evident at a glance, and it is a valuable aid in writing or

interpreting equations. When carefully drawn to scale, such a diagram
can often be used for deriving quantitative results, thus eliminating much
laborious computation.

* The representation of the characteristics of a vibrating system by means of a

circular locus was introduced in 1912 by Kennelly and his collaborators in their

studies of the telephone receiver. The method is fully treated in Kennelly's "Electri-

cal Vihrntinn Tnnt.niTnOTitii." New York. 1923.
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In general, the resonance circle represents correctly the performance
of a resonator over the range of frequencies in which the resonating ele-

ment can be regarded as having a single degree of freedom. If the device

has several resonant frequencies, a separate diagram can be drawn for

each; or by a suitable choice of scale values the same diagram can be

made to serve for different vibrational modes, including harmonics of

the fundamental.

The characteristic electrical property of the piezo resonator is the

equivalent series chain RLC in Fig. 56. Its admittance is very low except
close to the resonant frequency defined by wo =

27r/
= (1/Z/C)*. We

start with the graphical representation of the 72LC-branch, the gap being

zero, and then show how the graph can be extended to more complicated
networks. In the following discussion all equations and diagrams are

applicable to any overtone, if to R, L, C, and Ci are assigned the appropri-

R B

(a)
FIG. 57. Impedance and admittance of R, L, and C in series.

ate values. They are also applicable to a crystal with gap, if for #, L, C,

and Ci are substituted the appropriate R', L'
t
Cf

,
and C(. The limits

within which the approximations in the equations are valid are given

in 294.

The impedance of R, L, and C in series depends on the frequency as

shown in Fig. 57a, where X = wL - 1/C = BS and Z 2 = R 2 + X\ or,

in vector notation, Z = R + JX. As w varies from to oo, R s& AB
remains constant, while the point 8 moves up the X-axis from X = oo

to X = + oo . At the resonant frequency the phase angle =
0, X =

0,

and Z = R. Figure 576 represents the admittance Y = l/Z at the same

frequency. We have Y g $>, where the conductance is

g = jr^ A'B'

and the susceptance is b X/Z2 B '/S'. If X is positive,

= tan"1
-5
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is positive on both diagrams, but it is laid off clockwise in (6) instead of

counterclockwise. At the resonant frequency, g = 1/jR; we shall denote

this value of the conductance by gQ .

In Fig. 576 the value of go is represented by A'B'Q . At any frequency,

Y = l/Z = cos 8/R =
gfo cos 6. But this is the polar equation of a

circle of diameter gQ
= l/R. The circle itself is seen in the figure, and its

circumference is the locus of Y = A'S' as the frequency varies. When

/ = 0, S' is at A' and 7 = 0. As /increases, S' travels clockwise around

the circle, returning to A' at / = oo .

The reason for thus emphasizing the admittance is that it must be

used, graphically or analytically, when any circuit element, such as Ci

in Fig. 50 or 56, is connected in parallel with RLC. In the study of the

resonator we seek a simple means for surveying its performance over the

resonance range, when it is connected to any alternating circuit. Since

both impedances and admittances have to be considered, there is a pro-

nounced advantage in the use of a single diagram to represent both these

quantities, instead of the two separate

diagrams shown in Fig. 57.

266. In constructing any vector dia-

gram, a unit vector, or scale value, must
be selected for the particular physical

quantity that is to be represented. By
the proper choice of scale values the two

diagrams in Fig. 57 can be superposed,
with AB and A'B'Q in coincidence. The
result is seen in Fig. 58, where, as before,

AS represents the impedance at any
frequency /. A circle is drawn with

an arbitrary radius p, expressed in con-

venient units of length. If the diameter 2p = AB represents R, the

scale value is s = R/AB = R/2p ohms per unit length (or esu per unit

length). The reactance is s BS
t the impedance is 5 AS, while

tan = BS/AB gives the phase angle.

In order that the admittance may be represented on the same diagram,

we must select a scale value of admittances, say sy, such that AB shall

represent go
= l/R. The value is

FIG. 58. Impedance and ad-

mittance vectors combined in the

same diagram.

Sy AB
JL
2PR (375)

reciprocal resistance units per unit distance, as for example mhos per

centimeter. Then, since Y = cos 6/R and cos 6 = AP/AB, we have

Y = sy AP. The components of impedance are R = s AB and

X = s BS'
t
those of admittance are g = sy AM and b = sy MP.
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Geometrically, we have performed an inversion of the vector AS with

respect to a circle of inversion* (not shown in the diagram) with center

at A and radius AB. According to the principle of inversion, which in

this case amounts to a statement of the fact that (AE)* = AS - AP, any
point S on the line BS JL AB inverts into the point P, where AS cuts

the circle having AB as diameter. If AS represents an impedance for

the RLC chain, AP represents, in magnitude and phase, the corresponding
admittance.

The present procedure requires one departure from the usual graphical

convention for admittances, in that a positive susceptance, like a positive

reactance, is drawn upward. This practice need lead to no confusion,

especially since the sign of 6 is always the same for a susceptance as for

the corresponding reactance. As the frequency increases from zero

through /o to / = oo
,
S moves upward from oo through B (minimum

impedance) to + oo
,
while P moves counterclockwise around the circle

from A through B (maximum admittance) and back to A. The phase

angle 6 is negative below the line AB (f < /o, capacitive reactance),

changing through zero to positive aboveAB (f > / ,
inductive reactance), f

267. Frequency Calibration of the Resonance Circle. In the applica-

tions of the graphical method that are to come, we shall treat the reso-

nance circle for the admittance of the RLC branch of the resonator as the

fiducial circle. Any vector drawn from the origin at A in Fig. 58 to a

point on the circumference, as AP, represents the admittance Y of RLC:

* The principle of inversion. With respect to a circle of radius a and center at O,

two points P and P 1
are said to be mutually inverse if they are situated on the same

radius, one inside and the other outside the circle, at such distances that OP OP' =* a2
.

The circle is 'called the circle of inversion, and its center is the center of inversion. If

the principle is applied to all the points of any geometrical figure in the plane of the

circle of inversion, the inverse of this figure is obtained. It is easily proved that by
inversion any circle is transformed into another circle, including the limiting case of a

straight line. Every straight line is transformed into a circle passing through the

center of inversion 0. We shall have occasion repeatedly to make use of the fact that

any given circle transforms into itself when it is tangential to a radius of the circle of

inversion at a point on the circumference of the latter. Any two points on the given

circle are then mutually inverse when they are on the same straight line through the

center of inversion.

For the mathematical principles of inversion see, for example, Graustein, "Intro-

duction to Higher Algebra," New York, 1930, or Ziwet and Hopkins, "Analytic

Geometry and Principles of Higher Algebra," New York, 1922. For applications to

alternating currents, *see Lee, "Graphical Analysis of Alternating Current Circuits,"

Baltimore, 1928. For applications to vibrating systems, see Kennelly, "Electrical

Vibration Instruments," New York, 1923. For applications to piezoelectric resonator

circuits, see Vigoureux
B60 -BW and also refs. 127 and 581.

t The use of a single resonance circle to represent both admittances and impedances

was introduced by the author106 in 1933. In the paper cited will be found certain

applications beyond those described in this book.
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Y - sv AP. As will be seen, the parallel capacitance d of the resonator

or any series or parallel external impedance can be represented graphically

in such a manner that a resultant vector can be drawn for the impedance

or admittance of the entire combination. The circle itself may function

as the locus of either admittances or impedances, and the distribution

of frequencies around the circle will vary according to the total network.

Nevertheless, by simple graphical operations, the frequency corre-

sponding to any vector, as, for example, the frequency for minimum

impedance for a given network, can be determined in terms of the fre-

quency distribution around the fiducial circle.

It is therefore desirable at this point to show how the fiducial circle

may be calibrated for frequency, when R, L, and C are given.

To each point on the fiducial circle there corresponds a particular

frequency; for example, at P in Fig. 58 the frequency/ = co/2?r is some-

what higher than the resonant value /o
=

coo/2?r
= 1/2x1/0 at B. We shall

show that the distance BS, measured upward or downward from B to the

point where the line AP produced cuts the vertical axis through B, is

very nearly proportional to the frequency difference / /o. A linear

scale of frequencies can therefore be constructed on the vertical axis

through B.

The desired expressions can best be derived by starting with the

phase angle 6 in Fig. 58.

.

,
BS X _u*LC-l _ L(a>2

-
cog) . .

tan - - = - ~ --- (376)

This equation is rigorous for all values of co. With such crystals as

Rochelle salt, for which co varies very considerably over the resonant

range, the expression cannot be further simplified. BS is proportional

to co only for values of co close to co
;
for larger values of co coo, if I/, C,

R, p, and BS are given, co must be found by solving a quadratic equation.

On the other hand, if co is given, BS is easily calculated, and thence the

location of P on the circle is found.

If co is so close to coo as to permit the approximation (co + coo) 2co,

Eq. (376) can be written in the following simplified form:

BS ^ 2L( - -) m _
2p li K

where n s co
-

co = 2?r(/o
-

f)
*

(377a)

It follows that the frequency difference can be expressed as

5s *' 5S (378)
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where the scale value for frequency is

p
<r B -= (cycles see-^/ftinit dist.) (378a)

Unit distance, measured upward or downward from B, therefore corre-

sponds to a frequency difference cr, so that a linear scale of frequencies
can be constructed along this vertical line.* Close to resonance the

scale is extremely accurate; it is in error by 1 per cent when / differs

from /o by 2 per cent. It is amply sufficient for quartz resonators at all

frequencies that ever need be considered.

The positive direction of BS is upward, corresponding to negative
values of n (the h-f side of resonance).

A series of graduations, for a particular resonator, could be marked
on the circle itself, but such a scale would be very wide open near B,

becoming more and more closed as A was approached from either direc-

tion. It is much more convenient to find the frequency corresponding
to any point P by the method described above.

268. In many cases it is necessary to find the frequency for a point P
on the left side of the circle, as is the case, in fact, with most piezo oscil-

lators. When the line APS is drawn, the point S may be inconveniently

far above or below B. A good estimate of the frequency can then be

made by the following geometrical artifice: For such a point as PI in

Fig. 58 the point corresponding to S, say S'
y
would come at an incon-

veniently great distance below J5, on the prolongation of APi. Instead

of drawing APiS', one may draw the line BPiV. Then, by similar

triangles, BS'/AB = AB/AV, whence BS' = 4p
2/AF, and

where a1 = ~ = ~ AV = 4pV (cycles sec- 1

) (unit dist.) (379a)

The frequency difference / / (= n/2?r) corresponding to any point on

the left side of the circle is a'/AV. Conversely, the location on the

circle of the point corresponding to a given / can be found by means of

Eq. (379) or (379a).

By the use of a or o
7

,
as defined by Eqs. (378a) and (379a), the graphi-

cal method yields values of n correct within 1 per cent as long as n is not

over 2 per cent of / . For very large and very small frequencies the

operating point on the circle is too close to A for reliable measurements

of the distance A V. In such cases it is better not to use the graphical

method but rather to derive the relations between the various parameters
* This linear scale was described by E. Mallett, "Telegraphy and Telephony,"

p. 135, London, Chapman & Hall, Ltd., 1929.
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and the frequency analytically, using the geometrical relations as a guide.

The derivations are usually quite simple, since far from resonance the

terms in R can be left out. A numerical example is given in 300.

If R( is written for R', etc., in the treatment of the resonance circle

in the foregoing sections, all expressions become applicable to a resonator

vibrating near the harmonic A.

269. Resonance Diagram for the Crystal Resonator. We have shown
that the impedance or the admittance of the jRLC-branch of the resonator

network can be represented by means of the resonance circle* (Fig. 58).

From this figure a resonance curve of the ordinary sort can be derived, by
plotting frequencies as abscissas and admittances as ordinates. The cir-

(a)

FIG. 59. Vector diagram for resonator admittance, (a) by the usual convention, (6)

by the method adopted in this book. The arrow / indicates the direction of increasing

frequency.

cular diagram is simpler, even for the 7LC-branch alone, and it becomes

very much more convenient when the effect of the parallel capacitance

Ci is included.

The admittance of G\ is YI = jbi = jfwCi, with absolute value

Yi = wCi. The vector admittance of the entire resonator is

We consider first the manner in which it has been customary in the past
to represent such an admittance. In Fig. 59a, AS' represents Y = g j6,

6 being inductive in this particular case. To Y is to be added vectorially

5^i = ~
jbi, a capacitive admittance represented by AF drawn upward.

The resultant AP of AF and AS' represents Y(. If the point S' has a

circular locus with varying frequency, the compounding of AS' with AF
requires that the locus be moved upward, to the position indicated by
the dotted circle. Such a shift in the resonance circle would be intoler-
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able in dealing with resonator problems in which the location of the

point F is variable. The difficulty is overcome simply by the expedient
shown in Fig. 58, viz., laying off the angle 6 upward when positive, as

shown in Fig. 596. The capacitive admittance YI still points upward.

By this means the line FP represents at once the resultant admittance Y{,

the angle 0i being the phase angle for F(, drawn upward when Y{ is

inductive, downward when it is capacitive. We now have

R = 2ps = -!- X = s BS
2psv

Z = s - AS Y = sy AP
g = sy AM b = sv MP

i branch g\
= 61 = wCi sy AF

,[
= g b(

= 6 + 61 = sv(MP + WM) = sv TFP

;
= sy -Fp

i

The point ^4 in Fig. 596 is the origin for vectors representing the

impedance or admittance of the /fcLC-branch, while F is the origin for

the admittance of the network consisting of Ci in parallel with RLC.
Of considerable importance is the ratio AF/AB; considering only the

magnitude, and using the relation Q = uL/R, we have

AF _AF _ rn^Ci , .

AB--^~ "ClR -
CQ (381)

As the frequency increases from zero to infinity and the operating

point P travels around the circle, the distance AF varies uniformly from

zero to infinity. Nevertheless, over the usual resonant range of such

crystals as quartz, the variation in frequency is so slight that F may
practically be regarded as a fixed point. The use of the graphical method

is thus greatly simplified, without perceptible sacrifice of accuracy.

On the other hand, very strongly piezoelectric crystals, like Rochelle

salt, undergo variations in frequency as great as 50 per cent within the

range that has to be considered. In such cases a separate position must

be assigned to F at each frequency.

In general, the assumption is made throughout this chapter that in

the graphical treatment the frequency varies so little over the range

considered that one may write, hi place of the expression in Eqs. (380),

61 = -w Ci = -sv AF const. (382)

where - (l/ZrC).
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The admittance of the resonator, in general form without approxima-

tions, is

(383)

In dealing with resonators in which the resonant range is very narrow,

we may set o> = coo n in the expressions for X and Z and with negligible

error write co Ci in place of coCi. Equation (383) then takes the form

'

(384)

For a circle of fixed radius p and with given L and C, if the effective

value of R is diminished by improved mounting, sv is increased and

AF = <*Ci/sy becomes smaller. From Eq. (378a) it is seen that <r is

diminished, making BS greater for the same n and giving a more open

scale of frequency over the greater part of the resonance circle.

270. The Impedance Circle. The manner in which the same reso-

nance circle is used not only for the admittance but also for the impedance

of the entire resonator is shown in Fig. 596. If a graphical representation

is sought for the resonator with an external impedance in series (for

example, the gap between crystal and electrodes), it is necessary first to

find on the diagram the vector representing Z{ = 1/Y[, as will now be

explained. Z{ can then be added vectorially to the external impedance.

Since Z( is the reciprocal of Y{, we make use of the method of inversion

to find the point P' inverse to P. This second inversion is performed

with respect to F t
the circle of inversion (which need not be drawn)

having the radius FA and center at F. The geometrical relation involved

is (FA)
2 = FP-FP'. The point P inverts into P', where the straight

line FP cuts the circle. For some locations of P it is evident that

FPf > FP, corresponding to the fact that a smaller admittance means a

larger impedance.

By the principle of inversion, wherever P may be on the circle, the

distance FP' is inversely proportional to FP; it is therefore directly

proportional to the impedance Z(. This fact can be proved in the present

instance very simply without appeal to inversion theory, by writing

-*"'' (385)

where s- = = = (385a)

is the scale value for the impedance of RLCC\. sz is a function of the

constants R and Ci and of the fixed diameter 2p; it is also a function of o>,

but over the resonance range the relative variation in frequency is so
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minute that s* may be treated as a constant. For the same reason it is

usually allowable to consider AF as constant over the resonance range:

although the impedance of the RLC branch varies enormously, that of Ci
remains practically constant for all frequencies that commonly come into

play.

271. When sy is taken as unit vector, the entire diagram in Fig. 596 is

an admittance diagram, with AF and AP representing the admittances

of Ci and RLC, respectively; FP represents the admittance of RLCCi.
On the other hand, with sz as unit vector, the figure becomes an impedance

diagram, for- which the following relations hold, including that given in

Eq. (385):

Impedance of d = --^ = s* AF (386)
coC/i

Impedance of RLCCi = Z{ = se FP' = R, + jX. (387)

R, and X, are the equivalent series resistance and reactance of the entire

resonator RLCCi. Their values* can be proved to be (see Fig. 59)

-. . (388)

The values of X, at series and parallel resonance are considered in 276.

In many cases it is more convenient to use these formulas in the

approximate form obtained by setting co = wo n, where coj
= 1/LC:

o
Bi ~

(1 + 2WaLdn) 2 + co
2
C?#

2 (390)

Y -2Ln(l

When n lies outside of a certain range, depending on the various parame-
ters and on the desired precision, the effect of R 2 becomes inappreciable.

The formulas then become

(392)

<393>

These expressions are valid until n becomes so large that the approxima-
tion involved in the denominator is no longer justified.

* These values correspond to those given by Eqs. (a) and (6) in Dye, ref. 127,

p. 403, and to R[ and X[ in the author's earlier paper.
10*
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Unless R is extremely small, it may be found that the terms in R*

have to be retained over the entire range of frequencies that usually has

to be considered. This fact will be found exemplified in 301.

It is sometimes convenient to treat the resonator as equivalent to a

resistance R in series with a capacitance C,. The latter is found from

the equation

TT?~
~~-

TT77 n/wA , cos* W P

For all points on the admittance circle lying above the line FW, W'P' is

positive and C, is negative.

When R is very small, Ct can be shown, by means of Eqs. (389)

and (394), to have, at any w, the value

r ~ c * + c ~ LdCu* , .

C. - 5
-

(394a)

272. The Frequency Scale for the Impedance Circle. Turning once

more to Fig. 596, we find that, as the point P on the admittance circle

travels counterclockwise from A back to A, the inverse point P', whose
location represents the impedance, moves clockwise from A back to A.

The distribution of frequency around the circle is also different from

that when the circle is regarded as an admittance locus. It is not neces-

sary, however, to construct a special frequency scale for impedances, if

the following simple procedure is adopted.
For every point P' on the impedance circle there is an inverse point P,

situated on the straight line through F and P'. P' and P correspond,

respectively, to the impedance and admittance of the resonator at the

same frequency. When P' is given, one need only locate the inverse

point P, draw the line APS (or BPV according to Fig. 58), and find the

frequency from Eq. (378) or (379). This graphical method is sufficiently

accurate for most purposes, and it obviates the laborious calculations that

would otherwise be needed to determine the frequency corresponding to

any impedance value of the resonator.

273. The resonator RLCC\ can also be represented as a resistance

Rp in parallel with a capacitance Cp. Like R, and C8, Rp and Cp are

dependent on the frequency. From Fig. 596 and Eqs. (380) it is seen

that at the frequency corresponding to any point P,

<395)

and X, = . = ___ = __,_ (395a)

Cp is negative at frequencies above the broken line FW in Fig. 59.
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At frequencies well removed from resonance, R, and Rp can be ignored
At high frequencies C. and Cp converge toward the common value Ci. At
low frequencies they converge toward the common value (Ci + C). This

subject is further discussed in 300 and 258.

In Fig. 59 and in most of the diagrams that are to follow, the length

of the line AF is greatly exaggerated beyond the value that would be

characteristic of a typical piezo resonator.

The ratio AF :AB is uCiR. The resistance R
is usually so small that the ratio is of the order

of 1:100. As will be seen, the length AF
becomes greater when a gap is present, but

even then, with the small gaps usually em-

ployed, the ratio remains small. It would

be difficult to illustrate the principle of the

resonator without exaggerating the length of

AF.

274. A Relation between Mutually Inverse

Points. The following relation will find appli-

cation later. Consider any two mutually
inverse points on the admittance circle, as

P and P1
in Fig. 60. Calling the correspond-

ing frequencies / = /27r and /'
=

w'/2ir, we
have from Eq. (378) n = w - w = -2w<r

'

BS
and n' = co w' = 2ira- BS'. From geo-

metrical considerations, with the aid of the

equation 4ir*f$LC = 1, it can be proved that

88' = 4P
2MF - 2BS, or/'

- / =

FIG. 60. Two mutually
inverse points on the admit-
tance circle, with the corre-

sponding points 5 and S f on
the frequency scale.

whence

= const. (396)

Thus the sum of the frequencies for any two mutually inverse points is a

constant, insofar as o- and AF can be regarded as constants, which is very

approximately true over the ordinary range of resonance.

276. The Critical Frequencies of the Resonator. We now consider

the critical points on the resonance circle for admittances, giving at the

same time a number of useful approximate formulas relating the various

frequencies.

The critical points are shown in Fig. 61. At point B the frequency

is fQ
= l/27r(LC)*, corresponding to maximum admittance of the RLC-

branch and (with constant voltage) maximum current Ip in that branch.
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At B the parallel resistance Rp has its minimum value [see Eq. (395)].

On the impedance circle, B is the point at which the series resistance R9

has its greatest value: for if B replaces Pf
in Eq. (387), Z( = s,

-

FB,
with components R, = s, AB and X9

= s AF; i.e., AB is the largest

value thatFW in Eq. (388) can have. The frequency corresponding to

B on the impedance circle is not /o but has a value higher than / , viz.,

the value for the point P7 on the admittance circle; Py is the inverse of B.

It is easily proved that this maximum value of Rg is related to R by the

equation (R,)^ = l/R<$C\ 1//2JCJ.
Consider next the mutually inverse points P3 and P4 on the horizontal

(conductance or resistance) axis through F. At both points the resonator

acts as a pure resistance. At Pa the admittance, now a pure conductance,

Fia. 81. The critical points on the resonance circle. The curved arrows fr and fz

show the directions in which the frequency increases around the circle, for admittances and

impedances, respectively.

is large. The frequency at P3 is commonly called the frequency for

series resonance, since, if Ci is relatively small (as is the case with a

typical piezo resonator), F is close to A
,
and P3 is so close to B that the

frequency differs only by an extremely small amount from /o, which is

the series-resonance value for the JSLC-branch. On the other hand, at

P4 we have the condition for parallel resonance (antiresonance), in which

Ci plays an important part. The admittances at series and parallel

resonance are sy FPa and sy FP*, respectively, while the impedances
are s* FP4 and *, PP3, respectively. If AF is small, the ratio FP4 :PP3

is extremely small.

At Ps and P4 ,
as may be seen from Eqs. (388), (389), (394), and

(395), X. =
0, XP

=
oo, C, oo, Cp

* 0. At P3, R, = st FP4 and
RP

- l/(sy FP8)
= #.; at P4 , R. - s, PP3 and Rp = l/(sv FP4)

= #,.
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276. Frequencies and Reactances at Series and Parallel Resonance. The

frequencies are derived from Eq. (383) or by setting X, = in Eq. (389).

On solving for co, one finds, to a first order of approximation in R,

"
LC
1

p
~
LC

where co, and cop are the values at series and parallel resonance, respectively

(points PS and P4). Hence,

If the damping is very small, so that R > 0, co approaches the value

coo
= (1/LC)*, while cop approaches (1/LG)(1 + C/2Ci). Then also

^^ ~ r (401)

This expression can be shown to be approximately equal to 7^ in Eq.

(350o).

The smaller the ratio C/C\, the closer together are the frequencies at

series and parallel resonance.

In dealing with such crystals as quartz, with which the ratio Ci/C is

over 100, the approximate equations (399) to (400) are usually sufficient.

On the other hand, cases may arise where higher precision is desired or

where, as with Rochelle salt, the ratio Ci/C is not so great, so that

cop co, is no longer small in comparison with co,. The following more

rigorous expressions, derived from (397) and (398), should then be used:

2 2-
(402)

In most cases where this formula finds application R is so small that

(403)

fl

~ ' ~ ~ V

The statement has sometimes been made that the series reactance X
of a piezo resonator is zero at series resonance and infinite at parallel
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resonance. The latter part of the statement would be true only if the

resistance R were strictly zero. Equation (389) shows that as long as

R > the reactance cannot become infinite at any frequency but passes

through the value zero at both series and parallel resonance.

If R = in Eqs. (388) and (389), one finds

R. = X, (404)

Then X9
= when X = 0, and X, = < when X = 1/wCi, where

W2 _
(c l + C)/LCiC; this is the

value of coj in Eq. (398) when
R = 0.

The variation of X8 with fre-

quency is illustrated qualitatively

in Fig. 62. When R =
0, X8

=
at the frequency / = l/2ir(LC)*

and changes from + oo to <x> at

the frequency /p0 given by

Fio. 62. Variation with frequency of

the series reactance Xt of a resonator.

The full line is for R - 0.

When 72 > 0, X8 has a finite maxi-

mum and minimum, with zero

values at /, and fp . For reasonably
small values of 72, the frequency
difference (fp /,) between anti-

resonance and resonance does not

differ appreciably from (fpQ / ).

277. The quadrantal points are at PI and P2 . Although they cannot

conveniently be determined experimentally, still they have a certain

physical significance, especially because of their relation to the damping.

They are the points for which 6 = 45, the resistance and reactance of

the jRjLC-branch being here numerically equal. They are therefore also

the half energy points for the current in the J?LC-branch and, by 305,

for the mechanical energy of vibration. This fact leads to the equations

2 Vo + 2 + wi w \/Wo + a2 a (405)

where a?2 and wi refer to the points P* and P 1? and a = R/2L. When a is

small, one has

/2
-

/O /O
-

/i /o (406)

where 5 is the logarithmic decrement.
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On the admittance diagram PI and P2 are the points for maximum
positive and negative values, respectively, of the parallel capacitance CP

(273). On the impedance diagram they are the points for maximum
positive and negative values of the series capacitance C,.

278. The points for maximum and minimum admittance of the entire

resonator RLCCi are sometimes used in the measurement of the electric

constants. They are the points P 5 and P6 , obtained by drawing a line

from F through the center of the circle C. Letting Ym and Yn denote

maximum and minimum values of Y{, we find

Ym = sv FP6 Yn = sy
- FP6 Zm = s, FP& Zn = s, FP (407)

The frequencies corresponding to P 6 and P 6 on the impedance diagram
are the same as for P 6 and P 5 on the admittance diagram, since these are

mutually inverse points.

279. Equations for wm ,
o>n ,

Ym ,
and Yn . These expressions could be

derived by applying to Eq. (383) the condition for maximum and mini-

mum admittance of RLCCi with variable w. It is less laborious, and

equally precise, to base the calculation on the graphical representation as

shown in Fig. 61. In that figure let it be assumed that F has the location

corresponding to <on for minimum admittance Yn ,
so that sy

- AF = ojnCi.

Then Pe, where FC cuts the circle, marks the point on the circle at which

u has the value con . Taking advantage of the fact that FCA = 26 and

also that sv 2PR = 1 (269), one finds

tan 20 AC sv -p

A. similar expression holds for the frequency of maximum admittance,

with wm in place of w; and AF are then somewhat smaller than in the

case of 6)n ,
but this fact need not be taken into account, since neither 6 nor

AF appears in the final solution. A single equation can now be written,

valid for the frequencies fm and /:

tan 20 = 2<*CiR (408)

The two values of o> are found by eliminating 6 between this equation

and (376). Upon discarding terms of order higher than R 2 we find

.

V

. .-
(409)

Even in Rochelle salt, for which R*Ci/L is much greater than for quartz,

u>m is extremely close to wo-
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When, as is usually the case, the terms in R 2 can be ignored, one finds

"*
~

*** = ^-H TT (410)

For quartz, in which C Ci, one may write with sufficient precision,

0>n
~

<>m _ /n fm C
fAlfWl

> ^
2(7~

V*1UO/
Wfft ,/ TO V/ i

Equations (410) and (410a) are identical with (403) and (401), showing

that the frequency difference between maximum and minimum admit-

tance is nearly the same as that between resonance and antiresonance.

The approximation becomes closer the smaller the value of R.

In passing, it may be noted that / is approximately the resonant

frequency of a circuit consisting of R, L, C, and Ci, all in series.

In deriving Ym and Yn we make use again of the graphical relations

in Fig. 61. We have*

1

- 1

V . pp _ , /
<,
- , I - _ 1 - C032g

JL n === OM r Ji & Oi/v*^
"""

Py "~"
**W I iFT/i "I O Dv

li " *^ ^/ \ nr\a Vfl / UxL

On combining this expression with Eq. (408) it is found that

7n JC?B (411)

or, from Eq. (409a),

pff,
yn ^ (d + C) = utCiR(d + C) (411a)

/>c

A similar procedure leads to

Fm = sy
- FP 6 > (i + o)

2
Cf/2

2
) (4116)

Obviously Fn vanishes with JR, as it should for parallel resonance,
while the impedance Zn is extremely close to R as long as R is small.

Fn is usually so small and the minimum so flat that it is not easy to

measure fn with precision.

The difference between the two admittances is

r.-r.-g-TT <412)

* The fact that F does not have the same location at both maximum and minimum
admittance, so that strictly F, P, C, and P6 are not collinear, introduces no error in

the present reasoning.
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When R is small, this difference approximates 1/R, a result that follows

also from the principle of inversion on the assumption that the distance

AF in Fig. 61 is appreciably the same at each frequency.
The ratio Ym/Yn is

, + C) JCi(Ci + C)

When, as in quartz, Ci C, this becomes

(413)

(413a)

an expression that will be used in 317.

The foregoing derivations offer a good illustration of the usefulness

of the graphical representation. The same procedure can be applied
to a crystal with a gap of any width, using the primed parameters R',
L f

, C', and C(.

280. The Capacitance Ratio. When the damping is small, it is seen

from Eqs. (401), (409tz), and (410a) that the ratio C/2Ci is approximately

equal to (fp
-

/.)// (/ /o)//o, or (/
-

/m)//m. This ratio is a measure

of the excellence of a resonator. Instead of C/2Ci, however, it has

become customary to use the ratio Ci/C, which we shall call the capaci-

tance ratio.* As will be seen in 283, it is the ratio of the energies stored

in the electrical and mechanical systems. A small capacitance ratio

means high activity. From Eqs. (322), (323), (364), and (365) one finds,

for both lengthwise and thickness vibrations, at harmonic h and with a

gapu>,

C( 32c2e

or, at the fundamental frequency and no gap (h
=

1, w =
0),

= 3s (414a>

where the electric spacing e'r, effective dielectric constant k, stiffness q,

and piezoelectric constant 6 have the appropriate values in each case.

These expressions do not involve the dimensions of the resonator. The

larger is, the greater the activity and the greater the spread between

resonance and antiresonance. If a crystal cut is twinned or otherwise

defective, the values of k, q, C{ and frequency may be normal, but the

low activity will be betrayed by abnormally small values of (fp
-

/.),

* The importance of the ratio Ci/C was first recognized by Dye (ref. 127, p. 426),

who called it the "piezoelectric ratio.
11
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with a correspondingly large value of L'h and of the electromechanical

ratio r.

Relation of the Electromechanical Ratio to the Capacitance Ratio. If

the value of r, first for lengthwise vibrations from Eq. (326) in 233, then

for thickness vibrations from Eq. (367) in 255, is combined with Eq.

(414), there results in each case

. (415)

where A is the area of the plate in thickness vibrations, and of the cross

section be in lengthwise vibrations. Since the fraction on the right is

substantially constant, it is seen that r is proportional to the capacitance

ratio. When h = 1 and w =
0,

Inspection of the equations shows that in order to secure a low ratio

Ci/C a crystal of high e should be chosen, with no gap. With a crystal

of given material, for example quartz, e depends on the angle of cut, and

for most of the cuts of low temperature coefficient the angle is such that e

is considerably reduced in value (361). The question is then what can

be done to reduce C\/C when
, k, and q are prescribed.

One expedient is to connect an inductance to the crystal in such a

way as to neutralize C\\ this is done in some filter circuits. In the case

of a bar in lengthwise vibration, C\/C can be diminished by about 20

per cent by making the electrodes three-fourths as long as the bar, as

was shown in 241. With plates in thickness vibration nothing is gained

by making the electrodes smaller, since the effect of this is equivalent to

increasing the gap.

It is to be noted that the expression for the capacitance ratio does not

involve either R or Q. For the same Ci/C, a resonator will of course be

more sharply selective the smaller R is; R can be made small by suitable

mounting and by placing the crystal in a vacuum. Anything that

increases the effective value of Ci, such as stray capacitances or a con-

denser hi series or parallel, reduces the activity.

281. Summary of Data on the Critical Frequencies. The results

derived in the foregoing sections are summarized and extended in Table

XXIII. The encircled numbers indicate the order of increasing fre-

quency, while in the second column are noted the points on the admit-

tance circle in Figs. 61 and 67. Frequencies are expressed in terms of

relative differences A///O = (fc /o)//o, / being the critical frequency.
For 7 and Ip see Fig. 50.
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TABLE XXIII

355

The following pairs of points are mutually inverse: PI and P9, PS and

P6 ,
B and P7 ,

P 3 and P4 ,
P2 and P8 .

It should be noted that those critical points which are most used in

resonator calculations fall into two groups, viz., P 6 , B, and P8 ,
for all of

which the frequency is very nearly the same, coming closer to / the

smaller 72 is, and P4,
P7,

and P6,
which also differ among themselves but

little in frequency. Within the limits of precision usually attainable

the frequency difference between P8 and P 6| PT and B, or P4 and P8

may be taken as the interval between antiresonance and resonance; in

280 it has been pointed out that the three ratios (/
-

/.)//., (/
-

/o)//o,

and (/
-

/.)// are all substantially equal to C/2Ci. Strictly, the

distance AF in the circle diagrams, given in Eqs. (380), should be greater

for antiresonance than for resonance in the ratio (1 + C/2Ci):l. For

quartz resonators this ratio is about 1.005 and need not be taken into

account.

In the measurement of the electrical characteristics of resonators,

points PB and P6 are of chief importance. Piezo oscillators, with the

exception of some recent circuits, usually operate at relatively high

frequency, in the neighborhood of P4,
the antiresonant point (see 389

and Fig. 61). As has been stated, in most resonators the ratio of the

distance AF to the diameter of the circle is so small that at the higher

frequencies the graphical method can serve only as a guide in making

calculations. For example, at very high and very low frequencies X.
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can be obtained from Eq. (389), in which with sufficient precision one can

set R = 0. The value is then

x- -

As long as n w
,
X 2Ln; in this case

*~i^tt .
(417a)

In extension of Table XXIII one more critical frequency may be

mentioned, viz., that for free vibrations, which plays a part in certain

methods of measurement, as will be seen in 320. From Eq. (65) or

Eq. (93) one finds, for the fundamental frequency of free vibrations of

any resonator, the expression

Hence, &f-*?
- f- (418)

Jo &L

When R is reasonably small, this value is too small to detect by ordinary

means. It is less than the value for point P 6 in Table XXIII in the ratio

C/4Ci. In the example discussed in 298, with d = 31.9 esu, the fre-

quency for free vibrations would be lower than /o by about 0.0004 cycle/

sec.

From Table XXIII it is evident that all frequencies are more or less

dependent on the resistance R of the jRLC-branch of the resonator net-

work. Nevertheless, in a well-mounted resonator the terms in R are

extremely small. It will be noted that as R approaches zero the fre-

quencies at points PI, P5 , PS, andP2 all converge on the common value/ ;

in practice, these points may all be found to lie within a single cycle per

second. Also, P4 and Pe fall very close together when R is small, so that,

for both points, A/// C/2Ci. If R could be made to vanish entirely,

X9 would become infinite instead of zero at P4.

The entire range of values assumed by X, on passing through resonance

from very low to very high frequencies is illustrated and discussed in

300.

282. Phase Relations. The following relation holds between the

phase angle 6, the damping constant a = R/2L, and the frequency
difference nm = w w for maximum admittance Ym [see Fig. 61 and

Eq. (376)]:
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In Fig. 61 the horizontal line through F is the one on which points

PS and P4 fall, for series and parallel resonance, respectively. At these

points the resonator is a simple resistance, and the current / is in phase
with the potential difference V impressed on the resonator. If the vector

representing 7 is drawn parallel to FP3 ,
then the vector for 7, at any

frequency /, is parallel to the line that represents the admittance Y{ at

this frequency. For example, at the frequency represented by P6 in

Fig. 61, / leads V by the angle P*FP$ = 0i. The current Ip in the RLC
branch leads V by the angle 8} since by geometry = Z.BAP 6

= BPJP$,
it is clear that the phase of Ip (for point PS) is given correctly by the

direction P^B. Since according to 234 the particle velocity v is in

phase with Ip (a relation that holds for all types of piezo resonator), it is

clear that P^B gives also the phase of v. The mechanical strain, indi-

cated as xn, lags 90 behind v and is therefore represented by a vector

parallel to P6A.

Similar relations hold for all points around the circle. In all cases

the current vector / is parallel to FPs. The lengths of the various lines

are not proportional to /, Ip,
V

t v, and the strain xn ] the lines indicate

only relative phases.

283. The Distribution of Energy in the Resonator. In 125 considera-

tion was given to the allocation of the energy in a piezoelectric crystal

under combined electric and mechanical stress among the various terms

in the energy equation. Somewhat analogous reasoning can be applied

to the equivalent RLCCi network. The simplest case is that of thick-

ness vibrations, in which, as shown in 247, the parallel capacitance C\

is that of the clamped crystal. At any instant when a field is applied

to the crystal, the energy stored in Ci is electrical energy at constant

strain, while that stored in C represents the work done in mechanical

deformation. The energy lost per second in friction is I*R. If there

are appreciable dielectric losses, another resistance must be added to the

network in series with Ci, as explained in 302; this step was taken by
Mason338 in his treatment of the Rochelle-salt resonator.

284. Relations between the Equivalent Electric Constants with and

without a Gap. It was stated in 263 that the electrical properties of a

piezo resonator can be represented by either of the two networks shown

in Fig. 56. If A is the area of the electrodes (equal to bl in the case of

full-sized electrodes), then as long as the surfaces of the crystal exposed
to the gap are equipotential, the capacitance of the gap is

(420)

For either lengthwise or thickness vibrations there is a simple relation

between the oft-appearing ratio e/e'r and the capacitances C2 and C\.
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It will be recalled that e is the crystal thickness and w the gap and that

e'r
= e + kw, where k is represented by ki or k" for lengthwise or thick-

ness vibrations, respectively. For either type, Ci = kA/^we. It is easily

shown that

e C2

e'r Ci + C2
(421)

We seek the relations between the four constants R'h1 L'h ,
C'h1 and C(

for gap w and the corresponding values Rh ,
Lh , CA, and Cf for w = 0.

From equations in 232 and 255, for both lengthwise and thickness

vibrations,

-
(*)'?-G&J?- *-
-siT* <423)

where go and #' are the stiffness poefficients for gaps and w, respectively.

Equations (420) to (423) are theoretically correct for all crystals and

all gaps, as long as the performance of the resonator can be represented

by an RLC-chain in parallel with a pure capacitance Ci. They will now
be used as a test for the equivalence of the two alternative networks

shown in 263, Fig. 56. A simple circuit analysis shows that, if the

networks (b) and (c) are equivalent, then, with the subscript h inserted

for generality,

U_ (Ci + C2V C{ _
Lh

-
\rcr~) e;

-

C2

These equations were first given by Watanabe. 681 * They agree in all

particulars with Eqs. (422) to (423), provided that the dependence of the

elastic stiffness on the gap is such that

o _ (Ci + Ci)

q'

~
(Ch + C l + C.)

*
Equivalent networks of substantially the same type had previously been treated

by K. S. Johnson and T. E. Shea, Bell System Tech. Jour., vol. 4, p. 52, 1925. For a

general discussion of equivalent networks see T. E. Shea, "Transmission Networks

and Wave Filters," New York, 1929.
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As we shall see, this is the case with thickness vibrations, but not always
with lengthwise vibrations.

In the case of thickness vibrations it is found from Eqs. (421), (355),

(356), (364) and Table XXII, together with Ci - V'A/***, that

go d + C2

q' C* + Ci + C*

From this equation and (422a) it follows that

in agreement with Eq. (424).

285. The Gap Effect in Lengthwise Vibrations in Terms of the Equiva-
lent Network. We shall deal first with the case of the unplated bar. This

is the case commonly encountered in practice, in which the bare bar is

placed between electrodes, with or without a gap. The use of a plated

bar with gap is considered later. If the gap is zero, it makes no difference

whether the surfaces presented to the electrodes are plated or not.

In the first place, it must be pointed out that, while the equations
in 232 for the equivalent constants R(, L'h ,

and Ci, for a bar separated

from the electrodes by a gap w, are theoretically entirely correct for any
integral value of h, still these constants do not agree with those derived

by considering the resonator as an #LCCi-mesh in series with C%; in

other words, Eqs. (424) are not satisfied. The discrepancy arises from

two separate causes. One is the fact that the vibration direction of the

bar is perpendicular to the electric field and (practically) independent

of the thickness. The effective stiffness q', though a function of the

gap, is independent of the order of harmonic, as may be seen from

Eq. (330). But, according to Eq. (425), q', being a function of CA ,
should

contain h in order to satisfy Eqs. (424). It is thus evident that the latter

equations, if valid at all for bars, are valid only at the fundamental fre-

quency, when h = 1. This statement holds for both plated and bare bars.

The other contributing cause of the discrepancy mentioned above

has specifically to do with the unplated bar with a gap. The strain xn

discussed in 230 and hence the piezoelectric polarization and the depolar-

izing field all vary along the length of the bar. As a consequence, the

surfaces of the unplated crystal are not equipotential except when w = 0.

This complication does not affect the ratio e'r/e] as long as h = 1, Eqs.

(422) and (423) are in agreement with the corresponding expressions in

(424). As far as they are concerned, the fi'L'C'CJ and RLCCiC* net-

works are equivalent. But with Eq. (422a) the situation is different;

for when the ratio q^/q' is calculated from Eq. (330), there results a value

that does not agree with Eq. (425). One finds, namely, from (330), that
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I/go !,W = ?(! - 47T
2s*nw>/e'), so that, with the aid of Eq. (324),

g /g'
= l T2

Ce/8C2e', where C2 = U/^TTW. With such crystals as

quartz, for which the piezoelectric reaction is relatively small, one may
write as an approximation

J-'+ra <

Now with the aid of Eq. (423) Ea. (425) may be written in the form

Equation (426a) must be satisfied if the RLCCiC* network is to be

equivalent to JR'Z/C'CJ; yet Eq. (426), which represents the actual stiff-

ness ratio, fails to satisfy it by the factor ir
2
/8 in the second term. This

factor is a consequence of the sinusoidal distribution of that portion of

the polarization in the bar which is due to the state of strain. The con-

tribution of the field in the gap due to the state of strain also has a

sinusoidal distribution, which can be allowed for by substituting for C2

in Eq. (426) the value

,* 8
C2*=^2

C2 (427)

When this is done and when C* replaces C2 in Eq. (426a), the two expres-

sions are brought into approximate agreement, with crystals for which,
as with quartz, e'r e'.

It does not follow, however, that C* can replace C2 completely in the

equivalent network. For example, in the expression for e/e'r in Eq. (423),

one must still use C2 = bl/4irw. Not only is the combined use of both

C2 and C* troublesome, but it would lead to grave complications in apply-

ing the graphical methods described earlier in this chapter to a bar with

gap. If there is a gap, it is best to derive R', L'
t
and '

directly from the

equations in 232, which have the added advantage of being applicable

for any value of h. If there is no gap, q
1 = q and both C2 and C* drop

out of consideration, so that the graphical method is then entirely

applicable to bars.

We have discussed the problem of the unplated bar with gap at some

length because it has been common practice to assume that its electrical

characteristics are correctly described in terms of RLCCi in series with

C2 . The magnitude of the error so incurred can be found from Eqs.

(426) and (426a). In general, for crystals with small piezoelectric reac-

tion, (q
f

/q) 1 = (fw/fo) 1 2 A///O where / is the frequency when
the gap is w and A/ ss fw / . Calling (A/)i the value from Eq. (426),

which is theoretically correct, and (A/) 2 that from the equivalent network
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theory in Eq. (426a), we find that

Since, when the piezoelectric reaction is small, e'r
= e + faw differs but

little from e' = e + k'w, it follows that the network theory predicts a

variation of frequency of the unplated bar with gap that is too small

by the factor ?r
2
/8, approximately.

286. The Gap Effect in a Plated Bar. In order to make the two net-

works shown in Fig. 56 strictly equivalent for lengthwise vibrations, it is

necessary to make the crystal surfaces facing the gap equipotential, as

can be done by plating them lightly with metal. Then, for any gap w,
the gap capacitance C2

=
bl/4irw can be used in Eqs. (424). These

equations give R f

, L', and C' when R, L, C, and Ci are known, and the

graphical methods described in 288 and 289 are applicable. As in the

case of the bare bar, this equivalent-network method can be applied only
at the fundamental frequency, for which h = 1 .

The dependence of frequency on w in the case of a plated bar can be

found most conveniently by an expression derived by the author107 for

the effective stiffness g',

, (, ,
32e*u>\ 1

q'
= qQ [ I -\

--
T )

= _
.. \ *W / Snn

//4noN
(428)

The difference between this q' and that given by Eq. (330) for a bare bar

is due to the fact that when the surfaces are made equipotential the dis-

tribution of the depolarizing field is changed.

Equation (428) gives the value of q
1

to use in Eq. (322) for C', when the

crystal is plated. It becomes l/sjn ,
as it should, when the gap is zero.

The degree of approximation in Eq. (428) should be amply accurate for

quartz, but not for Rochelle salt.

By the method that was used in deriving Eq. (3366) it is found that

the relative variation of frequency with gap, for a bar whose opposite

faces have been made equipotential by plating, is

l^.ff!;I7_ (429)
/o irsjne' e' e + k'w ^ '

where U = 16dt

2
n/Vsfn .

When w = <*>
,
the relative increase in resonant frequency over that

when w =
is, for the plated bar, 16d?n/7rs^nfcz. This value* is greater

than that for an unplated bar, as derived from Eq. (3366), by the factor

* The air-gap equation given by Dye (ref. 127, p. 426) can be reduced to Eq. (429).

Dye did not take account of the distinction between the dielectric constant of a free

crystal and h for a vibrating bar nor of the distinction between the gap effects with

bare and plated bars.
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287. Summary on the Application of Equivalent Network Theory to

Plates and Bars. In summary, it may be said that the equations for

the equivalent network, including C2 , together with the graphical repre-

sentation, are applicable to thickness vibrations of plates at the

fundamental frequency or any overtone thereof; and also to lengthwise

vibrations of plated bars at the fundamental frequency.

If the bar is not plated, the equations for the equivalent electrical

network of a resonator with gap, and the graphical representation, are

valid only as a first approximation. If there is no gap/ they become

entirely valid. But in no case can the method of the equivalent network

of the type treated here be employed at overtone frequencies of bars.

288. Resonance Diagram for a Piezo Resonator with Gap. Thus far

the graphical method has been applied only to the simple RLCC\ network.

The graphical construction will now be explained whereby the equivalent

values R'h ,
L'hy C(, and C{, as well as the critical frequencies, can quickly be

determined for a resonator with gap, or with a condenser C2 in series,

when Rh, Lh, CA, and Ci at zero gap are given. The assumption is made
that Figs. 566 and c are equivalent, which means that Eqs. (424) are valid.

As has been shown, this assumption is fully justified with thickness

vibrations and with lengthwise vibrations when the bar has its surfaces

plated; and, as shown in 285, it holds approximately for an unplated

bar cut from a crystal such as quartz, of relatively low piezoelectric

constant. With all lengthwise vibrations in which the vibration direction

is normal to the electric field, only the value h = 1 can be used (285).
In the following sections we shall omit the subscript h, with the under-

standing that it can be restored when any harmonic frequency is to be

considered. The procedure consists in inverting the admittance diagram
for RLCCi to an impedance diagram, inserting C2 ,

and inverting back

to an admittance diagram. As will be seen, the two inversions entail a

change in the distribution of frequencies around the circle.

Using the same notation as in previous sections, we let the admittance

of Ci be represented by AF = wCi/s,, in Fig. 63. The resonance

circle is primarily the locus of admittances for the RLCCi combination.

On this circle we let the frequencies at B and at any point P be / and /,

respectively. Then, in accordance with Eq. (387) ,
the same circle can

be regarded as an impedance locus, in which the impedance of RLCCi
is Z{ s, FP1

.

In order to represent graphically the connection of C2 in series, we

lay off a distance FFr such that sz F'F = l/wC2 . The vector sum of

F'F and FP' is FT', and the impedance of RLCCiCz is

(430)

The same circle that is the locus of admittances for RLCCi is now
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serving as the locus of impedances for RLCCiCz', to every point P on the

former circle there corresponds a point P' on the latter. A line drawn
from F' to any point on the circle gives the impedance of RLCCiCt at

some particular frequency.

From Eq. (386) and the foregoing statements it is seen that

(431)

289. Figure 63 can be inverted into an admittance diagram for

z by performing an inversion with Fr

as center. The operation

Fio. 63. Resonance diagram for a resonator with a gap or condenser in series.

consists simply in producing F'P1
to cub the circle at P". The circle is

now the admittance locus for RLCCiC^ with Ff
as origin. Besides

the shift in origin, the introduction of C% has brought about two further

changes: there is a new admittance scale value s, given by

AF
(432)

and the frequency distribution around the circle is altered. The new
distribution of frequency will be explained in the next section.*

* The foregoing statements can be generalized in the following manner: When the

origin of vectors has to be shifted owing to the introduction of an impedance or admit-

tance into the circuit, the scale value remains unchanged. On the other hand, if with

respect to the new origin an inversion is performed to pass from admittances to imped-

ances or the reverse, a new scale value is required. One example of this is the intro-

duction of the new scale value i& Eq. (432); another example will be found in 303.
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The admittance of RLCCiCz at the frequency corresponding to P on

the admittance circle for RLCCi is found from Eqs. (430) and (432) and
= CAF) 2 tobe

(433)

This is the graphical equation for F2 . The analytical equation is of the

same form as Eq. (383) or (384), with the circuit elements primed to

indicate the presence of C2 :

(433a)

or, in the neighborhood of resonance, where o> = w n,

r>f / <) rf \
Y*
" y 4 4nL" + '(y +1'L" + "^) (4336)

72', I/', (7', and C{ are given by Eqs. (423) and (424). Y'2 is the sum of two

admittances, one of which is the vector F'A, practically constant over the

resonant range, while the other is AP", which has a circular locus. Since

this is exactly the condition that obtained in the case of the diagram
for RLCCi, it is clear that the new diagram, with Ff

as origin, represents

a series chain, which we call R'L'C', in parallel with a fixed capacitance

C(. From Eqs. (431) and (432), C( has the value

;~~ (434)

in agreement with Eqs. (424). The other relations in Eqs. (424) also

have their graphical counterparts. The expression for R'/R is verified

with the aid of Eqs. (385a), (431), and (432):

When the frequency scale for the admittance circle for RLCCiCz has

been determined, L' and C' can be calculated. Their values are found

to be identical with those in Eqs. (424) :

L'-LP^-^I (4346)

^ "" ^
y/nr ~T n \ /n i n i r* \ \jxo*xC)

From the foregoing statements it is evident that a diagram such as

Fig. 63, with the origin of vectors at Ff

, may be thought of as representing
either the RLCCi network in series with C2 or the equivalent simple
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network fl'Z/C'CJ. In the former case, AF' represents CiCi/(Ci + C2),

and, in the latter case, a>C(, which by Eq. (434) amounts to the same thing.

All vectors and all frequencies are the same from either point of view.

It must be remembered, however, that the insertion of C2 changes the

various scale values, since, as has been shown, the latter are functions of

2- In 302 to 304 we shall discuss the more general case of a resonator

in series or parallel with any arbitrary impedance.
290. Effect of C* on Resonator Frequencies.

N When a gap or an external

capacitance C% is in series with the resonator and the vectors for admit-

tance or impedance are laid off from an origin at F' in Fig. 63 according
to the preceding paragraphs, the frequency scale value <r, as defined by

Eq. (378a), remains unaltered, since the damping constant

_ -.a ~"

2L
~~

2L'

remains unchanged. Nevertheless, all frequencies are shifted clockwise

around the circle in a manner that will now be explained.

For the simple RLCCi network it was shown in 267 that frequencies

are determined graphically in terms of frequency differences above or

below the frequency at point B on the circle, measured on a linear scale

on the vertical axis through B } Fig. 58. When C2 is included, the fre-

quency at B no longer has the same value as before but is increased by a

certain amount depending on C2 and on whether the vectors are taken as

representing impedances or admittances.

When Cz is in, we shall denote the frequency at B by /o and find the

difference /o /o. Only the procedure for an admittance diagram need

be worked out in detail; the value of /jj /o for an impedance diagram
is found by analogous steps. The relation between / (the frequency at

B for RLCCi alone) and f' is easily found by the following graphical

method. The same method can be applied to finding the frequency

corresponding to any other point on the admittance circle for RLCCiC*.

When there is a gap, the frequency at point B on the admittance

diagram is that at which the particle velocity and the current in the

ft'Z/C'-branch have maximal values, just as is the case when the gap is

zero and we write RLC in place of R'UC1
.

In Fig. 63 the admittance at point B on the admittance circle for

RLCCiCz is i F'B = 72 ,
the frequency at this point being f' . On

performing inversions one finds sz F'Pi = Z'2, s* FP? =
Z{, and

sv FP'i == Y(. Hence P^ marks the point of frequency /o on the admit-

tance circle for RLCCi. . But this is the fiducial circle, the calibration of

which was explained in 267. On the fiducial circle the frequency at B
is /o. The frequency difference / /o can be found graphically accord-

ing to 267. Analytically, since o>2
= 1/LC and otf

= 47r
2
/;

2 = 1/Z/C',
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one finds from Eqs. (4346) and (434c) that

(435)

291. The relative change in frequency due to the gap is

(436)

If, as is the case with quartz, C (Ci + C2), one finds approxi-

mately*

When this equation is applied to an unplated bar, C* = SC^/ir*

should be used in place of C2 , according to 285.

Equation (436a) can be shown to agree with Eq. (368) except for a

small difference due to the nature of the approximations involved.

The frequency /$ is that at which the particle velocity and the current

in the R'L'C' branch have maximal values. As may be seen by applying
a simple graphical construction to Fig. 64, ft lies between the frequencies

for maximum and minimum admittance f'm and fn shown in Fig. 64,

and it may properly be called the response frequency when the gap is so

great that there is no longer any series resonance in the usual sense.

When the gap is small enough for the resonator to exhibit parallel

and scries resonance (as explained in 294), then, if R is small, f'Q is prac-

tically indistinguishable from f'8 .

In order to express the difference w between parallel and series

resonance when there is a gap, we may substitute the values of Lf and C'

from Eq. (424) in the equation wj
2 = 1/Z/C", assuming, as stated above,

that i o
=

2?r/o. The result is

From Eqs. (398) (with all quantities primed), (423), and (424), it is

found that 11 f rtfi "1

? ~ rA + T - ? 1 + n.m ^n *. /T.N (438)

whence f , . ,____ (438fl)

These expressions for <JV and coj hold only for small gaps and low piezo-

electric constants, as explained in 294 and 295.

* This approximate relation was also given by Dye127 in his equation (22).
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Relation between fp and J'Q When the Gap Is Infinite. From Eq. (438a)
or (401), it is seen that at zero gap, when C Ci and R can be ignored,

At infinite gap, writing f^ for f'Q in Eq. (435) and setting C* = 0, one

finds

>- - 1 - (439a)

It follows, since /o /,, that /w fp .

That is, #ie frequency for parallel resonance when the gap is zero is

approximately the same as the response frequency when the gap approaches

infinity.

It must be clearly understood, however, that this statement holds

good only when R is small and the piezoelectric constant is small enough
to make C Ci. With quartz this condition is fairly well met. On
the other hand, in Rochelle salt /,, may be far greater than /p ,

as will

be seen in 375.

292. Equation (438a) is sufficiently accurate for the small gaps usually

employed in resonators. For larger gaps, where w is of the order of

magnitude of e, the resistance R cannot be ignored. In fact, when w
increases beyond a certain limit, the resonator becomes capacitive at all

frequencies. There are then no longer any frequencies for series and

parallel resonance, since these terms are defined as the frequencies at

which the reactance vanishes. For all values of w, however, there are a

maximum and a minimum value of admittance, the values of fm and fn

depending on w.

As the gap increases from zero, the interval p w,, at first relatively

large, gradually diminishes, becoming zero at a value of w that can be

found by equating the numerator on the right of Eq. (389) to zero and

deriving the condition under which X has a single value. This condition

is

2t*C(R' = 1 (440)

With the aid of Eqs. (422) and (423), Eq. (440) can be written in terms

of C2 and the constants for zero gap, giving

or, snce *

(4406)
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As an example, Eq. (4406) may be applied to the quartz bar mentioned

in 298. It is found that the critical value of w is about 0.5 cm. If the gap
is greater than this, the admittance of the resonator is entirely capacitive.

293. The foregoing statements may be verified by inspection of Fig.

64. In the notation of 269, 270, 288, and 289,

AF = -^ = -

1/CzSg. When w =
0, FF' = and the frequencies for maxi-

mum and minimum admittancefm and

fn fall at pointsPm andPn ,
obtained by

drawing a line from F through the

center C of the circle. As w increases

from zero, F7 moves upward from F
(usually F has practically the same

location for bothfm and/) . When F'

coincides with FI, w has the critical

value given by Eq. (4406), and the

frequencies for series and parallel

resonance merge at P^ At this point
Ym = Fn = 4 -Ff*> where s is given

by Eq. (432). The corresponding

frequency on the fiducial circle (267)
comes where a straight line from P%
to F cuts the circle.

For larger values of w, F' falls

above FI, and there is no longer either

series or parallel resonance. For a

given location of F', the maximum
and minimum admittances are Y'm =

< F'P'm and Y'n = sv F'P;, while

Z'm = s, F'P'm and Z'n = s, F'P'n . For the RLCCi network, the imped-
ance corresponding to Pr

n is Z( = sz FP^, and on the fiducial circle the

admittance at the same frequency is Y( = sy FP". On the fiducial

circle, therefore, the frequency for maximum admittance, when w is

such that F' comes in the position indicated in Fig. 64, falls at P".

Similarly, the frequency for minimum admittance falls at PJ. The
introduction of a gap has caused the point for maximum admittance to

move clockwise from Pm to P'm,
while the point marking the frequency

has moved counterclockwise; the frequency increases from the value at

Pm to that at P. The frequency for minimum admittance increases

from the value at P to that at PJ.

At infinite gap, FF' = < and P'm and P'n coincide with PI and P2.

Fio. 64. Effect of increasing gap on
maximum and minimum admittance of

resonator.
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The frequencies are thus still further increased, to values that can be

represented graphically by the method described above or calculated by
means of Eq. (425) or, depending on the type of resonator, by means of

(330), (336o), (370), or (429).

When the gap is so large that the admittance F of RLCCiCn is

capacitive at all frequencies, the variation of F with frequency is as

shown qualitatively by Fig. 65, in which f'm and f'n are the frequencies
at P'm and P'n in Fig. 64. As w approaches infinity, the frequency differ-

ence f'm f'n decreases toward a very small but definite limit, while

F2 approaches zero. It is true that the line representing Y'2 in Fig. 64

becomes infinitely long, but it must be noted that the scale value s'y

varies in such a manner as to make F'
2

itself diminish toward zero. Although
the response of the resonator, as indi-

cated by the crevasse or the click

method, theoretically vanishes at infi-

nite gap, still the stray electrostatic

coupling can be enough to produce a

response even when the resonator is

entirely disconnected from the oscillat-

ing circuit. A narrow bar 2 or 3 cm long FIG. 65. Variation of resonator

Suspended by a thread in the neighbor-
admittance <h frequency when the

Eip is lurgc.
hood of the tuning condenser or coil can

still cause an audible click when the oscillator frequency passes through
the resonant value. The response is due to the minute change in capaci-

tive admittance from a maximum at f'm to a minimum at fn .

294. The Failure of Approximate Equations When the Gap Is Large.

Many of the formulas given in this chapter, including some that have

been used by various investigators in the measurement of the constants

of resonators and of crystals, are approximations. One approximation is

the treatment of R as a very small quantity or ignoring it altogether. A
second approximation rests on the assumption that the resonance

phenomena under discussion are comprised within a band of frequencies

so narrow that the frequency difference n = wo w is small in comparison
with COQ.

We have now to examine the validity of a third assumption, men-

tioned in the text but not yet fully explained. This is the assumption

that the gap between crystal and electrodes is small enough to make such

equations as those in 276 and 279 sufficiently accurate:

_. ___..
(441}

The electric constants are primed to indicate the presence of a gap.
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In deriving the equations in 276 by the binomial theorem the con-

dition for sufficient approximation is that 4w2Cr/

1
2
/2'

2< < 1, that is,

<*{& < < 0.5 (442)

From Eqs. (422) and (423) this expression may be written as

.!+_ (442 )
e e wC \K

The smaller R is, the greater can the gap w be without violating this

inequality. In many practical cases the approximate equations referred

to are accurate only when w is very much less than the critical value

given by Eq. (4406), for which wp w, vanishes. That is, w must be

small enough to make the distance AF' in Fig. 64 only a small fraction

of AFi. For quartz the allowable gap width w is of the order of mag-
nitude of the crystal thickness e or less.*

As an example we consider the quartz bar described in 298. Here

wCiR = 0.03; hence, by-Eq. (442a), w 0.5 cm. For values of w
greater than this the more rigorous equations should be used.

The limitation imposed on the equations as w increases does not in

any way affect the applicability of the graphical method. By means

of a graphical construction the various frequencies and admittances can

be determined at all gaps with as much precision as any graphical method

permits.

We return now to the approximate equations (441). From 232

and 255 it is found that C'/2C[ is proportional to e/e'r) vanishing at

infinite gap. That Eq. (441) breaks down completely when w is large is

clear from the foregoing discussion. This equation predicts that (fn fm)

and (fp /) gradually approach zero with increasing w, whereas in fact

(fp /) vanishes at a certain finite w, while (fn /m) remains greater

than zero at all gaps.

296. Finally a fourth approximation consists in the assumption that

C in the RLC-branch of the resonator is small in comparison with Ci.

While most of the equations are independent of this assumption, still it

must be made if the equations in 284 for the equivalent network of a

bar in lengthwise vibration are to hold with any precision, as will soon be

shown. The expressions in 284 are accurate for plates in thickness

vibration whatever values C and w may have. The following discussion

has to do only with lengthwise vibrations in bars :

The ratio C/C\ is large when the piezoelectric constant is large, as

* The reason why Eq. (397), for example, is accurate only when the gap is small

may be expressed by saying that, even though R may be very small at zero gap, still,

with increasing gap, R' rapidly becomes large (primed symbols are used when there

is a gap).



296] ELECTRICAL EQUIVALENT OF PIEZO RESONATOR 371

may be seen from Eq. (322). This is the case with Rochelle salt. With

quartz, as explained in 288, the equivalent network equations and the

corresponding graphical treatment can be used with fair accuracy at all

gaps, whether the bar is bare or plated, since C/C
r
is very small.

When C is not small in comparison with C\ or, as in Rochelle salt at

certain temperatures, is even greater than Ci, the outstanding con-

sequences are as follows: (1) By Eq. (401), the difference in frequency

(O)P o>) between antiresonance and resonance is relatively large.

(2) The frequency /, at infinite gap, instead of being approximately

equal to fp , according to the statement following Eq. (439a), is much
greater than fp .

This second consequence does not follow at all from the simple net-

work equations (424). The reason, as already stated in 284, is that

they are accurate only when the elastic compliance varies with the gap
in a particular manner, a condition that is not fulfilled in the case of the

bar.

The reason why a large piezoelectric constant brings about a relatively

great value of /, is evident at once from an inspection of Eq. (331).

That it is also so much greater than fp cannot be seen from the clastic

equations, but it follows from Eq. (335).

The experimental confirmation of the foregoing statements will be

found in 375.

296. Resonance Conditions for Thickness Vibrations in Very Thin

Plates or at High Harmonic Frequencies. In most types of piezo oscillator

the resonator vibrates at a frequency at which its reactance is inductive.

One must therefore make sure that the effect of the gap or of an external

reactance connected in any way to the resonator is not to deprive the

resonator of its region of inductive reactance. From the last section

it is clear that the condition that must be satisfied if the resonator with

gap is to have an inductive region is that the origin of admittance vectors

F' in Fig. 64 shall be below the point JFi, for which AF l
= AB/2.

If there is no gap, the origin is at F. For most resonators, the ratio

AF/AB is relatively very small. We shall now investigate certain cases

in which AF may become so great, even with zero gap, as to make the

resonator capacitive at all frequencies.

From Eqs. (380) it follows that in general, when w =
0, AF/AB =

AF/2p = whCiRh, where a?* is approximately h times the fundamental fre-

quency / and Rh is given in Table XXII. As long as <*hCiRh < 0.5,

there is a range of frequencies over which the resonator is inductive.

Now from Table XXII we find, on writing uh ** irh(qQ/p)*/e,
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This expression can also be written in terms of the quality factor

QK

/AAO \
^

Either Qh or the damping factor an may be taken as a measure of the

resonator losses. Since they include both mounting losses and dis-

sipation of energy in the crystal, theory can predict neither their amount
nor their dependence on frequency. Obviously, if ah is independent of

frequency, Qh cannot be. If experiment shows an to be constant, Eq.

(443) indicates that whCiRh is proportional to the product he. The
resonator will have an inductive region when uhCiRh does not exceed

0.5, that is, when

he ?
8c*

(444)
k"ah Vqo/P

This expression sets the limit to the order of harmonic h for a given e

or to the thickness e itself at the fundamental frequency; above this limit

the reactance of the resonator can be only capacitive.

On the other hand, if Qh should turn out to be independent of fre-

quency, one would conclude from Eq. (443a) that, when co^Ci/4 ^0.5,

<*>

In this case the resonator would become capacitive at a comparatively
low value of ft; but at the fundamental frequency it would have an induc-

tive region for all values of e, unless Qh were so excessively low that h

could not even equal unity.

As an example we consider a quartz plate 1 mm thick, with a funda-

mental frequency around 3(10
8
). In round numbers we may take

= 5(10
4
), k" =

4.5, go
= 90(10

10
), p = 2.65. Then, if ah = 1,000 at

all frequencies, Eq. (444) shows that h can have any value up to about 30.

But if Qh has the value 10,000 at all frequencies, h cannot exceed 5.

Such experimental data as are available indicate that the latter of these

alternatives is more nearly correct. * That is, while Q and the logarithmic

decrement 5 appear to be independent of frequency, ah increases with the

frequency.
297. Distribution ofPotential in Crystal and Gap. The current I from

p to q in Fig. 56 is

7 " \
" \ * 72wC2 (445)

where% Z{, and 1/uC* are the impedances of RLCCiCz, RLCCi, and C2,

* See Mason and Fair. 8"
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respectively. The potential drops V\ across the crystal and V* across the

gap, in terms of the total drop F, are

Z{ = 1/Fi is given by Eq. (383) or (384) and Z = 1/7J by Eq. (433a) or

(4336).

The dependence of the relative magnitudes of V\ and 72 upon fre-

quency is brought to light clearly by means of the resonance circle in Fig.

63. It is shown in 288 that for any frequency, such as that correspond-

ing to point P on the admittance circle for RLCCi, the following relations

hold: Z{ = sz
-

FP', Z't
- s, F'P', and o>C2

= -!/(*, F'F). Con-

sidering magnitudes only, one has, from Eq. (446),

II = l^ (447)V F'P' V F'Pf ^ '

As represented in Fig. 63, P comes at a frequency very close to the

resonant value / at B. As the frequency increases, P moves counter-

clockwise around the circle, while Pf

,
the point inverse to P with respect

to F, moves clockwise, causing a decrease in F'P' arid an increase in FP'.

Vi therefore increases, until at a certain frequency the ratio FP'/F'P
f

has a maximal value. Since the position of F' does not vary perceptibly
with frequencies near resonance, this maximal value comes when the line

F'P'P passes through the center of the circle. This construction at once

determines the position of P and therefore the frequency at which the

voltage across the crystal, and also across the gap, is a maximum with

constant V for a given C*. This is the frequency at which the impedance
of the entire network is a minimum.

For a given 7, this maximal ratio Vz/V depends on C* and has its

greatest possible value at a certain critical value of Cz. The geometrical

problem is to find that position of F' that makes FFf

/F'Pi a maximum,
PI being the new location of P' on the straight line from F' to the center

of the circle. It is easily proved that this condition is satisfied when

FPi is tangent to the circle, so that FPJ?' is a right angle. Since now
AF = FPi, it follows that at this frequency the reactance of Ci is numeri-

cally equal to the impedance of RLCCi.
When Ci is relatively small and the gap is such that C% has the critical

value, the potential drop across the gap may be many times greater than

the applied potential 7. Dye,
127 who made a study of this effect, found

the increase to be as much as thirtyfold. If V is of the order of 50 volts,

a glow discharge may be seen in the space between electrodes and crystal,

with either lengthwise or thickness vibrations.
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298. A Typical Resonance Curve. The characteristics of a typical

resonator are shown in Fig. 66. Qualitatively, they illustrate the per-

formance of all piezo resonators. Numerical data are for the same

X-cut quartz bar N2, in lengthwise vibration, and with a small gap, that

has been mentioned in previous papers.
93 ' 680 The dimensions are XIA

Fia. 66. Some characteristic curves of a piezo resonator of frequency 89.87 kc.

Abscissas are departures from resonance, in cycles per second. Frequency increases from
left to right. Ordinates shown in the figure are to be multiplied by 106 esu for Y and F',

and by 5(10-) esu for -X", Xt ,
XP1 R. and Rp . The vertical dotted lines are marked to corre-

spond to points on the circumference of the circle in Fig. 67 (first column in Table XXIII) .

mm, 730.7 mm, Z4.1 mm, fundamental frequency /o
= 89.87 kc/sec,

wo = 5.65(10
6
). The equivalent electric constants are

L = 137 henrys = 1.52(10-
10

) esu

R = 15,000 ohms = 1.67(10~
8
) esu

C 0.0228 mmf 0.0205 esu

Ci = 3.54 mmf ~ 3.19 esu

The product uCiR, which according to Eq. (381) determines the ratio

AF:AB in Fig. 67, is only about 0.03. Although this value is much

larger than is common with modern, well-mounted resonators, still it is

so small that its use would bring the point F so dtose to A as to crowd the
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critical points in the neighborhood of F very close together. The per-
formance of the resonator can be shown more instructively by arbitrarily

multiplying Ci by a suitable factor. In the present case the factor 10

has been chosen, so that the value of Ci, for the purpose of illustration,

is assumed to be Ci = 31.9 esu. The effect is the same as if an external

capacitance of 28.7 esu were placed in parallel with the crystal.

299. The graphical procedure for obtaining the ordinates of the

various curves is illustrated in Fig. 67. In constructing this diagram, a

FIG. 67. Resonance circle used in deriving the data for Fig. 66.

circle was first drawn with diameter AB = 2p = 16 cm. From the data

above, together with p = 8 cm, it was found from Eqs. (375), (385a),

(378a), and (379a) that sy
= 3.75(10

6
), sz 1.16(10~

8
),

FA =^ = 4.8 cm,
sv

a = 0.544 cycle sec-
1 cm"1

,
</ = 96 cycles sec^cm. Values plotted in Fig.

66 were obtained for the critical points shown in Fig. 61 and for a few

other selected points, so that smooth curves could be drawn with

enough accuracy to illustrate the characteristics of the resonator. For

example, in the case of point PS, the distance BS was measured, and

rif
= <r BS was calculated, where n/ = /o /5, /o is the frequency at #,

and /s the frequency at PS. This value of n/ (2.4 cycles/sec) was plotted

as abscissa hi Fig. 66. At this frequency, Y = $ AP$, Y( = sv FP B

(maximal value of Y{).
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The values of #., RP ,
X9 ,

and Xp (271, 273) for points P5 and P6

were obtained by dropping perpendiculars on the line Fx in Fig. 67 from

PS and also from P6 ,
the point inverse to P 8 . In the notation of Fig. 59,

these perpendiculars are P^W and P^W (P& and P6 correspond to P
and P' in Fig. 596). Then, according to Eqs. (388), (389), and (395a),

R. = s, FW, Rp
= l/(sy FW), X. = sx

-

W'P', and Xp
= l/(sv WP).

The same process was used for the other points, except that for points

on the left side of the circle (as, for example, P 9) it was mor convenient

to use the frequency scale value o-' and to measure AV instead of BS, as

explained in 268. In such cases the value of n/ is given by n/ = <r'/A V.

300. As may be seen from Fig. 66, Y has a maximum at n}
=

0, while

the maximum of Y{ comes at a slightly lower frequency. The maxi-

mum of R, comes at the frequency corresponding to the point P? inverse

to B, for which point FW = Fx ~ AB. As may be easily verified,

this maximum value is (Rt)m** = 1/RClu
2

. Rp has its minimum value

when n/ = 0. X becomes zero at points Pa and P4 ,
where the resonator

is a pure resistance; its maximum value is at the frequency corresponding
to the point P8 inverse to P2 ,

while its minimum is at P9 ,
inverse to PI

(see also Fig. 62). Xp has a maximum at PI, a minimum at P^ and

becomes infinite at PS and P*; a vestige of Xp coming up from < can

be seen in the lower right-hand corner.

Over a range of frequencies considerably beyond that shown in Fig.

66, the distance AF = wCi/stf
remains practically constant. At still

lower frequencies the point F approaches A, while it moves upward with-

out limit on the h-f side. Moreover, at very high and very low fre-

quencies the distance A V, in terms of which frequencies are expressed,

becomes too small to measure accurately. Recourse must be had then

to the algebraic equations, which become very simple at frequencies far

enough from resonance for certain terms in R to be ignored. It is con-

venient to write w =
/two, where h is a multiplying factor greater or less

than 1. The admittance of RLC can be written as

For F;, Xt ,
and R,, we use Eqs. (383), (388), and (389). By this means

the following values have been computed, providing an extension of the

data in Fig. 66, all in esu.

The table on page 377 illustrates the extent to which the various

quantities are affected as the frequency departs widely from resonance.

The admittance Y sinks to3^ of its maximum value when the frequency is

off resonance by 2 per cent. Y{, like 7, gradually becomes a pure capaci-

tive admittance. Since at very low frequencies Y > l/X > coC, it is

evident from Eq. (383) that Y{ -> (C + Ci). On the h-f side, Y( -> Ci.
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tends toward the limiting values (Ci + C) and C\ on the 1-f and h-f sides,

respectively. Considered as a condenser, the resonator has a series

capacitance C, that diminishes from (Ci + C) at low frequency to C\

at high frequency; this is equivalent to saying that the dielectric constant

defined as k = 4irC/A undergoes a diminution on passing through the

resonant region, with anomalous values in the resonant region itself

(see 258). It will be noted, however, that C, differs from its limiting

TABLE XXIV

values (31.92 and 31.9) perceptibly, even for detuning as great as that

indicated by h = 0.5 and h = 1.5. The large ratio X/R shows that the

resonator has a very low power factor even for detuning as low as 2 per

cent. Corresponding to this fact are the low values of R8,
which are

practically negligible in comparison with R.

In an actual quartz resonator the diminution of C8 from (Ci + C)

to Ci with increasing frequency would be much more pronounced than is

indicated by the data above. Even so, the diminution in quartz is less

than 1 per cent; on the other hand, in Rochelle salt the diminution is

very large.

The arbitrary assignment to C\ of a value ten times the actual value

for the crystal in question has served its purpose in making the steps in

the graphical method easier to follow. Qualitatively it has not made
the resulting curves less instructive. On the quantitative side it may be

said that, if Ci were smaller, the maximum of Y{ would come closer to

that of F, with respect to both magnitude and frequency. The minimum
of Y{ would be lower and would come at a higher frequency. The

frequency scale itself would remain unchanged, but the interval o>p w,

between the two values for X, = would be increased almost propor-

tionately to the decrease in Ci. From Eq. (400) it can be shown that, if

instead of the fictitious value 31.9 we had used 3.19 for Ci, fp /. would

have been about 290, instead of the value 23.3 shown in Fig. 66.

301. Effect ofR upon the Performance of the Resonator. As was stated

in 269, the smaller R is, the larger is sv (for a circle of the same diameter)
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and the smaller a and </ become. Therefore, as R diminishes, the fre-

quency scale becomes more wide open, fewer cycles are comprised on the

right side of the circle between the quadrantal points, and the resonance

is sharper. The maxima of F and Y( are higher, and the minimum of

Y{ is lower. The difference between the frequencies for series and parallel

resonance is greater when R is made smaller, as may be seen from Eq.

(400).

In the discussion following Eq. (393) the necessity for retaining R
in the expressions for R, and X9 over a relatively wide range of frequencies

is emphasized. This fact is well illustrated in the foregoing example.
For instance, if X, for point P7 in Fig, 66 or 67 is calculated from Eq.

(389), it is found that the terms in R2 form the chief contribution to both

numerator and denominator. It is only at considerably higher fre-

quencies or at correspondingly low frequencies that the simpler equation

(393) can be used.

302. Graphical Method for the Insertion of Other Circuit Elements.

As the basic resonator network only the RLCCi combination need be

considered. If there is a gap, the primed values shown in Fig. 566

should be used.

In the present section the method will be outlined briefly, leaving

specific applications until later.

a. A Resistance RI in Series with Ci. This case occurs when there are

losses in Ci; such losses in Rochelle salt are discussed by Mason. 338

We have Zl
= RI - j(l/CO, TI = Bi/Zf + j(l/CiZJ) =

1
~

J6*
Hitherto R\ has been ignored, and, as hi Eq. (380), we have set

with wCi =* bi and g\
= 0. When R\ is included, we can no longer use F

as the origin of vectors for the resonator. Instead, it is necessary to

choose as origin a new point, represented as 0" in Fig. 68, such that

AF" = - - =-\rn 0"F" 91 = _**
(448)

Sy Sy
'

CoClZj Sy Sy
'

Z\
^ '

The presence of RI makes AF" smaller than AF in the ratio

AF" 1

0" is to be used as the origin for all vectors for RLCCiRi in the same

way that F was used in preceding sections for RLCCi.
303. 6. An Impedance Z2 in Series with RLCCi. Let the point P

(Fig. 68) on the F-circle for RLC be given, at any frequency /, and let

it be required to find the vector representing the impedance of
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at this frequency. The impedance of RLCCi is Z{ = s, FP'. Draw the

line OF of such length that s, OF = /2 * #2 + JX2, so^that

= R2 s,-MF = X2

As represented in Fig. 68, X* is capacitive. If it were inductive, M
would lie below F.

The vector sum of Z2 and Z{ is Z2 , given by the equation Z2
= s* OP'.

Its components are #2 = ^ OW and X = s, TFP'. P' is the point

on the impedance circle for RLCCiZz at which the frequency is the same

as at P on the original admittance circle for RLC.

N

FIG. 68. Resonance diagram for a resonator with an impedance in series.

The admittance diagram for RLCCiZz is obtained by inverting Pr

into P", with as center of inversion, and ON (tangent to the resonance

circle at N) as radius of the circle of inversion. ON need be drawn only

when the scale value s'y
'

for admittances of RLCCiZz is desired:

*
(s,

- ON*)

The admittance of RLCCiZ* at frequency / is then 72
=

4' OP".

The method described in 282 for representing phase relations can be

applied to the present case. We let V i and 72 be the potential difference

across RLCCi and RLCCiZ-t, respectively. With this notation, the phase

relations are as indicated in Fig. 68.

With regard to the distribution of frequencies around the admittance

circle for RLCCiZz ,
it is to be noted first that', upon the addition of Z2 ,

A inverts into A', which becomes the point for zero and infinite frequency.

At Pi and P2, on the prolongation of OF, frequencies,are the same as
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on the original admittance circle for RLC. All frequencies that, on the

RLC circle, lie on the lower (1-f) portion between A and P are now com-

pressed into the arc A'P". The frequencies corresponding to all points

on the admittance circle with Zz out (origin at F) are, when Z2 is in,

shifted in both directions away from P2 toward Pi.

This extension of the graphical method is useful in investigating the

effect of the impedance of the circuit to which the resonator is connected

on the critical frequencies and on the performance of
tjie resonator.

For example, the maximum and minimum impedances of RLCCiZz are

found simply by drawing a line from through the center of the circle.

The frequencies at series and parallel resonance are determined by the

points where the horizontal line through cuts the circle. If AM is

greater than the radius of the circle, these points no longer exist, and the

circuit is capacitive (or inductive if AM is drawn downward) at all

frequencies.

If it is desired to find the frequency corresponding to any point P"

on the admittance circle for RLCCiZz, the method described for locating

P" when P is given is worked backward. First P' is found, on the line

P"0; then FP'P is drawn; and the desired frequency is that for P on the

RLC circle. This frequency is determined as described hi 267.

It may happen that Z2 cannot be regarded as constant over the range

of frequencies considered. For example, as in 316, Z2 may be arbi-

trarily varied so as to hold the current in some part of the circuit at a

maximum value; or Z 2 may contain elements that are either sharply

tuned or subject to variation with current, as is the case with tube

impedances. In such cases it is necessary to determine the locus of the

origin in Fig. 68, whereby the position of at any given frequency is

known. Such a method is described in 324.

The graphical treatment can also be extended without difficulty to

cover the case where an arbitrary impedance is connected in parallel

with either RLCCi or RLCCiC*. This and other features of the graphical

method have been discussed elsewhere by the author. 106

304. c. A Capacitance C$ in Parallel with RLCCiC*. As in 288, the

capacitance C2 in series with RLCCi may be either the gap or an external

condenser. In either case the admittance locus is the circle in Fig. 63,

with s'y AF' = o)C{ from Eq. (434) and with a frequency scale for

RLCCiCz determined according to 290. The addition of C8 (condenser

or capacitance of connecting wires, etc.) in parallel with RLCCiCz simply

necessitates moving the origin upward exactly as hi the case of C2, only

now the new origin F
11

isDetermined by the equation s'y FFf = wC 3,

or s'u AF" = co(CJ + C 3). The frequency distribution is still that

for RLCCiCz, but the critical points when C s is in are shifted hi such a

manner that series resonance, corresponding to point P3 in Fig. 61,
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comes at a frequency very slightly higher than when C3 is out; the same
is true of the frequency for maximum admittance. The frequencies for

parallel resonance and for maximum impedance are lowered by the

presence of Cs. That is, a parallel capacitance diminishes the frequency
interval between series and parallel resonance.

These relations are easily derived analytically. The equation for

series resonance, analogous to Eq. (397), is*

ws 7/7*7 i r/2r" T
Lt \j Li Lf LJ

+
R *C (C

LCl

l +
^O (449)

where L', C', and K are given by Eqs. (424), C = Ci + C8 ,
and

12 is usually small enough to justify the approximation

(450)

This expression is the same as Eq. (437) for RLCCiC*, showing that the

presence of C 3 is practically without effect on the frequency for series

resonance.

The frequency for parallel resonance, when R is small, is found most

readily by applying Eq. (383) to the R'L'C'C( network, setting R' =
and Zf = X 1 =

(o>
2Z/C' - 1)/C". Then, for RLCCiC2C3 ,

The condition for parallel resonance is that 7J = 0. By the use of Eqs.

(424) one then finds

r+~c3/
"
rc (450a)

The last expression involves the approximation

C + Ci + Cz ~ Ci + C*

305. TTie Resonance Circle for Motional Admittance. From Eq. (329)

it is seen that a proportionality exists between the current IP in the RLC
branch of a resonator for lengthwise vibrations and the particle velocity v

at the ends of the bar. A similar relation can be proved for thickness

* The symbol o>^ is used in order to avoid confusion with <a,t the value for the RLCC\

network alone.
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vibrations. This proportionality is expressed in Eqs. (325) and (367),

for lengthwise and thickness vibrations, as a fixed ratio between the

electrical impedance Zh of the RLC branch and the mechanical imped-
ance (ZC)A. A corresponding ratio must hold for piezo resonators of

other types as well. It follows that the same admittance circle, with the

same scale of frequencies, can be used for the mechanical admittance,

as that which has been described in the case of the electrical admittance.

Since we are dealing here only with the RLC branch, the origin of vectors

is at A on the resonance circle, for example in Fig. 58. Any electric

vector divided by the electromechanical ratio r gives the corresponding

mechanical vector. That is, the scale value for mechanical admittances

is se = rsy .

On the circle for mechanical admittance, the maximum admittance

comes at point B }
where the particle velocity is a maximum and the fre-

quency is defined as / . In accordance with Eq. (94), the frequency fa

for maximum amplitude of vibration is lower than /o by the amount

/ 52
/8ir

2
,
where 8 is the logarithmic decrement per period. From Table

XXIII it is seen that the frequency / is only C/4Ci as far from / as is

the frequency for maximum electrical admittance, at point P 5 ;
at P 6

the frequency is already extremely close to /o.

If there is a gap between crystal and electrodes, the resonance circle

in Fig. 63 is used, with Ff

as origin for electric vectors. The presence

of the gap (represented by a shift of origin from F to Ff

) changes the

maximum particle velocity and also the distribution of frequencies

around the circle. The frequency for maximum particle velocity,

though somewhat higher than when there is no gap, still comes at point B
in Fig. 63. By 58 and 234 the amplitude of vibration at the bound-

ary of the resonator, in terms of the peak current (7P) in the RLC

branch, is
^

;(Jp)o (451)

306. The Electrical and the Mechanical Theories of a Resonator with Gap. The

electrical theory may be defined as that which regards the electric and elastic properties

of the resonator as those characteristic of zero gap, while the gap itself is represented

as a series capacitance C2, as illustrated in Fig. 56c. The equivalent network is

RLCCiC*
On the other hand, the mechanical theory treats the electric and elastic properties

as dependent on the gap. The equivalent network is R'L'C'C( as shown in Fig. 566,

in which all four parameters are functions of the gap. The elastic stiffness, which

occurs as a factor in C", is different from that which occurs in C when there is no gap.

In the following discussion we shall use qw for the stiffness when there is a gap w and 0o

for the value when w 0. According to the electrical theory the stiffness is <?o at all

values of the gap.

The equivalence of the two theories has already been proved. It remains only

to show how each requires a somewhat different description of the vibrational process.
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Let /o be the resonant frequency for RLCCi as observed when there is no gap, and
let fw be the resonant frequency when the gap is w. Then, under constant impressed
voltage, if the frequency/ is applied while the gap is w, there is no resonance. Accord-

ing to the electrical theory the crystal is being driven at its resonant frequency, its

impedance is low, but the drop in voltage takes place mostly in the gap so that the

amplitude of vibration is small. According to the mechanical theory the stiffness

of the crystal, in the presence of the gap, is so great that the applied voltage causes

only forced vibrations of small amplitude.

Similarly, when the impressed frequency is /,, the electrical theory states that

there is electric resonance although the crystal itself is not in mechanical resonance:

the impedance of the crystal is large, so that the potential drop across it is relatively

large, resulting in forced vibrations of great amplitude. On the other hand, the

mechanical theory states that the crystal is vibrating in resonance, with low imped-
ance, and that the large drop in potential across it is produced piezoelectrically by its

own deformation.

The difference in the point of view is due to the different definitions of the stiffness

of the crystal. Which view to adopt is a matter of convenience. In any case, when
the crystal with gap is in resonance, / > / ,

so that the RLCCi combination is induc-

tive, while C-L is, of course, capacitive. Over a certain range of values of C2 the poten-
tial drop across Cz and also the corresponding drop across the crystal may be many
times greater than the applied voltage V. The condition for maximum voltage across

the gap is shown graphically in 297.



CHAPTER XV

THE DYNAMIC MEASUREMENT OF PIEZOELECTRIC
AND EQUIVALENT ELECTRIC CONSTANTS

A vibrating system of one degree of freedom when set in motion by the interaction

of charged bodies on an electrostatic field behaves as a series combination of induc-

tance, resistance and capacity. S. BUTTEKWORTH.

307. Although the technique of electrical measurements lies outside

the scope of this book, it is desirable to indicate the principles on which

are based the applications of standard methods of measurement at radio

frequencies to the crystal resonator. The choice of method depends
on the size of the quantity to be observed and on the required precision,

as well as on simplicity and the desirability of obtaining results in a short

time by as few observations as possible.

The measurement of elastic constants has been treated in 75 and

252. In 183 and 184 we have considered briefly the measurement of

piezoelectric constants by static methods.

In the present chapter the "
click

" method is first described, in which

use is made of the audible response of a resonator as the impressed fre-

quency passes through resonance. There follows an outline of the

methods available for determining, from observations with circuits of

various types, the piezoelectric constants of any crystal, and the electric

constants of the equivalent network for any piezo resonator. Lastly we
shall discuss the reduction of such observations, with particular reference

to the use of graphical methods.

For the methods described below, the most indispensable feature of

the equipment is a generator with extremely fine frequency regulation

over the resonance range of the crystal. The generator must be suffi-

ciently stable to hold its frequency and voltage constant, at any given

setting, during the time needed for a series of observations; means must
be provided for measuring accurately small changes in frequency; and
the generated frequency should be immune against reaction due to the

varying impedance of the crystal. The generator may be a power oscilla-

tor of 50 to 250 watts, very loosely coupled to a secondary circuit con-

taining the crystal; or it may be a low-power oscillator connected through
an amplifier to the crystal, the stages of amplification being so designed
as to prevent reaction. For the more precise measurements it may be

necessary to adjust the frequency within a small fraction of a cycle per
384
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second. The importance of avoiding harmonics in the output voltage is

emphasized in 379.

308. The Click and Key-tapping Methods. Before coming to the

quantitative measurements of the piezoelectric and equivalent electric

constants, we describe some simple circuits that are useful for qualitative

tests of piezoelectric crystals, such as those mentioned hi 172. These

circuits also provide a means for making an approximate determination

of crystal frequency in terms of a frequency meter and for calibrating a

frequency meter when one or more resonators of known frequency are

available. Those who are just beginning the study of crystal resonators

can learn much about their performance by experimenting with these

simple devices.

For demonstrating the principle of the click method it is convenient

to use a low-power tube oscillator with inductive feedback and with a tele-

phone receiver or loud-speaker in the anode circuit; either the grid or the

anode circuit may be tuned. The frequency must be continuously vari-

able over a considerable range on each side of crystal resonance. As a

resonator, a small JT-cut quartz bar (length parallel to F) may be chosen.

For lengths of 10 to 40 mm the fundamental lengthwise frequency varies,

in round numbers, from 300,000 to 75,000 cycles/sec. If the anode volt-

age is low enough to avoid danger of fracture, the crystal, which may be

mounted loosely between fixed electrodes, can be connected directly

across the tuning element. As the tuning condenser is varied through
the setting corresponding to crystal resonance, a characteristic click is

heard, which has more of a musical quality the lower the frequency and

the smaller the damping of the resonator. The sound is due to the fact

that the resonator is set into vibration when the condenser reaches the

critical setting and continues to vibrate for a fraction of a second. Dur-

ing this time it acts as a generator, impressing on the tube circuit an alter-

nating voltage at its own resonant frequency and producing beats with

the oscillating current already present. A d-c meter in the anode circuit

will also respond at crystal resonance.

The click can also be heard with the crystal at other locations in the

oscillating circuit, for example in series with the grid, with a high-resist-

ance leak in parallel. One can usually hear an audible response with

one electrode of the crystal disconnected. Indeed, it may suffice to

suspend the bar, without electrodes, from a thread and let it hang close

to the coil or to a binding post of the tuning condenser. Enough energy
is absorbed and reradiated to produce the beats.

When the click method is used with thickness vibrations, one hears,

on tuning through the frequency at which the response should come, not

a single click, as in the case of the bar, but rather a whole volley of clicks.

A very large number of responses may be heard in a narrow range of
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frequency around the expected value. This complexity is due chiefly

to various elastic couplings, as stated in 244. The procedure for

reducing the number of responses, and for obtaining a single dominating

frequency of resonance, as is necessary in efficient piezo oscillators, is

mentioned in 352.

If the oscillating circuit is already calibrated, or of too high power,

it is better to place the crystal in a loosely coupled secondary circuit,

as shown in Fig. 69. L\ is the output coil of the oscillator.
^
L 2C 3 should

be tuned approximately to the crystal. The click is heard in the tele-

phone receiver T. A d-e milliammeter may be used in place of T. If

desired, the crystal may replace the grid condenser C4 .

In the earlier experiments, the author sometimes used a contact

detector (galena or molybdenite) and telephone receiver in place of the

Fia. 69. Circuit for resting a resonator by the click method.

detecting tube shown in Fig. 69. Moreover, it was found that Li could

be the coil of a buzzer-driven wavemeter; in this case L 2 picked up trains

of decaying waves, and the buzzer tone, heard continuously in T, under-

went a change in quality when the wavemeter was tuned through crystal

resonance.

With the circuits that have been described, somewhat greater pre-

cision can be gained by setting the tuning condenser of the generator

circuit as closely as possible to the critical value and then suddenly vary-

ing it by a small amount. The setting is altered by small stages until

the click is just heard. By performing this operation with both increas-

ing and decreasing settings, a fairly precise mean value can be obtained.

309. This last expedient leads naturally to the key-tapping method,

whereby the rapid turning of a variable condenser back and forth is

avoided. All that is necessary is to place in parallel with the tuning

condenser in the oscillating circuit a small auxiliary variable condenser

in series with a key. The auxiliary condenser should be set at such a

value that when the key is pressed the frequency / is changed to a value

/i such that / /i is a frequency hi the audible range. The key should be

on the grounded side in order to avoid a troublesome knock on closing.

The key is tapped repeatedly as the tuning condenser is slowly varied.

When a setting is reached such that, with the key open, the resonator

is set into vibration, then on closing the key a beat note, of longer or
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shorter duration, is heard. This note has a very sharp maximum at the

resonant frequency. It is, of course, also possible to listen for maximum
loudness of the beat note on opening the key.

Either the click method or the key-tapping method is a helpful adjunct

to the equipment for measuring resonator constants by the methods

outlined in 315 to 321. Owing to the extreme sharpness of resonance

of a good crystal, it is usually quite difficult to find the adjustment of the

oscillator corresponding to the very narrow band of frequencies to which

the crystal responds. If provision is made for listening to the click, this

adjustment can be arrived at very quickly.

DYNAMIC MEASUREMENT OF PIEZOELECTRIC CONSTANTS

The methods that have been employed may be classified as follows:

a. The gap method, involving measurements of frequency of a

resonator at two different gaps, usually w = and w = < .

b. The antiresonance method, by which the gap (commonly zero)

is fixed while the frequencies at resonance and antiresonance are observed.

c. The resonance-curve method, by which the piezoelectric constant

is derived from the value of the equivalent R, L, or C.

d. The elongation method, by which the maximum elongation of a

bar at resonance is measured.

e. The composite-bar method, by which the crystal under investiga-

tion is vibrated by means of a second crystal of known constants.

Either lengthwise vibrations of bars or thickness vibrations of plates

may be used. The chief equations for each case will now be given.

FOB generality, we assume the bar or plate to be oblique, so that all con-

stants are primed, indicating transformed axes.

310. a. The Gap Method.* Owing to the difficulty in measuring

small gaps with precision, as well as to the lack of close agreement

between observations and theory noted in 349 and 353, no gain in

precision can be expected by using gaps other than zero and infinity.

Bars. Only the fundamental lengthwise frequency need be con-

sidered. For gaps zero and infinity we have

)*

With negligible error / and /w may be regarded as frequencies at

either maximum admittance of the resonator or maximum amplitude of

vibration.

* This method was first used by the author107 for measuring d^ of Rochelle salt.

Soon after this, Mikhailov868 used it for du of Rochelle salt, obtaining a result in good

agreement with that by method c.
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The solution is somewhat different according to whether or not, when

w = oo
,
the surfaces of the bar normal to the electric field are plated

with a metallic coating to render them equipotential. If the surfaces

are bare, Eqs. (332) and (333) are to be used, giving

fi- A)

where i indicates the field direction and k' is the dielectric constant of

the free crystal for the particular orientation, measured at a non-resonant

low frequency.
Thus when k( is known, d'in can be found from the frequencies at zero

and infinite gap. The precision with which (d'-J
2 can be measured

by this method depends on that of k'i and of the frequency difference

(j^
_ y ) j

and, as in all other methods, it is limited also by the fact that

the ideal conditions assumed in the equations never can be exactly

realized in practice.

The large value of the dielectric constant kx of Rochelle salt makes it

permissible, for an X-cui bar from this crystal, to write Eq. (452) in the

form

(452a)

if
=

k'/4ir. In calculating rf 14 for Rochelle salt from Mason's

observations, Mueller378 used this equation.

When a plated bar is used, the stiffness at infinite gap, from Eq. (428),

is

From this equation, together with (311) and the relation qQ = l/sjn

for zero gap, one finds

(454)

This approximation is valid only for crystals with small piezoelectric

constants, like quartz.

As an example of the foregoing method, we calculate dn for quartz

from the author's observations on a quartz X-cui bar with dimensions

X0.152 cm, F4.04 cm, Z1.40 cm. The undamped dielectric constant is

k' = 4.5. When the bar is bare, the observed frequency for w = is

/o = 6.65(10
4
). Extrapolation of observed frequencies for w ~ oo gives

/ "~
/o
= 298. Similarly for the same bar when plated, /o 6.65(10

4
),

/ ~
/o - 240. On substitution of these values in the foregoing equa-
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tions we find, for the bare and plated bars, 6.45(10~
8
) and 6.42(10~

8
),

respectively. Although the values are comparatively low, owing
probably to defects in the bar, they show at least that the formulas

give practically identical results for bare and plated bars.

Plates. By observing the frequencies / and / of thickness vibra-

tions, the following expression can be derived from Eq. (355) for the

effective piezoelectric constant e:

** =
, </*. -/?) (455)

where e is the thickness and k" the clamped dielectric constant for the

particular orientation. Except with the simplest cuts the derivation of

the fundamental e^ from c is impossible. In general, observations vi ith

several plates in different orientations would be necessary. When it is

considered that k" cannot be calculated without a previous knowledge
of at least the approximate values of the piezoelectric constants or

observed without the use of extremely high frequency (247), it becomes

clear that it is not advisable in general to attempt to determine the piezo-

electric constants by the gap method with thickness vibrations. No
such determination seems to have been undertaken.

311. b. The Antiresonance Method. The frequencies / and fp for

series and parallel resonance (resonance and antiresonance) are observed

at a fixed gap, preferably zero.

The desired expressions can be derived from the approximate equation

(401) when the piezoelectric constants are small. If the piezoelectric

reaction is large, as in Rochelle salt, it is better to start with the more

rigorous equations (397) and (398), in which it is usually allowable for

the present purpose to set R = 0. One thus finds, to a high degree of

precision,

From Eqs. (324) and Table XXII it is found that C/Ci has the same

form for both lengthwise and thickness vibrations. If fp and /, are

observed at harmonic h, Ci/Ci = 32*/irh
2
kqo, whence, since qQ

(457)

For thickness vibrations, we write k" for k and let I represent the thick-

ness. For lengthwise vibrations (with which only h = 1 should be used)

k becomes h and I is the length of the bar. e is the effective piezoelectric

constant for the particular orientation. In order to obtain the funda-

mental piezoelectric constants, observations with several different
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orientations are usually necessary. In the case of bars, the effective

piezoelectric strain coefficient (d'in in the preceding paragraphs) can be

found directly from e by the relation d(n = /g .

This method is simple and fairly accurate. The chief difficulty,

aside from the determination of k, is that the antiresonant fp is not sharp.

It is the method used by Mason840 in measuring d\\ and du for quartz.

312. c. The Resonance-curve Method. While methods a and b use

only two observed frequencies, method c offers the advantage of increased

accuracy, in that by means of a resonance curve or of tne resonance

circle a large number of observations at different frequencies can lead

to an accurate measurement (315) of the equivalent L, R, or C. Then

Eqs. (324) or those in Table XXII (page 323) can be solved for e, from

observations on bars or plates, respectively. The simplest expression

to use is that for L or C, although the values of dn obtained by Andreeff,

FrSedericksz, and Kazarnowsky, by Fre*edericksz and Mikhailov, and by
Van Dyke, in Table XIX (page 220) were obtained from R. Nuss-

baumer's value in the same table was derived from observations with a

crevasse circuit (316), which is essentially an equivalent-network

method.

No sharp distinction can be drawn between methods b and c except

insofar as c can make use of more observational data. For example,

the last part of Eq. (457) is written for use with method c. From this

equation can be derived an expression for d'in in terms of k', applicable

to a bar vibrating at its fundamental lengthwise frequency. By writing

k B ki = V - 47r(<4)YC, we find, since e = d(Js*n ,

in
~
4(8d + ir'C)

~
Sbl

where C and C\ are in esu.

313. d. The Elongation Method. This method is hardly suitable.for

plates but has been used by Fujimoto* with a quartz Z-cut bar, for

determining d\\. The method is the dynamic analogue of the static

measurement of piezoelectric constants by the converse effect. The

amplitude of vibration at one end of the bar at resonance is observed

with an optical interferometer. From Eqs. (67), (324), (329), (87),

and (406), one finds for the effective piezoelectric constant, with suffi-

cient precision,

fAKC\\
(459)

* T. FUJIMOTO, Proc. World Eng. Congr., Tokyo, vol. 20, pp. 399-416, 1929. The

value of dn /n in Table XIX was calculated by the author from Fujimoto's data.

For a more complete treatment of the application of the interferometer to resonator

measurements, with experimental data, see H. Osterberg
899 and S. H. Cortez. 113 Pre-

liminary observations by this method were made by E. M. Thorndike (Willbur Fiske

Scholar thesis, Wesleyan University, 1926).
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Any one of these expressions may be used, depending on which electrical

quantities are observed. Jo and Fo are maximum current and voltage
at resonance, R is the resistance in the equivalent network, M = pble/2
is the equivalent mass, and Q is the quality factor from Eq. (67). o>2

and 6>i are the angular velocities at the two quadrantal points (277);
if observations are made at a sufficient number of frequencies for plotting
the resonance circle, (o>2 i) can be determined with considerable

precision.

This method calls for practically the same electrical equipment as

method c, in addition to means for measuring the elongation. It is

therefore not to be recommended, except as a check on the other methods
and on the theory.

314. e. The Composite-bar Method. This method was introduced by
Mason338 for determining the piezoelectric constant an (his/i4) of Rochelle

salt. He cemented an X-cut 45 Rochelle-salt bar endwise to a quartz
bar of which the constants were accurately known. * The bars had a

common lengthwise resonant frequency, and the system was driven by
an oscillator connected to the quartz. The quartz had also a pair of small

auxiliary electrodes that could be connected to an amplifier of high imped-
ance for comparing the voltage drop E q across the quartz with ER across

the Rochelle salt. For this purpose the Rochelle-salt bar, otherwise

bare, had a pair of small electrodes plated on at its center. The Rochelle

salt was set in vibration by the quartz. Since the layer of cement came
at a loop of motion, it was under very little strain. In evaluating the

observations it was necessary to estimate the ratio of the strains yyq and

yvR on either side of the joint. Mason's formula may be written as

follows:

_
tti4

where s^ is the effective stiffness in each case and e q and eR are the thick-

nesses of the bars. Using an 18.5 quartz bar (357) of known d'12

and k', Mason found an = 7.6(10
4
) at 30C; for the dependence on

temperature see 474.

This method is, of course, applicable to any piezoelectric crystal from

which a bar can be so cut that its piezoelectric constant can be expressed

in terms of the elongation of the bar. It offers the great advantage that

the dielectric constant of the crystal under investigation need not be

known, so far as the constant a n according to the polarization theory is

concerned. Nevertheless, in order to find &n from a n the dielectric

susceptibility must be known, according to Eq. (xi) or (xii) in Table XX
(page 249). For example, in the case of Rochelle salt at 30C we may
use Eq. (4956). Then, if sf4 1/cfc

= 1/11.6(10
10

), <n'
= 25 from Fig.

146, and an = 7.6(10
4
), we find du = 16(10-

6
).
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Method e involves rather serious sources of error. As is recognized

by Mason, the absolute value of the result cannot be considered very

accurate, but relative values over a range of temperatures can be com-

pared with good precision.

315. Determination of the Constants of the Equivalent Network.

The methods outlined above for the measurement of piezoelectric con-

stants had to do with a property of the material. We shall now describe

methods for finding the electric constants of a resonator of given dimen-

sions. From them, in turn, the mechanical and electric constants of the

material can be derived.

The present discussion is applicable to any form of piezoelectric

resonator that can be represented by an equivalent electrical network

RLCCi, as illustrated in Fig. 50 or 56. We omit the prime accents,

with the understanding that the symbols stand for the over-all values,

including the effect of the gap when there is one. In general, any change
in gap or in the si#e or placing of the electrodes will affect the values of

R, L, C, and Ci. Most of the experimental work mentioned below was

done with quartz resonators.

The parameters of greatest practical importance in resonators are

the capacitance ratio Ci/C (280) and Q = cooL/E = l/co C#. These

quantities can be calculated when Ci, C, and R have been determined,
or they can be expressed directly in terms of observed quantities as

indicated below.

The various experimental methods that have been used for deter-

mining the electric constants are classified below, though there is a certain

amount of overlapping. We cannot go into details here concerning tubes,

circuits, shielding, temperature control, and other matters of technique,

important as they are. Particular attention should, however, be drawn

to one source of error so easily overlooked that the trustful observer

may not suspect that it is ruining his results. This circumstance is the

presence of harmonic frequencies in the voltage applied to the crystal.

A harmonic component of more than negligible size can affect the readings

of meters, and in addition it may excite undesired vibrations that react

upon the characteristics of the particular mode that is being investigated.

It is highly desirable to know the wave form of the generator and to

provide such filtering circuits as may be necessary to ensure a practically

pure sinusoidal supply to the crystal.

One other troublesome effect should be mentioned, which is present

with crystals that have an appreciable temperature coefficient of fre-

quency. As resonance is approached, the crystal vibrates more vigor-

ously, and more of the driving energy is expended in heating the crystal.

Even though the resonator may be under temperature control, this body
heating changes the constants of the crystal, thus altering the resonant



316] THE DYNAMIC MEASUREMENT OF CONSTANTS 393

frequency. A continuous curve can still be obtained, but it is distorted,

since the characteristics of the crystal are a function of the ordinates

of the curve. The distortion does not prevent the derivation of a

correct value of the decrement from the curve. On the other hand, the

values of R, L, and C for any particular temperature cannot be deter-

mined unless certain corrections are applied to the curve or unless the

current can be made small enough to avoid perceptible heating. This

effect has been studied by Walstrom in the investigation mentioned in

316; see also Hatakeyama.
209

316. a. The Crevasse,* or Parallel-impedance, Method. This method
was first used by the author,

93 and later by Dye 127 in his very thorough

FIG. 70. Crovasso circuit for measurement of resonator constants.

investigation of the electric properties of the piozo resonator. Dye's

paper should be consulted for its treatment of many refinements, in both

theory and experiment. Watanabe 581
gives a full discussion of the use

of the resonance circle. The method has been employed by many others

for the measurement of resonator constants. The circuit is shown in

Fig. 70. The output coil LI of a generator with fine frequency control

is loosely coupled to the secondary circuit containing the crystal. The

LzCz circuit should be capable of being tuned both sides of crystal fre-

quency, f As the impressed frequency is varied in small steps, Ca may
be varied so as to make the current in Z/2 always a maximum, or it may
be left at that constant value for which the L*C$ circuit resonates at the

natural frequency /o of the crystal. The current in L* and that flowing

to the crystal can be measured by thermoelements at a and 6, or readings

can be taken on a tube voltmeter connected across the crystal. In any

* The term "
crevasse,

"
first used by Dye, was suggested by the form of the

response curve, as illustrated in Fig. 75.

t The tuning condenser is designated by Ci to distinguish it from the air-gap

capacitance C? that may be present in the equivalent network of the crystal.
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case a complete resonance curve can be obtained, from which the crystal

constants can be derived.*

Instead of placing the crystal in a separate secondary circuit, Bech-

mann48 and Builder81 connected it directly to the tuned output element

of the oscillator itself. The disadvantage in this method is the reaction

of the crystal upon the oscillator frequency.

According to a hitherto unpublished method used in this laboratory,!

the crystal is connected across the output of an amplifier in such a manner
that a practically constant voltage of variable frequency isf impressed

upon it. The current to the crystal is observed with a thermoelement,
and the results are plotted as a resonance curve, from which the decre-

ment can be calculated.

The graphical treatment of the crevasse circuit is given in 322.

317. b. The Filter, or Series-impedance, Method. The simple measur-

ing circuit described by Heegner
216

belongs properly in this category.

In its simplest form it contains a pickup coil loosely coupled to an oscilla-

tor, the crystal, and a thermoelement in series. With certain refinements

this device has been used in this laboratory by Newark and PeabodyJ
for measuring the maximum and minimum impedances of quartz bars,

from which resonance circles were plotted and the equivalent constants

were calculated.

Some modifications of Heegner's method are described by Heegner

himself, and also by Meissner,
359 ' 360 including the use of a triode in place

of the thermoelement.

According to the method that seems at present to be preferable, the

crystal is connected as a filter between a variable-frequency oscillator

and a receiving circuit, which may be a tube voltmeter (preceded, when

necessary, by a suitable attenuator and amplifier) or a detector. The
latter is used when only frequencies are to be observed. In one form or

another this method has been described by Mason,
832

Booth,
69 and Mason

and Fair. 841 When a tube voltmeter is used, the circuit is as represented

in Fig. 71. The variable frequency from the oscillator is impressed
across the resistance R\ t

and the drop across R% is measured by the tube

voltmeter V. In order to minimize the stray capacitance of the crystal

leads, RI and R% are made very small and are placed close to the crystal.

*
Applications of the crevasse method will be found in the references at the end

of the chapter. All who study these papers with a view to using the special techniques
described in them should be very discriminating with regard to the extent to which

certain small quantities are dropped as being negligible. For example, the expressions

derived by Mme. Sze"kely
600 and applied experimentally by Mme. Nussbaumer8'8 are

valid only at frequencies so far from resonance that the ratio BS/AB in Fig. 59 is large.

t J. E. WALSTROM, M. A. thesis, Wesleyan University, 1934.

t A. F. NEWARK, M. A. thesis, Wesleyan University, 1931; E. T. PEABODY, M. A.

thesis, Wesleyan University, 1933.
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For determining the crystal constants it suffices to observe the fre-

quencies fm and fn together with the corresponding maximum and mini-

mum voltmeter readings Vm and F. These are the values at which^the
resonator admittance Y[ has its maximum and minimum values Ym
and Yn (278). From Eq. (407) and Fig. 61 it is seen that Ym = sv FP 6 ,

Yn = sv FP6 . By the principle of inversion, FP5 FP6
= AF2 =

JCf/{.
For a quartz resonator the ratio AF/AB is very small and PS is so close

Fio. 71. Series impedance circuit for measuring resonator constants.

to B that one can write FP& AB = l/syR. Therefore

1Z--Z-
Yn F."

FPj,

FP*
(461)

From this equation R follows at once. In order to determine

--
R

it is necessary to find L. For this purpose we use Eq. (410a), which,

since o is extremely close to wm , may be written in the form

From this equation and (461) it follows that

<** "
2(/n

- /

As is shown in 281, both/o and/TO very nearly coincide with the frequency
for series resonance, while fn is almost exactly that for parallel resonance

(antiresonance) .

As an alternative method, Mason and Fair replace the voltmeter with

a detecting circuit by means of which fm and fn are determined. Since

fm is extremely close to the frequency at which the impedance of the crystal

becomes simply the R of the &LC-branch, it is possible to find R by sub-

stitution of a known resistance in place of the crystal, while the frequency



3tf6 PIEZOELECTRICITY [319

is held at the value fm . When R is known, Q is found with the aid of

Eq. (403):*

Q - w. ->JC.a
(462a)

Mason and Fair describe still another variant of the method, whereby

Q is found from Vn , /, and any frequency / near resonance together with

the corresponding voltage V.

318. c. The Bridge Method. The crystal forms one Arm of a h-f

bridge, and its impedance at various frequencies is measured. Van Dyke
and Thorndike used a bridge in their "three-crystal method," which

required two auxiliary crystals nearly identical with the one being tested.

One auxiliary crystal was in a piezo-oscillator circuit and served as a

fixed standard. The other, in a separate piezo-oscillator circuit, supplied

the driving current for the bridge; by adjustments of this circuit the

frequency could be varied over the necessary range, which was very small.

By the use of mixer and beat-counter circuits the applied frequency was

very precisely known. From the resulting resonance curve the electric

constants of the test crystal were determined.!

A bridge connection was also used by Van Dyke 548 in determining the

equivalent network of the crystal by measurements of the Lissajous

figures obtained with a cathode-ray oscillograph.

319. d. The Substitution Method. By means of a two-way key the

crystal may be replaced by a variable resistance or a combination of

resistance and reactance in a suitable measuring circuit. Giinther,
197

adapting a method due to Pauli, placed the crystal in a secondary circuit,

but instead of replacing it by a known impedance he measured the change
in resonant frequency when the resistance or inductance of the circuit

was varied by a known amount. Becker46 found the equivalent con-

stants of the crystal by substituting for it a known capacitance and

resistance in parallel.

Bechmann43
placed the crystal between the tubes of a two-tube

oscillating circuit, so that in effect his was a filter method. He deter-

* It is here assumed that fm and fn are equal, respectively, to /, and fp within the

limits of precision. That this assumption is justified, at least for quartz, can be seen

by applying Eq. (39G) to the pairs of mutually inverse points PsP4 and PsPe in Fig. 61.

The frequencies arc /, at P, fp at P4, fm at P6, and / at Pe. From Eq. (396),

/,+/,-/.+/

Now for quartz /, /TO, whence fp /.
t The advantages gained, in both convenience and accuracy, by using two matched

crystals, one as an oscillator of slightly variable frequency and the other as test

crystal in a secondary circuit, should be obvious. The third matched crystal is not

needed when there is available a secondary frequency standard with equipment for

precise checking of the calibration of the oscillator.
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mined the equivalent constants by substituting a known resistance for

the crystal or by connecting a known inductance and capacitance in

series.

320. e. The decay method has been used by several experimenters.
Van Dyke551""564 excited vibrations in a crystal and then allowed them to

decay while the crystal was connected through an amplifier to a cathode-

ray oscillograph in such a way that the decay took place virtually while

the crystal was on open circuit. By a special timing arrangement ampli-
tudes of vibration could be compared at known intervals. The logarith-

mic decrement was thus found directly. It was by this method that he

observed the extremely low decrements mentioned in 363. A similar

method has been used by Bosshard and Busch,
73 H. A. Brown,

76 and
Becker. 48

Chaikin111 let the current from the vibrating crystal pass through a

contact detector and ballistic galvanometer. He used a rotating disk

carrying a contact to give suitable time intervals and thus measured the

decrement. This method has been employed by Rziankin442 and also

by Gockel;
173 the latter substituted a Helmholtz pendulum for the

rotating disk. The ballistic galvanometer method is open to the objec-

tion that the impedance in series with the crystal is not infinite, so that

the measured quantity is not the true open-circuit decrement.

321. The Effective Parallel Capacitance Ci. Ci is usually derived

from measurement of the crystal capacitance at a frequency low enough
for the crystal vibrations to be inappreciable, say at 1,000 cycles/sec.

The quantity thus measured is, however, the capacitance of the free

crystal (plus the effect of leads and mounting), and for precise results

it should be diminished by a certain amount, in order to allow for the

fact that the effective dielectric constant of the crystal when vibrating

near resonance is less than that of the free crystal. This diminution

depends on the type of resonator.

For an unplated bar, if the frequency / at zero gap and fM at infinite

gap are known and also the free dielectric constant A/, the effective con-

stant ki can be found from Eq. (332) :

4* = = T
*; ft h

ki is also the type of dielectric constant to use in expressions for the

equivalent network of a flexural resonator. In the case of bars in length-

wise vibration it can be measured directly by applying an alternating

voltage at twice the fundamental frequency, as described in 371.

In the case of thickness vibrations with the field in the m-direction,

the effective dielectric constant is k^ as for a clamped crystal. One can
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measure the capacitance (CJ)o of the free crystal at low frequency and

then write Ci = A^(CJ)o/A4- For the calculation of A see 247, where

it is also suggested that C\ for the clamped crystal can be measured

directly by using a very high frequency.

322. Reduction of Observations for the Determination of the Electric

Constants. We are concerned here chiefly with those methods which

yield the values of the impedance Z( or the admittance Y{ = l/Z( of

the entire resonator at various frequencies. These quantities are defined

in 269. The simplest and most widely used procedure
1

, sufficiently

precise for most purposes, is to observe the maximum and minimum
values Ym and Yn (278), together with the corresponding frequencies

fm and jfw . At these frequencies the resonator is practically a pure
resistance.

Before considering this special case further we shall deal with the more

general problem, in which measurements are made, at a number of known

frequencies in the resonant range, of Y( and its components g{ and b[

(Y[ =
g( jb{). It is by this means that the most precise results can

be attained.

In this book the term resonantfrequency usually refers to the frequency

/o for maximum mechanical admittance, identical with that for maximum
electrical admittance of the RLC branch (275) . The resonant frequency

actually measured is usually fmj the value for maximum admittance of

the entire network (279). The only other critical frequency near

resonance that is readily found is /, at scries resonance (276); here

the reactance b( vanishes, and the resonator becomes a pure resistance.

As may be seen from Table XXIII, the differences (/o /) and (/ / )

are proportional to R 2
, becoming vanishingly small for well-mounted

quartz resonators;* with resonators subject to large losses, whether by
friction in the mounting, radiation, or the nature of the crystal itself,

these differences may have to be recognized. For almost all purposes it

suffices to assume that within the limits of error the resonant frequency,
as measured by a frequency meter, is /o = / fm- Moreover, from the

footnote on page 396, it is seen that with equal precision one may set

fp
=

fn- The quantity that must be measured with highest precision is

the frequency difference / /, not the absolute value of /o.

From 269 and Fig. 59 we have the following relations : For the entire

RLCCi network,

woCi = sv AF Y( = sv FP = sy FW b(
= sv WP (464)

* For a quartz bar with logarithmic decrement 1(10~
B
) the quantity (f /)//o is

less than one part in thirty million. If Fig. 61 were drawn to scale, the point F for

most resonators would come so close to A that points P&, B, andP would bejpractically

indistinguiahable.
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For the RCL branch, Y = g jb, where

Y sy AP g = sy AM =
0{ 6 = sv MP (465)

6 = 6;- cooCi (465a)

tan 9 l
=

j tan = - = &1
(4656)

0i 0i

Although it is theoretically possible to derive the electric constants

from observations at any two different frequencies, still it is preferable to

use a large number of observed values of g{ and 6J and then to plot a

resonance circle. A convenient scale value sy is arbitrarily selected, and,

for each frequency, FW and WP are laid off with F as origin. A point P
is thus located at each frequency. All such points should lie on a cir-

cular locus, the center C of which is at a distance AF = co Ci/stf
below

the horizontal axis through F. If the center does not fall at this level,

it may indicate an error in the measurement of Ci; nevertheless, the ratio

AF/AB is usually so small that a rough agreement is sufficient. If the

locus is not circular and no source of error in the electrical measurements

can be found, the discrepancy may be traced to varying temperature of

the resonator, especially since the temperature depends on the varying

amplitude of vibration as well as on the surrounding air, as explained in

315. In the case of Rochelle salt both the piezoelectric and dielectric

constants vary with temperature, and a variation in either of these con-

stants will displace the point P. If the circular locus is not tangent to the

vertical axis through F
y
an additional resistance component must be

sought. With Rochelle salt this component may be inherent in Ci

itself. The graphical method for allowing for the resistance of the ther-

moelement is described in ref. 107.

If for no other reason, the plotting of the circular locus is useful for

detecting sources of error and checking the consistency of the observations.

When the circular locus has been drawn, its diameter AB gives the

value of R by the relation

R =

323. In order to find L, (7, and Q, one must make use of the frequency
measurements. The frequency is most conveniently introduced by
means of the formula for frequency scale value a [Eq. (378a)]. Usually

the observed frequency for maximum admittance may be taken as identi-

cal with / . If very high precision is sought, the following procedure is

recommended: Let/' = w'/27r be the frequency for which b{ is nearest to

zero. Values of n' *= ' w for the various observed frequencies are

tabulated,. Assuming Ci and R to have been determined and b{ and g[

to be known at each frequency, we can express <r by the following formula,
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which is easily derived:
-

CO')"
27r(tan 0' - tan 0)

For each observed frequency, <r is calculated, and the average taken.

When tr has thus been determined and / ,
the frequency at point 5 in

Fig. 59, has been found, the frequency corresponding to any point on the

circle can be found according to 267. This knowledge is useful in pre-

dicting the performance of the resonator when it is to be connected to a

given external impedance.
From this average value of <r, L is found from Eq. (378) :

L - - *
(468)

If it is desired to calculate coo very precisely, the following formula

may be used for each observed co :

a tan 0' co' tan 9 /j rt\
wo = tan^ -tang (469)

The final value of co is the average of the values thus obtained.

C is to be calculated from cog
= 1/LC, and Q from the equation

Q = ^ = -
fl

The foregoing procedure is necessary only when the highest possible

precision is sought. For most practical purposes it suffices to use Eqs.

(412) and (410a):

Ym - Yn
"

fm

-
F.)

(471)

L is found from L =
l/co^(7.

If observations are made with a gap, the symbols R', L
f

,
and C' should

be used in Eqs. (471). R, L, and C can then be calculated by use of the

equations in 232 or 255.

An alternative, but more laborious, procedure for precise determina-

tion of the electric constants has been described by Dye.
127

324. The foregoing section has dealt only with the circle diagram for

the resonator by itself. It is often helpful to add to this diagram the

other constants of the measuring circuit. Light is thus thrown on the

performance of the circuit as a whole, and conclusions can be drawn

concerning the best values of the circuit constants.
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L C

As an example we consider the crevasse circuit (Fig. 70). Since the

induced emf is effectively in series with L 2 , the circuit may be represented

as in Fig. 72. J?2 is the resistance of L2 . The emf is applied at the points

a and b, and we seek the graphical representation of the impedance
between, them. Qualitatively, the

diagram can be constructed as in Fig.

73, and useful conclusions can be

drawn without knowledge of the exact

values of the various constants. For

application to a quantitative problem
it is best to start with the known value

of R and to draw a circle of convenient

diameter AB. The scale value for

admittances is then sy
= l/(R AB).

C3
Fia. 72. Equivalent crevasse circuit

with crystal represented by RLCCi.
The voltage is applied at a and b.

In building up the diagram for the other parameters we lay off

AF = woCi/Sy and FF' = woCs/Sy. For any point P on the fiducial

circle (267), corresponding to some frequency in the resonant range, the

admittance Y'* of RLCCiC* is given by sy FT = Y'2 .

Since Lg is in scries with RLCCiCt,
it is necessary to treat the problem from

F k here on in terms of impedances, accord-

ing to method 6, 303. The imped-
ance ofRLCCiCz is Z - 1/yj = st >F'P',

where

and P1
is the point inverse to P with

respect to Ff
. To this must be added

vectorially the external impedance of

LzR*, namely, s* F'F" = wL2 ,

s, OF" R 2 .

The vectorial sum is OP' = Zz/ss ,
where

Za is the impedance of

We have left out of account the correc-

tion, usually small, for a thermoelement

or other measuring device in the circuit;

this correction has been treated in a

former paper.
107

Before considering what happens to OP' while the crystal is vibrating

and the frequency is varied over the resonant range, it is necessary to

Fia. 73. Resonance circle diagram
for the crevasse circuit.
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show how the resonance curve for the tuned circuit LJt^CzCi alone can

be derived. Such a curve can, of course, be found experimentally by
clamping the crystal to suppress its vibrations or by removing it tem-

porarily from the circuit and connecting a known capacitance of value C\
in its place. Either procedure effectively makes the diameter AB shrink

to zero, so that the resonator admittance is simply coCi = sv AF.
Now observations are hardly ever extended over a frequency range of

more than 0.01/ . With a good resonator and a fiducial circle of reason-

able size, AF is usually so short that its variation with w oan be ignored.

As the frequency passes through the

resonant range with the crystal vibrating,

the operating point on the circle goes

around nearly the whole circumference,

O "T- -/* *ke P m^ F remains practically fixed, but
/i\ i HTT- -^

the changes in FF' andF'F" with frequency
cannot be ignored. Cs is likely to be so

great that FF' is several times as large as

AB and hundreds of times greater than

AF. Hence, as the frequency increases

from a value f\ on the 1-f side of resonance

to /2 on the other side, the origin does

not, like F
t
remain practically fixed but

moves downward through a range that

amounts to perhaps a tenth of AB. Small

as this range is, it plays a vital part in the

resonance phenomena.

// the crystal does not vibrate, the imped-
ance Z3 becomes sz OA = Z2 . The

variation of this quantity with frequency can best be seen from Fig.

74, which is an enlarged view of the portion near the point A in Fig. 73.

Suppose O to move from Oi to 2 as the frequency increases through the

resonance range from/i to/2 . Each vector OiA, OnA, etc., is proportional

to the impedance of L2jR2C 3Ci, and its reciprocal gives the admittance

Y2
= l/(s* OF), which, under constant impressed voltage, is propor-

tional to the current 72 in L2 . A plot of I/OA, 72 ,
or 72 against /

will therefore be the resonance curve for LJt^CzC\. The peak of the curve

is at the frequency for which OA is a minimum. The origin is then

at Os, and the resonant frequency for L2jK2CaCi, say /J
=

o/27r, is given

by wJL2
= l/<oo(C 8 + Ci). /o is usually not far from/ ,

but it is not neces-

sarily equal to / . Indeed, the CsI/2 circuit may be so detuned that f'

lies far outside the range of frequencies constituting the "resonant

range" of the crystal.

Such a curve, with different parameters from those arbitrarily

Fio. 74. Vector diagram for reso-

nance curve of LtRtCtCi.
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assumed in Fig. 74, which is purely schematic, is shown in Fig. 75. This

figure is based on experimental data from Dye* for a 44-kc X-cut bar in

lengthwise vibration. The broken line is the resonance curve for

L2#2C8Ci, with /i
= 44,000

-
120, /2

= 44,000 + 120, and / at about

44,000 70, corresponding to the minimum impedance 0$A in Fig. 74.

When the crystal vibrates, the impedance vector Zs for RLCCiLzRzCa
at any frequency is obtained by drawing a line from the appropriate

location of to the point on the circle for the particular frequency in

question. It must be remembered that we are now dealing with an

impedance circle (270, 303), around which the frequency increases in a

clockwise direction. As the frequency increases from a low value f\ to

Fio. 75.-

-100 Af 100

-Resonance curves for 1 2 and 7'z in the crevasse circuit, from Dye.
is 44,000 + A/.

The frequency

a high value /2 ,
the operating point on the circle travels clockwise from

some such position as PI to P2 in Fig. 74. Z* is proportional to OiPi at

frequency /i, to OaP3 at the frequency of resonance for L27^ 2C3Ci, and

finally to OgP2 at /2 (to avoid confusion these lines are not shown in the

figure). As the frequency increases from /i, a value is soon reached for

which the line 0PW passes through the center of the circle. This is the

frequency for minimum Z* or maximum Fa, corresponding to maximum
current 7'2 in L2 with the crystal vibrating.

The full curve in Fig. 75 shows /2 as function of /. The maximum

just referred to comes at /m i, about (44,000 90) cycles/sec. Here /

is slightly greater than 72 , corresponding to the fact that in Fig. 74

OJPn < OnA. A second maximum in / comes at (44,000 + 40) cycles/

sec, corresponding to (ynP'n in Fig. 74; at this frequency, /m2 ,
the points

and P again find themselves on a line passing through the center of the

circle.

* Ref. 127, Fig. 6.
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Within the small range of intervening frequencies the operating point

swings around the circle, and the impedance Z8 passes through a very

sharp maximum at a frequency depending on C3 (if Z/2 is fixed), but always

very close to /o. This maximum Z3 determines the minimum I'2 at the

bottom of the crevasse, the frequency here being denoted by fno. The

graphical relations can now be understood best with the aid of Fig. 73.

It will be recalled that in this figure sz
- OP' = Z3 at the frequency for

which Pr has the position shown on the impedance circle. If now the

frequency is increased slightly, Pf moves clockwise around the circle,

moves downward, and at a certain frequency the line OP' passes through
the center C of the circle. This position of the line is marked OmCPm
in Fig. 73; it is here that Z3 has its greatest possible value, for given values

of Z/2 and C3 . The smaller R* can be made, the sharper is the bottom of

the crevasse and the larger the value of I'2 at this point. In general, if

C3 is set at a relatively large value, so that/o is less than/ by 2 or 3 per

cent, the bottom of the crevasse comes at a frequency slightly lower than

/o, and 1 % is relatively small at this point. When C3 is decreased until f'

has the value shown in Fig. 75, the bottom of the crevasse is at frequency

/n o, less than /o by an extremely small amount. /n0 coincides with /o

when/J is almost, but not quite, as great as / . It is here that the mini-

mum of Z2 has its greatest possible value. As C 3 is still further decreased,

/no becomes slightly greater than /o and the minimum value of I2 dimin-

ishes again.

The foregoing conclusions, based on the graphical method, are in

agreement with Dye's analytical treatment, as illustrated in Fig. 7 in

his paper.

For determining the resonator constants by the crevasse method it is

usually amply accurate to have /o
=

/o within a few parts in a thousand

and to assume that/no = /o at the bottom of the crevasse.

325. Impressed Voltage in Parallel with Z/2. As has been stated in

316, in a few cases the coil Z/2 has been connected directly to the oscillator

output. The voltage is then applied effectively to the coil, C3 ,
and the

resonator, all in parallel The vector representing the coil has com-

ponents sv F'F" = 62 ,
sy OF" =

02, where 6 2 and g* are the susceptance
and conductance of LzR%. In the graphical treatment, following the

path indicated above, no impedance diagram is necessary; the problem
is handled entirely in terms of admittances. To this extent the graphical

method is considerably simplified. Each vector like OP' in Fig. 73 is

now proportional to the admittance Fa of the entire network. For any
given Z/2 and Ca, as the frequency is gradually varied it is found that

there are two minimum values of F3 ,
with one sharp maximum between

them. They correspond to the two minima and one maximum in Z8
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when L2 is in series with the rest of the network. The "crevasse" is

converted into a sharp "pinnacle."
It can be shown that the frequency difference between the two values

of minimum Fs is greater the larger the value of Z/2 and that it can be

made several times greater than the difference fp /, between the

parallel- and series-resonance frequencies of the resonator alone. It

was for this reason that Builder81
adopted this method in his measure-

ment of resonator constants.
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CHAPTER XVI

PROPERTIES AND TECHNIQUE OF QUARTZ

Marmoreum ne sperne globum. Spectacula transit

regia, nee rubro vilior iste mari.

informis glades, saxum rude, nulla figurae

gratia: sed raras inter habetur opes.

CLAUDIUS CLAUDIANUS.

Because of its physical stability and its superior elastic properties,

quartz is the only piezoelectric crystal that has found important applica-

tions as a resonator. Its behavior as a resonator will be treated in the

next chapter. For the present we shall be concerned first with the con-

ventions respecting axes and angles and with those physical properties
that are not treated in Chaps. II, VI, IX, XXX, and XXXI. Later

in the chapter will be found a description of methods for orienting raw

crystals, cutting and finishing of plates, and mounting in holders.

326. Axes and Angles for Right- and Left-quartz. Through the

voluminous literature on the properties of quartz crystals there runs,
like a crack in an otherwise clear crystal, an amazing ambiguity concern-

ing the distinction between right- and left-quartz, the positive sense of

the directions of the X- and F-axes, and the positive sense of angles of

rotation. This subject has been discussed at some length in two recent

papers
110 - 558

,
arid a committee of the I.R.E. has agreed upon a system of

conventions to be recommended for general adoption.* The recom-

mendations of this committee concerning the three matters named above
are in agreement with the suggestions in the paper by Van Dyke and the

author,
110 and they are followed in this book.

The distinction between right and left (dextro- and levogyrate)

crystals has been pointed out in 7. The ambiguity in definition had
its origin in the writings of Herschel and Biot, who used opposite defini-

tions of the sense of rotation of a beam of plane-polarized light, f The
convention now adopted is that of Biot, according to which a crystal is

called right when the direction of rotation appears clockwise to an observer

looking back through the analyzer toward the source of light (see also 538) .

This definition has the advantage that if a given crystal is "right"

* The report of this committee was approved by the directors of the institute on
June 7, 1944.

f SOSMAN, ref . B47, p. 649.

406
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crystallographically, as judged by the s- and s-faces shown in Fig. 5 or

Fig. 76, it is also "right" optically.

In all that has to do with the making of oblique cuts of quartz for

special purposes or with the study of physical properties in oblique direc-

tions, the distinction between right and left specimens must be clearly

borne in mind. Failure to do so will almost inevitably lead to false

results. In many situations the difference between right and left is

equivalent to that between right and wrong.

327. The I.R.E. Axial System. Until recently most writers, includ-

ing Voigt, have used a right-handed orthogonal system of axes for both

forms of quartz. This practice has the serious disadvantage of requiring,

on passing from a right- to a left-crystal, a change in sign of all piezo-

electric constants and of certain terms in the equations for transformed

axes. These annoyances and possible sources of error are completely

avoided by the adoption of a right-handed axial system for right-quartz,

left-handed for left-quartz.

The advantages of such an arrangement were pointed out by Koga
as early as 1929.* A similar proposal was made later by Mason and

Willardf and independently by Cady and Van Dyke.
110

!' This system

of axes was also used by Builder and Benson82 in 1938.

The convention by which right-handed and left-handed frames of

reference are used, respectively, for right- and left-quartz will be referred

to as the I.R.E. system. Under this system, all equations, together with

all direction cosines, are exactly the same for both forms of quartz.

In general, it is sufficient in diagrams, etc., to represent a right-handed

system of axes, as for right-quartz. Not until the time comes to lay off

angles on an actual specimen is it necessary to give heed to the question

of enantiomorphism. Then, if the specimen is left-handed, one need

only reverse the direction of the X-axis and observe the rule given below

for the positive sense of angles.

The change in axes from right- to left-handed on passing from a

right- to a left-quartz is a logical accompaniment to the corresponding

change in the external appearance and physical properties of the crystal.

If a photograph were taken of a right-quartz crystal showing the right-

handed XFZ-axial system together with all equations, curves, polar dia-

grams, and models illustrating its physical properties including elastic

and piezoelectric, then the mirror image of this picture, obtained, for

example, by making a photographic print with the film reversed, would be

an exact reproduction of a left-quartz together with its physical properties.

*
KOGA, L, Jour. Inst. Elec. Engrs. Japan, July, 1929, pp. 49-92; Electrolech. Jour.

(Japan), 1938, pp. 287-289.

t W. P. MASON and G. W. WILLABD, Proc. I.R.E., vol. 28, p. 428, 1940.

i This paper was written in 1939, but publication was delayed.
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These considerations are made clear in Fig. 76, which shows an end

view and also a cross section in the FZ-plane, for both right- and left-

quartz. In the upper diagram the positive direction of the #~axis, in the

lower diagram the positive direction of the X-axis, points toward the

observer.

r+^f'"

rp

Fio. 76. Left- and right-quartz, showing strains xx and xy , with accompanying polar-
izations Px and PI/, also showing the positive sense of the angle of rotation 0.

The Y- and Z-axes have already been defined in 5. As may be seen

from Fig. 76, the positive end of an X-axis emerges from the crystal at each

of the three prismatic edges where s- and x-faces may be found. This is

the end at which a positive charge appears when the ^-strain is positive,

i.e., when the specimen is stretched in the X-direction. These statements

hold for both right- and left-quartz.

Figure 76 shows an X-cut being stretched so that there is an extensional

strain in the X-direction and accompanying contraction in the F-direc-
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tion. The arrow P* indicates the positive direction of the ensiling

electric polarization, in conformity with the statement above that a

positive strain is associated with a positive charge at the positive end

of the X-axis. Compressional strains and stresses do not change sign in

the mirror image.

Positive Sense of Rotation for Quartz Axes. The general definition of

positive and negative angles given in 38 is, according to the convention

here adopted, to be applied to right-quartz. For a Ze/i-quartz the angle

of rotation is to be considered as positive when clockwise as seen by an

observer looking back toward the origin from the positive end of the axis

of rotation.

These statements may be combined in the following single rule,

applicable to both types of quartz crystals :

The angle of rotation is to be called positive when the sense of rotation

is from +X to + Y, from +Y to +Z, or from +Z to +X. In the

I.R.E. system this definition is valid for both right- and left-quartz.

An equivalent statement, following the usual convention for rotational

vectors, is that a positive angle of rotation is related to the positive sense

of the axis of rotation as the direction of twist of a screw is related to the

direction of advance, the screw being right-handed for a right-quartz,

left-handed for a left-quartz.

As an illustration of the rule for rotated axes there are shown in Fig. 76

polar diagrams of the distribution of Young's modulus in the FZ-plane.

This quantity is the reciprocal of the compliance coefficient s'33 obtained

by rotating the Y- and Z-axes through various angles 6 about the X-axis.

The maximum value is in the direction approximately perpendicular to

an r-face, and the corresponding angle 6, according to the I.R.E. system,
is about +48 for both right- and left-quartz (96).

In the upper portion of Fig. 76 is a section of a 7-cut plate under-

going a positive shearing strain xy , together with the associated electric

polarization Py . Tangential forces are indicated by arrows. From the

equation Pv
= e26xy = e\\Xy and the sign of en as given below, it is

seen that Py is negative. The piezoelectric shear xy produced by a

field Ey in the positive direction of the F-axis has the same sign for left-

as for right-quartz. A similar statement applies also to all other piezo-

electric shears.

The Signs of Elastic and Piezoelectric Constants. According to Voigt's

notation, all elastic coefficients have the same signs for left- as for right-

quartz, but the signs of all piezoelectric constants change in passing from

right to left. Under the I.R.E. system, Voigt's notation for the elastic

coefficients remains unchanged.

Voigt assigns negative numerical values to the constants d\i, en,

and CM for left-quartz and a positive value to du. These signs are with
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respect to a right-handed axial system. While other observers have

obtained values differing in magnitude from Voigt's, there has been no

disagreement as to sign. For a right-quartz the signs, according to Voigt,

are reversed, viz., du+, en+, du-, eu+. According to the I.R.E. conven-

tion, adopted in this book, the signs of the piezoelectric constants for

both types of quartz are those which Voigt would have assigned to a right-

quartz; they are opposite to those commonly quoted. Voigt's statement

that his observations were made on a left-quartz is so inconspicuous* as

to be easily overlooked, and those who made later determinations seem

to have been more interested in numerical magnitudes than in signs.

328. Some Physical Properties of Quartz, f Little is known concern-

ing the effects of traces of impurity and of previous treatment on the

physical properties. At all events, such effects are probably slight,

except in the case of the electrical resistivity. Nevertheless, the dis-

crepancies between the results of different observers may have been due

in part to real differences between the various specimens used.

The hardness of quartz is 7 on the Mohs scale. IchikawaJ states

that a surface cut normal to the optic axis is much softer than the natural

faces. The crushing strength has been found by Bridgman to vary from

33,000 to 40,000 kg/cm2
, depending on the confining pressure. When the

crushing stress was reached, the crystal specimen became reduced to a

fine powder. SosmanB47 states that at atmospheric pressure the crushing

strength is around 24,000 kg/cm2 and also that for small specimens a

tensile strength of about 1,000 kg/cm2 may be expected. ||
The tensile

strength is slightly greater parallel than perpendicular to the optic axis.

Fracture. The atoms of quartz are so closely bound together in all

directions that there are no planes of easy cleavage. There are, however,
two tendencies that can often be observed. The first is a peculiar shell-

like curved portion of the broken surface, called conchoidal fracture.

The second is fracture approximately parallel to one of the faces of the

major rhombohedron or, to a smaller extent, the minor rhombohedron.lf
This type of fracture is sometimes encountered on heating or when plates

vibrated piezoelectrically are shattered by the application of too high a

voltage. The author first observed this latter effect in 1920. Since then

it has been recorded by others, for example Wright and Stuart,
594

Seidl,
466

*
"Lehrbuch," p. 861.

t All data are for a-quartz unless otherwise noted. Certain data on the /3-modifica-

tion (at temperatures above 573C) will be found elsewhere in this book. For a full

discussion of 0-quartz see Sosman.
347

J S. ICHIKAWA, Am. Jour. Sci., vol. 39, pp. 455-473, 1915.

P. W. BRIDGMAN, Jour. Applied Phys., vol. 12, pp. 461-469, 1941.

||
From this figure and the elastic compliance of quartz the breaking extensional

strain for a quartz bar is found to be of the order of 0.001.

1f See H. W. FAIBBAIRN, American Mineralogist, vol. 24, pp. 351-368, 1939.
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Booth,
69 Gramont,

B21 Van Dyke,
666

Sanders,
446

Shubnikov,
463

and,

especially, Straubel. 488 Gibbs and Tsien159 observed a spiral fracture

in the case of a torsionally vibrating hollow quartz cylinder with length

parallel to the optic axis. Rivlin* found that, after a Z-cut plate had

been suitably rough-ground, it showed a hexagonal pattern when held

close to the eye while the observer viewed a point source of light. He

attributed the effect to comparatively easy fracture in planes belonging

to zones {10 1} and suggested it as a means for locating the X-axes.

Rivlin's pattern can be seen easily with the aid of the rodoscope described

in 339. The grinding on the Z-surface should be done by hand, using

very coarse carborundum (45 to 60 mesh) and water, and applying rather

heavy pressure in short, curving strokes in random directions. In 1930

Shubnikov had already observed the formation of small triangular pits

when a ^-surface had been struck with a sharp steel point. He found

that subsequent etching with H 2F2 made the outlines more distinct.

A similar effect produced by dropping a steel ball on to the 2f-surface is

mentioned by Hawk.f
Luminescence is observed when prismatic edges of two quartz crystals

are struck together in a dark room. The effect is not as bright as with

sugar crystals.

329. The physical properties of quartz have been discussed very

exhaustively by Sosman.B47 A few of the data from his book, for density,

thermal conductivity, and specific heat, are assembled in Table XXV.

TABLR XXV. DENSITY p IN GM cwr3
,
THERMAL CONDUCTIVITY IN CAL CM" 1 SEC" 1

DBG" 1
,
AND SPECIFIC HEAT IN CAL GM -I DEG"1

,
FOR <*-QUARTZ, AT VARIOUS

TEMPERATURES

The symmetry of quartz is such that the thermal and electrical con-

ductivities have only two principal values, parallel and perpendicular to

the Z-axis, just as is the case with the dielectric and optical constants.

For oblique directions the values vary ellipsoidally between the two

principal values.

* R. S. RIVLIN, Nature, vol. 146, pp. 806-807, 1940.
N

t H. W. N. HAWK, U. S. patent 2,264,380, 1941.
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As the best mean value at 20C Sosman adopts p = 2.649 0.2.

Recently Miller and Du Mond* have found p = 2.64822 0.00005 at

25. For most calculations it suffices to call p = 2.65 at ordinary

temperatures.
The temperature coefficient of density (dp/dt)/p as calculated by

Mason and Sykes
843 is -36.4(10~

6
).

For p-quartz, p = 2.518 at 600C.f

I6xl0
3

12

200 400
C

600 800

FIQ. 77. Thermal expansion of alpha- and beta-quartz, from Jay. Upper curve

XZ-axis, lower curve ||Z-axis. Ordiiiates indicate expansion per unit length, starting at

18C.

The coefficient of thermal expansion has been thoroughly investigated

by Jay,t by an X-ray method, over a wide range of temperature. His

results, shown in Fig. 77, include data on /3-quartz. His values are in

general agreement with those obtained by optical methods. In the

neighborhood of room temperature the coefficients of expansion parallel

and perpendicular to the optic axis are found from Jay's results to be

9.0 (10~
6
) and 14.8 (10~

6
) per degree, respectively.

More recently, the thermal expansion perpendicular to the optic axis

has been measured by Nix and MacNair by means of their "inter-

* P. H. MILLER, JR., and J. W. M. Du MOND, Phys. Rev., vol. 57, pp. 198-206,

1940.

t A. L. DAY, II. B. SOSMAN, and J. C. HOSTETTER, Am. Jour. Sd., vol. 37, pp.

1-39, 1914.

t A. H. JAY, Proc. Roy. Soc. (London) (A), vol. 142, pp. 237-247, 1933.

F. C. Nix and D. MACNAIR, Rev. Sci. Instruments, vol. 12, pp. 66-70, 1941.

The dilatometer described in this paper should prove useful for measuring piezo-

electric as well as thermal dilatations at all temperatures.
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ferometric dilatometer." Their results are in substantial agreement
with Jay's.

330. Electrical Properties of Quartz. Quartz is an excellent insulator,

except at high temperatures. Such electrical conductivity as it has is

much greater parallel than perpendicular to the optic axis. Parallel

to the optic axis the conductivity is largely electrolytic at high tem-

peratures, owing to traces of impurities. The data in the following table

are from Sosman
;

B47
they indicate only the order of magnitude. Observa-

tions of conductivity at various temperatures and under various voltages

TABLE XXVI. RESISTIVITY OP QUARTZ AT VARIOUS TEMPERATURES
In ohm cm"1

have been made more recently by Altheim.* Joff6B3 found that expo-

sure of a specimen to the radiations from radium caused a gradual increase

in conductivity, so that after "many days" the initial value was exceeded

many times.

The electric strength of quartz parallel to the optic axis is given by
Austen and Whiteheadf as 6.7(10

6
) volts/cm. This value agrees well

with the observations of von Ilippel and Maurer,{ who find that the

electric strength increases almost linearly from about 4(10)
6
volts/cm at

-80C to 7(10
6
) at +60C. The value is slightly greater parallel than

perpendicular to the optic axis.

331. The recorded measurements of the dielectric constant of quartz
show a spread of several per cent. It is not yet known to how great an

extent this may be due to actual differences between individual speci-

* OLGA G. VON ALTHEIM, An. Phk., vol. 35, pp. 417-444, 1939. For further

investigations on the conductivity of quartz see E. Darmois and R. Radmaneche,
Jour. phys. rad., vol. 7, pp. 16S, 17S, 1936; N. G. Rahimi, Jour. phys. rad., vol. 9,

pp. 291-296, 1938; E. G. Rochow, J. Applied Phys., vol. 9, pp. 664-669, 1938; H.

Saegusa and T. Matsumoto, Japan Jour. Phys., vol. 11, p. 61, 1936; H. Saegusa and
K. Saeki, Sci. Repts. Tohoku Univ., vol. 18, pp. 231-244, 1929; H. Saegusa and S.

Shimizu, Elec. Rev. (Japan}, vol. 18, pp. 69/., 1930; H. Saegusa and S. Shimizu, Sd.

Repts. Tohoku Univ., vol. 20, pp. 1-35, 1931; Seidl;
466 S. Shimizu, Phil. Mag., vol. 13,

pp. 907-934, 1932.

t A. E. W. AUSTEN and S. WHITEHEAD, Proc. Roy. Soc. (London} (A), vol. 176,

pp. 33-50, 1940.

t A. VON HIPPBL and R. J. MAURER, Phys. Rev., vol. 59, pp. 820-823, 1941.
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mens. At least it can be said that the constant is slightly greater

parallel to the optic axis than perpendicular to it and that there is no

great change with frequency outside the experimental errors. Jaeger's

values* were slightly greater at high than at low frequency. On the

other hand, Doborzynski,f whose paper contains a comparison of the

results of many observers, found from his own measurements at 50 cycles/

sec that k\\
= 4.66, k = 4.55. At 5(10

6
) cycles/sec he found k\\

= 4.58,

k = 4.41. All things considered, we are inclined to accept the "most

probable" values recommended by Sosman, viz.,

h\i
= 4.6 *_L = 4.5 (472)

The value of
k\\

is independent of strain. 4%5 is the value of k for a/ree

crystal.

To calculate the clamped dielectric constant k" of quartz for a field

perpendicular to the optic axis we specialize Eq. (265) in 204. Using
the values of the piezoelectric constants given in 156, we obtain

= k" + 0.087 (473)

Calling k' =
4.5, we thus have

k" = 4.41 (474)

For lengthwise vibrations of an X-cut quartz bar with length parallel

to the F-axis, the effective 'dielectric constant fa is derived from Eq.

(311) in 229, using for s*n ,
from 90, *,

= sj2 = sfx
= 1.269(10~

12
):

ki = 4.5 - 0.047 = 4.45 (474a)

The dielectric constant for a field in any oblique direction N having
the direction cosines I, m, n is given in 108, Eq. (157):

For quartz, kn = kn =
&j_, 33 = k\\. Hence one can write, setting

n = cos 6 according to Fig. 17,

ky = (1
-

n*)k + n2
&,|
= t + (Jb|

-
tj.) cos2 9 (4746)

For the free crystal this expression becomes

k'N = 4.5 + 0.1 cos2 e (474c)

The dielectric constant is the same in all azimuths; the only variation

is with the angle of altitude.

* SOSMAN.*"

f D. DOBORZYNSKJ, Bull. Intern. Acad. Polon. Sci. Lettres, ser. A, no. 6-8A, pp.

320-349, 1937.
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Dependence of the Dielectric Constant on Temperature. Parallel to

the optic axis the constant hardly changes from 0C to about 100C,
after which it increases, slowly at first and then more rapidly, until at

300 the value is about 13. From here on up to 750C there is practically

no further change.

Perpendicular to the axis the constant is unchanged up to 300,
with a very slight increase from 300 to about 500, where a rather sharp

upward turn takes place until at 800 the value is about 12.
*

Dependence of the Dielectric Constant on the Electric Field Strength.

The results obtained by Saegusa and Nakamuraf are as follows:
k\\

is

independent of the field strength up to 2,000 volts/cm, showing an

increase from there on; k shows no variation up to 12,000 volts/cm.

EXPERIMENTAL DETERMINATION OF THE AXES OF QUARTZ CRYSTALS

332. Under this heading are to be included the methods for dis-

tinguishing right- from left-crystals and for locating twinned regions, as

well as the use of polarized light, etching, and X-rays for determining the

axial directions.

For both experimental research and industrial uses it is important to

know the orientation of the preparation, whether bar, rectangular plate,

or some other form, with respect to the crystallographic axes. The
allowable tolerance depends, of course, on the purpose in hand. For

demonstrations, qualitative tests, and the construction of piezo oscilla-

tors when the demand for precision is modest, results may be satisfactory

if the orientation is in error by several degrees. The specimens used

in the pioneer work on resonators were far from being accurately

oriented.

The demand for greater constancy of frequency in radio transmitters

that arose in the 1920's led first to thermostatic control of temperature
of the X- and F-cuts of quartz crystals that were then employed and

later to the use of various oblique cuts. Such cuts can now be made
with a vibrational frequency almost independent of temperature, although
for some purposes temperature control is still used. The orientation of

plates with zero temperature coefficient is quite critical; in some cases

the tolerance is no more than a few minutes of arc.

In the past, quartz crystals were available that were developed with

enough perfection to enable plates to be cut with good precision by
reference to the natural faces. Even then, however, it was necessary to

use optical tests for twinned regions and often also in order to know

*
SOSMAN, ref., B47 p. 524.

t H. SAEGUSA and K. NAKAMURA, Sci. Repts. Tohoku Univ., vol. 21, pp.411-438,

1932.
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whether a crystal was right or left. Entirely untwinned specimens have

always been rare.

The demand for quartz crystals has now become so great that much
of the raw material consists of poorly faced specimens, broken fragments
devoid of natural faces, or "river quartz/' which, while it may be of good

quality inside, looks externally like a rounded cobblestone, with an almost

opaque exterior.

Many techniques have been developed for determining the directions

of the crystallographic axes without making use of natural faces. The

following data 'are sought:
1. The direction of the optic (Z-) axis.

2. The hand of the crystal, whether right or left.

3. The positive direction of either the X- or the F-axis.

Usually it is most convenient to obtain the first two data by an optical

method. When once the optic axis has been determined within a few

degrees, the etch method offers a quick and simple means for a more

precise orientation; it indicates also whether the crystal is right or left,

reveals twinned regions oil the etched surface, and shows the positive

directions of the transverse axes. For highest precision, X-rays are used.

Piezoelectric or pyroelectric tests have often been used for finding*

the locations and positive ends of the Jf-axes.
*

Such methods are useful mainly in making very rough preliminary

orientations of raw crystals after the direction of the optic axis has been

approximately found. They cannot be included among the methods of

njecision.

333. Optical Tests of Quartz. The effects employed are chiefly

extinction and optical activity, both of which are described in Chap.
XXX. The optical constants of quartz are given in 534.

Immersion Liquids. Polished plane-parallel plates can, of course, be tested without

immersion. If a specimen is irregular and unpolished, the light is refracted and
scattered on entering and leaving the crystal unless the latter is immersed in a trans-

parent liquid having at least approximately the same refractive index as quartz.

For precise work in which the optic axis is to be parallel to the light beam, the index

of the liquid should approximate closely to that of the ordinary ray, viz., 1.544, and the

liquid should be in a tank with parallel sides of plane strain-free glass. For approx-
imate tests one need not be quite so particular. A clear lubricating oil is often

sufficient.

The ideal immersion liquid would be transparent, colorless, non-volatile, non-

inflammable, non-corrosive, and non-toxic, with the desired refractive index. No
available liquid has all these virtues. Nitrobenzene makes a fair match but is toxic.

Monobrombenzene is somewhat better, as is also a mixture of nitrobenzene with

carbon tetrachloride, or of carbon disulphide with benzene. Tetralin is sometimes

used, and also methyl salicylate or cedar oil. Very satisfactory results are obtained

*See, for example, L. H. Dawson.m
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with tricresyl phosphate.* Recently a special liquid with refractive index 1.641 to

1.547 has become available, f

Preliminary Inspection. This step may be combined with the next

following. The specimen is examined for cracks, phantom growths,

"feathers," and inclusions, in a strong beam of transverse light, preferably

with the crystal in the immersion liquid. Portions containing more than

minute traces of imperfection should be rejected, since imperfections may
make the finished plate more fragile and may also distort the elastic

waves when the resonator vibrates. There appears to be no objection

to the use of smoky quartz or of crystals that are otherwise tinted with

impurities. With river quartz it may be necessary to grind or cut
" win-

dows" at various points before the preliminary inspection can be made.

Rough Determination of the Optic Axis and Detection of Optical Twin-

ning. The crystal is immersed and examined between crossed polaroids

in a beam of diffuse light, which may be white. { Rotating the crystal

about the beam as axis will cause the transmitted light to change from

light to dark four times in a complete rotation, owing to extinction, until

an orientation is found for which the field remains bright on rotation.

The optic axis is then approximately parallel to the beam. Extinction

begins to be less complete when the optic axis is within 20 of the beam.

When the crystal is thus viewed in plane-polarized light in a direction

sufficiently close to that of the optic axis, if there is no twinning the field

looks nearly uniform, except for differences in color or brightness due to

differences in optical path through various portions of the crystal. If

* Sold under the trade name of Lindol. It is clear, colorless, and neither volatile

nor inflammable. The refractive index is about 1.561 at 11.5C and 1.555 at 25C.

To some individuals it is said to be a skin irritant. In any case, the liquid should be

free from the ortho form, which is toxic. Tricresyl phosphate has been used in

Scott Laboratory for quartz testing for many months without ill effects.

f Obtainable from the Socony Vacuum Oil Company. See also the list of liquids

given by W. L. Bond. 68

J If the ends have already been cut off with fairly plane surfaces approximately

normal to the optic axis, as can be done if the crystal has natural faces, the examina-

tion for twinning can be made without complete immersion. A piece of ordinary

glass can be placed in contact with each cut surface, with a smear of the immersion

liquid between.

An instrument devised in this laboratory for the approximate determination

of the optic axis without the necessity of dipping the hands in the immersion liquid is

the flicker polariscope. The crystal is clamped in a holder that can be rotated about

horizontal axes by rods extending down into the immersion liquid. The light beam

passes vertically upward through the bottom of the glass jar containing the liquid.

Above and below the jar are crossed polaroids, mounted in disks that are rotated

synchronously by a chain drive about once per second. Periodic flashes of light are

seen when the quartz is in place, which become a steady glow when the optic axis is

parallel to the beam. A precision of 2 or 3 is easily obtained. With certain refine-

ments settings can be made closer than 1.



418 PIEZOELECTRICITY [334

optical twinning is present, it is revealed by a sharply defined pattern,

usually in the form of many triangles crowHed together or streaks parallel

to the X-axes, showing brilliant colors if the light source is white. The
twinned regions are seen more often around the edges than in the center

of the field. Their depth in the crystal can sometimes be estimated by

tilting. Stereoscopic devices have also been used for the localization of

twinned regions.

The approximate locations of twinned regions can be marked on the

crystal and such portions discarded when the crystal id cut. Some

crystals show a boundary separating the right from the left form. The

boundary can be marked and the two regions utilized separately.

River quartz can usually be cleaned sufficiently by scouring to allow

the optic axis to be foui\d approximately by the method just described.

A cut roughly normal to the optic axis is then made at each end, after

which the crystal can be immersed again and examined for twinning.

There are also methods for finding the approximate direction of the

optic axis by orienting the crystal for maximum extinction, instead of

absence of extinction.

If the crystal is not more than about 3 cm in length parallel to the

optic axis and is placed between polaroids in diffuse light, as described

above, traces of the rings mentioned in the next section are usually visible

to the eye placed close to the crystal.

334. Determining the "Hand" of a Quartz Crystal in Convergent
Polarized Light. The apparatus is very simple and need not be of high

optical quality. White light may be used, with or without a color filter,

although with large crystals a mercury or sodium arc is to be preferred.

By means of a lens somewhat wider than the crystal, the light is con-

verged to a cone of which the apex falls in the crystal, the outermost rays

making an angle of 15 or so with the optic axis of the system. Unless

the crystal is a polished Z-cut slab, which is usually not the case, it must
be immersed. For large crystals the focal length of the lens may be from
5 to 10 in.

;
a condenser lens of the sort used in theater spotlights is suit-

able. A polarizer is placed between the light source and the crystal.

An observer looking at the quartz through an analyzer sees a system
of more or less concentric rings. With an accurate 2/-cut plate of any
thickness greater than 0.5 mm, plane-parallel and untwinned, the rings

are concentric circles centered on the beam if the optic axis is parallel

to the beam. The rings are distorted if the crystal is irregular, and they
are broken in outline, with abrupt changes in color or brightness, if there

is twinning.
If now the analyzer is rotated, the rings either expand or contract

according to the "hand" of the quartz. The rule is as follows:

\\ When the analyzer is turned clockwise, if the rings expand, the quartz
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is right; if they contract, the quartz is left. The clockwise rotation is from

the viewpoint of an observer looking back toward the source of light.*

If the crystal is twinned, some segments of the rings may expand while

others contract.

If white light is used and if the crystal is not more than about 2 cm
thick parallel to the optic axis, the hand of the quartz can also be judged

by observing the succession of colors in the clear field inside the circles,

as the analyzer is turned. On clockwise rotation of the analyzer, a right-

quartz shows a gradual change from red through yellow and green to

violet. With a left-quartz the succession is reversed. This method can

be used with plates that are too thin to show the expansion of the rings.

Finding the Orientation of the Optic Axis by Convergent Light. The

apparatus is similar in principle to that just described but is constructed

with more precision and with the addition of a lens and eyepiece between

the analyzer and the eye. Means must be provided for a fine angular

adjustment of the crystal until the ring pattern is symmetrical and for

correlating its position with the axis of the optical system. A precision

of 1 min of arc has been claimed for this method, f A refinement of the

method, in which use is made of Airy's spirals, has been described by
Booth. 69

336. Etching Tests of Quartz. The solvent commonly used is hydro-
fluoric acid, H 2F2 ,

since most other solvents, for example hot alkalis, act

very slowly and there is no evidence that they produce better etch

figures.^ For most purposes commercial 48 per cent acid at room tem-

perature is suitable, although in some cases, as will be seen, greater

dilution gives better results. The time of etching may vary from half

an hour to several hours, depending on the orientation of the surface

to be etched and on the manner of examining the result.

Among common materials attacked but little, if at all, by H 2F2 are

paraffin, rubber, lead, and copper. Small-scale etching is conveniently

carried on in a dish or tray lined with paraffin or in an old rubber battery

* The hand of a Z-cut slab of any thickness up to at least 2 cm can be determined

with no apparatus beyond two small pieces of polaroid. If the faces of the slab are

unpolished, they can usually be made sufficiently transparent by merely moistening.

The crystal is held close to the eye, with a polaroid on each side, in light from the

sky or from any bright diffuse source. A portion, at least, of the system of colored

rings can be seen, and their expansion or contraction on rotating the analyzing polaroid

can be observed. Moreover, by making use of the partly polarized light from the

sky, the polarizer can be dispensed with. By a little juggling one can even contrive

to use a piece of glass, for example a spectacle lens, as analyzer.

f A. Biot, Ann. Soc. sci. Bruxelles, vol. 58, pp. 98-100, 1938.

t Recently a new etch solvent for quartz, free from the more objectionable proper-

ties of HjF2, has become available under the name of Quartz-Etch, the base of which

is said to be ammonium bifluoride. Preliminary tests in this laboratory indicate that

the etch figures and refraction images are inferior to those obtained with H 8Fj,
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jar. Copper implements and racks are useful for holding and handling

crystals. Most uniform results are attained by rocking the container

during etching; a motor drive is easily contrived and greatly to be recom-

mended. The acid loses strength both by evaporation and use and has

to be renewed rather frequently. There is also some evidence that acid

containing considerable amounts of the products of solution does not

make as good etch patterns as freshly prepared acid.

Provision should be made for drawing off the vapor from the acid and

for neutralizing it if necessary. Every possible precaution must be taken

to guard against even slight contact of the acid with the skin, since hydro-

fluoric acid burns are very serious.

Etching takes place most rapidly on surfaces normal to the Z-axis,

less rapidly at the ends of a 7-axis (prismatic faces) and the positive ends

of the X-axes, and very slowly at the negative ends of the A"-axes.

Etching tests are useful for determining whether a crystal is right

or left; for locating, on the etched surface, regions of optical and electrical

twinning; and for determining approximately the orientation of any

specimen or cut with respect to the crystallographic axes. Several

techniques are available: (a) microscopic examination; (b) production of

large-scale patterns on a quartz sphere; (c) light reflection; (d) light

refraction.
*

336. a. Microscopic Examination of Etched Surfaces.] We consider

first the etch figures on surfaces normal to the X-, F-, and Z-axes and their

relation to the hand of the crystal and to optical and electrical twinning.

Although the figures usually observed differ widely in size and in degree of

perfection, still certain characteristic forms can be recognized. These

forms appear best after etching for an entire day and require no special

preliminary treatment of the surface beyond enough lapping to remove

gross roughness.

As illustrated in Fig. 78, at the positive end of the X-axis the figures

resemble narrow hysteresis loops, which merge to form closely packed

grooves parallel to the #-axis. At the negative end are parallelograms

with one pair of sides parallel to Z. The polar character of the X-axis

is here clearly in evidence. The F-axis is not polar, and the figures

at its ends, for crystals of the same hand, are alike except for orientation;

this difference can be traced to the polarity of the X-axis. The same

remarks apply to the figures on faces normal to the Z-axis. In each of

* A technique for making replicas of etched surfaces, suitable for microscope

slides, has been described by V. J. Schaefer, Phys. Rev., vol. 62, pp. 495-496, 1942.

f Perplexing discrepancies are found in the literature. The outlines of etch

figures on the w-faces (K-cuts) in Groth (ref. B22, Table III) do not agree with those

shown by O. Meyer and S. L. Penfield in Trans. Conn. Acad. Arts Sci., vol. 8, pp.

158-165, 1889, and both are at variance with the results of very careful tests made

in this laboratory.
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the six diagrams the etch figures at the right and left of the vertical axis

illustrate optical twinning.

The figures at the ends of the Z-axis (i.e., on Z-cut surfaces) are due

to minute pyramids or pits with triangular bases (see Plate 6 in the paper

by Booth69
). They vary greatly in appearance with time of etching,

illumination, and microscope focus. On prolonged etching they undergo
characteristic changes.

*

If electrical twinning (15) is present, some regions of the same hand

are rotated 180 about the Z-axis with respect to the rest of the crystal.

For example, a left-quartz may show etch figures like ai and a2 on the

same X-surface, 61 and 6 2 on the same F-surface, and c\ and c* on the same

Z
An jA.jrR z L x*

FIG. 78. Typical idealized microscopic etch figures for right- and left-quartz, on sur-

faces normal to the X-, F-, and Z-axes. Upper row is for surfaces from which the positive
end of one axis points toward the observer. In the lower row the positive end points away
from the observer. Figures for left-quartz are to the left of the vertical axis in each case,

for right-quartz to the right. The symbol YL indicates the positive direction of the K-axis

for left-quartz, etc. The magnification is of the order of 200 diameters. The patterns are

shown in their actual orientation on the crystal surface, and not as they appear under the

microscope.

Z-surface, Electrically twinned regions are generally bordered by
irregular lines. Both elastic and piezoelectric properties are different

on opposite sides of the border; hence, electrically twinned plates are

not suitable for resonators.

In optical twins there are two different possibilities, according to

whether the two components have the positive ends of the X-axes or of

the F-axes pointing the same way (see Fig. 76). In the former case, a

surface normal to X may show ai and a{ on different areas, while the

corresponding surface on the other side of the crystal shows a* and oj.

If the F-axes point the same way, ai and e&2 may be seen on one side of

the crystal, a( and ai on the other. Analogous remarks may be made

concerning the figures on 7-surfaces. As to the Z-surfaces, if the

A'-axes (or F-axes) point the same way, the figures are always mirror

*
HONESS, ref.
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images with respect to X (or 7). It seems to be a common convention

to call the type of twinning when the 7-axes point the same way simply

"optical twinning," while the term "combined optical and electrical

twinning" is used in the other case.

If the X-axes point the same way in an optically twinned crystal,

the piezoelectric properties are the same on both sides of the boundary,

but not the elastic properties. If the X-axes are oppositely oriented

(in which case the F-axes are similarly oriented), the elastic properties,

but not the piezoelectric, are the same on both sides of the boundary.

In either case optical twinning beyond a very small amount makes a

specimen undesirable for resonators.

FIG. 79.- -Etch pattern on a 50-ram sphere of left-quartz, from Van Dyke, (a) View
toward an m-face, with an JMace above it; (6) view along the optic axis.

Etched surfaces in other orientations show a great variety of char-

acteristic figures, often very difficult to identify under the microscope.

In practical cases it is much better to identify cuts and axes by reflected

or refracted light ratherthan microscopically. The advantage thus gained

is that the effects of multitudes of etch facets become integrated, yielding

more dependable results than is possible from the examination of indi-

vidual etch figures.*

337. 6. Large-scale etch patterns on a quartz sphere have recently been

described by Van Dyke.
658

f Figure 79, taken from his paper, shows the

appearance of an initially polished sphere after several hours of etching

in H2F2 . The entire surface has been more or less attacked, but certain

* Excellent microphotographs of etch figures on quartz surfaces in many orienta-

tions appear in a paper by Bond.83

t References to the literature on the subject are given in this paper.
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areas, notably near the negative ends of the X-axes, are so little etched

that the formation of etch facets can be detected only by the "sheen"

in light reflected at the proper angle. On the other hand, the roughening
of the surface marked out by the "tripus" in Fig. 796 is quite conspicuous.

In general, the outlines of the pattern are determined not so much by
marked differences in amount of etching as by changes in the sheen,

indicating that the orientations of the facets formed in the process of

etching, as well as the speed of solution, are strongly dependent on the

angle at which the sphere cuts across the lattice structure.

When viewed by reflected light, five well-defined areas can be dis-

tinguished. Most prominent is the tripus at each end of the optic axis.

Fie. 80 Mn<l(N of left- and light-quartz showing outline? of etch patterns and the

poles of vtuiou.s faceb, ftoni Van Dyke. Left-quartz is at the loft. The optic axis is

vertical.

The other three areas are parallelograms uniformly spaced around the

equator. These parallelograms are linked by etched "bars," which are

broadest midway between the parallelograms. The center of each bar

marks the pole on the sphere of the positive end of an X-axis; the negative

ends of the X-axes are at the centers of the parallelograms.

When the fine structure is examined under a microscope, at the ends

of the axes characteristic figures, more or less like those in Fig. 78, can be

recognized. It is from the facets forming these figures that the sheen

originates. It is significant that the small-scale parallelograms in Fig. 78

are seen over the region outlined by the large-scale parallelograms, while

the trigonal markings for Z-cuts are present on the trigonal tripus.

By means of a reflection goniometer or a rodometer, the characteristics
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of the etch pattern on any part of the sphere can be investigated quanti-

tatively according to methods c and d.

Van Dyke has constructed models, illustrated in Fig. 80, in which

are marked the outlines of the principal etched areas. One sees that the

s-faces come above and below the middle of a bar (+.Y-axis) and that

the four corners of the parallelograms are the poles of m- and R- faces . The

long sides of the parallelograms are arcs of great circles on which the

poles of all faces lie. Portions of the tripus at each end of the Z-axis

can be seen. The tips of the tripus curl clockwise or counterclockwise

according to whether the crystal is right or left.

338. c. Reflection Methodsfor the Examination of Etched Surfaces. An
etched surface shows a characteristic sheen in reflected light when the

beam strikes it in certain particular directions. By the use of a suitable

reflection goniometer the orientations of the various groups of etch facets

with respect to the specimen can be determined. This method has been

used for determining the axes of quartz from etched surfaces.*

339. d. Refraction Methods. The first to observe refraction patterns

from etched quartz crystals seems to have been Nacken. 387 Later

Herlinger
220

developed a "photogoniometer" for studying both reflection

and refraction patterns, and still later the refraction patterns were

investigated by Gramont, who introduced some novel techniques.

Although Gramont's theory is at some points open to criticism, his work

pointed the way to methods of considerable usefulness for determining
the axial directions and the hand of unfaced quartz crystals.

Refraction patterns present a wide diversity of form, depending on the

direction of the emergent beam with respect to the crystal axes. For

any given orientation, the pattern is the result of rays from facets of

different inclinations and azimuths. Some of the facets are not plane,

but have a characteristic curvature (or possibly a set of nearly parallel

etch surfaces), producing streaks or brushes of refracted light; reflection

effects may also play a part in the formation of the observed refraction

pattern.

Refraction patterns may be seen with little or no apparatus. An
etched plate or slab cut in any orientation is simply held close to the eye,

and a point source of light (a frosted lamp a few meters away will do) is

viewed through it. The etched surface may face either toward or away
from the eye. If the opposite surface is not polished, it can be covered

with a piece of glass with a drop of immersion liquid between.

An improvement on this method consists in placing the crystal, with

the etched surface horizontal, between the eye and a point source of

light located a few millimeters below the crystal! A pinhole over a

*
See, for example, Gaudefroy,

164
Herlinger,

aao and Willard;
BM also P, D, Gerber,

U. 8. patent 2,218,489.
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frosted light bulb can be used. If the crystal is in the form of a flat plate,

the lower surface, if not polished, can be laid on a piece of glass with a

drop of immersion liquid between. Large specimens can be supported
with the lower portion immersed in the liquid. A diverging cone of light

traverses the crystal, and the rays reaching the eye from any point on the

etched surface come from those facets located at this point which have the

right orientation. The greater the divergence of the rays from the source

and the larger the etched surface, the less necessary it is to place the eye
close to the crystal. The focal plane of the observed pattern appears to

lie a centimeter or so below the etched surface, as can be shown by a

simple construction according to geometrical optics.*

A very sharp and bright pattern is seen when the point of light is

produced by letting the rays from an automobile headlight bulb pass

upward into the open end of a microscope objective of focal length around

2 mm. From the focal point just above the objective lens the rays

diverge in a wide cone. Crystals several centimeters thick, placed just

above the focal point, can be examined by this means. The eye can

be at any distance above the crystal, but with thick crystals the head

must be moved from side to side in order to see the complete pattern.

A device of this sort is called a rodoscope (from the Latin rodere, to eat

away).
340. A more precise means for examining refraction patterns is the

use of a narrow beam of parallel rays instead of a diverging cone. The
beam passes vertically upward through the crystal, emerging from a

surface that has been suitably ground and etched. To prevent refrac-

tion and scattering of light where the beam enters the crystal, the lower

portion of the latter is placed in an immersion liquid. The light is

refracted by etch facets on the small area of the surface through which

the beam emerges, producing a pattern that can be photographed or

examined visually on a translucent screen. This pattern is determined

by the orientation of the crystallographic axes with respect to the beam
and is practically independent of the inclination of the etched surface.

Hence, by tilting the crystal about horizontal axes and rotating it about

the vertical axis, until certain well-defined features of the pattern conform

exactly to a previously determined standard, the directions of all three

axes with respect to the framework of the instrument become known.
This procedure is best carried out with a specimen on which an

etched surface has been prepared that is normal to the optic axis within

10 or so. When the optic axis is parallel to the beam, the refraction

pattern has the appearance of a three-pointed star, which varies greatly

* Refraction patterns according to the method just described are discussed by
R. S. Rivlin, Proc, Phys. SQC. (London), vol. 53, pp. 409-412, 1941, and also by G, W,
Willard. 8"
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with time of etching, together with three characteristic spots.* After

the etching has progressed far enough to make these spots visible, their

positions remain practically unchanged over long periods of etching.

Although they were observed long ago by Nacken,
887 their importance

has only recently been appreciated. When the optic axis is parallel to

the beam of light, the three spots fall at the vertices of an equilateral

triangle, and from their positions the X- and F-axes, with their positive

directions, are determined. The pattern is similar to that seen in the

rodoscope, but rotated by 180.

An instrument for orienting crystals by this method has been called a rodomeler.]

By its use the orystallographic axes of any specimen of quartz can be determined

easily and quickly within a degree, and in trained hands settings can be reproduced

within 4-15 min of arc. At the same time the refraction pattern indicates the hand

of the crystal, locates twinned regions on the crystal surface, and tells whether the

twinning is optical or electrical.

341. Orientation of Quartz Crystals and Plates by X-rays. As we

have seen, it is possible with apparatus of high quality to determine the

optic axis within a few minutes of arc by purely optical methods. Such

methods, however, cannot determine the X- and F-axes. For approxi-

mate orientations of these axes it is most convenient to use a beam of

light reflected or refracted at an etched surface. By the use of the rodom-

eter all three axes can quickly be determined with a single setting.

Nevertheless, no etch method can provide as accurate an orientation as

is required for precise investigations in the laboratory or for meeting

modern commercial demands. It is here that X-rays are indispensable,

since by their use complete orientations, precise within a few minutes of

arc, can be made very quickly. An accuracy of 1' can be attained with

X-ray apparatus of high precision.

But little use has been made of the Laue method for quartz crystals,

since it is applicable only to thin cuts. Koga and Tatibanat have used

this method; in their paper are a list of atomic planes and two photographs

of Laue patterns. The back-reflection method has been used to a limited

extent. The Bragg reflection method is chiefly employed, with l a-rays

* Before etching, the surface should be ground with carborundum (grain about

100), with random strokes in all directions. To bring out the spots most distinctly

it has been found best to mix three parts commercial (about 50 per cent) hydrofluoric

acid with one part water and to etch for 2 to 3 hr.

t W. G. CADY, Proc. I.R.E., vol. 28, p. 144, 1940 (abst.); H. H. HUBBELL, JR.,

Phys. Rev., vol. 59, p. 473 (abst.). The use of the spots for the orientation of quartz,

as well as many features in the technique, were introduced by G. J. Holton (distinction

thesis, Wesleyan University, 1941). A more complete account of the construction

and use of the rodometer is given by Holton. 288

J I. KOGA and M. TATIBANA, Electrotech. Jour. (Japan), vol. 3, pp. 38-39, 1939.

A. B. GBENINQEB, Z. Krist., vol. 01, pp. 424-432, 1935.
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from a copper target. The choice of atomic plane in the crystal depends
on the orientation of the surface to be tested, whether normal to X, Y,
or Z or in some oblique direction.

"
Glancing" angles up to 30 or more

are used. The specimen under investigation is tilted until a response is

observed in a meter actuated by an ionization chamber or Geiger counter.

A full description of the method has been given by Bond and Armstrong.
88

342. Cutting and Finishing of Quartz Plates. Formerly muck saws

were used for cutting quartz, in which a rotating disk of copper or soft

steel dipped into wet carborundum powder. At present diamond-

charged disks are preferred, the cutting edge being kept wet by kerosene

or a special coolant. In the laboratory quartz cutting can be done with

such a disk mounted on the arbor of a milling machine. For small work,
the author has had good success with a very thin carborundum grinding

wheel mounted in a lathe.

Omitting the various details of quantity production, we pass at once

to the "blank" as it comes from the saw, in approximately the right

orientation but slightly oversize. It is good practice at this stage to

test the blank for twinning, if this test has not already been carried out

on the thin
" wafer" from which, in some cases, the individual blanks are

cut. The blank is lightly etched and examined by reflected light.

Twinned regions are revealed by differences in the sheen.

The blank must next be lapped to the desired dimensions (or fre-

quency) and to precise orientation, with occasional X-ray tests. For
1-f crystals (lengthwise or contour vibrations), the length and breadth

are of chief importance.
For thickness modes the thickness of the plate is the determining factor,

and the plate must be of uniform thickness, usually within 0.0005 mm.
Plates as thin as 0.2 mm are in practical use. For best performance, the

four narrow peripheral faces have to be carefully lapped; they are some-

times also slightly beveled at the edges. Owing to coupling between

different modes, a very slight change in length or breadth of the plate

may affect the activity very greatly. The final contour lapping is a

matter of trial and error, except in the case of certain cuts for which the

optimal contour can be predetermined.

Lapping machines are of various types, some of which lap one side

only of a "nest" of several plates, while others lap both sides at once.

A drill press is easily converted into a machine for lapping one side at a

time; in this case the plate or plates to be lapped are cemented to a flat

metal plate. Small-scale lapping can be done by hand on a slab of plate

glass or, better, on a trued cast-iron surface. The fluid may be water,

soap and water, or a special oil. The process is carried out in several

stages, depending on how much the crystal has to be reduoed. Usually
carborundum is used, of successive degrees of fineness down to 600.
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The final fine lapping is done with emery or aluminum oxide. Polishing

is, as a rule, neither necessary nor desirable. The finishing touches

are usually performed by hand. Etching is also often employed to bring
the crystal to exactly the desired vibrational frequency. Etching also

removes loose particles of quartz and decreases the damping.
188

The removal of a single layer of silicon atoms (540) from a 1,000,000-

cycle X-cut quartz plate 3 mm thick would increase the frequency by
about 0.1 cycle/sec, an amount that is significant in precision oscillators.

One of the fortunate characteristics of quartz is that the atoms are so well

bonded as not to be easily removed.

343. Resonator Mountings and Holders. Since nearly all piezo

resonators are of quartz, the subject of mountings, including the types

(a) (6) (e)

FIG. 81. The earliest mountings for quartz resonators. The bars Q were all JT-cut,

length parallel to Y. The housings A and covers D were of hard rubber or bakclite, with
brass electrodes B. (a) Full-length electrodes. (6) Short electrodes, for excitation of the
fundamental and of both even and odd overtones, (c) Two small resonators, for frequen-
cies 757 and 860 kc/sec.

used for piezo oscillators, is considered here. The guiding principles

are the same whatever piezoelectric substance may be used.

In the author's earliest experiments with resonators, bars of quartz
or Rochelle salt were used, with tinfoil coatings cemented to the sides.

The bars were laid flat on the table, suspended from fine wires, or placed

on soft pads of cotton. It was soon found that resonance was much

sharper when the tinfoil coatings were removed and the crystal stood on

edge between rigid brass electrodes, with a small air gap on each side.

In some cases the bars were held by silk threads tied around them at the

center, in order to leave them more free to vibrate in the gap between the

electrodes. Some of the quartz bars used in the early 1920's, together

with typical holders, are illustrated in Fig. 81. At that time, since it

was not foreseen that quartz plates could be made to resonate in thickness

vibration, only lengthwise vibrations of bars were investigated. In
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order to push the frequency as high as possible, some of the bars were

only a millimeter long.

Some of the resonators used by the author in 1923 for comparisons

with standard frequency meters in government laboratories in the United

(fr)

FIG. 82. Early types of piezo-resonators, (a) Four Jf-cut quartz bars, lengths 1.76,

3.60, 12.02, and 30.3 mm, parallel to Y. Frequencies 1.623, 762.0, 235.9, and 91.66 kc/sec,

respectively, in a common holder, (b) Two steel bars, 180 and 90.5 mm long, 9.8 X 3.2

mm in cross section, each driven by a pair of small X"-cut quartz plates. Frequencies 14.43

and 28.94 kc/sec. See description in 383.

States, Italy, France, and England are shown in Fig. 82. These were the

first international frequency comparisons to be made by means of crystal

standards. Since then, a number of such comparisons have been carried

out, with improved resonators and higher precision (see the references

at the end of Chap. XIX). In the primitive mountings used in 1923
3

the quartz bars lay loosely in the bottoms of pockets between the elec-
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trodes. The damping was relatively high, and the frequency varied

with slight displacements of the crystal. Moreover, there was no control

of the temperature. The precision was about 0.1 per cent; today the

minimum requirement is at least ten times better than this.

With increasing demands for constancy of frequency, the develop-

ment of crystal holders has kept pace with that of crystals and circuits.

In technical journals and patent literature can be found enough material

for a treatise on mountings and holders alone. We can do no more here

than discuss some of the principal features, especially of the more recent

types. A few references on the subject will be found at the end of the

chapter.

Crystal mountings and holders may be classified according to whether

they are designed for use in oscillator circuits, stationary or portable;

or for use as filters, including receiving sets; or as frequency stand-

ards. They differ also according to the mode of vibration of the crystal.

Mountings of special types, as for flexural vibrations, luminous resonators,

and ring-shaped crystals for quartz clocks, will be considered in later

sections, with references to the original papers for details.

Of the four parameters R, L, C, and Ci of the equivalent network,
L and C are affected only to a minute extent by the character of the

mounting. In recent years, through various improvements in the con-

struction of holders, R has been greatly reduced in value and made prac-

tically free from variation due to mechanical shock and other service

conditions. The effects of stray capacitances on Ci have been reduced.

At the same time, the newer holders are not less rugged and portable
than the earlier types.

For the controlling crystals in oscillator circuits, the main require-

ments are constancy of frequency, ruggedness, and ability to stand fairly

high voltage. Constancy of frequency demands, of course, a high Q
and, in the case of portable sets, immunity against vibration. Variations

in temperature are compensated in various ways. In the first place, the

use of cuts having a low temperature coefficient of frequency (357)
has become almost univeral, making the use of temperature control

unnecessary for most practical purposes. When such control is needed,
for example to prevent condensation of moisture or to compensate for

extreme variations in ambient temperature, small thermostats and heaters

are sometimes built into the holder. For still more precise control, in

transmitting stations and especially for frequency standards, the holder

may be mounted in a special thermostatically controlled oven.

344. Holders for Crystals in Thickness Vibration. The crystal plates

are usually square, rectangular, or circular. In the earlier types the

crystal lay loosely on one electrode, held down by gravity, either with a

small gap between it and the upper plane electrode, or else subjected to
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slight pressure from the upper electrode, the gap being eliminated.

While such mountings are most convenient for laboratory experiments,

they have proved to be unsuited to modern service conditions, owing to

variations in frequency and damping when the plate moves about in the

holder and also because of a tendency for metal to rub off onto the crystal.

A typical holder of more modern design uses the pressure mounting.
It has a horizontal carefully lapped electrode upon which the crystal

rests. In one type the other electrode, which presses on the crystal, is

slightly recessed on its lower face, so as to clamp the crystal at its four

corners or around its circumference if it is circular, leaving a gap of the

order of 0.2 mm between crystal and upper electrode. For frequencies

above 10 megacycles, it has been found feasible to clamp the crystal, for

example by bolts passing through holes at the four corners. An advan-

tage in corner clamping is that it suppresses flexural modes. The smaller

the gap, the greater the power that can be controlled in the crystal circuit,

but the more sensitive the frequency to minute variations in gap width.

In another type the gap is eliminated, and the upper electrode is

pressed against the crystal by a spring. The damping is greater in such

mountings than when there is a gap; but even in gap mountings the

damping due to contact with the lower electrode is great enough to be

objectionable in precise work. The pressure can, however, be surpris-

ingly great without preventing the crystal from vibrating. For example,
Booth and Dixon70 state that a piezo oscillator with area about 6 cm 2

(either X-cut or F-cut) will function despite a force as great as 1.6 kg
on the upper electrode. The damping caused by pressure is less notice-

able with shear vibrations than in the case of X-cuts, where the thick-

ness vibrations are compressional.

In mountings of the type just described, especially when the upper
electrode presses against the crystal, a "threshold effect" has sometimes

been observed; i.e., the crystal fails to oscillate until the voltage reaches

a critical value depending on the friction to be overcome. In mountings
for resonators and filters, this effect must be avoided as far as possible.

It is less objectionable in the case of oscillators.

Other types of gap mounting have been devised. For example, the

electrodes are sometimes held at the desired distance apart by spacers

of insulating material with low coefficient of expansion, as fused silica

or pyrex glass; crystalline quartz has also been used. 358 Three separate

spacers may be used, or a continuous ring of the proper thickness inside

which the crystal is laid. Adjustable gaps have also been employed,*

one or both of the electrodes being held by a micrometer screw. The

advantage in this arrangement is the possibility of varying the frequency

at will over a range of one-tenth of 1 per cent or so. For laboratory
* For a recent form, see ref. 43.
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purposes, the author has, for many years, found this device very useful.

On the other hand, it is not now generally considered desirable for con-

stant-frequency circuits, since the desired frequency can be attained with

a fixed gap by suitable dimensioning of the crystal, the frequency then

being more stable. Moreover, the mounting with adjustable electrodes

has more stray capacitance and is bulkier.

For greater constancy of frequency as well as smaller damping, the

crystal plate, if not too thin, is sometimes clamped at three or more points

at its outer edges.* Three minute cavities are drilled in the plate edge-

wise two on one side and one on the other if the plate is rectangular

and in these cavities are seated the pointed ends of spurs that extend

inward from the housing. The plate is thus held only at points in the

nodal plane and does not touch either electrode. Bechmann43>
t describes

mountings in which the quartz plates, oriented for zero temperature

coefficient, are of circular form, beveled outward to a sharp edge all

around the circumference. The edge lies in the nodal plane and fits into

notches in three short rods, two of which are fixed while the other is

pressed against the crystal by a spring. Each electrode is adjustable;

but when the proper adjustment has been made, the entire mounting
can be sealed in an evacuated holder. Mountings of this type are made
for frequencies of 250 to 10,000 kc/sec.

Modern mountings usually have electrodes of some such material

as monel metal, stainless steel, or duralumin. The housing is tightly

sealed and waterproof.

345. In recent years the tendency to employ plated crystals^ has been

increasing, involving a special type of mounting, with metallic electrodes

evaporated onto the crystal surfaces, specially designed lead wires, and

hermetically sealed housings, either evacuated or filled with dry air.

The metallic deposits on the crystal are usually of aluminum, silver, or

gold, about 0.0005 mm thick. The crystal surfaces should first be etched

to remove loose material left after lapping. By a special process, the

ends of the phosphor-bronze lead wires, which also sustain the weight
of the crystal, are attached firmly to the centers of the electrodes. The
size and shape of these wires are predetermined and carefully adjusted,

so that the wires will have the proper compliance for protecting the

crystal against shocks, while at the same time not absorbing appreciable

energy from the h-f vibrations of the crystal. The frequency is thus

*
See, for example, L. Essen. 138

t See also Heaton and Lapham. 212 Quartz plates with beveled edges, supported
at points in the nodal plane, were used in this laboratory by K. S. Van Dyke in 1925.

t The first to use thin metallic films on the crystal were the Curie brothers. In

some of their early devices they employed silver electrodes, deposited chemically.

See, for example, A. W. Ziegler, U. S. patents 2,218,735, Oct. 22, 1940, and

2,275,122, Mar. 3, 1942.



347] PROPERTIES AND TECHNIQUE OF QUARTZ 433

made more stable, while damping and stray capacitances are reduced

to a minimum. The assembly of crystal and leads is mounted in a tube

of glass or metal, with a standard plug-in base. In some forms the tube

contains also a small thermostat and heater.

346. Special Mountings for Low-frequency Crystals. We are con-

cerned here with bars in lengthwise vibration, and broad rectangular

plates vibrating in a 1-f mode. The general requirements and basic con-

struction are similar to those for thickness vibrations. The crystal is

now usually plated on both sides, thus eliminating the gap. Since a

lengthwise-vibrating bar has a nodal region at the center, it can be firmly

clamped here without too much damping. Until recently the commonest

method in commercial mountings has been the use of a pair of metal knife-

edges to clamp the crystal, one on each side extending in the direction

of the breadth. For greater security each side is sometimes supported

by two knife-edges close together. Still another method of clamping,

designed especially for filters, consists in having two small metallic

hemispheres pressed by springs against the crystal on each side.

In order to prevent possible displacement of the crystal, a type of

mounting has been devised69 in which a shallow groove is cut across the

crystal on one side, into which a knife-edge fits, while a point contact

presses against a countersunk hole on the other side. In a modification of

this method two small steel balls press against conical holes in the bar

on one side and one similar ball on the other.

Knife-edge mountings are applicable to bars down to about a centi-

meter in length (frequency around 300 kc).

In the case of broad plates vibrating in 1-f shear modes, knife-edges

interfere with the freedom of vibration. The plate is therefore supported

by one or more pairs of pressure pins on each side.

Most recent of all is the wire-supported type of mounting,
188 in which

the plated crystal is held by specially designed wires soldered to its sur-

faces, as described in 345. Crystals so mounted and properly aged are

said to hold their frequency constant within 2 or 3 parts per million.

347. The Aging of Quartz Resonators. Soon after quartz began to

be used as a precise standard of frequency, it was observed that for some

weeks or even months after a plate had received its final lapping and was

mounted in its holder the resonant frequency underwent a slow drift.

It is well established that this drift persists after all possibility of change
in the position of the electrodes has been removed and that it is due to the

surface layers of the finished plate. A final etching of the surfaces has

been found beneficial. Bechmann44 found that aging can be hastened

by repeated heating. It has now become standard practice to put the

finished plate through several cycles of heating and cooling, for example
between 25 and 115C. 188
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CHAPTER XVII

THE QUARTZ RESONATOR

. . . this electric force, that keeps
A thousand pulses dancing. . . .

TENNYSON.

The earliest resonators, crudely cut and crudely mounted, could be

depended on for a precision in frequency of about 0.1 per cent. This

precision was much higher than that of most wavemeters of two decades

ago. Soon, however, there came an increasing demand for constancy of

frequency in radio transmitters. This demand was met by the introduc-

tion of the piezo oscillator, together with temperature control of the

crystal and improvements in its preparation and mounting. In 1929

the first quartz resonators of low temperature coefficient appeared.
Since then, the intensive study of the elastic and thermal properties of

quartz has led to the discovery or predetermination of many useful cuts

for all radio frequencies, and with resonant frequencies so little dependent
on temperature that thermostatic control is unnecessary.

In the present chapter the principal cuts and their properties and uses

are described, with illustrative numerical data.

Excitation of the Simpler Modes of Vibration in Quartz. We shall

here apply the rules outlined in Chap. X to quartz, in order to ascertain

how an electric field may be applied to preparations of various forms and

orientations, for the excitation of lengthwise, thickness, flexural, and

torsional vibrations.

I. LENGTHWISE COMPRESSIONAL VIBRATIONS OF BARS

348. The earliest resonators were in the form of bars, using compres-
sional lengthwise vibrations. Since the author's first experiments, which

were made with bars of both Rochelle salt and quartz, it has been recog-

nized that this type of piezo resonator offers the advantage of well-defined

response frequencies, free from the effects of undesired vibrational modes.

The simplest example is that of an .X-cut bar with length parallel to Y,

as used statically by the Curie brothers and dynamically by many others.

Here the strain of primary importance is yv = d\^Ex .

If I is parallel to X, lengthwise excitation can be brought about by

placing electrodes at the ends of the bar or by applying a field parallel to

X over a portion of the bar, as was done by Giebe and Scheibe (349).

For intermediate orientations of I in the XT-plane this excitation can
435
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also be used, or the field may be applied across the bar in the .XT-plane so

that it has a component in the X-direction.

A bar with length parallel to Z cannot be directly excited in lengthwise

vibration; such vibrations are, however, possible through elastic coupling,

by applying an alternating field of the right frequency parallel to X.

This experiment does not seem to have been performed with a thin bar,

but the principle was verified by Hund,
238 who observed compressionai

vibrations in the Z-direction in a rectangular plate in which the applied

field was parallel to X.

For a bar in any arbitrary orientation, the effective piezoelectric con-

stant has a different value according to whether the vibrations are excited

by a field parallel or perpendicular to the length. We shall dispose of

the former and less usual case first. Here the shape and orientation of

the cross section are of no consequence. Although no complete theory

for this type of excitation has been developed, still one knows at least

that the piezoelectric constant must be of the type d'33) if the length of the

bar is taken as parallel to the rotated Z'-axis. Equation (219) for dg3

shows that this constant involves du alone. It vanishes only when

<p
= 30 or 90 (projection of I on the .XT-plane parallel to a F-axis)

or when 6 = (I parallel to Z).

In the usual case the exciting field is perpendicular to Z, and the orienta-

tion of the cross section must be considered. Since no general equations

for d'hk in all orientations are available, we shall consider each of the

principal planes separately. The problem is analogous to that of pro-

ducing lengthwise vibrations in oblique bars of Rochelle salt (371).

There is always an optimum orientation for E and hence for e. If I

lies in the YZ-plane, the only possible excitation is by Ex ,
and Jf-cuts

rotated about the X-axis must be used. If I is taken as parallel to the

F'-axis, making the angle 6 with the F-axis, the strain characteristic

of this type of vibration is y'y
= dr

l2Ex, where, by Eqs. (221),

d'12
- -c2dn + scdu (475)

When =
0, d'n = dn = du and we have the ordinary case of a bar

parallel to F. When = 90, d{2
= and no direct excitation is possible

(I || Z). Otherwise, both dn and dfu contribute to d'n .

If I lies in the ZX-plane, one can in general let the thickness e, parallel

to which the field is to be applied, have such an orientation that the field

will be Ev ,
or a component of Ex ,

or a resultant of the two. A simple

case is that of a rotated F-cut, analogous to the rotated Z-cut mentioned

above: if I is parallel to Z', making the angle with Z, the strain equation

is = d'^Ey, where, by Eqs. (222),

dJ8 * -csdu (476)
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Lengthwise excitation by a field parallel to Y is therefore possible except
when I is parallel to Z or X. When = 45, dJ8

= du/2 and the
excitation is of exactly the same nature as for an X-cut 45 Rochelle-salt

bar [Eq. (203)]. No observations seem to have been made on bars with I

inclined obliquely in the ZX-plane, but compressional vibrations of this

type have been observed by Wright and Stuart694 in circular F-cut plates
and discussed by Bechmann. 36

// 1 lies in the XY-plane, we may let I and e be parallel to Y' and X',

respectively, so that

l
= d(2E'x = -dnE'x cos 3d (477)

by Eqs. (223), where 6 is the angle between Yf and Y. When =
0,

we have the X-cut with I parallel to Y. Lengthwise vibrations can be

excited at all angles in the .XT-plane except when I is parallel to Z,

making cos 30 = 0.

The elastic stiffness calculated from observations of the frequency of

a narrow bar of known length is the isagric Young's modulus, provided
that the gap is zero. Consideration of the depolarizing effect of the

electric field and of the value of the effective piezoelectric constant is

needed only when there is a gap, according to Eq. (330). As long as the

dimensions of the cross section arc not over one-tenth of the length, the

correction for finite cross section is inappreciable.
340 BechmamVs

derivation of Young's modulus for various orientations from observations

with narrow quartz bars has been mentioned in 96.

One other quantity occurring in the equations for vibrations of bars

is the effective dielectric constant fa, given by Eq. (311). This quantity
is a little smaller than the free dielectric constant k(. The difference,

at least for quartz, is slight and has been ignored by some writers. For

any arbitrary orientation, k'
t
is the same as k'N in Eq. (474c). A rough

approximation to the values of din and sfn for the orientation in question

is usually sufficient. The value of fa for an X-cut quartz bar with length

parallel to Y is given by Eq. (474a).

A full discussion of coupling effects between different modes lies out-

side the scope of this book. Some of the more important references on

the subject are given at the end of this chapter.

349. Experimental Results with Lengthwise Vibrations. Working
with rectangular quartz bars with lengths parallel to X or F, Giebe and

his associates 162 ' 169 ' 171
investigated the dependence of frequency upon

cross section, for the fundamental and various overtones. *
They derived

formulas for frequency and for the departure of overtone frequencies

* We have discussed the excitation of overtones in bars in 238. The theory is

treated further by Sokolov. 478
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from harmonic relations. Their theory involves coupling effects, Pois-

son's patio, and the piezoelectric correction to the stiffness. Their elec-

trodes were very small, since the bars were intended to show the luminous

effects described in 365. For the bars with length parallel to F, the small

electrodes were placed at the center, so that the field was in the -XT-direc-

tion. When the length was parallel to X, two pairs of electrodes were

used, as illustrated in Fig. 885, giving rise to a field parallel to X at the

center of the bar. Giebe and Blechschmidt162 observed frequencies at

different temperatures and calculated from them the* temperature
coefficients of su and s4 4. The principal results of all these investiga-

tions are given in more detail by Scheibe. 6

Frequencies of thin rods in many orientations and at different tem-

peratures have been observed by Bechmann. 82 From his results, already

0.2 0.8 1.00.4 t , 0.6

b/l
FIG. 83. Dependence of the temperature coefficient or/ of an .XT-cut bar (length parallel

to F) on the ratio b/l, from Mason. For this bar e - 0.05 Z. Abscissas represent b/l;

ordinates are in parts per million per degree centigrade.

referred to in 96, one can find the dynamic value of Young's modulus

for any orientation in space, together with its temperature coefficient

(summary in ScheibeB45).
All quartz bars or plates in lengthwise vibration, whatever the

orientation may be, have negative temperature coefficients of frequency

(see 357), the value becoming zero in certain special cases. For an

X-cut bar with length parallel to F, the first recorded value was that of

Powers,
431 who found a/ = 5(10~

6
). Considering that Powers' bar

had a b/l ratio of about 0.17, his of fits satisfactorily on the curve in Fig.

83, which represents the dependence of a/ on 6/Z, as found by Mason. 332

The anomaly between 0.15 and 0.4 is due, according to Mason, to coupling

with the second flexural mode in the FZ-plane. a/ is smallest for very
narrow plates; it is also less for thick than for thin plates (^-direction).

If the cross section is square (e = 6), a/ = when b/l = 0.272. Qualita-

tive agreement with Mason's results will be found in Table 13 in Scheibe's

book.*45 Booth89
agrees with Mason in finding /

= -2(10-
6
) for very

narrow bars with length parallel to F.
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The dependence offrequency on the gap width w, for a bar at room tem-

perature, has been investigated* by Dye 127 and the author. 107
According

to Eq. (3366) there should be a linear relation between w and the relative

change in frequency with gap, the coefficient U being the same for all

gaps. The experiments yield a value of U about 15 per cent smaller

than that predicted by theory and also a progressive decrease in U with

increasing gap. Possible explanations of the discrepancy are discussed

in the author's paper. The observed frequency increases by about one-

half of 1 per cent as the gap is increased from zero to a very large value.

Lengthwise vibrations of quartz plates having a breadth b comparable
with the length I have been studied by Petrzilka,

417 ' 418 Bechmann, 86 - 41 '42'44

and Mason. 832 - 340 Petrzilka used both rectangular and circular Z-cut

plates, with electrodes so placed as to provide a driving field perpendicular
to Z. His paper contains photographs of the wave patterns obtained.

He identified, at suitable frequencies, the three vibrational modes pre-

dicted by theory and from his results calculated the elastic modulus and
Poisson's ratio, f

Mason measured the variation in frequency of an ^T-cut 18.5

rectangular plate (see Table XXIX) as the ratio b/l was increased

from 0.1 to 1. There was a general decrease of about 12 per cent, due

to coupling with a flexural mode and with compression parallel to 6.

An anomaly occurred for values of b/l from 0.2 to 0.3, owing to close

coupling with the flexural mode. Mason points out that the Rayleigh
correction for cross section (65) is incomplete when applied to quartz,

since it does not take account of the coupled modes. J

The problem was also analyzed by Bechmann, who derived, for a

rectangular plate in any orientation, a cubic equation of which the roots

give the three fundamental frequencies: compressional vibrations parallel

to I and b, and a shearing mode. His theory does not include flexural

vibrations and coupling between modes, but his experimental results

reveal the presence of these effects, for various cuts. They show a

general agreement with the work of Mason mentioned above.

360. Unsymmetrical Effects with Lengthwise Vibrations. From Figs.

31 (curve C), 33 (curve C), and 38, it is clear that in quartz Young's
modulus Y =

l/s'as varies greatly with orientation. For any given polar

angle B except and 90, Y varies with the azimuth (p. For all values

of <p, Y varies with 8. In particular, in the FZ-plane, F(10~
10

) varies

from 130.2 at 6 = 4836' to 70.3 at 6 = -714;
.

* Among other papers in which the gap effect in bars is treated are those by

Koga,
268 Watanabe,

681 and Grossmann and Wien,
189 but the data are either insufficient

or taken with the crystal in the generating circuit. Results obtained by the latter

method are not characteristic of the crystal alone.

f For a critical study of Petrzilka's values see Lonn319 and Ekstein. 131

{ See also Scheibe, ref. B45, p. 92, and Giebe and Blechschmidt, ref. 161.
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Through the combined effects of the fundamental elastic constants

that occur in Eq. (55) for Young's modulus,* the wave pattern for length-

wise vibrations is such that, at the fundamental frequency, the nodal

plane crosses the center of the bar at right angles only when the bar is

very narrow or, if it has an appreciable breadth b, only when the length

lies in the direction of maximum or minimum Y. In a broad plate the

nodal line, revealed for example by lycopodium powder, may make a

very pronounced angle with the 6-direction. Meissner, who first observed

this effect,
361 found that in an X-cut circular disk there were two direc-

tions along which compressional waves were propagated. These direc-

tions made angles 9 = 48 and 71, corresponding to the directions of

maximum and minimum Young's modulus. In a rectangular plate with

length in the direction 6 71 Straubel488 found the nodal line to be

parallel to the breadth.

It is only when the length of the plate is parallel to the direction of

maximum or minimum Y that the amplitude of vibration is the same at

all portions of the end faces. This fact was ascertained by Meissner369

by means of lycopodium powder, and by Bucks and Miiller,
79 who made

a vibrational survey of X-surfaces of plates both with length parallel to Y
and at = -71, by observing under a microscope the movements of small

specks on the silvered quartz, t

The asymmetry in the wave pattern is further revealed by another

effect discovered by Meissner369 and by Tawil. 506 This effect is an air

blast directed outward from certain regions at the boundary of the plate,

chiefly at the ends. The simple harmonic motion at the ends has a

rectifying effect on the air molecules, drawing them in tangentially when

the end surfaces recede and expelling them normally when the same sur-

faces advance an effect already known in hydrodynamics. Meissner

found the blast strong enough to blow out a candle and turn a pinwheel.

The air blasts have been discussed further by Bucks and Muller,
79

Harding and White,
204

Eight,
226

Straubel,
485 Wachsmuth and Auer,

577

and Wright and Stuart. 694 Some very interesting photographs are shown

in Straubel's paper.

"The constant chiefly responsible for the obliquity of the nodal plane is 544.

It tends to produce a contour shear mode, as described in 359. The 18.5 cut

mentioned in 357 was designed to eliminate this shear mode.

t The microscopic method has been employed in this laboratory by G. W. Scott,

Jr. (distinction thesis, 1934), R. L. Brown (M. A. thesis, 1936) and R. I. Hulsizer

(M. A. thesis, 1942). The latter measured the vibrational directions and amplitudes

at a large number of points, thus finding the distribution of strain and of piezoelectric

polarization. From the integrated polarization a value of the electric current was

derived, of the same order of magnitude as the observed vajue. He used .XT-cut plates

with * and 71, also a GT-cut, recording especially the evidences of coupling

between different vibrational modes.
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The air blast issues symmetrically from the ends of the plate only
when the length is in the direction of maximum or minimum Young's
modulus. Otherwise, and especially when I is parallel to the F-axis and

of about the same magnitude as 6, the blast is very unsymmetrical,
as indicated by Fig. 84.

In order to demonstrate the effect of these unsymmetrical air currents

Meissner369 constructed a "quartz motor," consisting of a plate like that

shown in Fig. 84, pivoted at the center so as to rotate in its own plane.

A similar device is described by Tawil. 506 In this connection may be men-

tioned the rotation of a quartz sphere 4 cm in diameter observed by Van

Dyke.
548 - 549 - 856 The sphere rested on the periphery of a 3-mm hole in

a brass plate, which served as the lower electrode. When excited at the

frequencies of certain vibrational modes, the sphere turned so as to select

FIG. 84. Air blasts from an X-cut quartz plate.

a vertical axis about which it then rotated. Since the effect took place

also in vacuum, it must have been due to a frictional creeping where the

quartz touched the brass. This fact, together with Gramont's observa-

tion 181 that a plate mounted according to Meissner rotated better in

vacuum than in air, indicates that Meissner's rotation was due at least

in part to a periodic frictional effect at the pivot rather than to reaction

from the air. Gramont describes still other forms of quartz motor.

Van Dyke 549 found that his quartz sphere could also be made to slide

along a straight track or to travel continuously along a circular track.

These motions were due chiefly to reaction from the surrounding air.

He found the principal resonant frequencies to be in the ratios 1, 1.47,

1.61, 1.83, 2.12, 2.18, 4.12, where the lowest frequency was approxi-

mately that of a bar parallel to Y with length equal to the diameter of the

sphere, having a wave constant // 2,780 kc sec" 1 mm. At reduced

pressures he observed and photographed characteristic luminous patterns

(365) at the various frequencies, and made a motion-picture record of

the changes in pattern as the frequency was varied.

The rotational and translationai effects mentioned above are doubt-

less related to the tendency of an X-cut quartz plate, whether in length-

wise or thickness vibration, to slide in one direction or another on the

horizontal surface on which it rests. A motion of this sort was noted in

unpublished observations by the author as early as 1923 ; in some cases at
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a critical frequency the quartz slid completely out from the space between

the fixed electrodes. Many others have since then observed the effect.*

This ease in sliding on the part of a vibrating quartz plate points to a

decrease in friction (364) between the crystal and other surfaces in

contact with it.

Hirschhornf observed a motion of translation in an Z-cut quartz

bar suspended by a thread between electrodes. Here it was not a ques-

tion of friction against a solid surface; it is not certain how much of the

effect was due to the piezoelectric field surrounding the cfystal and how

much to the effort of the quartz, like any other dielectric, to move into

the strong part of the field between the electrodes.

Instead of observing the air-blast given off from a vibrating crystal,

N. H. Williams,
687 used the opposite procedure: he set a quartz bar into

vibration by means of the ultrasonic air waves from a jet of air through

a nozzle. The ultrasonic "noise" excited many overtones as well as the

fundamental vibration in a bar with length parallel to Y. Short elec-

trodes and also multiple electrodes like those described in 239 were

connected to an amplifier.

II. PIEZOELECTRIC EXCITATION OF THICKNESS VIBRATIONS

361. Vibrations of at least one of the three types described in 66,

93, and 245 can be excited in a quartz plate in any orientation. In a

Z-cut the field must be applied edgewise, parallel to X or Y, the strains

being yz
= diJS* or zx d^Ev . Such vibrations in a Z-cut have been

observed by Atanasoff and Hart. 12 For all other orientations the field

can be parallel to the thickness. Equation (344) for the effective piezo-

electric constant c (applicable when the field is parallel to the thickness),

when specialized for quartz, becomes

(478)

When m = n =
0, we have an X-cut with a = 1 (compressional mode

parallel to X), and = en. When I ~ n = 0, the plate is a F-cut, with

a. = 1 (vibration direction parallel to X, hence a shear mode98
), and

= e26 = en. A Z-cut corresponds to I = m =
0, in which case

c = 0, showing that thickness vibrations cannot be generated with the

field in the thickness direction.

The effective stiffness is given by Eq. (355). For the clamped dielec-

tric constant we have, in the .XT-plane, from Eq. (474), k" = 4.41 and,

from Eq. (472), parallel to Z, k"\
=

k\
= 4.6. When the field is oblique,

in the JV-direction, the rotated k% is calculated from an equation similar

*
See, for example, Shaw's observations. 461

t S. I. HIBSCHHOBN, Z. Physik, vol. 44, pp. 223-225, 1927.
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to Eq. (474c),

4.41 + 0.19 cos2 B (479)

where 6 is the angle between N and Z.

352. Some Experimental Results with Thickness Vibrations. With
bars in lengthwise vibration it is not difficult, by proper dimensioning,
to avoid coupling with other modes. Modes of lower frequency (flexural

or torsional) are usually not troublesome, while all others have too high .

frequencies to introduce undesired resonances. The situation is very
different with thickness vibrations, since even with careful dimensioning
of the contour it is difficult to avoid coupling with overtones of various 1-f

modes. This fact is notoriously true of the X-cut.

The elimination of disturbing frequencies is the most difficult problem
in the design and construction of thickness-mode resonators. The

Fio. 85. Resonance curve for an X-cut 1,500 kc/sec quartz plate in thickness vibration,
from Bechmann, 37 showing many resonant frequencies over a range of about 30 kc/sec.

undesired modes, if close to that for which the resonator is designed, can

cause serious disagreement between theoretical and experimental values

of frequency and its temperature coefficient. By accurate lapping,

dimensioning, and edge grinding it is possible to obtain a strong response

frequency, corresponding to a vibrational mode that is sufficiently

removed from adjacent modes so that it will control the frequency of an

oscillator over the desired range of temperature (see 244). The oblique

cuts that are most used on account of their low temperature coefficients

of frequency are also largely free from the coupling effects that are

responsible for the disturbing frequencies.

An example of the complicated frequency spectrum encountered with

an X-Gut plate is seen in Fig. 85.

The X~cut was first used for thickness vibrations by Pierce. The
strain equation is xx = dnEx . When tested as a resonator, it usually

has a large number of response frequencies, strong and weak, in the

neighborhood of the calculated value. As an oscillator it selects some

one of these frequencies but tends on slight provocation to shift to a
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different frequency. By any one of the methods described in 366 it

can, when vibrating at any resonant frequency, be shown to have a very

complicated wave pattern, due to coupling with overtones of modes of

lower frequency. Thus, while the mode of vibration is nominally com-

pressional, many parts of the surface have vibration directions with

tangential components ;
and they may also be out of phase with the true

compressional vibration. Nevertheless, as a whole the motion of the

major faces is in the direction of the thickness. It is for this reason that

X-cuts are usually employed as ultrasonic emitters. Owing to the dis-

advantages just mentioned and to their larger temperature coefficient

of frequency, X-cuts are now but little used in piezo oscillators. The
value of af is usually given as between 20(10~

6
) and 22(10~

8
).

When there is a gap between an X-cnt quartz plate and either elec-

trode, stationary air waves are produced when the gap is an integral

multiple of the acoustic half wavelength. This effect is the basis of the

ultrasonic interferometer (510). The influence of the gap on the per-

formance of resonators has been investigated by Dye,
127

Koga,
268

Vigour-

eux,
B50>B51 and others. The loss of energy at the critical gap values is

serious, and the coupling of the crystal to the air waves reacts on the

frequency. This dynamic effect of the air gap of course vanishes in

vacuum mountings. It has nothing to do with the characteristic effect

of gap on frequency discussed below.

For a Y-cut with the field parallel to F, the strain equation is

In a relatively thin plate the vibration direction is parallel to X, and the

vibration is of the shear type.
98 Sinco there is little or no motion

normal to the surface, the plate (as with all shear-type plates) can be

more firmly clamped than an X-cut without stopping the vibration.*

For the same reason there is less trouble from stationary air waves
in the gap. Clamping also helps eliminate coupled vibrations of the

type zx = dz^Ez. Still, as with the X-cut, troublesome couplings are

present, and the plate when used as an oscillator tends to jump from one

frequency to another closely adjacent. Moreover, the temperature
coefficient of frequency is even greater than for the X-cut; values have

been observed from +60 to +90(10-
6
), depending on dimensions and

coupling with other modes.

It was this large temperature coefficient which led several investiga-
tors to experiment with oblique cuts, culminating in cuts of the types

*
Using the interferometer method described in 313, Straubel490 found that there

was a slight movement normal to the surface of a K-cut plate in thickness vibration.

This effect was presumably due to coupling with other modes, which it should be

possible to eliminate by proper dimensioning.
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described in 357 following. Like the F-cut, these newer cuts vibrate

in a shear mode. Oblique cuts now in common use have almost exactly

constant frequency over a considerable range of temperature, while

at the same time the coupling effects are reduced.

353. Effect of the Gap Width on Frequency. One method for varying

the frequency of a piezo oscillator is to vary the gap. A variation of

a few tenths of 1 per cent can thus be brought about, most of which takes

place while the gap is very small. Equation (370) shows that an approxi-

mately linear relation should hold between the relative change in fre-

quency and w/(e + k"w), the coefficient U being a constant. The

author's experiments
107 -* indicate that, as in the case of the lengthwise

vibrations mentioned above, U decreases as the gap increases. The

departure of U from the theoretical value appears to be least with plates

which are good resonators and with those which are relatively free from

coupling, as, for example, the BT- and J.<7-cuts; for these cuts almost

the exact theoretical value was found at small gaps, although at large

gaps the discrepancy amounted to as much as 30 per cent. The observed

U was far below the theoretical value for the two Z-cut plates employed,

both of which were rather poor resonators. For F-cut plates the defi-

ciency in U was of the order of 20 per cent.

In Eq. (355) it is seen that three terms are necessary in general to

express the effective stiffness for thickness vibrations. As an illustration

of the relative magnitudes of these terms we may consider the F-cut,

for which it is shown in 351 that c = -en = -5.2(10
4
), while from

Eq. (474) k" = 4.41. The isagric stiffness coefficient is

q*
= 4, 40(10

l
)

Hence, for zero gap Eq. (355) becomes, for a F-cut plate,

(f
= 40 + 0.77 -

j

10"

The second term is here 1.9 per cent of q*. At the fundamental fre-

quency, h = 1, and the third term is 1.5 per cent of q*. At the fifth

"harmonic," h = 5, and the third term is only 0.06 per cent of q
B

.

The presence of a gap decreases the third term, which vanishes at

infinite gap.

It was pointed out in 250 in connection with Eqs. (350) and (350a)

that, as the order h of the overtones of thickness vibrations increases,

the theoretical relation between the overtone frequencies becomes

* Further data were also obtained by Booth and Dixon, Dye,
127

Koga,
288 -274 'm

Matsumura and Hatakcyama, 344 Namba and Matsumura,*88 and Vigoureux.
8 *1 As

far as they go, they corroborate the present statements.
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more nearly harmonic. This has been confirmed in the case of quartz

by Atanasoff and Hart (90) and also by Bergmann.
63

For thickness vibrations in special cuts see 358. The use of thick-

ness vibrations in ultrasonics is described in 507.

m. PIEZOELECTRIC EXCITATION OF FLEXURAL VIBRATIONS

354. According to 179, a state of flexure can be produced by apply-

ing an electric field in such a way as to cause the portion ABFE of the

bar shown in Fig. 86 to expand in the direction AB while the portion

EFCD contracts. The same result is reached by applying fields to the

right and left portions of the bar so as to cause opposite shears in AGHD
and GBCH. In either case, if the field alternates with the proper fre-

quency, flexural vibrations result.

With suitable arrangements of electrodes, overtone frequencies can

also be excited. For example, Fig. 87 shows the state of deformation

FIG. 86. First flexural mode. The
nodes Oi and 0j are 0.224 of the length from
each end.

FIG. 87. Second floxural mode. Node
Oz is at the center. Nodes Oi and Oa are

0.132 of the length from each end.

for the second mode (first overtone), in which, instead of two nodes Oi

and 02 as in Fig. 86, there are three nodes Oi, 2, 3 . However many
nodes there may be, the extensional strain at any instant has the same

sign in either half of the bar (lower or upper in the figure) from o'ne node

to the next, while the shear has the same sign from one loop to the next.

At the ends, the extension has the same sign as the adjacent interval

between nodes. Appreciation of these facts is essential in the proper

placing of electrodes.

For best results the bar should be supported at one or more nodes.

It will respond as a resonator even if the field is applied to only a small

part of the bar, as long as this part lies entirely, or chiefly, in a region

where the instantaneous strain has the same sign. For an oscillator the

electrodes, preferably plated, must of course be relatively large, and for

very low decrement the bar should be mounted in vacuum, since the

loss of energy to the surrounding air is considerable.

With quartz crystals both constants dn(= dn = dae) and

di4(= eta) can be used in obtaining the extensional or shearing stresses

needed for exciting flexural vibrations. An even greater choice of excita-

tions is possible when the bar or plate is cut obliquely. An idea of the
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different possibilities can be gained from Fig. 88. Electrodes of opposite

sign are distinguished by heavy and light lines. Electrodes of the same

sign are usually connected in parallel. Field directions are indicated by
arrows. The end view in each case shows the cross section in the form
of a square, with the thickness e equal to the breadth b. The plane of

flexure, in which vibration takes place, is always le. The greater the ratio

b E

1E3

FIG. 88. -Locations of electrodes for exciting flexural vibrations. In the elongated
rectangles motion takes place in the plane of the paper in all cases except A, E, and G, where
it is perpendicular to the paper.

l/e, the lower the frequency. The breadth 6 has no appreciable effect

on the frequency. Experiment shows that flexural vibrations can still

be obtained even when e is as great as Z, although when e is relatively large

a special form of theory is required, as indicated in 73. From the

figure and Table XXVII it is evident that in some cases the same bar or

plate can be used for flexure in more than one plane, according to the

TABLE XXVII
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arrangement of the electrodes. The nature of the piezoelectric excita-

tion in each case is shown in this table.

In Fig. 88, A, Bj C, and D represent resonators described by Giebe

and Scheibe. 166-"170 The electrodes are very short, in order to show the

luminous effect at resonance in various overtones when the resonators

are used as frequency standards. The field parallel to X needed for

excitation in B, C, and D is the Z-component of the stray field indicated

by the curved arrows. Such excitation is necessarily weak.

E is Harrison's arrangement,
205 which is similar to Giebe and Scheibe's

device A and was discovered independently and published in the same

year. Harrison used two pairs of full-length electrodes for more efficient

excitation of the first flexural mode. By using four pairs of electrodes

(each set of two pairs covering approximately half the length of the

resonator), he excited the second mode. When observing the first mode

at reduced air pressure he found a series of luminous striations crossing

the exposed surface of the bar near the center (see also Harrison and

Hooper
208

).

F and G in Fig. 88 represent modes that have been observed by the

author. They include flexure in all three principal planes. As may
be seen from Table XXVII these arrangements make use of the shearing

piezoelectric effect rather than compression. In F the central electrode

is a girdle surrounding the bar, and from it the field in the quartz extends

in both directions to electrodes (connected in parallel) opposite the ends.

While this excitation is comparatively weak, that in G is much stronger,

since the field is normal to the plane of flexure instead of parallel to the

length of the bar.

Figure SSH represents a "Curie strip/' consisting of two J-cut quartz

plates cemented together with polarities opposing. When the field Ec

is applied, one plate expands lengthwise while the other contracts. The

resonator vibrates flexurally as a unit. With two plates, each 4 by 1 by
0.05 cm, cemented with Canada balsam, the author in 1 927 found reso-

nance at a frequency of about 400 cycles/sec. Resonance was indicated

by lycopodium powder, by an audible note, and by response in the anode

circuit of a tube to the input of which the resonator was connected. The

use of the Curie strip in a piezo oscillator is mentioned in 396. The

static theory is treated by Voigt.*

355. The excitation of flexural vibrations of low frequency is most

efficient when the field is parallel to the thickness e, since this is the dimen-

sion which must be made small if the frequency is to be low. The breadth

b can then be made large, permitting the use of electrodes of large area.

This case can be realized by a modification of Fig. 88C, as illustrated in

Fig. 89. The driving field is no longer the stray field parallel to X, but

* "Lehrbuch," p. 906.
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the relatively strong field parallel to F. Each half of the plate is subject

to a shearing stress Xv e<xEy \
and since these stresses have opposite

signs, a state of flexure results. With / = 7.4 cm, e = 0.1 cm, 6 = 2 cm,
the author has observed a resonant frequency of 1,050 cycles/sec. This

seems to be the lowest recorded frequency for a bar of uniform cross

section with the field in the thickness direction. Still lower frequencies

were obtained by Gruetzmacher,
191 but in his resonator the quartz was

left very thick at the ends, having the form of a thin strip only in the

central portion. This was therefore not a "bar" in the ordinary sense.

With the cut shown in Fig. 89, even modes of flexural vibration can

be excited by full-sized electrodes covering the entire J6-faces. This is

because the bar is then divided into an odd number of segments, sheared

alternately in opposite senses.

Flexural quartz resonators can be used for controlling the frequency
in a piczo-oscillator circuit. For example, a circuit like that in Fig. 99

was made to oscillate at crystal frequency with the F-cut 1,050-cycle

bar described above.

4- Y
U;

FIG. 89. y-cut quartz plate for low-frequency flexural vibrations. The length I is parallel
to X, and the thickness e is parallel to Y. The piano of flexure is XY.

The same principles that have been described for quartz can, of course,

be applied to other piezoelectric crystals. As long as the ratio l/e is

large, frequencies can be calculated by Eq. (128).

References on flexure and flexural vibrations are given at the end
of the chapter. Some of the applications are treated in 368 and 396.

Theory and application of static flexure are considered by Voigt* and by
Voigt and Fre*edericksz;

576 vibrational theory will be found in the papers

by Doerffler,
124 Mason, 333 Thomson, 518 and Tykocinski-Tykociner and

Woodruff. 537 /
Flexural resonators have been proposed by Giebe and Scheibe B45 as

standards of frequency from 1 to 20 kc.

IV. PIEZOELECTRIC EXCITATION OF TORSIONAL VIBRATIONS

366. According to 180, the torsion of a cylinder or prism involves

opposite shears on opposite sides of the axis, the plane of shear containing

the axial direction. In quartz, torsional vibrations have been produced
with the axis of the specimen parallel to X, Y, or Z. Oblique directions

could, of course, also be chosen. The same arrangements of electrodes

may be used as in Fig. 88; we can therefore indicate the methods of

excitation by reference to that figure and Table XXVIII.
t

*
"Lehrbuch," 1928 ed., p. 965; also ref. 573.
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TABLE XXVIII

[356

Methods I, II, and III were devised by Giebe and Scheibe. 169* In

method II it is the stray fields extending to right and left along the length

of the bar (parallel to Y) that are effective.

Method IV is described by Hund and Wright,
242 who used a circular

cylinder with length parallel to Z. The field entering the quartz from the

girdling electrode had components EX and Ey,
which produced in the

adjacent regions the shears requisite for torsion. In some of their experi-

ments they used, in place of electrodes at the ends, girdles surrounding

the cylinder spaced at a certain distance from the center.

MethodV was realized experimentallyjta this laboratory in 1931. The

piezoelectric excitation is due to the component of field parallel to X
entering the bar from the girdling electrode on opposite sides in opposite

directions, according to yz = duEx . Instead of a girdling electrode, two
small plane electrodes could be used, one at each end of the X-axis.

Evidence of the torsional mode was provided, not only by agreement
between observed and calculated frequencies, but also by the fact that

fine sand sprinkled on the vibrating bar formed a lengthwise nodal line

along the center.

Method VI, which has not yet been tried, is similar to method V.

Of all the methods for producing torsional vibrations in a bar, the

most effective is method I in Table XXVIII, especially if the electrodes

extend the full length of the bar, as in Fig. 88E. If the bar has a rec-

tangular cross section, the field should be parallel to the smallest dimen-

sion & (the field direction is shown parallel to b in Fig. 881?) . In order

that this arrangement shall produce torsion, the crystal cut must be such

that the field parallel to e will cause a shear in the eZ-plane with respect to

axes parallel to e and /. With quartz, oblique cuts (the possibilities of

which have not yet been explored) being excluded, the only torsional

excitation by this method is with the length Z parallel to X. In a crystal

such as Rochelle salt, in which du, d^ and dw are all present, torsional

* See also Giebe and Blechschmidt. 188 In the latter paper the theory is discussed

as well as the effect of temperature on frequency.
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vibrations should be very efficiently producible in a bar with two pairs

of electrodes as described above, the length of the bar being parallel to

one of the crystal axes and the breadth and thickness making angles of

45 with the other two axes.

Any bar cut so that it responded torsionally with electrodes divided

along the length, as in Fig. 88J, would also respond flexurally if the

electrodes were divided transversely as in Fig. 88G.

Method I has been applied by Giebe and Scheibe to circular cylinders.

As a more efficient means of excitation they employed four concave

electrodes running parallel to the axis. An analogous arrangement for a

rectangular bar is described by Giebe and Blechschmidt. 162

Experiments with hollow quartz cylinders (axes parallel to Z) have

been described by Tawil, by Tsi-Ze and Tsien, and by Zacek and Petrzilka,

using a combination of inner and outer electrodes. It was in the course

of these experiments that Tawil observed an effect which he attributed to

"strephoelectricity," later shown by Langevin and Solomon to be com-

pletely explained in terms of du. Tsi-Ze and his associates also used

their resonator as an oscillator in a Pierce circuit. Experiments on

various modes of vibration of quartz cylinders, both solid and hollow, are

described by Benoit; the cylinders were used in piezo-oscillator circuits.

Torsional resonators may be supported at a node or nodes, or, accord-

ing to Giebe and Blechschmidt,
162 the bar or cylinder may be held by a

pointed rod at each end, fitting into a small conical cavity at the center of

the section. As with flexural resonators, it is not always necessary to

provide the full quota of electrodes or to place them exactly as shown in

Fig. 88. Local excitation over any region where the strain is all of the

same nature should be enough to produce a response, although in some

cases a strong alternating field may be required.

General formulas for the calculation of frequency are given in 74.

Special formulas for quartz will be found in Giebe and Blechschmidt. 162

367. Quartz Resonators of Special Cuts and Shapes. The resonators

now to be described were designed to reduce the effect of temperature on

frequency or to reduce coupling with undesired vibrational modes. In

some cases both aims can be attained satisfactorily in the same device.

Out of the large number of solutions of the problem, the choice of resona-

tor depends on the frequency, the capacitance ratio, the extent to which

the effective piezoelectric constant is diminished by rotation, the tolerance

with respect to temperature effects, and the use to which the resonator

is to be put frequency standard, power oscillator, filter, etc.

Temperature changes affect the frequency, not only by causing small

alterations in density and dimensions of the resonator, but also, and

chiefly, by changing the values of the various elastic constants that

determine the vibration. All the quartz compliance constants of type
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L or S in Fig. 15, except See, have positive temperature coefficients, while

the cross constants $12 and sn have negative coefficients. By the use of

oblique cuts, for which the effective elastic constants are certain func-

tions of the fundamental ones, and in some cases by taking advantage
also of the coupling between different modes, it is possible to have

negative and positive temperature coefficients neutralize one another

in such a way as to reduce the effective coefficient to zero. This reduction

can be accomplished in many ways, for various vibrational modes and

various ranges of frequency. *

Unfortunately, the various temperature coefficients present in the

frequency formulas usually lead to an expression for the temperature
coefficient of frequency containing the square and higher powers of the

temperature difference. As a consequence, the temperature coefficient

can, by varying the orientation, be made strictly zero only at one particu-

lar frequency, if at all. It is only by finding an orientation such that the

coefficient of the square term vanishes (terms of higher order being

relatively small) that the frequency can be made practically independent
of temperature over a considerable range of temperatures. This end

has been attained in the GT-cut mentioned below.

We use the abbreviation a for temperature coefficient, with a designat-

ing subscript when necessary. Thus the temperature coefficient of $n

may be written aail
= (1/Sn) dsu/dt, or that of frequency a/ = (I//) df/dt

Sn and / being taken at some standard temperature. The curve relating

/ to t can be expressed by an equation that usually contains both the first

and higher powers of t. a/ = wherever the curve is parallel to the axis

of temperatures. If the flat portion of the curve is narrow, it may be

necessary for sufficiently constant frequency outside a very small tem-

perature range to use a thermostat. The broader the flat portion, the

less important is thermostatic control.

Both the original X-cut and the F-cut that began to compete with it

about 1927 have large temperature coefficients and give much trouble

from the tendency to jump from one frequency to another. The era of

resonators with low a/ began in 1929. In that year Harrison330 described

a piezo oscillator of high precision containing a F-cut ring-shaped crystal

vibrating at 100 kc, with a/ < 10~~
6
. The use of a ring had already been

introduced by Giebe. 160 - 167 ' 168

Essen187 - 138 ' 139 later used a quartz ring as a frequency standard, his

ring having its axis parallel to Z. A compressional circumferential mode
was used, with three complete wavelengths spaced around the mean
circumference. A proper ratio of inner to outer diameter reduced a/
to 10~6 or less over a range of 30C. The frequency was 100 kc.

It was also in 1929 that Lack298 described a specially dimensioned

F-cut devised by R. A. Heising, in which the shear mode with its positive
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a/ was coupled to a flexural overtone mode with negative a/ in such a way
as to give a zero coefficient at a certain temperature.

In 1932 and 1933 Matsumura and Kanzaki361 - 862 showed that a value

of ctf approaching zero for lengthwise vibrations in an X-cut bar could be

reached by inclining the length I of the bar at the angle <p
= 20 to

the F-axis and at the same time giving the ratio b/l an optimal value of

about 0.5. Their critical angle <f>
= 20 corresponds to 6 = +110

for 1/s^a in curve C, Fig. 31, or to +20 for 1/4, in curve B\ it is

practically the angle for minimal Young's modulus. This angle is so

close to that for the so-called 18.5 cut that they may be credited with

having first appreciated the advantage of this cut.

The 18.5 cut was first described in 1934 by Mason. 332 ' 340 It is an

X-cut rectangular plate with length making an angle of 18.5 with the

F-axis, this angle being measured in the direction from +Y toward

+Z, as shown in Fig. 92. At this angle the coupling between the length-

wise and shear modes (349), which would otherwise be troublesome in a

plate that did not have a" very small b/l ratio, disappears.* The b/l

ratio chosen for use as a filter is not such as to make a/ approach zero.

The plate vibrates in a compressional mode parallel to one of the longer

dimensions.

Somewhat similar characteristics are possessed by Mason's 5

plate,
843 illustrated in Fig. 92. Of all the series of ^T-cut bars with lengths

in the FZ-plane it has the lowest temperature coefficient of frequency.

This fact, together with its low Ci/C ratio and the fact that it can serve

either as a lengthwise or flexural resonator, makes it useful as a filter

crystal.

All the resonators so far described are for relatively low frequencies,

of the order of 60 to 200 kc.

358. In the development of resonators for higher frequencies, for

which thickness vibrations are used, notable innovations were made in

1934. By one of the coincidences that are so frequent in scientific and

technological history, there appeared independently, from four widely

separated sources, papers on the temperature characteristics of thickness

vibrations in quartz plates containing the X-axis, the normals to the plates

* The angles +18.5 and 5 for these two cuts are expressed in conformity with

the rule stated in 51 for rotation about a single axis. In the earlier publications of

the Bell Laboratories they were given as - 18.5 and +5. The signs of for the A T
7

-,

BT-, CT-, DT-, GT-, MT-, and A/T-cuts, as given in this book, likewise conform

to 51.

The nature of the coupling mentioned above is indicated by the expression

y'v
s

s'uYg, the length, breadth, and thickness of the plate being parallel, respec-

tively, to Y'j Z', and X. The compliance sz4 ,
which represents the coupling between

the y
f

y
- and ^-strains, contains s<4 as a chief constituent. It is the vanishing of 824 at

18.5 (see curve L in Fig, 31) that characterizes this cut.
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lying in the FZ-plane at various angles 6 with the F-axis.* All these

investigators Koga272 in Japan, Bechmann82 and Straubel491 '492 ' 493 in

Germany, and Lack, Willard and Fair299 in New York showed that

/
= when is approximately -35 or +49 (see Fig. 92).

Previously to his work cited above, Koga270 had experimented with

his R- and jR'-cuts in thickness vibration. These cuts are parallel to the

R- and r-faces of the crystal (Fig. 76) and are not very far removed from

the AT- and JB7
7
-orientations mentioned below. Bechmann considered

the effect of the b/l ratio on a/; he also found that / had a $ero value for

X-outs rotated about the F-axis by an angle somewhere between 50 and

70. Lack, Willard, and Fair investigated the discontinuities in fre-

quency of thickness vibrations in a 7-cut with changing temperature.

They found the discontinuities to be due to coupling between the xv-strain,

which is the essential one for thickness vibrations in this cut, and over-

tones of the zx-strain. The stress-equation is Xv
= c^xv + CMZX ,

c 56

being a measure of the coupling. When the plate is rotated about X
by the angle 0, the expression becomes X'v = cJ 6#J + c^z

r

x . Lack,

Willard, and Fair found that when 6 = -31 or +60 the coefficient

Cg6 vanishes. Plates of these orientations vibrate in a very pure ^-shear
mode free from anomalies as the temperature changes. Owing to the

freedom from parasitic vibrations, local stresses are reduced to a mini-

mum, so that higher voltages can be applied without danger of fracture.

Lack, Willard, and Fair called these cuts the AC and BC, respectively.

Although the temperature coefficients of the AC- and JSC-cuts are

low, they do not vanish. At 8 = 3515', however, a/ vanishes at 45C,
changing from negative to positive at this temperature (see Fig. 90). Fol-

lowing Lack, Willard, and Fair, this is now commonly called the AT-cut

(see Fig. 92). At 6 = +49, a/ vanishes when the temperature is 25C,
changing from positive to negative at this temperature (the B T-cut. ) The
AT and BT have orientations so close to those of the AC and BC that

they partake of the advantages of the latter to a large extent and are

commonly used.

All four of the cuts just mentioned are examples of "rotated F-cuts"

or
"
F'-cuts." In each case the electric field is parallel to the thickness

* The symbol B has been used very loosely in the literature, to signify rotation

about any axis, in either sense, and measured from any fiducial direction according
to some convention adopted, and not always clearly specified, by each individual

writer. In this book we use for a single rotation about any one of the three crystal-

lographic axes Xt
Y

f
or Z, according to the definition in 51. In the present discus-

sion 6 is the angle between the F-axis and the normal to the plate, positive when the

rotation is about the X-axis from -fF toward +Z. For the most general rotation,

in which three angles must be specified, we use <p, 6, and ^, where 9 is the angle about

the Kr-axis in 52. The conventions used by various writers are shown in a compara-
tive table in ref. 110.
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and makes the angle with the F-axis. The axes of the rotated plate

are X, Y', and Z', with Y' parallel to the thickness and X and Z' parallel

to I and 6 (or b and Z). The effective piezoelectric constant c of 246

becomes e 6 [Eq. (221)], and the driving stress is X'v = 46#2> where Er

%

is the instantaneous driving field. With increasing 0, e^ diminishes;

hence the capacitance ratio, given by the reciprocal of Eq. (414), also

diminishes.

The AT-cut has a higher capacitance ratio than the BT-cut (normal

to the surface is closer to the F-axis, so that 4e is greater), but the BT-cut

has a higher frequency for the same thickness. Both the AT- and

BT-cuts are subject to coupling between odd shear and even flexural

modes in the XF'-plane.*
It is commonly found that plates are most active when their surfaces

are plane or very slightly convex. The slightest concavity lowers the

activity and makes the frequency spectrum more complex. As an exam-

ple may be mentioned an experiment by Koga and Tatibana,
283 who

explored the surface of a .BT'-cut in a piezo-oscillator circuit by having

one of the electrodes of small size and moving it to various parts of the

surface. Finding the frequency to be somewhat higher near the edges,

they prepared a plate with a concave surface, hoping thereby to make all

parts vibrate in more exact synchronism. The result was failure to

oscillate at all.

359. Low-frequency Resonators in the Form of Broad Plates. Some

of the types to be considered make use of compressional vibrations

parallel to I or 6, as in the case of thin rods. Other types involve shears

in the plane of the plate, the frequency depending on both b and I. Such

modes of vibration are often called "contour modes "
or "face shear

modes" (see 71). Owing to the large b/l ratio various coupling effects

have to be considered, f

The CT- and DT-cuts, due to Hight and Willard,
227 are the 1-f counter-

parts of the AT- and BT-cuts. The piezoelectric excitation is of the

type z'x
= d'^E'v . The vibration is essentially of a shear mode in the

* By an "odd shear mode" is meant a thickness mode in which the major surfaces

do not move to and fro as units in the X-direction but are divided into an odd number

of segments, adjacent segments being joined by lines parallel to Z 1
. For example,

the frequency might be that of three plates, each of dimensions 6 parallel to Z' and

approximately Z/3 in the X-direction. As with lengthwise vibrations of bars

at odd harmonic frequencies (238), these odd shear modes can be excited with elec-

trodes covering the entire crystal, only in this case, since the frequency depends

primarily on the thickness, the odd modes differ but little in frequency from the funda-

mental thickness shear. As to the "even flexural modes," they have been described

in 355, where it was shown that they can be excited by full-sized electrodes. It is

the similarity in strain distribution of these shear and flexural modes that accounts for

the coupling between them . The coupling can be suppressed by suitable dimensioning.

t Various contour modes in V-cut plates are discussed by Builder and Benson.81
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plane of the plate, and the frequency depends on the contour (usually

rectangular) rather than the thickness. The edge dimensions are

parallel to X and Zf
. The fundamental elastic equation is z'x

= s^Z*.

For the CT- and DT-cuts the angles for zero af are -38 at 41C
and +52 at 50C respectively (see Table XXIX). These angles are

within a few degrees of those for the AT- and JST-cuts. The CT-cut

has a better capacitance ratio than the D!T-cut and is usually pre-

ferred. Both cuts have good freedom from coupling with undcsired

modes; their frequencies are constant to within 1 part pe million from

20 to 30C.
The GT-cuL The most remarkable of the 1-f cuts of low temperature

coefficient is the GT-cut, introduced in 1940 by Mason. 836 Without

thermostatic control the frequency remains constant within 1 ppm from

to 100C. This cut may be thought of as a CT-cut with the angle 6

(see explanation of Table XXIX) increased from 38 to approxi-

mately 51, followed by a rotation of the rectangular plate in its own

plane until the edges make angles of 45 with the X- and Z'-axes.

Its vibrational mode is best understood, however, by starting with a

narrow F-cut 45 bar, the length of which bisects the angle between the

X- and Z-axes. The piezoelectric lengthwise strain is z'f
= d^Ey,

analogous to the 45 F-cut bar in Rochelle salt. The elastic equation
is z'z

=
sJgZ*. Since from Fig. 33 the Sgg-curve is symmetrical about

the Z- and Jf-axes, the 45 angle may be taken in either sense. Such a

bar has a negative a/. If now the breadth b is progressively increased,

the 6-and Z-compressional modes become more and more closely coupled.
At the same time a/ diminishes in magnitude, becoming positive at

sufficiently large b. Mason found, not only that there is a certain b/l

ratio for which a/ = 0, but that, at a certain value of 0, a/ remains

approximately equal to zero over a very wide range of temperature.
When B = -517.5' and b/l = 0.859, the center of the flat region falls

at 25C. By edge grinding, both frequency and a/ can be adjusted

independently, and by slight variation of 6 the center of the flat portion
of the frequency .'temperature curve can be varied. A suitable value of

thickness is chosen in order to avoid coupling with a flexural mode.

In vacuum this cut has Q up to 330,000. It is used for frequency stand-

ards, filters, and receivers.

The MT- and NT-cuis of Mason and Sykes
343 are 1-f rectangular plates

used in filters and oscillators. Their orientations can be explained by
considering first an X-cut plate with its length at an angle 6 (see explana-
tion of Table XXIX) -8.5 from +F. We may call the direction of

length the F'-axis, the breadth b being parallel to Z'. The plate is now
to be rotated through an angle A about F;

so that the positive end of

the Z'-axis moves toward +X. For the MT- and NT-cuts the angle A
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has the values 40 and 50, respectively.* These orientations permit the

MT-cut to vibrate in its lengthwise mode, with low a/, while the NT-cut
has low ctf when vibrating flexurally, according to Harrison's arrangement
shown in Fig. 88E. Depending on the dimensions, the MT-cut is used

at frequencies from 50 to 100 kc/sec, and the NT-cut from 4 to 50 kc/sec.

When the NT-cut is used as an oscillator, as for example in frequency

modulation, at these low frequencies, a circuit similar to that in Fig. 99

is employed.

10 20 30 40 10 80 90 10050 60
C

Fia. 90. Dependence of the temperature coefficient a/ upon frequency, for some cuts of low

a/, from Mason, ref. 340. Ordinates are frequency changes in ppm.

Still other cuts of low temperature coefficient have been described,

for example the ET- and FT-cuts of Hight, described by Mason,
337 and

the F!T-cut of Yoda,
595 * 596 which is similar to the BT-cut. Yoda states

that he experimented with a plate so thin that its fundamental thickness

mode gave a wavelength of only 4.7 m (64 megacycles/sec.).

The MT- and NT-cuts described above are examples of cuts obtained

by a general rotation, in which the normal to the plate makes oblique

angles with all three crystallographic axes. The general rotation has

been treated by Bcchmann36 and Mason. 337 Further examples are the

F-cuts of Bokovoy and Baldwin, f These are similar to the AT- and

BT-cuts, but rotated 5 around the Z-axis.

* In their paper, Mason and Sykes describe the properties of the set of cuts that

they call the "MT series," in which lies between and 8.5 and A between 34

and 50.

f S. A. BOKOVOY and C. F. BALDWIN, Australian patent 21,959, 1935, and British

patent 457,342, 1936. See also Builder80 and Baldwin and Bokovoy.
18
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FIG. 91. The Straubel

contour.

The temperature coefficients of frequency of some of the more impor-

tant cuts are shown in Fig. 90. For all cuts except the GT the coeffi-

cient vanishes or has a low value only when the temperature is held

close to a certain value. For example, with the AT-cut this value* is

45C. The GT-cut has a very low coefficient over the entire temperature

range; i.e., the second derivative of frequency with respect to temperature

is nearly zero over the whole range.

360. The Straubel Contour and Quartz Spheres. A circular Z-cut

plate excited in compressional vibration along a diameter gives a complex

frequency-spectrum. Straubel484 '486*488 conceived the idea of shaping

an X-cut plate so that the radius in any direction

in the plane of the plate is proportional to the

square root of Young's modulus in that direction.

The result is the contour illustrated in Fig. 91. A
compressional wave starting at the center reaches

all points onthe circumference atthesame instant.

Such radial waves can be excited by electrodes

covering the major surfaces in the usual way.

Straubel found a single well-marked resonant

frequency, free from disturbing modes; the

lycopodium test (366) showed a single nodal spot

at the center. Even with thickness vibrations a plate ofthis shape is some-

what freer from multiple frequencies than round or rectangular plates.

Quartz spheres have been experimented with as resonators. The

modern crystal gazer, instead of trying to divine the future, observes

modes of vibration. We have already referred in 350 to the experiments

of Van Dyke. Kamienski250 has also examined various vibrational modes

and measured the temperature coefficient of frequency. The modes are

too complex and the labor in fashioning a sphere of quartz too great for

this type of resonator to offer promise of practical applications.

361. Table XXIX gives the orientations of some typical cuts,

together with the frequency constant H, the effective piezoelectric con-

stant ,
and the frequency range within which each cut is commonly used.

The data are taken chiefly from Mason
840 and Bond. 66 For the cuts from

AT to GT, e is the angle between the F-axis and the normal to the plate,

positive when measured from + Y toward +; it is also the angle between

the Z-axis and the plane of the plate, positive when laid off from +Z
toward - F, as indicated in Fig. 92. For the MT-, NT-, 18.5, and -5

cuts, 6 is the angle between the length of the plate and the 7-axis, meas-

ured from +Y toward +Z, as in Fig. 92.

The angles ?>, 0, and ^ in the table specify the orientations according

to the I.R.E. convention, as explained in 52. With respect to the

* By a slight change in angle this critical temperature can be altered.
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rotated axial system the length, breadth, and thickness in each case are

parallel to X', F', and Z', respectively.

For the X-cut in Table XXIX, the first line is for a broad plate in

compressional thickness vibration, the second line for a narrow bar in

Z

-J5V5'
FIG. 92. Angular orientations of some oblique cuts of quartz.

lengthwise vibration. Similarly, the first line for Y is for the shear thick-

ness mode, and the second for the 1-f shear mode in the plane of the plate.

Through the process of rotation these two modes become the thickness

mode of the AT- and BT-cuis and the contour mode of the CT- and

DT-cuts.

TABLE XXIX. SUMMARY OF DATA FOR VARIOUS CUTS

A word must be added concerning the piezoelectric constants for

rotated plates in Table XXIX. The subscripts attached to these con-

stants are applicable as long as the plates are considered as F'-cuts with

the electric field parallel to Y'. In terms of the I.R.E. notation the thick-

ness is parallel to Z
r
for all cuts; in order to be consistent with this system
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the piezoelectric constants would have to have different subscripts. For

example, the constant for the AT- and BT-cuta would be written e'^

with analogous changes in all the other constants, including also those

for the X- and 7-cuts. The numerical values would of course remain

unchanged.

By making use of high overtones of thickness vibration, as described

in 397, the range of practicable frequencies for the A !F-cut is extended to

150,000 kc.

362. Numerical Data on Quartz Resonators. Experimental data

from various sources, for bars in lengthwise vibration and plates in thick-

ness vibration, are assembled in Table XXX. The fundamental mode

was excited in each case. Quantities in parentheses are calculated by the

author from the published data. The wave constant // is defined as

H =
fl for bars and as H = fe for plates, where /is in kilocycles per second

and I and e are in millimeters. The number of meters, h, per millimeter

can be calculated from the equation h = 300,000///. In all cases the

gap was zero, or close to zero, so that q<> is the effective stiffness at zero

gap.

In the table, Nos. 1, 8, 9, and 10 are from Vigoureux.
B51 Number 2

is the bar discussed in 298; the large R and low Q are due to frictional

losses in the primitive form of holder in which the bar was mounted.

Numbers 3 to 7 are from Mason.335 - 340 The angles specified give the

deviation 6 of the length I from the F-axis, as indicated in Fig. 92 for the

5 and 18.5 cuts.* These five examples illustrate the wide variations

in H and go for bars in different orientations.

Numbers 11 to 14 are from Bechmann. 87 The high values of Q are

evidence of the excellent mounting of these plates. The value of C\/C

is calculated from the theoretical formula (414a)' in 280, in which it is

assumed that Ci = kA/^e esu. From Ci/C and Bechmann's values of

C
y Ci is calculated.

In No. 4, Ci/C is the value given by Mason. 340 The same value

can be derived from Eq. (414a) using his data. The very large values

of Ci/C occurring in the table are probably due to low effective values

of the piezoelectric constant.

For flexural resonators, values of R, L, C and 5 = v/Q are given by
Rohde and Handrek,

438 whose paper must be consulted for details. They
find that, for resonators of frequencies of 1,000 to 60,000 cycles/sec,

R ranges from 22(10
6
) to 1.6(10

5
) ohms, C from 0.005 to $.0027 mmf, L

from 500 (10
4
) to 0.26(10

4
) henrys, 5 from 0.00022 to 0.00034. Some of

these resonators have two nodes, others three.

* For these five cuts the I.R.E. orientation angles (52) are 9 0, 8 - 90,

* - 90 + e.
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363. The High Q of Quartz. It is well known that the energy losses

in quartz resonators are due, as a rule, chiefly to friction and air waves

in the mounting and to vibrations imparted by the crystal to its supports.

It has been shown by Van Dyke664 that a considerable amount of damping
is also caused by losses at the surfaces of the crystal, when these surfaces

have simply been ground or lapped smooth, owing to microscopic cracks

and other imperfections. If the surfaces are etched before mounting,
these losses are greatly reduced, while a final polishing causes a still

further diminution. Van Dyke's results obtained with an X-cut bar

(frequency 67.5 kc/sec) are given below. The bar was silvered and

suspended by a fine wire attached exactly at the center, serving also

as a lead to the silver coating.

With surfaces ground, in air at atmospheric pressure, Q = 25,000;

in hydrogen at atmospheric pressure, Q = 101,000; in vacuum,

Q = 180,000 to 290,000.

With surfaces etched, in vacuum, Q = 490,000; etched and polished,

in vacuum, Q = 580,000, corresponding to a logarithmic decrement of

5.4(10-
6
).

For a quartz bar in the primary frequency standard at the Reich-

sanstalt (399), Scheibe* found the decrement to be from 13(10-
fi

) to

These decrement values for quartz are lower than the smallest value

that we find recorded for a gravity pendulum, f

If compressional waves of frequency 67.5 kc/sec were impressed on

the end of a quartz bar of indefinite length, for which the logarithmic

decrement was 5.4(10~~
6
), they would travel about 70 km before the

amplitude was reduced to 1 per cent of that at the source.

For some of the vibrational modes of a F-cut quartz ring Van Dyke557

found values of Q of over a million.

The highest Q that we find recorded for a tuning fork is about 500,000,

for a 480-cycle fork.t

364. Reduction in Friction at the Surface of a Vibrating Crystal. When
an X-cut quartz plate vibrates near resonance, the friction between it

and the surface of a solid with which it is in contact is greatly reduced.

This effect was described by Straubel488 in 1931. In the same year
frictional experiments were carried out in this laboratory by Hagen,
based on earlier unpublished observations by Van Dyke/ Hagen used

* A. SCHEIBE and E. v. FERBONI, Physik. Z., vol. 39, pp. 257-258, 1938.

t H. GOCKEL and M. SCHULEB (Z. Physik, vol. 109, pp. 433-458, 1938) give

19.1(10~
6
) for the logarithmic decrement per cycle of a Schuler pendulum.

t E. NORBMAN, Proc. I.R.E., vol. 20, pp. 1715-1731, 1932.

J. P. HAGEN, M.A. thesis, Wesleyan University, 1931.
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several different methods, including the measurement of the drag exerted

on the quartz by a rotating brass disk on which it rested and also the

effect of vibration on the angle of repose when the quartz rested on an
inclined plane. When Hagen's experiments were performed in air, the

friction was reduced to about half the normal value. In vacuum
the effect almost disappeared, indicating that a layer of air between the

surfaces was a necessary condition for the reduction in friction. On
the other hand, Hagen found that the friction of a pivot supported by a

bearing that rested on the vibrating quartz was reduced by about one-

half even in vacuum.

366. Luminous Resonators. In a well-mounted resonator, driving

voltages of only a few volts can cause local strains so great that the

accompanying piezoelectric polarization gives rise to a charge density on

the surface large enough to produce close to the surface a field sufficiently

strong to ionize the air. The result is a visible glow. This effect was
observed at atmospheric pressure in this laboratory in the course of the

early experiments, but the results were not published. Since then,

many others have also encountered it.

In 1925 Giebe and Scheibe163
published the first of a series of papers

on the luminous resonator. With rods parallel to X or F, using very
short electrodes according to 349, they were able to obtain luminosity

at the fundamental lengthwise frequency and odd overtones up to the

33d order. The order can be determined by counting the number of

luminous regions. Thus a single rod can serve as a frequency standard

for a large number of frequencies. By proper placing of the electrodes

even orders can also be excited. For the lower range of frequencies,

1,000 to 20,000, they used flexural modes, according to 354.

As standards of frequency, a precision as high as 1 part in 106 is

claimed for the luminous resonators. The crystals are mounted in bulbs

containing air or, for brighter effects, a mixture of Ne and He, at a pres-

sure of a few millimeters.

The luminous resonator is connected in series with a pickup coil

coupled to a generator of finely controllable frequency. The right setting

of the generator is first found approximately with fairly close coupling.

For the final precise adjustment the coupling is made as loose as possible.

366. Wave Patterns on Quartz Resonators. A vibrational survey of

a resonator can be made by the use of probes, polarized light, or optical

interference or by observing the movements of a liquid or of solid particles

in contact with the surface.

The probe method consists in touching the resonator lightly at various

points with a slender rod, to locate the nodal regions. Vibrations are

suppressed least when contact is at the nodes. This method, much used

by the author from the first, is described by Wright and Stuart. Its
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use can go a long way in helping to avoid false conclusions as to modes of

vibration.

In 1922 the use of lycopodium powder on quartz resonators was first

described. 93 When this powder is dusted onto the surface, it tends to

be shaken away from loops of motion and to collect at the nodes. Fine

sand or other pulverized material can also be used. In some cases the

powder is seen to move in small vortices or whirls, or to be projected

violently from the surface. Wachsmuth and Auer577 describe an experi-

ment in which they found lycopodium to be projected as inuch as 50 cm.

In this connection may be mentioned the experiments of Bticks and

B

E F Q U
FlG. 93. Lycopodium patterns on Z-cut disks vibrating in various modes, from Petrailka.

A, B, C, D, quartz. E, F, G, H, tourmaline.

Miiller,
79 who observed the projection of smoke from the vibrating

surface.

Many papers have appeared on the study of vibrational patterns of

quartz by the use of lycopodium. Some of them contain very beautiful

photographs of the lycopodium figures, examples of which are shown in

Fig. 93, from Petrzilka. 417 Patterns A, B, C, D are from circular -cut

quartz plates, excited by electrodes arranged around the circumference.

For comparison, some of Petrzilka's patterns obtained with Z-cut tour-

maline plates are also shown416
(see 382). From the similarity in the

elastic properties of quartz and tourmaline one would expect a similarity
in the wave patterns, as is indeed made evident to some extent in the

figures.* For a discussion of these and many other patterns, which were

* In comparing the patterns it must be understood that the vibrational modes are

not necessarily the same in each quartz pattern as in the tourmaline pattern below it.

The pictures were selected solely because of superficial similarities.
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obtained in a test of Love's theory of radial and circumferential waves,
Petrzilka's original papers must be consulted.

Complex patterns, such as those on the surface of an X-cut in thick-

ness vibration, can be observed by covering the surface with oil or immers-

ing the crystal in a shallow bath of oil. When viewed in a beam of

reflected light, the oil surface is seen to be covered with minute irregulari-

ties. Crossley
116 found water on the surface to be quickly vaporized and

that a ferroferricyanide solution left a sediment with a distinct pattern.*

The oil method has been used by Tawil. 516 Bucks and Miiller found that

a drop of alcohol placed on the surace was shot off in a fine spray, forming
striations between the vibrating surface and the plane electrode.

367. The interference method was introduced in 1927 by Dye and
later applied by many others, f Dye produced a set of interference

fringes between the non-vibrating polished quartz surface and a glass

plate just above it. When the plate vibrated, the fringes were distorted,

and from their appearance one could judge the quality of the resonator

and the amplitude of vibration (normal to the surface) at different points.

By an ingenious stroboscopic arrangement, using a synchronously flash-

ing helium lamp, clear images of the distorted fringes were obtained,

free from blurring.

Dye's method has been modified by Strong
497 and by Straubel,

490 ' 491

whose optical system was so arranged that the entire field remained dark

when the plate was not vibrating. Osterberg
398"402 describes interfero-

metric methods, based on Dye's work, for studying various types of

vibration. Osterberg and Cookson devised a "multiple interferometer"
407

for observing the vibrational patterns on all six faces of a rectangular

parallepiped. They used this method (see 313), applied to a quartz

plate undergoing forced vibrations at 60 cycles/sec, for obtaining, by the

converse effect, the values of du and du given in Table XVIII.

Mention may be made here also of the use of the "schlieren" method

by Petrzilka and Zachoval421 and by Schaaffs. 450

368. The polarized light method was first used by Tawil505 ' 807 ' 509-611

and later by several others. J Tawil placed his vibrating quartz plate,

along with a second compensating quartz plate, between a crossed

polarizer and analyzer, so that the field was dark except when the resona-

tor vibrated. Vibrations caused certain portions of the field to be

* See also Sanders. 447

f References at the end of this chapter. An account of Dye's work, with illustra-

tions, is given by Rayner.

J K. EICHHORN, Z. tech. Physik, vol. 17, pp. 276-279, 1936 (he used a synchronized

Kerr cell and calculated the stresses in flexural vibrations); P. T. KAO, 258 R. MOENS
and J. E. VEBSCHAFFELT, Compt. rend., vol. 185, pp. 1034-1036, 1927; K. GRANT, 187

PETRziLKA,
414 WACHSMUTH and AUEB,

MT L. BRUNINGHAUS, Jour. phys. rod., vol. 6,

pp. 159-167, 1935.
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illuminated, leaving the nodal regions dark. The effect arises from the

rotation of the plane of polarization by the stressed quartz, as explained

in 538. Tawil and his followers investigated various vibrational modes

by this method.

Many of the recorded wave patterns are so complex as to defy analy-

sis. Compressional, shear, flexural, and torsional modes or certain of

their overtones may be inextricably coupled at any given resonant fre-

quency. It is only by a careful study of the resulting nodal patterns

that conclusions mostly qualitative can be drawn concerning the

contributing modes and their coupling.

Finally, brief mention may be made of the fact that the distribution

of vibrational amplitude- in quartz plates can be studied by the observa-

tion of air blasts, as described in 350, and also by means of ultrasonic

waves*6-*24 ' 422

369. Beta-quartz Resonators. Increase in temperature past the

transformation point at 573C deprives quartz of all piezoelectric coeffi-

cients except di4, ^26 = dut eu, and e26
= en. The possible piezo-

electric stresses, as given in 168, are therefore Y9
= euEx and

Z* = euEy. The cuts and modes of excitation are similar to those for

Rochelle salt or for the CT- and DT-cuts in quartz described in 359.

Such resonators have been investigated by Osterberg and Cookson. 404

Their use by these workers and also by Atanasoff and Hart, Atanasoff

and Kammer, and Lawson, for the determination of elastic constants of

quartz at high temperatures, is described in 90, 92
;
and 101.

Osterberg and Cookson succeeded in making plates of /3-quartz operate

as piezo oscillators.
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RESONATOR EXPERIMENTS WITH POLARIZED LIGHT
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530 -633 Tsi-ZE, TSIEN, and SuN-HuNG, 538 WACHSMTJTH and AUER. B"

EXAMINATION OP VIBRATING PLATES WITH THE OPTICAL INTERFEROMETER

SCHEIBE, 46 VlGOUREUX,
B* J DYE, 128 KOTLYAREVSKI and PuMPIR, 289 OSTER-

BERO, 398"402 PETRZILKA and ZAcnovAL, 421 RAYNER, 433 ScHAAFFs, 460 SCHUMACHER, 4&3

STRAUBEL, 490 ' 491 STRONG, 497 WATAGHIN and SACERDOTE. 680



CHAPTER XVIII

RESONATORS FROM OTHER CRYSTALS, AND COMPOSITE
RESONATORS

For they marueyle that annye men be soo folyshe as to haue delyte and pleasure
in the glysterynge of a lytyll tryfelynge stone, whyche maye bcholde annye of the

starres, or elles the soone yt selfe. SIR THOMAS MORE.

Although quartz is almost the only material used at present for piezo

resonators, much experimental work has been done with resonators from
Rochelle salt and tourmaline. The former of these two has found some

application in filters, and the latter in piezo oscillators of very high fre-

quency. The phosphates and arsenates mentioned hi Chap. XXVII
have properties that recommend them as resonators; concerning them,
however, judgment must be withheld until more data are available.

After a discussion of the effect of the anomalies of Rochelle salt upon
its usefulness as a resonator, the resonator equations for lengthwise
vibrations of 45 bars will be given. The discussion is confined to the

case in which the driving field is small, since only then are the various

stress-strain relations linear. The behavior of Rochelle-salt resonators

with varying gap and also at very high frequencies is considered. Some
experimental results are discussed, not only for lengthwise vibrations,
but for other modes as well.

The resonating properties of a few other crystals are described, with

special reference to tourmaline. Lastly, an account is given of the

composite type of resonator, which consists most commonly of a metallic

bar vibrated by having a bar of piezoelectric crystal attached to it.

370. The Rochelle-salt Resonator. Rochelle salt offers a very wide

range of choice in orientations, shapes, and vibrational modes for resona-

tors. The mechanical and thermal limitations of this crystal have
restricted its practical application as a resonator. On the other hand,
the experimental study of resonators has contributed greatly to our knowl-

edge of the physical properties of Rochelle salt. Moreover, Rochelle-salt

resonators are easily constructed and operated, affording some striking
and instructive demonstrations.

Since the only piezoelectric strain coefficients are di4 ,
d2 5, and dw,

it is impossible to obtain by direct piezoelectric excitation lengthwise
vibrations parallel to the X-, F-, or #-crystallographic axes or thickness

vibrations in plates normal to these axes.* In general, however, both
* We are here leaving out of account the possibility of exciting feeble compres-

sional vibrations of type xx, yv, or z, through the quadratic effect discussed in 464.

469
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types of vibration are possible in any oblique cut, since with respect to

obliquely rotated axes the necessary piezoelectric coefficients are always

present except in certain special cases. The formulas for the rotated

coefficients are given in 139 and 140. Flexural and torsional vibrations

can be excited in practically any cut.

The anomalies of Rochelle salt, summarized in 402, are present only

in the J-cut or in any cut in which the electric field has a component

parallel to X. As long as the field is normal to X, which usually means

a F-cut or a Z-cut, there is no appreciable trouble from variability of the

elastic, piezoelectric, and dielectric constants with field and stress. The

change in elastic properties with temperature, while causing a rather

large temperature coefficient of frequency, is fairly uniform. Although
the decrements are an order of magnitude greater than in quartz, still

for these cuts the equations and approximations given in Chap. XIII

are usually entirely applicable.

It is when the field in the resonator has a component parallel to X,
and of course most of all in the X-cut, that the anomalies have their

field day, at least between the Curie temperatures and in the regions

just outside of them. Some of the anomalies, however, can be avoided

even between the Curie points when the field strength is restricted to a

few volts per centimeter; most of the experimental work has been done

with weak fields. As long as the field is weak, the dependence of strain

and polarization upon the field is very nearly linear, so that the elastic

and piezoelectric coefficients can be treated as constants. According to

the domain theory we may define a "weak" field as one too weak to cause

reversals of domains. As will be seen in 434, reversals of domains,
as indicated by the beginning of the steep part of the polarization curve,

do not take place as long as the field strength does not exceed 50 volts/cm,

except close to the Curie points, where it rapidly sinks to a value which

theoretically is zero. Between the Curie points it is best to keep the peak
value of the driving field below 10 volts/cm, especially when there is a

gap between crystal and electrodes, since near resonance the field in the

crystal may be very greatly in excess of the driving field. At temperatures
well outside the Curie points all relations are linear, so that the limitation

to weak fields is removed except for the danger of overheating or fractur-

ing the crystal.

Between the Curie points, if the field is allowed to become so great
that the relations are not linear, the elastic, dielectric, and piezoelectric

constants vary in the course of each cycle (see also 426). The mechani-

cal driving stress is then no longer proportional to the field. Even if

the applied voltage is strictly sinusoidal, overtone vibrations will be

present. This non-linear effect has been proposed by Wologdin
590 for

application in a Rochelle-salt frequency multiplier. The analysis of
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results obtained with Rochelle-salt resonators in large fields would be very

difficult, and it does not seem to have been attempted.
Between the Curie points, when the vibrations are sufficiently vigor-

ous, reversals of the spontaneous polarization in each half cycle may take

place, especially in regions where the strain is greatest. The electric

and elastic behavior are affected thereby, so that an anomaly in the

frequency is to be expected, as well as pronounced damping. As was

shown first by Mueller380 and later in greater detail by Matthias,
868 the

frequency of any mode involving s44, in a plate with zero gap, is increased

by application of a steady biasing field parallel to X, approaching a con-

stant value when the biasing field is around 1,500 volts/cm. At the

same time, as shown by Matthias, the damping is greatly reduced. These

effects are attributable to the fact that the biasing field tends to prevent
the reversals of the spontaneous polarization. Unfortunately, the

crystal breaks or melts before a field can be applied great enough to pre-

vent the reversals entirely. Matthias's work is treated further in 376.

Even in weak fields the Rochelle-salt resonator is not free from

anomalies. Especially is this true when the electrodes are in contact

with the crystal, since the elastic compliance then has its isagric value,

which is extremely dependent on temperature.
* It is only with large gaps

that the X-cut resonator is nearly free from dependence on temperature.
A complication in the Rochelle-salt resonator to which attention

should be given in future is the phenomenon of lag discussed in 427.

From an inspection of the oscillographic data in Chap. XXII as well as

Fig. 117 and the table on page 553 it appears that from about 500 cycles/

sec upward the polarization is reduced by the lag, the effect increasing

with rising frequency. One would expect the amplitude, and perhaps
other properties, to be affected thereby. A start at the theoretical

solution of this problem has been made by Mason. 338

371. Resonator Equations for Rochelle-salt Jf-cut 46 Bars. Most of

the experimental work with Rochelle-salt resonators has been done with

lengthwise vibrations in bars. Other orientations and vibrational modes
will be considered later. The present section is written in the notation

for X-cut 45 bars. For other orientations all that is necessary is to

make suitable changes in the coefficients. The gap is here assumed to

be zero; its effect is treated in 377. Although a complete theory would

include dielectric losses and the non-linear effects mentioned above, we
shall here assume the field strength to be low enough for all effects to

be linear. The parallel capacitance C\ can then be regarded as free

from dielectric loss; i.e., the only resistance in the resonator is in the

#LC-branch.

* See 79, 200, 211, and 466 for the isagric coefficients and their relation to the

constant-displacement and constant-polarization values.
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The symbols du and en signify the initial piezoelectric coefficients,

denoted in 459 and 460 by (du) Q and (ei4)o or, between the Curie points,

by (du)o and (614)5. The following equations hold at all tempera-

tures, though the parameters vary greatly with temperature.

Since we are dealing only with X-cuts, the subscript x can be omitted

from symbols for electrical quantities without confusion. And since

the gap is zero, it is to be understood that all elastic quantities have their

isagric values, unless otherwise specified.

The general equations for Rochelle-salt X-cut 45 bars are derived

from Eqs. (18G), (183o), (184), and (184a). When the strain and field

are prescribed,

nz ,
= -c^ - euE \ (480)

P = v"E + cirfj + e'13z'z
= J'E + e14 (t/i

- 4) J

When stress and field are prescribed,

**Y!
- $duE

}

s'S3Z'z + $duE
}

(480a)

P = r,'E- d'n Y'y
- d'lzZ',

= JE - Wu(F; -
ZJ) J

y" and v{ are the clamped and free susceptibilities as defined in 450. *

Strictly, Eqs. (480) and (480a) are for static conditions. Equation

(480) expresses the basic relations on which the theory of thickness vibra-

tions rests, and also the special case treated in 372. Equations (480a)

correspond to the case of lengthwise vibrations in a free bar, with which

we are concerned in the present section.

We seek first the expression for the effective piezoelectric stress

coefficient e, from Eq. (307). Taking the length of the bar parallel to the

F'-axis, 45 from the F-axis, we have, for the longitudinal isagric com-

pliance, $22 [Eqs. (43)]. The only fundamental piezoelectric coefficients

to consider when the field is parallel to X are du, and en = du/s^. With

respect to the transformed axes the coefficients are, from Eqs. (203),

^12
=

-rp
d'is

=
2"

e
'

12
~

Cl4t e
'

lz
= ~~eu

In Eq. (307) we set n =
2, i = 1, h = 2 and 3, obtaining, with the aid of

Eqs. 43,

(481)

* Outside the Curie points, V and -n' are the same as IH and 17'. Between these

points -n" as q" and ?'
= ^ [Eqs. (499) and (504a)j. No thought need be given to

these distinctions in the present section, since the equations are equally valid at all

temperatures.
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Without repetition of the intermediate stages in Chap. XIII the

current may be written at once, from Eq. (315),

This expression is valid at all frequencies. The effective dielectric con-

stant is

ti = V -^ (483)
S22

whence the effective susceptibility is found to be

Anticipating the results of the polarization theory as given in Eqs.

(4956) and (522c), we find from Eq. (483a) that the reciprocal suscepti-

bility, in terms of the polarization theory, is given by

(4836)

This equation shows that \i
~

x', like xi
~

x' in Eq. 497, is a constant

independent of temperature, insofar as a 14 is temperature-independent.

Equation (4836) offers the advantage of having all quantities except

x' practically independent of temperature and stress, xi can be proved
identical with Mason's338

%LC, which he calls the value for "longitudinal

clamping." This quantity can be measured by Mason's ingenious

expedient of using the double frequency, as may be seen by writing

w =
27r(2/ ) and c = 2fQl in Eq. (74) for 7 and substituting this 7 in Eq.

(315). The last term vanishes, and the current is the same as if the

crystal were a simple condenser with a dielectric constant ki given by
Eq. (483). The constant ki is the same as Mueller's380

CH .

At frequencies not too close to resonance, the damping can usually

be ignored. With sufficient precision the electrical admittance Y{ for

longitudinal vibrations at the fundamental frequency is then, from

Eq. (316),

In the resonance range we specialize Eq. (319) for the present case

and find for the admittance

where a = vf/Q = /6 and n
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The equivalent electric constants are

L =

C =

[372

(485)

Values of % 17", and k" for a few temperatures, with the electric field

in the X-direction, are given in Table XXXI; they are derived from the

same data as Figs. 145 and 146. The values of k" = 1 + 4jn/' fit in

fairly well with the h-f values of kx in Table XXXIV (page 572) . Outside

the Curie points i\

u ss ^j between them, r)" s ^'. k" is the dielectric

constant to use in the equations for thickness vibrations (378).

TABLE XXXI

372. Rochelle-salt AT-cut 45 Bar with Lateral Clamping. If the bar could be so

clamped that all motion in the Z'-direction was prevented (clamping parallel to X is

not essential), while freedom to vibrate in the F'-direction was still allowed, its behav-

ior would be described by the following equations. In some forms of mounting this

condition may be approximated. If there is any lateral constraint at all, the solution

may be expected to lie between the condition of complete lateral constraint and that

of complete freedom postulated in the preceding equations.
Since the only permitted strain is y'y, the appropriate elastic coefficient is Cjf

rather than *g, just as in the case of thickness vibrations of a plate of large area.

The following substitutions are to be made in the general equations in 228 to 237:

q - eg, e - en -
el* (Xn)d - (Y'y) d

- -el4#.

In order to find the effective dielectric constant for lateral clamping we proceed
as in the derivation of in in Eq. (310) . The subscript t, which now denotes the X-direc-

tion, will be dropped. For and & we write 614 and (yv)
E

. Since the strain zn is

prohibited, the polarization component e(g(z)^ as well as eu(y'v)
s must be subtracted

from the polarization y'E of the undamped crystal, where (z^
s is d'ltE, the static

strain due to the instantaneous impressed field E. Since the only strain is y'y . we
have (y'v)

E
(Y'v)d/c'M ~ euE/c'w so that, in place of Eq. (310), the expression for

polarization becomes
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The bars indicate lateral clamping. On substituting eudu/2 for e[td( t1 duc44 for en,
and making use of the equation i\' ij" -f ei 4du and of the expressions for c22 and
c2, in Eqs. (44), one finds for the laterally clamped susceptibility

The laterally clamped dielectric constant is

\kt
\

- 1 + 4^1 (486a)

The equation for the current to the resonator is found from Eq. (315), on sub-

stituting CM, \ki\ t
c22 , and e, for e, ki, q', and e', respectively:

-
\hi\ + ^V tanh ) (4866)

47rc 7ec22 2 /

Outside the resonant range the admittance is approximately

Y 1 ~ \kj\ -j ~r^ tan (486c)
*irG irCJC 2/n

At frequencies close to resonance,

Y( =
_^_2

+ j
_4S_ + ji,

M
(486d)

where A *= $be\Jple.

The equivalent electric constants are

pte 8^?4ZL -

n plen

A
" ""

4^f4

(4866)

373. Equivalent Mechanical Constants of 45 Bars. Whether there

is lateral clamping or not, the equivalent mechanical constants can be

found from Eqs. (104) to (107). The equivalent mass is M =
pble/2;

the mechanical resistance is W = 2Ma = 2MAR [A as in Eq. (486d)];

the mechanical reactance is Xc
= 2Mn = 2MAX', mechanical stijffness

factor G = 2MA/C; mechanical impedance Zc
= 2MAZ. The constant

2MA is the reciprocal of the electromechanical ratio r (page 297).

Comparison of the Driving Stresses. As we have seen, the driving

stress for the free bar is (Yy) d = duE/2s'&, and for lateral clamping
it is (Yy)d

= euE. The ratio of these is sf4/2s2f, the value of which
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for temperatures around 20C is about 1.6, approaching a value of about

2 at the Curie point. Hence the driving stress is considerably greater

in the case of the free bar.

Comparison of the stiffnessfactors shows that the resonant frequency for

lateral clamping should be nearly twice as great as that of the free bar.

374. Rochelle Salt at Very High Frequencies* As we have seen, the

Rochelle-salt -X"-cut 45 bar has the two piezoelectric constants d(2 and

di8 . As long as only lengthwise modes are considered, the contribution

made by rfJ3 to the dielectric constant, at any instantaneous field strength,

is the same as if the field were static, and the effective Susceptibility TJJ

of the resonator is given by Eq. (483a). With increasing frequency,

vibrational effects become more and more nearly negligible, so that the

observed impedance approaches that due to t\i alone.

When the frequency rises to the region where lateral resonances

involving d'13 appear, the observed susceptibility approaches the clamped

value, as explained in 260. For Rochelle salt between the Curie points

this is the value r?" for monoclinic clamping, which can either be derived

from observations at very high frequency or calculated from vibrational

data at the fundamental lengthwise frequency. The latter process was

carried out in determining x" = 1A" for Fig. 145. In that figure it is

seen that at about 5C x" has a maximum of about 0.128, whence i?"

has a minimum value of about 7.8 at this temperature, yielding a dielec-

tric constant in the neighborhood of 100. This value is in good agree-

ment with the results of h-f measurements described in 442, and with

Mueller's estimate, which he reaches by a somewhat different route on

page 573 of his paper III. 380

Experimental Results with Rochelle-salt Resonators. Most investi-

gations have had the purpose of determining elastic constants and tem-

perature coefficients, for which only observations of resonant frequencies

are needed. In much of the earlier work the importance of special pre-

cautions in the treatment of crystals and the placing of electrodes was

not understood, and the failure to mention these details makes the quan-
titative results of comparatively little value.

376. Lengthwise Vibrations. Almost all the recorded resonator

experiments have been with 45 bars. The elastic constants thus deter-

mined by Cady, Davies, Hiltscher, Mason, Mattiat, and Mikhailov are

given in Table VI (page 125). Hiltscher228 observed at both funda-

mental and overtone lengthwise frequencies.

Mattiat856 observed the dependence of the frequency of F-cut bars

on the ratio b/l of breadth to length and also the dependence of the

frequency constants of X- and F-cut bars on the angle between I and the

Z-axis, obtaining approximate agreement with the values calculated

from Mandell's elastic constants as given in Table IV or Fig. 26.
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Mikhailov367 measured du and ki (229) at temperatures from to

40C, by methods a and c, 310, using three X45 bars. He found the

expected parallelism between the curves for du and fa as functions of

temperature. His results with du are mentioned in 474.

Reference has already been made in Chaps. VI, IX, and XXIV to

Mason's observations of lengthwise vibrations in Rochelle-salt bars,

which are the most complete and accurate to be found. The use that

we have made of his results with bars in different orientations, for deter-

mining the "best" values of the elastic constants of Rochelle salt, has

been described in 79. The present section has to do with his observa-
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Fio. 94. Dependence of the frequency-constant H on temperature, for a Rochelle salt

JT45 bar, from Mason. H is in kc seo~ l mm. The curves marked HR and HA are for

resonance and antiresonance when w = 0. HM is for the response frequency when w = oo .

tions at the fundamental lengthwise frequency on a single X45-bar,
from which much information can be gained concerning the behavior of

Rochelle salt at different temperatures. The bar had dimensions

I = 2.014 cm, b = 0.418 cm, e = 0.104 cm. The electrodes were of gold,

evaporated onto the surfaces in vacuum, so that the gap was strictly

zero. The exciting field was restricted to a few volts per centimeter,

so that only the initial values of the elastic and electric coefficients came

into play; non-linear effects were not investigated. As stated in 474,

these observations were used in preparing the data for Fig. 146. In

Mason's paper
338 on hysteresis phenomena is a tabulation, for tem-

peratures from 12 to 47.5C, of the resonant and antiresonant fre-

quencies /a and /A (our /, and fp , which, when the damping is small, are
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seen from Table XXIII to be very nearly the same as fm and /w) ;
also the

"/^-constant" in cycles sec""
1 cm for the same bar with infinite gap; and

q = W.L/-B (our Q).

By multiplying /* and fA (expressed in kilocycles per second) by the

length I in millimeters one obtains the frequency constants HR and HA in

kc sec" 1 cm. Their values, together with IIM for infinite gap (",/Vcon-

stant" divided by 100), are shown in Fig. 94. Most noticeable are the

low minima in frequency at the upper Curie point, the wide differences

between the resonant and antiresonant frequencies when w = (owing

to the low capacitance ratio Ci/C, which in turn is due to the large value

of di4), and the very small dependence on temperature of the frequency

at infinite gap.
* This last feature, first observed by Mason, is the experi-

mental foundation of the polarization theory, f as explained in 189.

TABLE XXXII.* FREQUENCIES AND ELECTRIC CONSTANTS OP A ROCHELLE-SALT

2.014 cm 6 = 0.418 cm e - 0.104 cm

* The values from the fourth column on are from recent data kindly furnished by Dr. Mason.

The broken line in Fig. 94 shows HM as calculated from observed

values of fR and/^ by the use of Eq. (335) (/*, fAf and/if are practically

identical with / , fp, and/w). The agreement with the observed HM is

excellent.

In Table XXXII are shown some of Mason's numerical results with

this crystal. The values of the equivalent electric constants should be

compared with those of quartz in Table XXX, due allowance being
* Mueller 381 has expressed the view that the slight slope and the kink in the curve

for UM may be due to the morphic effects described in 464.

f This constancy of frequency implies that the elastic constant 544, which by Eqs.

(43) occurs in the expression for 2t is nearly independent of temperature. When the

gap is infinite, the elastic constants are those at constant normal electric displacement.

It is shown in 207 and 211 that for a Rocholle-salt X-cut bar the value s*4 at con-

stant normal displacement is, within the limits of experimental error, identical with

aji, the value at constant total displacement, and with s^, the value at constant

polarization. Thus the conclusion is reached that sf4 is nearly independent of tem-

perature and that <& (the reciprocal of f4) is to be taken as the "true" stiffness

coefficient of Rochelle salt rather than cf4 .
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made for differences in dimensions. Outstanding are the much lower

values of C\/C and of Q in Rochelle salt. Close to the Curie point, C
becomes greater than Ci. Rochelle salt evidently functions best as a
resonator in the neighborhood of 30C, where Q is largest. Above this

temperature the low Q and high R and RQ are due to increasing electrical

conductivity.

RO is a resistance that according to Mason's theory* of hysteresis in

Rochelle salt338 is a property of the dielectric, distinct from the resistance

R that corresponds to the vibrational losses. The variation of R with

temperature is similar to that of R. Curves with RQ and h plotted

against temperature are in Fig. 6 of Mason's paper, f RQ has a broad

maximum at about 5, sinking to a flat minimum around 30C.
The reason for the wide spread of values of fR , fA , and/j* for Rochelle

salt has already been given in 295. The variation of these quantities

with temperature should be compared with the general properties of this

crystal, as set forth in Chaps. XX to XXV.
We return for a moment to the consideration of the low values of Q,

and correspondingly large R in Table XXXII. Although these values

of R were not great enough to affect perceptibly the frequencies and the

elastic constants deduced therefrom, still it should be pointed out that

not all observers have found so low a Q. For example, Mattiat,
355 in a

table containing values of R, L, C, Ci, and Q for a number of X- and F-cut

45 Rochelle-salt bars of different sizes, records Q from 1,300 to 3,600.

Gockel's results 173
(see also 381) give Q = 7,300 for an Z45-bar.

Unpublished observations in this laboratory by Van Dyke gave Q = 2,200

for an X45-bar 21.3 by 5.6 by 2.1 mm, at 55 kc/sec. Both Mattiat and

Van Dyke observed at room temperature.

Mason's results led him to the conclusion that "
practically all hystere-

sis and dissipation effects are associated with the clamped dielectric

properties of the crystal/' This view is substantially in agreement with

Mueller's, as stated in 468, that the anomalies in Rochelle salt lie in the

properties of the clamped crystal.

376. The contrast between the variability of frequency, together

with high energy losses, in the case of vibrational modes involving 44,

and the freedom from these troublesome characteristics with those modes

from which this compliance coefficient is absent has recently been pointed

out by Matthias. 853 By tests with an optical lever, luminous effects in

partial vacuum, photoelastic effects in polarized light, and lycopodium

particles, he found relatively flat resonance and small increase in ampli-

tude at resonance for the "temperature-dependent" modes (i.e., those

* Reference to this theory is made in 428.

t The numerical data in Mason's Fig. 6 differ somewhat from his more recent

values in Table XXXU,
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involving 544). He showed that an X-cut 45 bar with zero gap (silver

electrodes deposited in vacuum) had a much lower decrement and a

frequency much higher and less dependent on temperature when a steady

biasing field of 1,500 volts/cm was superposed on the driving voltage, as

already stated in 370. Without a biasing field the decrement for tem-

peratures between the Curie points was relatively low with small driving

voltage, reached a maximum at a voltage corresponding to the steep

portion of the polarization curve, and at high voltages approached the

value recorded above the upper Curie point. For the details of these

experiments, together with the theory, Matthias's pape* should be con-

sulted. In agreement with Mason888 he attributes the damping in X-cuts

chiefly to dielectric rather than to mechanical losses.

377. The Gap Effect in Rochelle Salt. Owing to the large size of the

dielectric constant, the frequency increases at a much greater rate than

with quartz resonators, as the gap increases from zero. The value for

infinite gap is closely approximated even while the gap is less than the

thickness of the plate. Calling fw and / the frequencies corresponding

to gaps w and and letting a represent a number small in comparison

with unity, one can prove from Eq. (336) that fw = (1 )/ when

When this expression is applied to an X-cut 45 bar at 20C, one has

d'l2
= du/2 = 1.2(10-*) ;sJ2

= 3.16(10-
12
); V = 480. Then w/e 12/;

and if a = 0.01, w/e 0.12. That is, at this temperature the frequency

is within 1 per cent of the value for infinite gap when the gap width is

only one-eighth of the thickness of the bar.

A visible glow analogous to that for quartz described in 365 has been

observed with Rochelle-salt X-cut 45 bars by Hiltscher. 228
. His bars

had electrodes of small area, so that most of the crystal surface was

exposed. At both fundamental and overtone lengthwise frequencies the

glow was observed when the bar was driven as a resonator, in air at a

pressure of 0.3 to 0,6 mm.
378. Thickness Vibrations of Rochelle-salt Plates, The special equa-

tions for plates of Rochelle salt can be adapted from the theory in Chap. V.

Rochelle-salt plates cut normal to the crystallographic axes cannot be

piezoelectrically excited in thickness vibration. Theoretically, this type

of vibration, both shear and compressional, can be excited in practically all

oblique cuts. The activity of the resonator depends on the cut, being very

low for small angles of rotation. The Christoffel theory has been applied

to Rochelle salt by Mason836-* and by Takagi and Miyake.
601 The latter

* Also U. S. patents 2,178,146 (1939) and 2,303,375 (1942). Reference to Mason's

experimental results with shear thickness vibrations has been made in 77.
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investigators give experimental results on shear vibrations in a plate

with normal perpendicular to a (110) face of the crystal.

Compressional thickness vibrations can also be generated in oblique

plates. The only record of such vibrations is that of the author,
108 obtained

with the Z/-cut described in 140.

379. Contour Modes in Rochelle-salt Plates. In vibrations of this

type the exciting field normal to the plate causes a shearing stress in the

plane of the plate, like the "contour modes" in quartz described in 359.

Most experimenters have used relatively thin rectangular or square

plates with edges parallel to the crystallographic axes. According to the

axis selected for the normal to the major surfaces, the piezoelectric stress

is of the type Y, = -euEx,
Zx = d^EV) or Xv

= -e^E,. The fre-

quency depends essentially only on the major dimensions a and fc, not on

the thickness, and is given by Eq. (122). For the X-, F-, and #-cuts the

reciprocal stiffness 1/q is $44, $65, or See, respectively. If there is no gap,

the isagric values are to be used. The piezoelectric contribution to the

stiffness when there is a gap has not been formulated, but the presence

of a gap must certainly cause an increase in effective stiffness and hence

in frequency.
Vibrations of this type have been described by Busch,

87
Mikhailov,

867

Mueller,
379 - 382 N. Takagi and associates,* and Taschek and Osterberg.

604

The pronounced change in frequency of X-cut plates near the upper Curie

point, common to all vibrational modes in Rochelle salt in which the

compliance $44 plays a part, was first observed by Busch in contour

vibrations.

Observations in this laboratory on many rectangular plates of all

three cuts have yielded results in agreement with Eq. (122). The plates

were in a secondary circuit, and resonant frequencies were observed.

The largest of these plates had dimensions X 0.485, Y 7.8, Z 12.0 cm,
with a fundamental contour frequency of 22.6 kc/sec.f As a further

test of the formula some of the plates were progressively reduced in

length or breadth, with results in agreement with theory. From the

dimensions and frequencies the compliance constants were calculated.

Approximate agreement with the accepted values was found, but the

results are not considered sufficiently precise for inclusion here.

In the experiments just described, as well as in those discussed in the

next section, it was found highly important to apply to the crystal a

voltage in the form of a pure sine wave. Harmonic frequencies were

almost certain to excite undesired vibrational modes and cause misleading

* Electrotech. Jour. (Japan), vol. 4, pp. 95-96, 186, 232-233, 1940.

t These observations and those recorded below on flexural and torsional vibrations

were made by P. D. Zottu at intervals from 1928 to 1932. The author's thanks are

due the Brush Development Company for the Rochelle-salt plates.
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responses. For this reason, in all the later work the supply from the

tube oscillator was carefully filtered. For identifying vibrational modes,
reliance was not placed on agreement between

observed and calculated frequencies alone.

In most cases the wave patterns were examined

directly. For this purpose the plate lay hori-

zontally on the lower electrode, usually with a

few grains of sand between to provide a sort of

roller bearingand diminish the friction. Nodal

patterns were formed by lycopodium powder
or fine sand sprinkled on the top of the plate.

The upper electrode was then adjusted closely

above the powder. By the use of a gauze
electrode or an electrode of relatively small

size, the formation of the patterns could be

observed.

When the supply was not filtered the

patterns were very complex; some of them are

shown in Fig. 95. With a well-filtered supply

voltage, the pure contour shear mode described

above gave rise to a more or less irregular nodal

region in the center of the plate, such move-

ments as the particles exhibited being chiefly

in the plane of the plate. A pure flexural mode
was recognized by two or more transverse

nodal bands extending across the plate, and a

torsional mode by a nodal line running length-

wise, midway between the lateral edges.

When the finger was touched to a vigorously

vibrating portion of the surface, the crystal

felt exceedingly slippery, and a sensation of

warmth was felt at the finger tip.

380. Flexural and Torsional Modes in

Rochelle-salt Plates. Flexural vibrations are

easily excited, either in 45 bars or in rectangu-

lar plates with edges parallel to the crystal

axes, using any one or the three cuts. The 45

bars are provided with electrodes as in Fig.

S8E, the length I and breadth 6 being at 45

with two axes and the thickness e parallel to

the third axis. Flexure takes place in the le

plane. Piezoelectric excitation is through the transformed constants d'12 ,

di8 ,
or djjf corresponding to an J-axis in the direction of Y', Z

f

,
or X',

FIG. 95. Dust patterns on
X-cut Rochclle salt plates

vibrating in complex modes,

a, 6, c, and d are from a plate
X 0.48 cm, Y 7.8 cm, Z 12.0

cm. The frequencies are a,

27,300; b and c, close to 37,000;

d, 54,300 cycles/sec, e has
dimensions X 0.485 cm, Y
6.60 cm, Z 12.0 cm, frequency
27,500 cycles/sec. In some
cases the dust particles moved
in whirls or vortices, which

persisted as long as the vibra-

tion continued.
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respectively. Vibrations of plates in all these orientations have been

observed by the author.

For plates cut according to the second method mentioned above, the

electrodes are placed as shown in Fig. 89. In the case of quartz (if the

edges of the plate are parallel to the crystal axes), there is but one

orientation yielding flexural vibrations by this type of excitation. In

Rochelle salt, I may be parallel to X, Y, or Z, the field being applied in

the 6-direction, with opposite senses in the two halves of the plate.

Flexure takes place in the Ze-plane. When I is parallel to one axis, e may
be parallel to either of the other two axes, giving in all six different possi-

bilities. Depending on the cut, the driving stress is Yz
= euEx,

Zx = ez&Ey, or Xv
= ewEz. With plates of various sizes, measure-

ments of flexural vibrations have been made in this laboratory with all

six arrangements. In each case the electrodes were separated from the

crystal by small gaps. Plated electrodes could of course be used.

Torsional vibrations have been observed in this laboratory with bars

parallel to X, F, and Z. In each case a girdling electrode surrounded the

bar at its center, as in Fig. SSF. As explained in 356 for quartz, the

effective field components are those which enter the crystal from the

girdle in a direction perpendicular to the length.

As stated in 356, more effective torsional excitation should be pos-

sible in a bar with length I parallel to one of the crystallographic axes, but

with a rectangular cross section rotated 45 about this axis. The elec-

trodes should be disposed as in Fig. SBE.

381. Resonator Results with Other Crystals. By the method men-

tioned in 320 Gockel measured at room temperature the logarithmic

decrements of resonators prepared from the following crystals (the num-
bers in parentheses are logarithmic decrements in units of 10~4

) : quartz

(0.53), tourmaline (1.69), asparagine (1.63), urotropine (1.80), rhamnose

(2.62), Rochelle salt (4.30). These values were obtained with the speci-

mens mounted in vacuum. For the cuts employed and for further details

the original paper should be consulted. The recorded decrements are

almost unbelievably low, except for quartz and tourmaline.

Pavlik411 has derived equations for the purpose of orienting plates

from crystals in the two monoclinic piezoelectric classes so as to avoid the

piezoelectric excitation of shearing stresses with respect to the axes of the

plates. He describes resonator experiments with plates cut from crystals

of beet sugar. Those who use his results should not forget that shearing

effects can arise through elastic coupling even if they are not directly

excited by the applied electric field.

Mandell329 measured the frequencies of X45, 745, and Z45 bars

of sodium-ammonium tartrate in lengthwise vibration. The bars served

as piezo oscillators in a Pierce circuit. Discrepancies with the calculated
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values amounted to as much as 5 per cent in some cases. This fact is

not surprising, since there must have been at least a small effective air

gap (the electrodes made only light contact with the crystal surfaces) ;

moreover, the vibrational frequencies of the bars in the Pierce circuit,

owing to the large piezoelectric constants and consequent large differences

between resonant and antiresonant frequencies, were probably consider-

ably above the true resonance values. Experiments with resonators

made from certain phosphates and arsenates are mentioned in 499.

382. Tourmaline Resonators.* The density of tourmaline varies

from 2.94 to 3.24 gm/cm 8
, depending on the composition df the specimen.

A fair average value is 3.1. Parallel to the Z-axis the dielectric constant

of the unconstrained crystal is 7.1; perpendicular to Z it is 6.3 0.2. f

The eight piezoelectric constants offer a wider variety of direct

excitation than do the five constants of quartz. The largest is du =
^24,

which is almost twice as great in magnitude as d!n in quartz. By means

of the excitation represented by zz = di6Ex,
it should be possible to excite

shear thickness vibrations in an Z-cut plate, t The only tourmaline

resonators that have been used extensively are of the Z-cut, in which

compressional thickness vibrations are produced in accordance with

Z9
= ewEz . As has been pointed out by Giebe and Blechschmidt,

162

the relatively low values of the elastic cross constants responsible for

coupling effects give to tourmaline resonators comparative freedom from

undesired vibrational modes.

Tourmaline resonators were introduced in 1928 by Henderson. 219

Their use as piezo oscillators is described in 400, where further numerical

data and references to the literature will be found. Various vibrational

modes have been investigated by Petrzilka4lM1M19> with the aid of lyco-

podium patterns and the luminous effects at low pressure, as well as by

frequency measurements. His papers contain many excellent photo-

graphs of nodal patterns, some of which are reproduced in Fig. 93 . Further

experiments with tourmaline resonators are described by Straubel,
490

Osterberg and Cookson,
406 Modrak, 371 and Khol. 268 - 259

383. Composite Resonators. Among the earliest experiments with

piezo resonators were tests made withWtal bars excited in longitudinal

vibration by means of crystals. ||
At first a single X-cut 45 Rochelle-salt

* Tourmaline plates are obtainable from the Premier Crystal Laboratories, New
York, N.Y.

t "International Critical Tables," vol. 6, 1926. The measurements were made

at audio frequency.

J See the calculations in Koga. 270 In this paper Koga derives the equations for

thickness vibrations of tourmaline plates.

See also the discussion of his results by E. Lonn.m
H Master's theses by G. W. Bain, 1922, and H. C. Palmer, 1925, Wesleyan Univer-

sity; W. G. Cady, Phys. Rev., vol. 21, pp. 371-372, 1923 (abst.). See also refs. 96
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bar 1 to 2 cm in length was cemented endwise to a steel rod about 15 cm

long. When the current from a tube oscillator was supplied to the

crystal and tuned to the longitudinal frequency of the rod, the latter

vibrated as a resonator, with energy derived from the reaction of the

crystal. The successful results obtained with this device encouraged

further investigation. It was soon found that a flat steel bar from 10 to

20 cm in length could be driven by means of a pair of quartz plates

cemented on opposite sides at the center. Two such resonators are

shown in Fig. 82; the construction is seen in outline in Fig. 96.

Resonators like that in Fig. 96 have been used in this laboratory with

bars of various metals, glass, and fused silica, for obtaining dynamic
values of Young's modulus for these

materials. A quartz-steel resonator

of this type has been made to serve

as a piezo oscillator when provided
with two pairs of quartz plates, the

pairs connected, respectively, to the

input and output of an amplifier. coatings are connected in parallel. The

By the use of Rochelle-salt plates ^^^1. "" " 8U8Pend"d

instead of quartz, a steel bar over a

meter long has been driven as a resonator at its natural frequency,

giving a loud musical note. A brass tube about a meter long, with four

Z-cut 45 Rochelle-salt bars at its center, clamped between two metal

rings surrounding the bar, has been found to be especially useful as an

acoustic generator with a frequency of 2,150 cycles/sec, for experiments

with Kundt's tubes. The sound is emitted from a brass disk soldered

across one end of the brass tube. The tin-foil coatings of two oppositely

situated crystal bars are connected to the input of an amplifier, while the

amplifier output is connected through a step-up transformer to the

other pair of bars, the latter thus being the ones that drive the brass

tube.f
In the composite resonators described above the size of the crystal

element is made relatively small in order that the frequency and damping

may be as nearly as possible characteristic of the vibrator to which the

crystal is attached. Although this arrangement provides rugged and

efficient resonators, the attachment of the crystal at a point of maximum

stress is not well adapted to the precise measurement of the character-

istics of the material of the bar.

and 97. The earliest of all piezoelectric devices that can be called "resonators"

was Langevin's quartz-steel "sandwich" mentioned in 224 and 506. References

on composite resonators will be found at the end of this chapter.

t A device similar to this is described in R. M. Button's "Demonstration Experi-

ments in Physics," New York, 1938.
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384. The first step toward using the composite resonator for a more

precise measurement of the elastic constants of various solids was taken

in 1925 by Quimby, who developed the theory of vibrations in a solid

bar driven by a quartz bar cemented to it at one end. The length of the

quartz bar was parallel to F, with the driving field parallel to X. His

immediate object was a determination of the viscosity in rods of alumi-

num, copper, and glass. In his method there was no special relation

between the lengths of the two components of the resonator.

The advantage gained by having the cement joint come at a node of

stress was pointed out by Balamuth in 1934. Balamutl/s technique has

been followed by numerous other investigators (see references at end of

chapter). The results have yielded data on the elastic constants, and

their dependence on temperature, of a large number of solids, including

metallic single crystals in the form of bars. In most cases the specimen

under test was excited in lengthwise compressional vibrations by an

Z-cut quartz bar. On the other hand, Brown, Good, Rose, and in some

of their observations Hunter and Siegel used torsional vibrations; the

quartz was in the form of a cylinder with length parallel to Jf, provided

with four electrodes according to the method of Giebe and Scheibe, as

described in 356. Grime and Eaton (using flexural vibrations) and

Schenk (using longitudinal vibrations) employed the quartz only as a

detector, not as a driver. Boyle and Sproule examined the dust patterns

on the end of a relatively thick vibrating bar, finding a configuration

similar to the well-known Chladni figures. Their work makes it clear

that false conclusions respecting the elastic constants of a bar may be

drawn unless the bar is sufficiently thin.

In Mason's book the theory of the composite resonator, considered

as an electromechanical transducer, is developed with reference to both

longitudinal and torsional vibrations. Original data on the elastic proper-

ties of various materials are also presented. Some of these materials are

plastics of high viscosity, for the measurement of which a special arrange-

ment of crystals and circuit is described.

386. Crystal-driven Tuning Forks. The author has maintained a

2,048-cycle tuning fork in vibration by the use of X-cnt 45 Rochelle-salt

bars and an amplifying circuit.
95 Several different arrangements were

used. In the first, a bar of size 4.6 by 1.5 by 0.4 cm was cemented end-

wise between the stem of the fork and a rigitt base. The bar had two

pairs of tin-foil coatings, connected to the input and output of a four-stage

untuned resistance-coupled amplifier. When the fork was once started,

it continued to vibrate with energy supplied by the amplifier at twice the

fork frequency. In the second method each prong of the fork had

cemented to it near the tip the end of a crystal bar with a single pair of

coatings, the bars extending outward in the plane of the fork. One bar
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was connected to the amplifier input, while the other, which supplied

energy to the fork, was connected to the amplifier output. Here again
the fork continued to vibrate after being lightly struck. The driving

force was supplied by the inertial reaction of the bars. Third, a

"cartridge" consisting of the crystal bar mentioned above with two pairs

of coatings in a small holder, connected to the amplifier, maintained the

fork in vibration when merely held in contact with one prong.

Although not a composite resonator, the quartz tuning fork of Koga267

may be mentioned at this point. This was a 1,000-cycle fork fashioned

from a single crystal and maintained in vibration piezoelectrically with

the aid of suitable electrodes and an amplifier.

386. A Quartz-Liquid Resonator. Fox and Rock147 cemented an

X-cut quartz plate to the bottom of a cylindrical jar of water. By means
of thickness vibrations at about 2.5 megacycles/sec stationary waves were

produced between the quartz and a reflecting piston, and the character-

istics of the resulting composite resonator were measured. With 200

stationary waves present, a value of Q = 3,680 was observed, whereas

for the quartz in air Q was only 418. In comment, it may be said that

the low Q in air was undoubtedly due to the*cement and that, while the

resonance of the water column greatly reduced the decrement, still 3,680
is too low a value of Q to warrant the expectation of practical applications.

The attempts of these investigators to make a resonator of variable fre-

quency by this method did not lead to promising results, since the

response became relatively weak when the frequency departed appreci-

ably from the natural frequency of the quartz.
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CHAPTER XIX

THE PIEZO OSCILLATOR

Over earth and ocean, with gentle motion,
This pilot is guiding me.

SHELLEY.

The stabilizing effect of a crystal on a circuit that is already oscillating

will be considered first. This effect will lead naturally to the principle

of the piezo oscillator, in which the crystal not only controls the fre-

quency but is also an essential element in the maintenance of oscillations.

Several types of piezo oscillator are described, with chief emphasis on the

Pierce and Pierce-Miller circuits and some of their modifications.

By far the most important crystal for piezo oscillators is quartz,

and most of the data on circuits, tubes, etc., are based on the assumption
that quartz will be used. In 400, Rochelle-salt and tourmaline oscilla-

tors are treated. The chapter closes with a brief reference to the litera-

ture on the mathematical theory of the piezo oscillator.

387. Crystal Stabilizers. Any piezo resonator connected to an oscil-

lating circuit tends to control the frequency. Having made this rather

strong statement, we must state its limitations. In the first place, the

controlling action is negligible except in the neighborhood of frequencies

corresponding to natural modes of vibration of the crystal. If a tube

circuit oscillating at frequency / contains a crystal, say in parallel with

the tuning condenser, and if the crystal is clamped so that it cannot

vibrate, the only effect is to add a little to the total capacitance; the

amount added is substantially the parallel capacitance Ci of the equiva-
lent network shown in Fig. 50.

When the crystal is undamped, the alternating potential drop makes

it vibrate mechanically. If f is far from any characteristic frequency of

the resonator, the amplitude is practically imperceptible. Nevertheless,

the phase of the vibration and the consequent piezoelectric reaction of the

crystal on the circuit are always such as to make the variation of fre-

quency with change in tuning capacitance, or in any other circuit param-

eter, less than it would be in absence of the crystal. This fact is a sort

of Lenz's law for the crystal-controlled oscillator.

As the oscillating frequency approaches one of the characteristic fre-

quencies of the resonator, the vibrational amplitude and the electric

reaction increase to a certain maximum; and on the other side of crystal
489
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resonance the reaction diminishes approximately to the previous low

value. For a measure of the reaction we may take the equivalent parallel

reactance Xp or capacitance C9t 273. As illustrated in Fig. 66, Cp rises

to a maximum with increasing frequency, followed by a minimum.
The stabilizing effect increases with Cp ,

which in turn increases with the

size of the resonator. A very small crystal has a maximum Cp so small

in comparison with other circuit capacitances that the stabilization is

imperceptible. Thus a crystal bar 1.5 by 0.5 by 0.2 mm, although it

resonates very nicely for lengthwise vibrations at a frequency around

2,000 kc, would make a poor showing if placed in control of a power
oscillator.

In the foregoing statements we have made use of the concept of the

equivalent network. With most resonators the parameters of the net-

work are practically constant, and the electric behavior of the resonator

can be fully described in terms of the network, whether the resonator is

used as an oscillator or filter or for any other purpose. The crystal does

nothing that could not be accomplished by an actual network containing

a resistance, inductance coil, and condensers having the same values

as the equivalent network. It is the impossibility of constructing such a

physical network, not to mention having it stay constant if it could be

constructed, that puts the crystal into a position of unique usefulness.

Numerical data for quartz resonators will be found in 362.

It must be remembered that the network has different constants for

each vibrational mode and that for any given mode it is applicable only

over a range of frequencies undisturbed by other modes. It would be a

superhuman task to derive a single equivalent network applicable to all

modes.

Thus far we have discussed chiefly the stabilizing effect of a resonator

in a circuit that oscillates independently of the presence of the resonator.

Such a circuit, as has been stated in 223, is said to be crystal stabilized,

and a resonator when so employed is called a stabilizer. The action of

the stabilizer will now be explained more fully.

388. Only the case need be considered in which the crystal is in

parallel with the tuning condenser of a tube oscillator, as shown in

Fig. 97. The experiment is instructive and easily performed. The
oscillator shown here is of the simple magnetically coupled type with

tuned grid circuit, though other types may be used equally well; Z/2 and

2 must be such that the circuit can be tuned through the frequency /o

of one of the crystal modes. Variations in frequency are observed by
listening to the beat note between this circuit and a constant-frequency

oscillator very loosely coupled to it.

The relation between the frequency / of the oscillator and the set-

ting of C* is shown qualitatively in Fig. 98. The total capacitance
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Ct
*= C* + Cp (the effective parallel resistance Rp can here be ignored)

is related to/ by a continuous curve.* As C2 is decreased, the frequency

rises, rapidly at first and then more slowly as / is approached, becoming
almost constant in the neighborhood of the point A. At A comes a

sudden break, the frequency jumping abruptly to point B. From there

on the frequency is related to C2 by the line BD. On decreasing C2,

the path DBEF is followed, with another region of stabilization in the

neighborhood of E.

The explanation may be expressed either in terms of the equivalent

network RLCCi or of the effective parallel parameters Cp and Rp . In

Fio. 97. Circuit for showing the stabilizing effect of a crystal in parallel with the

tuning condenser C* of an oscillating circuit, b is the customary equivalent network of the

crystal, and c represents the crystal as a capacitance and resistance in parallel.

the former case we regard the network RLCCi as coupled to the tuning
circuit CJLzj if the network has small damping, it tends to pull the circuit

into step with its own frequency of series resonance / . The theory has

been treated by Watanabe,
581 who showed that the coefficient of coupling

between the two tuned circuits is approximately C/(C2 + Ci) and that,

from observations of stabilization, the values of both C and R of the

equivalent network can be calculated. The results are not very precise,

owing to various effects of the tube circuit.

The stabilizing effect is explained most simply in terms of Cp . As

may be seen from Fig. 66, Cp = l/wXp varies with frequency in the

manner indicated in Fig. 98. The maximum and minimum are higher

and sharper the smaller the value of R and the greater the value of C
(i.e., the greater the size of the resonator). The frequencies at these

two extreme values of Cp come at the quadrantal points PI and P2 on

* The symbol C in Figs. 97 and 98 must not be confused with the C* denoting the

capacitance of the gap that may be present between crystal and electrodes. When
a gap is present, its effect is to be regarded as included in the values of R, L, C% and Ci.
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the resonance circle, as shown in Fig. 61 or 67. When Cs is decreased

to the point A, Cp cannot become any greater, the crystal loses control,

and the frequency springs from A to B, and similarly at E. No oscilla-

tions are possible between PI and p2.

Using the crystal N2 mentioned in 298, the author has found that

close to the points A and E in Fig. 98 the variation in frequency for a

Fia. 98. Stabilizing action of a resonator as the turning capacitance Ct is varied.

small change in C* (or in filament current or any other variable) was only

one-thirtieth as great as when the crystal was absent.

The crystal-stabilized circuit was first arrived at in 1920 as one stage

in the search for a crystal-controlled oscillator. While the stabilizer

has found some application,
*
its usefulness is far less than that of the piezo

oscillator, to which we now turn.

389. The Crystal-controlled Oscillator. Although the circuits de-

scribe^ in the following sections may be used with any piezoelectric

crystal, particular reference is made to quartz, as this is the only

*
See, for example, Heegner,

814
Handel, Krtiger, and Plendl,

80* Kusunose and

Ishikawa,"' Watanabe."*
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material in common use for the purpose. The various cuts of quartz
and their properties have been discussed in Chap. XVI.

The piezo oscillator may be considered as evolved out of the stabilizing

circuit just described. The tuning circuit C2L 2 in Fig. 97 is transferred

to the anode circuit of the tube, replacing the tickler coil and becoming
the tank circuit, as shown in Fig. lOOa. The only reactance con-

nected to the grid is that of Cp ,
the equivalent parallel capacitance of the

resonator. If the oscillating circuit is regarded as consisting of Cp in

series with the grid-anode capacitance and the impedance Z* of the

anode circuit, oscillations will be generated if Cp can assume a value that

makes the total reactance vanish. Usually this condition requires that

the crystal be vibrating near a resonant frequency. For stable oscilla-

tions the operating point must be on a region of the Cp-curve in Fig. 98

where dCp/df is positive, since otherwise an increase in / will not be

neutralized by a corresponding increase in Cp . At first sight it might

appear that the tube would oscillate with a frequency slightly below that

at PI if Z2 had an inductive value lying between certain limits. Actually,

this is impossible, since on the 1-f side of resonance the crystal is vibrating

in the wrong phase. On the h-f side, however, just above P2 (between
P2 and the frequency for antiresonance) stable oscillations can occur if

Z% is inductive. Cp is here negative, and the crystal operates as an induct-

ance, automatically selecting that point on the curve which makes the

total circuit reactance zero. Zi must of course lie between certain induc-

tive limits, but a good resonator has such a wide range of values of negative

Cp that the tolerance in Z2 is very wide. Usually a tank circuit ia

employed, tuned to the optimum inductive reactance.

In terms of the equivalent series reactance Xa ,
the condition for

stable oscillations is that dX,/df shall be positive and that the frequency

shall come between resonance and antiresonance. This consideration

restricts the operating range to a region on the 1-f side of point P8 , Figs. 66

and 67, between PS and P2 . We return to this subject in 392.

It is shown by Hight and Willard, according to Llewellyn's theory and

confirmed by their experiments, that the frequency is most nearly inde-

pendent of small changes in the circuit reactances, plate voltage, and

change of tube when the reactance of the tank circuit is numerically

equal to the tube resistance Rp between cathode and plate and at the same

time Rp
= (M + l)Rg ,

where /* is the amplification factor and R the

cathode-grid resistance. At the optimal setting of C2 the frequency is a

maximum. A further improvement in stability is brought about by

tuning a small variable condenser between grid and anode to secure an

additional adjustment to maximal frequency.

390. Some Early Types of Piezo Oscillator. One of the earliest

circuits, devised by the author in 1921, operates by means of piezo-
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electric feedback. It is essentially an amplifier with input and output

coupled through a crystal with two pairs of electrodes, as shown in Fig. 99.

In the earliest form a three-stage resistance-coupled amplifier was

used, but it was found by Van Dyke in 1922 that a single tube was

quite sufficient.* The original crystal was an X-cut quartz bar, of size

XQ.15, F3.9, Z0.7 cm, having a fundamental lengthwise frequency

of about 70 kc. With two pairs of electrodes suitably connected, the

circuit oscillated at the first overtone, approximately twice the funda-

mental frequency. Neither coil nor con-

denser was necessary: the anode circuit

contained only a resistance of 12,000

ohms and was slightly capacitive from

stray effects. Reversing one pair of elec-

trodes caused the oscillations to take

place at the fundamental frequency.

Watanabe681 has made a theoretical study

of this type of oscillator; his results are

in agreement with the foregoingstatements

and prove moreover that when the anode

circuit is made inductive the connections in

Fig. 99 give rise to the fundamental fre-

quencyj
while reversing one pair of elec-

trodes gives rise to the first overtone.

His investigation shows also on which side

of resonance the oscillating frequencies lie.

In another type of oscillator first described by the author, a tuned

grid circuit was used, the coil in the grid circuit being very loosely coupled

to a coil in the anode circuit. The crystal replaced the blocking con-

denser between the tuning element and the grid. A modification of this

arrangement has been used by Horton and Harrison. 2a4

The author has also used the piezoelectric feedback for driving metal

rods at audio frequencies (383). The same principle is used in oscilla-

tors described by Rohde,
436 Rohde and Handrek,

438 and Mason and

Sykes.
848

391. The Pierce and Fierce-Miller Circuits. These two circuits,

especially the latter, are in very wide use. In the Pierce circuit the

crystal is between grid and anode of a vacuum tube, while in the Fierce-

Miller circuit it is between grid and filament, f In simple form, without

* See also Mallet and Terry.
325

t G. W. PIEKCB, U. S. patent 1,789,496, application Feb. 25, 1924, issued Jan. 20,

1931; J. M. MILLER, U. S. patent 1,756,000, application Sept. 10, 1925, issued Apr. 22,

1930. Pierce's paper
423 describes only the grid-anode connection, for which the

reactance in the anode circuit has to be capacitive, as explained in 394. Hence the

FIG. 99. The earliest type of

crystal-controlled oscillator con-

sisting of an amplifier with input
and output coupled through a

crystal.
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the modifications to which reference will be made later, it is illustrated

in Fig. 100. In a the crystal is between grid and filament. The action

of the crystal in controlling the frequency has already been explained in

389, in terms of the equivalent parallel capacitance Cp . In principle,

the device is a tuned-grid tuned-plate circuit with the crystal replacing the

tuning elements in the grid branch. Feedback takes place through the

capacitance between grid and plate, shown by dotted lines. The alter-

nating potential on the grid comes from the charges liberated piezo-

electrically by the vibrating plate.

THode

Fia. 100. Piezo-oscillator circuits, a, the Fierce-Miller circuit; &, the Pierce circuit.

The tank circuit LzC* should be tunable over a considerable range on

either side of the crystal frequency. A high I/2/Ca-ratio gives a large

harmonic content, which for some purposes is advantageous. If one

starts with C% at its setting for lowest capacitance (Fig. lOOa), the circuit

usually does not oscillate and the anode direct current is large. As C*

is increased, oscillations set in at a certain point and the direct current

diminishes. The oscillation current increases with C2, until a critical

value is reached at which oscillations cease.

In the Fierce-Miller circuit just described, the crystal vibrates at a

frequency slightly below its antiresonant frequency, according to the

coil used by Pierce in his anode circuit must have had enough distributed capacitance

to make this circuit act like a condenser. J. M. Miller first recognized this fact.

He also independently of Pierce made a circuit oscillate with the crystal between

grid and filament, and he introduced the tunable element in the anode circuit (L2Ct

in Fig. lOOa), with a tap to L2 to increase the output current. 11Ma9 '461

Although a recent legal decision has awarded to Pierce the priority for the grid-

filament connection, it can hardly be denied that Miller deserves at least to share

in the credit. In the literature both circuits of the types shown in Fig. 100 are com-

monly called "Pierce circuits." In this book, also, this term is sometimes applied

genetically to circuits of either type, but when special mention of the grid-filament

connection is made we refer to the "Fierce-Miller circuit."
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statement in 389. Strictly, the antiresonant frequency in question is

that of the crystal and all associated capacitances, including those con-

tributed by the tube itself. For satisfactory operation the impedance

of this combination at antiresonance should be as high as possible, a

condition which requires that the Q of the crystal shall be as large as

possible. When oscillating, the tube provides the negative resistance

necessary to neutralize the positive resistance component of the imped-

ance. The smaller the associated capacitances, the greater is the anti-

resonant impedance and the better the oscillator. The magnitude of

this antiresonant impedance is a useful index of performance .for the

oscillator.

Instead of the Q of the &LC-branch of the crystal network, use is

sometimes made of the antiresonant Qa,
which is the ratio of the inductive

reactance to the effective resistance of the crystal and associated capac-

itances at the frequency of antiresonance. This Qa is much smaller than

Q: for example, with a jBT-cut of quartz for 5 to 10 megacycles, Q may be

of the order of 500,000, while Qa is only around 10,000.

The circuit with the crystal between grid and+plate is shown in Fig.

1006. This circuit is of the ultraudion type, the tuning element being

replaced by the crystal. Feedback takes place through the crystal itself,

the tank circuit serving to determine the optimum (capacitive) reactance.

392. Without reference to the equivalent network, the action of the vibrating

crystal in maintaining the oscillations may be explained as follows: Let it be assumed

that the crystal is connected as in Fig. lOOa or b but not vibrating. There is then an

unvarying electron current through the tube, with a fixed positive static charge on

the anode and a negative charge on the grid. Owing to the potential difference

between grid and filament (or between grid and anode), the crystal is statically

deformed to a slight extent through the converse piezoelectric effect. If now any

small momentary disturbance occurs, causing the grid to become more negative, the

deformation increases. The crystal has in effect received a shock excitation, which

makes it vibrate;* by the direct piezoelectric effect it impresses an alternating voltage

on the grid, which soon dies down if nothing occurs to maintain it. But this alter-

nating voltage on the grid causes a variation in the anode current at the same fre-

quency, thereby varying the anode potential by an amount and phase angle depending

on the impedance in the plate circuit. If this impedance lies within a certain range

of values, the effect becomes cumulative. At each surge of current to the grid, the

anode changes its potential in such a way as to increase the intensity of the surge, thus

compensating for the energy losses in the crystal and in the grid circuit and causing the

amplitude of vibration to build up instead of decrease. This continues until a balance

is reached, just as in any other oscillating device. Part of the energy of the anode

supply has become converted into a-c energy through the medium of the crystal

vibrations. Unless the crystal vibrates, the circuit will not oscillate.

Owing to the high Q of the crystal, its resonating range is very narrow. Hence

the generator, when once started, will hold its frequency extremely constant. Within

* The mechanical inertia of the resonator plays a part strictly analogous to the

electromagnetic inertia, or self-inductance, of the equivalent circuit.
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wide limits, any change in circuit conditions, as for example a variation in C2| filament

temperature, or anode voltage, can affect the frequency only to the extent of causing
the crystal to vibrate at a different point on its resonance curve. An equivalent
statement is that the L of the resonator is so extremely great and its C so extremely
small, in comparison with the effective inductance and capacitance of the rest of the

circuit, that under no conditions can the frequency depart far from (l/2ir)(Z/C)-*.

393. The Minimum Size of Crystal for a Piezo Oscillator. For a given

frequency, the length of a bar or the thickness of a pUte may be considered

as fixed. The question is then how narrow the bar can be, or how small

the area of the plate, and still control the frequency in a Pierce circuit.

In either case, it becomes a question of minimum size of electrodes, the

latter being assumed to cover the entire crystal surface. Since a resona-

tor, however small, has an inductive reactance over a certain frequency

ro ED

a
Fia. 101.- a, Hartley oscillator; Z>, Colpitts oscillator.

range as long as the damping is sufficiently low, there is no theoretical

reason why it should not control the frequency in a Pierce circuit. There

are, however, two very practical reasons for a lower limit. The first is

the difficulty in mounting an extremely small resonator so as to have a

sufficiently high Q. The second reason is that a minimum oscillating

grid current is necessary; and if the electrode area were very small,

too high a voltage would be required across the crystal. The relation of

crystal resistance to the condition for oscillations is discussed by Wata-

nabe581 and Vigoureux.
B60>B51

394. A piezo-oscillator circuit may be shown to function as either a

Hartley or a Colpitts oscillator, depending on the location of the crystal.

These two general types of oscillator are shown schematically in Fig.

101, in which a corresponds to Fig. lOOa: when the crystal is between

grid and filament, it vibrates on the h-f side of resonance and therefore

has an inductive reactance. The crystal corresponds to La >
and the

inductively tuned tank circuit to L#, while the grid-plate capacitance

corresponds to C*.
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With the crystal between grid and anode we have in effect a Colpitts

circuit. If the grid circuit is capacitive (in practice a condenser is often

connected across Ri), corresponding to Cc,
and if the tank circuit is also

capacitive, corresponding to C'c ,
oscillations can take place on the h-f

side of crystal resonance. The crystal now replaces Lc *

For the higher range of frequencies, for which thickness vibrations are

chiefly employed, the grid-filament connection seen in Fig. lOOa is

chiefly used. The same circuit can of course be employed also for low

frequencies, though for this purpose the grid-plate connection is often

preferred.

In the simple Fierce-Miller circuit, as in all crystal-controlled oscilla-

tors, best results are obtained with tubes of high amplification. The
801 triode is suitable, with the plate voltage held to 300 volts or less, in

order not to endanger the crystal. The maximum safe crystal current is

considered in 257.

395. Modifications of the Fierce-Miller Circuit. The simple circuits

shown in Fig. 100, using a triode tube, have a rather low output of power,
and the frequency is not sufficiently constant to meet the exacting require-

ments of practical service. As in all oscillators, the power increases

with the plate voltage, as does also the current to the crystal. Since the

crystal current is proportional to the amplitude of vibration, there is

danger of breaking the crystal if the plate voltage is much greater than

about 250 volts. As to the frequency, any slow drift or sudden fluctua-

tion in circuit conditions, due, for example, to variations in supply voltages

or in temperature, may change the value of the grid-plate capacitance
or of the anode impedance and thus force the crystal to operate at a

different frequency in order to satisfy the condition for oscillations.

Moreover, unless the resonator has zero temperature coefficient, the

resonant frequency of the crystal itself will vary with changes in the cur-

rent flowing to it. Best frequency stability in this simple circuit is

obtained by the use of a relatively low ratio of L2 to C2 in the tank circuit,

especially for the higher frequencies.

The power output can be increased to several watts by substituting a

r-f choke and biasing battery for the resistance RI.ITL Fig. lOOa.* A
proper choice of bias on the control grid is important, since the current

to the crystal increases with the amount of bias. As an alternative to the

biasing of the grid by R\ alone, the
" cathode bias" illustrated in Fig. 102

has been introduced, by which the potential between grid and filament is

controlled by the d-c potential drop through a resistance JR 2 in series with

the (indirectly heated) cathode. This arrangement, which may be used

without RI but with a choke in parallel with the crystal, is found to make
* A. CBOSSLEY, U. S. patent 1,696,626, (1928), also ref . 115. Crossley has obtained

as much as 100 watts output from a single tube at frequencies from 3,000 to 4,000 kc.
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the crystal start oscillating more easily. A combination of grid-leak

bias with cathode bias is often employed, at least with triodes. The
cathode "bias alone is recommended for frequencies over 1,500 kc.

The criteria in the selection of tubes are high amplification, low grid-

anode capacitance, small current to the crystal, and sufficient power

output.

Among the various present-day piezo-oscillator circuits, which for

the most part are of the Fierce-Miller type, we illustrate only one,, in

Fig. 102. This circuit is widely used in amateur transmission and is

well suited to general laboratory use. The tube may be either a tetrode

(in which case the suppressor grid in the figure is omitted) or a pentode.

-&O +SGO
Fia. 102. Pentode piezo-oscillator.

The advantages offered by these tubes are high amplification, greater

power wiuhout fracturing the crystal, and higher frequency stability from

the action of the screen grid. With a high L2/C2 ratio the harmonics

are very pronounced. When a pentode is used, the suppressor grid may
be grounded, or for greater power it may be given a small positive

potential.* As represented in the figure, both grid-leak and cathode

bias are used. IMhe jpid-plate capacitance provides insufficient feed-

back, a very small auxiliary condenser may be connected between grid

and plate. To safeguard the crystal, such capacitance should be as small

gjSjpqssible. The Lz/Cz ratio is usually greater than in triode circuits.

Push-pull piezo oscillators have been used with both triodes and

* Suitable pentodes are the 41, 42, 6F6, and 802 or the beam types 6L6 and 807.

With maximum plate voltage on the latter, the output should be at least 10 watts for

frequencies over 1,500 kc/sec. The following typical values of circuit elements

shown in Fig. 102 are taken from the "Radio Amateur's Handbook": Ci, maximum
100 mmf, with Lz designed for the frequency used; C and Cj, 1,000 mmf or more; C 4,

0.01 mf ; Ri, 10,000 to 50,000 ohms; #2,
250 to 400 ohms.
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tetrodes.* In some of his experiments Harrison used crystals with four

electrodes, oscillations taking place through piezoelectric feedback as

described in 390. In other cases, the crystals had two electrodes, and

oscillations were maintained as in the Fierce-Miller circuit. Harrison's

oscillators seem especially well suited to 1-f oscillations, including those

controlled by plates vibrating flexurally. He was able to obtain an

output of 5 watts at 50 kc/sec, with a flexural resonator. The power

derived from two tubes in push-pull may be as much as li times that

from a single tube. It is a characteristic of push-pull ,
circuits that all

even harmonics are eliminated.

396. Low-frequency Piezo Oscillators. For crystal control, any of

the 1-f types of piezo resonator described in Chaps. XVII and XVIII

can be used. In practical applications quartz is employed almost exclu-

sively; the usefulness of Rochelle salt is mainly for experimental work and

demonstration. The various types may be classified as follows:

1. Lengthwise vibrations of bars or plates. Owing to the scarcity

and cost of large quartz plates and the impracticability of making
oscillators with very short bars, the usual limits of frequency for this type

are from 80 to 300 kc/sec.

2. Broad plates, usually a rotated cut as described in 358, vibrating

in a contour shear mode. They can be used from about 70 to 1,000

kc/sec.

3. Flexural vibrations, either of the type introduced by Harrison,
205

with two or more pairs of electrodes, or of one of the types described in

354, with a single electrode pair. The practicable range in frequency

is from 1 to 100 kc/sec.

4. Torsional vibrations. The frequency range is about the same as

for flexure. No practical application of this mode seems to have been

made.

5. Flexural vibrations of a Curie double strip, in which two very thin

quartz bars are cemented together, as described in 354. By this method

Gramont and Be*retzki 185 ' 186 have obtained oscillations at frequencies

down to 50 cycles/sec, f

6. Beats between two h-f piezo oscillators, using two different crytals

or a single crystal with two regions of different thickness, according to

Hund. 238"241 This method seems to have been used mainly in experi-

mentationJ rather than in routine practice.

*Push-pull piezo oscillators have been described, for example, by Harrison207 and

Koga. 86fl See also I. F. Byrnes, British patent 277,008 (1927) and U.S. patent

1,722,196 (1929).

f An interesting demonstration of the acoustic waves from these oscillators was a

feature in the French building at the New York World's Fair in 1939.

J The first suggestion leading to method 6 was made by Fierce.423 See also Koga
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Other 1-f quartz cuts for piezo oscillators are described in 357 and

359.

Whatever form of oscillating circuit is employed, it must be remem-
bered that the 1-f crystals have relatively large mass and rather low

activity and are easily broken by overvoltage. Good practice calls for

the use of low-power tubes, high L/C ratio in the anode circuit, and a

high grid-leak resistance.

Among the available circuits, the Pierce form is commonest, though
the "tritet" (see reference to Lamb 800 ' 801 at end of chapter) and bridge

circuits can also be used. Gramont and B6retzki mention the use of a

relaxation circuit for their very low frequencies.* The mechanically

tuned feedback has been employed by Harrison 207 for his flexural oscilla-

tors and by Rohde437 for lengthwise vibrations.

Piezo oscillators employing torsional vibrations are described by
Tsi-Ze and Tsien,

630
TskZe, Tsien, and Sun-Hung,

636 and Hund and

Wright.
242

397. High-frequency Piezo Oscillators. For this purpose only thick-

ness vibrations are used, generally of the shear type, cut at an angle for

low temperature coefficient. For the same cut, the fundamental fre-

quency varies inversely as the thickness.

In recent years attempts to increase the frequency have been

stimulated partly by the demand for shorter waves in communication and

partly by the success of Straubel in 1931 in obtaining very high fre-

quencies from tourmaline oscillators (400). In the years following

Straubel's investigations the experimental work of Fox and Underwood, 148

Osterberg and Cookson,
403

Yoda,
696 Gramont and B6retzki,

186
Koga,

278

as well as Uda and Watanabe,
638 offered convincing evidence that

quartz plates could be made to oscillate at frequencies practically as high

as tourmaline. This fact, together with the high cost of even small

tourmaline plates and their relatively high temperature coefficient of

frequency, has practically ruled tourmaline out of consideration for

generating short waves in radio.

In some of the experiments just referred to, the quartz plate was

less than 0.1 mm thick. Kamayachi and Watanabe report results with

a plate only 0.015 mm thick, the wavelength being 1.8 m. Gramont and

and Yamamoto;284 Gramont and B6retzki;
184 A. Wcrtli, A Quartz-controlled Hetero-

dyne Note Generator, Helv. Phys. Ada, vol. 6, p. 495, 1933; and Gramont. 182 Cases

have been recorded in which a plate of uniform thickness vibrated simultaneously

with two modes of nearly the same frequency, causing two separate output frequencies,

which could be detected as a beat note. See, for example, F. Bedeau and J. de Mare,

Compt. rend., vol. 185, pp. 1591-1593, 1927; Sabbatini,"* and Vigoureux."'
* On the use of relaxation oscillators, see also Hund, 239 Eccles and Leyshon,

129

and Kao.'M
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B^retzki have pointed out that, in order to match the input impedance
of the tube, a very thin plate should have a small area. They recommend
a ratio of diameter to thickness between 30 and 40.

On the whole it has not been found practicable to use quartz plates

of a thickness smaller than about 0.2 mm, corresponding to 15 megacycles

for the fundamental frequency. For still higher frequencies it has been

customary to use frequency-multiplying circuits, the fundamental fre-

quency being controlled by a quartz plate of convenient thickness, for

example 1 mm.
The complication of frequency-multiplying circuits can be avoided

by causing the crystal itself to vibrate at a high "harmonic" frequency.

Crystal control of this type with a relatively low order of harmonics

was achieved by some of the investigators named above. Nevertheless,

in the past there has been the difficulty that the order of harmonics, at

least so far as the ordinary Fierce-Miller circuit is concerned, is strictly

limited by the considerations in 296. Very recently these obstacles

have been surmounted by Mason and Fair,
141 ' 341 who placed a quartz

plate (AT or BT) in a capacity bridge* between grid and ground. By
this means the harmful effect of the parallel capacitance Ci was elimi-

nated. For further details of the circuit the original papers must be

consulted. By using the 23d harmonic of an AT-cut a frequency of

197 megacycles/sec was obtained by Mason and Fair; and by doubling
the frequency they could go as high as 300 megacycles (1-m waves).

398. Other Crystal-controlled Circuits. Many circuits have been

described, mostly modifications of the Fierce-Miller circuit. They
include transmitter circuits of various powers and frequencies, primary
and secondary standards of frequency, monitors, multivibrators, fre-

quency multipliers and dividers, and receiving circuits. Some involve

the attempt at making the crystal vibrate at its resonant frequency
instead of on the inductive side of the resonance curve, f At the end of

the chapter are a few references selected from the very extensive literature.

Two forms of piezo oscillator use other than purely electromechanical

means for coupling the crystal to the oscillating circuit. One employs
a beam of sound, the other a beam of light. Wheeler and Bower688

described a circuit in which the controlling crystal is a large quartz bar

in flexural vibration, the vibrations being maintained by acoustic waves
from a telephone membrane, which in turn is vibrated by the output
current from the amplifier to which the crystal is connected. The light-

beam method, devised by the author,
104 makes use of an X-cut quartz

bar in lengthwise vibration, through which a beam of polarized light

*
Bridge methods for balancing out the parallel capacitance C\ have long been

known, especially for receiving circuits; see also Builder and Benson. 82

t See, for example, the papers by Heegner218 and Boella. 88
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passes parallel to the Z-axis. The light, modulated by the periodic

strains in the crystal, falls on a photoelectric cell, the current from which

is amplified and connected to the resonator electrodes.
*

In two-way telegraphic communication, the detector at the receiving

end can have coupled to it a low-power piezo oscillator, controlled by a

crystal having a frequency differing by, say, 1,000 cycles/sec from that

at the sending end. A heterodyne note of great purity is thus produced.

Special mention should be made of a "
bridge-stabilized

"
piezo oscilla-

tor of very high constancy, t described by Meacham. 357 The crystal

forms one arm of a bridge, of which the other three arms are resistances.

One diagonal of the bridge is coupled inductively to the input of an ampli-

fying tube, the other to the output. Meacham's analysis shows that the

crystal vibrates at its resonant frequency, acting as a filter. The circuit

is stabilized against all fluctuations by having one of the resistance arms

of the bridge thermally controlled. Over a period of several hours the

change in frequency has been found to be less than 2 parts in 108
.

In addition to its commercial applications this circuit has proved itself

superior to a chronometer when used as a time standard for gravity

measurements.

399. Standard-frequency Piezo Oscillators and Quartz Clocks.

Under this heading are included primary and secondary frequency stand-

ards, portable frequency monitors, and the quartz clock.

Our only concern here has to do with the crystals employed for these

purposes. As a guide to the literature on circuits and temperature

control, a list of references is given at the end of this chapter.

For all the purposes named above the chief requirements with respect

to crystals are very low damping and small variation of frequency with

temperature. Modes of vibration other than that selected for operation

are not troublesome as long as they are not close to the latter. On the

other hand, more attention must be paid to the mounting, especially

in primary standards and quartz clocks, than in any other use to which

crystals are put.

A primary frequency standard is a formidable and elaborate apparatus
in a fixed location. It is essentially a crystal-controlled oscillator of

highest precision, with amplifiers and circuits for multiplying and sub-

dividing the crystal frequency. Usually the output at one of the lower

* In Engineering (London), vol. 124, p. 841, 1927, is an account of the measurement
of the frequency of a vibrating quartz plate placed between crossed nicols in such a

manner that a beam of light, modulated by the crystal, was reflected by a rotating

mirror of known angular velocity.

t Oscillators of this type are now obtainable from the General Kadio Company,
Cambridge, Mass. A brief analysis of the theory is given in the Gen. Radio Experi-

menter, vol. 18, no. 2, pp. 6-8, May, 1944.
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demultiplied frequencies say 1,000 cycles/sec drives a synchronous
motor geared to a dial, so that time intervals can be precisely determined

and comparisons made with other crystal-controlled standards and with

pendulum clocks. Such a device is called a "crystal clock
7 '

or a "quartz
clock."

It is now recognized that quartz clocks, at least over limited lengths

of time, are more precise than the best astronomical pendulum clocks.

Indeed, small variations in the rate of astronomical clocks, due to fluctua-

tions in the earth's rotation, have been revealed by comparisons with

quartz clocks.

Primary standards usually consist of three or more independent

crystal-controlled oscillators. The advantages of this arrangement are

continuity of service if one oscillator stops, as by the burning out of a

tube; the possibility of detecting any irregularity in the performance of

any one oscillator; and increased precision over long periods of time.*

A discussion of the methods and technique of making frequency com-

parisons with standards cannot be undertaken here.

The secondary standard is like the primary, except that it is usually
of less high precision and that the clock feature may be omitted.

The crystal monitor is a small portable low-power secondary standard

with a restricted range of frequencies. In some forms it has a scale to

read frequencies directly.

At the National Bureau of Standards there are seven quartz-controlled

primary standard oscillators, viz., six with 100 kc/sec GT-cuts in bridge-

stabilized circuits, and one with a special doughnut shape at 200 kc/sec
in a modified Pierce circuit. The crystal in each unit is kept at constant

pressure in a small sealed metal box, in a constant-temperature oven.

For the better units the short-time variations under normal operating
conditions are less than 2 parts in 109

.. The drift of frequency in a

month is less than 2 parts in 109
,
with a daily drift of less than 10""10.f

The crystal-controlled standard at the National Physical Laboratory
in England, according to the most recent publication,

18M9 contains a

100 kc/sec ring, as described in 357. In vacuum, at constant tempera-

ture, the stability is 4(10~~
10

) during hourly periods and 1(10~~
8
) during

monthly periods. The "long-period stability" is stated by Essen} to

be 2(10-
8
).

According to Scheibe845 the four quartz clocks at the Physikalisch-

Technische Reichsanstalt make use of quartz bars with lengths parallel

* See E. W. Brown and D. Brouwer, Analysis of Records Made on the Loomis

Chronograph by Three Shortt Clacks and a Crystal Oscillator, Monthly Notices,

Roy. Aalron. Soc., vol. 01, pp. 575-591, 1931.

t For this information the author is indebted to Dr. J. H. Bellinger.

I Eef. 69, p. 131.
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to X or Y (349). The frequency is CO kc/sec. The bars are separated
from the electrodes by 1-mm gaps and are mounted in vacuum with

thermal control. For these clocks the daily variation is claimed to be

less than 2(10"
10
), the monthly variation about 3(10~

9
).

In the primary standards of the General Radio Company* an X-cut

50-kc quartz bar with length parallel to Y is used, as illustrated in Fig.

103. The dimensions are X = 9.4 mm, Y = 54.4 mm, Z = 7.0 mm,
with R around 2,700 ohms and Q around 85,000. The temperature
coefficient of frequency is from 0.7(10-

6
) to 1.5(10~

6
). The elec-

trodes are of chemically deposited

silver, protected by copper or gold

plating or both. In ordinary
industrial service the short-period

stability is of the order of 2 to 3

parts in 109
. After 3 to 4 weeks

of initial drift period the oscillators

settle down to a slow long-time

drift, usually an increase in fre-

quency of 1 or 2 parts in 106 for a

year. Crystals that have run for

some years appear to have no

systematic drift, but only fluctua-

tions of unknown origin amount-

ing to 1 or 2 parts in 107
.

The General Radio monitors

employ AT-cui plates in fre-

quencies from 500 to 5,000 kc/sec.

The plates are mounted in holders with adjustable gaps,

chromium plated.

400. Piezo Oscillators with Rochelle-salt and Tourmaline Crystals.

Owing to the large piezoelectric constants of Rochelle salt, bars of this

material, either X-, F-, or Z-cuts, can easily be made to vibrate in a

Fierce-Miller circuit. Nevertheless, for mechanical and thermal reasons

they are unsuitable for practical applications. While much has been

published on their performance as resonators, chiefly for the purpose of

determining the dynamic elastic and piezoelectric constants, still the

only mention we find in the literature on their use as piezo oscillators is

in papers by Pierce428 and Mikhailov. 386

* This information was kindly furnished by Mr. J. K. Clapp. He states also that

JC-cut bars inclined at = +18 and 48 from the 7-axis have higher Q's, but also

higher temperature coefficients. At 6 = 5 the temperature coefficient averages

less than at = 0, but Q is quite low. When a 50-kc bar with length parallel to

Y operates at its second "harmonic" frequency, Q is considerably greater, and at

0C the temperature coefficient is zero.

FIG. 103. X-cut quartz bar for primary
standard of frequency. The bar is clamped
between two resilient pads at the mid-points
of the FZ-surfaces. A baffle at each end is

adjusted for quarter-wave resonance, re-

moving at least 90 per cent of the loss due to
acoustic radiation from the ends of the bar.

The radiation from the sides is negligible.

(Courtesy of the General Radio Company.)

Electrodes are
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Tourmaline oscillators* were introduced by Straubel in 1931, when he

obtained an output of 5 watts at 7 m wavelength and succeeded in getting

crystal control down to 2 m. In his second paper he reported direct

control at 80 cm (thickness only 0.01 mm) but found it preferable to use

crystal control at 2 m, followed by a threefold frequency multiplication.

In his third paper he described the stabilization of a magnetron at

1.6m.

Wavelengths around 1.6 m were also attained by Awender and Buss-

man and by Kuhnhold. *

Various circuits were used by the experimenters listed at the end of

this chapter, including the Pierce, push-pull, and stabilizing circuits.

Several determinations of temperature coefficient of frequency have

been made, with an average of about 40(10~
fl

). For the same thick-

ness, tourmaline gives a frequency about 35 per cent higher than quartz.

The frequency constant is about 3,750 kc sec"" 1 mm.
Besides having a high temperature coefficient, tourmaline crystals

rise considerably in temperature while vibrating. Heierle finds an

increase of 10C in temperature in 1 hr (see also Booth and Dixon).

These facts do not favor the use of tourmaline as compared with quartz

for high frequencies.

In all the foregoing experiments, Z-cuts of tourmaline were used, the

plates being in the form of circular disks a few millimeters in diameter.

The thickness vibrations were compressional, with a strain given by the

equation zz = dz*Et . The outstanding advantage offered by tourmaline,

emphasized by Straubel and by Petrzilka, is that since the elastic proper-

ties are symmetrical about the Z-axis, very pure compressional waves

are propagated in the Z-direction. There is therefore less trouble from

undesired vibrational modes and parasitic frequencies than in the case of

quartz.
401. Theory of the Piezo Oscillator. The earliest attack on the

problem of the crystal oscillator was made by Terry
617 in 1928, in a paper

that had to do mainly with the conditions for stability of frequency.

In this treatment, circuit resistances are included, but a linear tube char-

acteristic is assumed. In the years that followed numerous other treat-

ments of the theory appeared,! each containing certain simplifying

assumptions. One of the most thorough was that of Vigoureux,
B80 -B61 ' 668

who derived formulas for frequency and current in terms of crystal, tube,

and circuit parameters, in good agreement with experiment.

Special mention should also be made of Llewellyn's paper in 1931,
318

which contains an analysis of the Hartley, Colpitts, and other circuits,

* See list of references at end of chapter.

f A list of some of the more important contributions is given at the end of this

chapter.
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with special reference to the conditions for frequency stability. Applica-
tion is made to crystal control.

Both Vigoureux's and Llewellyn's conclusions will be found helpful

in understanding the functioning of the Pierce circuit and in predeter-

mining the various constants.

In the papers by Watanabe and Usui are applications of the resonance

circle to their analyses. Watanabe discusses at length the effect of a

gap in series with the crystal.

REFERENCES

On the subject of piezo oscillators some hundreds of papers, as well as countless

patents, have been published, in various languages. An exhaustive bibliography
would be so long as to defeat its own purpose. The classified lists below are a selection

of representative papers, sufficiently recent to be of practical use, from which, it is

hoped, not too many milestones are missing. For further references the reader must
consult texts on radio and the various scientific, technical, and amateur journals.

Much helpful information is contained in such publications as the " Radio Amateur's

Handbook," the "Radio Handbook," and the bulletins of the General Radio Com-

pany, the Radio Corporation of America, and the Blilcy Electric Company.

PlEZO-OSCILLATOR TlIEORY

VlGOUREUX,B51 BOELLA88 ' 67 HANDEL,
200 ' 201 HEEQNER, 216 ' 218 JEFFERSON,

247 KoGA, 288

PETRZILKA and FEHR, 420
SMiRNOV,

472 TERRY, 617 Usui, 640 ViGOUREUX, 688 WATANABE, 681

WHEELER, 582 WRIGHT. 693

PlEZOOSCILLATOR CIRCUITS

SCHEIBE,345 BECHMANN, 31 ' 33 ' 36 '38 ' 43 BENSON, 60 BOELLA,
68

BOOTH,
89

BORSARELLI,
72

BUILDER and BENSON, 82
CADY,

104 HARRISON,
208 '207 HAYASI and AKASI,

ZH HEEGNER, 218

HlGHT and WlLLARD,
227

JACKSON,
244 KlSHPAUGH and CORAM, 280 KOGA, 268 ' 280 KOGA

and YAMAMOTO, 284
KOGA, YAMAMOTO, NISIO, HARASIMA, and IKEZAWA, 285 KUSUNOSE

and IsHiKAWA, 297 LACK,
298 LAMB, 300 - 301 [the "tritet" oscillator, for which see

also I. Koga and W. Yamamdlo, Electrotech. Jour. (Japan), vol. 4, pp. 110-115, 19401

LAMB, 302 LLEWELLYN, 318 MACKINNON, 324 MEACHAM, 857 MEAHL,
368

NELSON,
390 PAVLIK408

PlNCIROLI,
426

PONTECORVO,
429

PoPPELE, CUNNINGHAM, and KlSHPAUGH, 430 SABAR-

OFF,
443 TAKAGI and NAKASE,

602
VECCHiACcm, 581 WHEELER and BOWER. 683

PERFORMANCE OF PIEZO OSCILLATORS, DEPENDENCE OF FREQUENCY
ON CIRCUIT CONDITIONS

HUND,B27 'B28 MOULLIN,B37 SCHEIBE,346 ViGOUREUX,361 AMARI,
2 ANDERSON, 3

ANTSELioviCH,
8 ' 7

BoELL^.,
66 -57 BooTH,

89 BOOTH and DrxoN,
70

BORSARELLI,
72 BROWN

and HARRIS,
77

BUILDER,
80 BUILDER and BENSON,

82
DYE,

127 GooDMAN, 179 HEEG-

NER,
216 '218 HlGHT and WlLLARD, 227 HOVGAARD,

235
KOGA,

288 '274 KOGA and SHOYAMA, 282

LAMB, 802 MACKINNON, 324 NAMBA and MATSUMURA, 388
SABBATiNi,

444 TnuRSTON, 620

VLCCHIACCHI,
580 '682 WATANABE. 631

PIEZO OSCILLATORS FOR VERY HIGH FREQUENCIES

FAIR,
141 Fox and UNDERWOOD, 148 GRAMONT and BERETZKI, IM KAMAYACHI and

WATANABE, 249 KOGA, 278 MASON and FAIR,
341 OsTERBERG and COOKSON,

403 UDA,

HONDA, and WATANABE. 638



508 PIEZOELECTRICITY

FREQUENCY STANDARDS AND QUARTZ CLOCKS

VlGOUREUX,*80'*" ESSEN,"
9 GRAMONT, 182 JlMBO,"

8
KOGA,*77 MAB-

MASON,Me VECCHiAccm. 662

ADELSBERGER, U.: Equipment for Emission of Standard Frequencies from the

German Transmitter, Hochfreguenztech. Elektroaku$tik, vol. 53, pp. 146-150, 1939.

ADELSBERGER, U.: Very Accurate Measurements of Time and Frequency, Elek.

Nachr.-Tech., vol. 12, pp. 83-91, 1935.

CLAPP, J. K.: "Universal" Frequency Standardization from a Single Frequency

Standard, Jour. Optical Soc. Am., vol. 15, pp. 25-47, 1927.

CLAPP, J. K., and J. D. CRAWFORD: Frequency Standardization, QST, vol. 14,

pp. 9-15, March, 1930.

DECAUX, B. : Measurements of Frequency at the Laboratoire National de Radio-

dlectricite*, L'Onde elec., vol. 15, pp. 411-439, 1936.

DOBBERSTEIN, H.: On the Performance of Two Commercial Quartz Clocks,

Z. Instrumentenk., vol. 61, pp. 188-191, 1941.

DOBBERSTEIN, H.: Small Quartz Clocks, Z. Instrumentenk., vol. 62, pp. 296-301,

1942.

ESSEN, L. : International Frequency Comparisons by Means of Standard Radio-

Frequency Emissions, Proc. Roy. Soc. (London), vol. 149, pp. 506-510, 1935.

GEORGE, W. D.: Production of Accurate One-second Time Intervals, Jour.

Research Nat. Bur. Standards, vol. 21, pp. 367-373, 1938.

HALL, E. L., V. E. HEATON, and E. G. LAPHAM : The National Primary Standard

of Radio Frequency, Jour. Research Nat. Bur. Standards, vol. 14, pp. 85-98, 1935.

HARNWELL, G. P., and J. B. H. KUPER: A Laboratory Frequency Standard, Rev.

Sci. Instruments, vol. 8, pp. 83-86, 1937.

JATKAR, S. K. K. : Absolute Frequency of Piezoelectric Quartz Oscillators, Jour.

Indian Inst. Sci., vol. 22A, pp. 1-17, 1939.

LOOMIS, A. L. : Precise Measurement of Time, Monthly Notices Roy. Astron. Soc.,

vol. 91, pp. 56^-575, 1931.

LOOMIS, A. L., and W. A. MARRISON: Modern Developments in Precision Time-

keepers, Electrical Engineering, vol. 51, pp. 542-549, 1932.

MEACIIAM, L. A.: High-precision Frequency Comparisons, Bridge of Eta Kappa

Nu, vol. 36, pp. 5-8, February-March, 1940.

MICKEY, L., and A. D. MARTIN: Development of Standard Frequency Transmit-

ting Sets, Jour. Research Nat. Bur. Standards, vol. 12, pp. 1-12, 1934.

ROHDE, L., and R. LEONHARDT: Quartz Clock and Standard Frequency Generator,

Elek. Nachr.-Tech., vol. 17, pp. 117-124, 1940.

SCHEIBE, A.: Quartz Clocks: Constructional Outline, Rate and Frequency,

Arch.f. tech. Messen, part 122, sheets T114-115, 1941.

SCOTT, H. J.: A Precise Radio-frequency Generator, Bell Labs. Record, vol. 11, pp.

102-108, 1932.

STANSEL, F. R.: A Secondary Frequency Standard Using Regenerative Frequency-

dividing Circuits, Proc. I.R.E., vol. 30, pp. 157-162, 1942.

TOMLINSON, G. A.: Recent Developments in Precision Time-keeping, Observatory,

vol. 57, pp. 18&-195, 1934.

VIGOUREUX, J. E. P., and H. E. STOAKES: All-electric Clock, Proc. Phys. Soc.

(London), vol. 52, pp. 353-357, 1940 (discussion pp. 357-358).

WHEELER, L. P., and W. E. BOWER: A New Type of Standard Frequency Piezo-

electric Oscfflator, Proc. I.R.E.t vol. 16, pp. 1035-1044, 1928.



THE PIEZO OSCILLATOR 509

CRYSTALS IN FREQUENCY MODULATION

DOHERTY,125 KOGA, 284 MORRISON. 875

TOURMALINE OSCILLATORS

AWENDER and BUSSMAN," BOOTH and DJXON, Fox and UNDERWOOD,m
HEI&RLE, 218 KUHNHOLD, 291 L.EITHAUSER and PETRZILKA,

314 MATSUMURA and Isil-

IKAWA,
348 MATSUMURA, ISIIIKAWA, and KANZAKi, 349 OSTERBERG and CooKSON, 403

PETRZILKA, 419 STRAUBEL. 487 ' 489 ' 494"498



CHAPTER XX
ROCHELLE SALT: HISTORY, GENERAL PROPERTIES,

AND TECHNIQUE

And thou, Rochelle, our own Rochelle, proud
city of the waters.

Again let rapture light the eyes of all thy

mourning daughters.
As thou wert constant in our ills, be joyous

in our joy;
For cold, and stiff, and still are they who
wrought thy walls annoy.

MACAULAY.

402. Summary of Properties. Rochelle salt (scl de Seignette) is

o important as a dielectric on both theoretical and technical grounds
that it will be considered somewhat at length. Like quartz, Rochelle

salt is enantiomorphous, but it is usually of the right-handed form,

produced from the natural tartaric acid of grapes. Tartaric acid occurs

chiefly in the dextro form, although the levo form as well as the

optically inactive mesotartaric and racemic acids can be produced arti-

ficially. Together with a few other more or less related crystals Rochelle

salt possesses properties so unique that they are sometimes given a special

name, the Seignette-electrics (the terms "ferroelectric" and "Rochelle-

electric" are also found in the literature).

In this summary we shall consider only Rochelle salt itself. Its out-

standing feature, which pointed the way to the discovery of other remark-

able properties, is the huge piezoelectric effect, unapproached by any
other known substance. Notwithstanding its rather poor mechanical

strength and low temperature of disintegration (55C), Rochelle salt finds

important applications, especially in the field of acoustics. Of chief

scientific interest are its electric anomalies.

These anomalies are confined to effects observed with fields in the

JT-direction and shearing stresses in the FZ-plane. The piezoelectric

constants d2 s and dse, though larger than for most other crystals, exhibit

no special peculiarities, nor do the dielectric constants for the Y- and

^-directions, both values of the latter being in the neighborhood of 10

and having small temperature coefficients.

For electric fields in the X-direction the dielectric properties of

510
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Rochelle salt exhibit the much discussed ferromagnetic analogy. Just

as iron and other ferromagnetics are characterized by maximum per-

meability at a certain temperature the Curie point, above which the

permeability decreases rapidly so in Rochelle salt there is also a critical

temperature, called by analogy the "Curie point,"* at which a similar

change takes place in the dielectric constant k'x of the free crystal. In

iron the Curie point is around 770C, while for Rochelle salt it is about

24C, only slightly above room temperature. By analogy with the

ferromagnetic and paramagnetic states of iron below and above 770C,
respectively, the terms "Seignette-electric" (or "Rochelle-electric," or

"ferroelectric") and "parelectric" are applied to the corresponding states

in Rochelle salt. In contrast to iron, however, the Seignette-electric state

is confined to the region between approximately 18C and +24C.
The lower critical temperature is called the "lower Curie point"; like

the upper Curie point, it is characterized by a maximum in the dielectric

constant k'x of the free crystal, f

In tha Seignette-electric region the relation between polarization and

field is non-linear, and the crystal shows dielectric hysteresis. The

strictly parelectric state, in which hysteresis disappears and the polariza-

tion is proportional to the field, is found only above +32 and below

26C. Between these temperatures and the Curie points the proper-

ties of the crystal are somewhat affected by the nearness of the Seignette-

electric region. We shall designate the upper and lower Curie points

by and ft, respectively. It will be shown later that the values of these

temperatures are changed by mechanical constraint and by the applica-

tion of hydrostatic pressure.

403. Some of the principal features of the piezoelectric and dielectric

properties will now be further summarized.

The Direct Piezoelectric Effect. By the static methods that have

usually been employed, widely varying values of du have been observed,

depending not only on temperature, but on the electrodes, surface impuri-

ties, previous history of the specimen, and certain effects of lag and fatigue

as well. Between the Curie points the curve relating polarization with

stress shows saturation at large stresses (the effective stress is Yz, although

by the usual technique this shearing stress is brought about by com-

pression of the specimen in a direction bisecting the angle between

the F- and Z-axes). Near the Curie points, values of du as high as

26,000(10~
8
) have been reported.

The Converse Effect. Experimental data are more complete and con-

*The term "Curie point" was first used with reference to Rochelle salt by
Valasek '

f As will be seen later, the maxima in &* at the Curie points are observed only

with relatively weak fields.
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sistent than with the direct effect. The curves relating strain with

field between the Curie points are quite similar to the dielectric polariza-

tion and hysteresis curves. Outside the Curie points the strain: field

relation is linear. In general, the values of du derived from the converse

effect have been found to be several times greater than those from the

direct effect.

Dielectric Properties. Between the Curie points, hysteresis is observed

in the relation betweenPx and Ex . Over most of this region the reversible

portion (first, or initial, stage) extends to the order of 50 volts/cm,

for frequencies from around 200 to 10,000 cycles/sec. In this initial

stage the initial susceptibility rjo
= PX/EX is practically independent of

Ex, varying only with temperature.
* As the amplitude ofEx is increased,

the second stage enters in: domains tend to become polarized in the same

direction, the virgin curve turns steeply upward, and the hysteresis loop

has steeply sloping sides. It is here that the greatest values of the per-

mittivity kx are found (up to 200,000; what is observed is here the

differential value kd , 430). Then at Ex ~ 150 comes the knee of the

polarization curve, followed by the region of saturation (third stage),

in which the differential susceptibility is approximately the same as the

initial 170. Different specimens give different results at small EX) perhaps

owing to differences in domain structure, but they usually agree fairly

well in the saturation region. The hysteresis loops are broadest in the

neighborhood of 0C, gradually becoming narrower and smaller as the

Curie points are approached, where hysteresis disappears. For several

degrees outside the Curie points, however, the P:E relation remains

non-linear. At very low frequencies, and especially under static fields,

the second stage begins at smaller values of Ex . Under these conditions

the effects of lag and fatigue are observed both in dielectric observations

and in measurements of the converse piezoelectric effect, just as with the

direct effect.

When observations, by bridge or oscillograph, are made at increasingly

high frequencies, the dielectric constant is found to decrease progressively,

with an anomaly at each resonant vibrational frequency of the crystal.

The value at radio frequencies so high that the wavelength X is small in

comparison with the dimensions of the crystal can be taken as a measure

of k" for a clamped crystal; it is of the order of 100 except close to the

Curie points, where it rises to a value around 230. The effects of periodic

deformation of the crystal are then practically eliminated. For it must
be remembered that at frequencies for which X is of the order of the

crystal dimensions, even when the crystal is not vibrating in resonance,
it is still in a state of forced vibration, and the piezoelectric reaction

increases the value of kx above that for a clamped crystal. It is this piezo-
* For the sake of simplicity we here omit the subscript x from the symbol y,
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electric reaction, for example, that accounts for the rapid increase in

kx with field along the sides of the hysteresis loop.

When the crystal specimen is more or less constrained, as by mechani-

cal clamping, the values of du and of kx are reduced. The hysteresis

loop becomes smaller and is greatly deformed, the area of the loop

finally vanishing when the clamping stress becomes sufficiently great.

An interesting feature is that the slope of the initial part of the polariza-

tion curve is not altered by pressure, although it includes a wider range of

field than when the crystal is free. It is also found that the more com-

pletely a crystal is clamped, the less are its electrical and elastic properties

affected by temperature.
This last fact is of importance in connection with many technical

applications of Rochelle-salt crystals, in which the freedom of the crystal

to deform itself in the field is to some extent inhibited. The result of

such constraint is to make the crystal less temperature sensitive; and

although under such conditions the extremely high values of rfi4 of which

Rochelle salt is capable cannot be realized, still they are large enough for

practical purposes.

The thermal, optical, elastic, and electrical properties of Rochelle

salt, especially at the Curie points, have been objects of much study and

speculation. In the foregoing paragraphs we have touched only on some

of the outstanding electric and piezoelectric features. In Chaps. XXIII
and XXIV it will be seen that at the Curie points the piezoelectric con-

stant duj the dielectric constant Vx of the free crystal, and the elastic

compliance Su (all at small fields) become, theoretically, infinitely

great.

The Domain Structure of Rochelle Salt. The best evidence indicates

that a Rochelle-salt crystal, like iron, is made up of distinct domains,
each of which possesses, between the Curie points, a spontaneous electric

polarization having a flat maximum of about 740 esu at 5C, diminishing

to zero at M and ft. Some of the domains are polarized in one direction,

some in the other, along the X-axis. The domains appear to be of

the order of a centimeter in size, enormously greater than those in

iron. The spontaneous polarization is accompanied by a spontaneous
strain.

In the following chapters the properties of Rochelle salt will be

discussed in more detail, and an attempt will be made to correlate some

of the chief results of various investigators. The theoretical aspects of

the Seignette-electric crystals are summarized in 471.

404. Historical. In 1672 Pierre de la Seignette, an apothecary .of

La Rochelle on the coast of France, produced a new salt of tartaric acid.

According to Macquer's
" Dictionnaire de chymie," published in Paris

in 1777, this substance came to be known as sel de Seignette, sel polycreste,
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tartarus natronatus, or sel de la Rochelle. From the same source* we learn

that

"Ce sel a e*te* d'abord compost pour Fusage de la Me*decine a 1'imitation du tartre

Soluble ordinaire ou sel ve*ge*tal, par M. Saignette, Apothicaire de la Rochelle, qui

Pa mis en grande vogue, & qui 1'a tenu secret tant qu'U a pu. MM. Boulduc &
Geoffroy en ayant depuis de*couvert & public la composition, tous les Apothicaires

ont commence* des-lors a faire du sel de Saignette, exactement le meme que celui de

la Rochelle."

While the medicinal virtues as well as the chemical properties of

Rochelle salt became universally recognized, nothing remarkable in its

physical properties seems to have been observed until 1880. In that

year the Curie brothers included it in their first pioneer researches on the

piezoelectric effect.

The first quantitative measurements of the piezoelectric effect in

Rochelle salt were made in 1894 by Pockels; his results are not in bad

agreement with those of later observers. In the course of his experiments,

Pockels also discovered the Kerr effect in this crystal, as well as the anom-

alous dielectric behavior in the a-direction. Unfortunately, there had

appeared previously a paper by Borel, giving low and quite normal values

for all three dielectric constants, which seems to have held the question

of the anomaly in abeyance for a quarter of a century.

Interest in the physical properties of Rochelle salt, from the stand-

point of their application in h-f underwater signaling, was revived in

1917. Investigations in this country were made independently by J. A.

Anderson, A. M. Nicolson and the author.
k

In the work of Anderson and the author, experiments were performed with tin-foil-

coated X-cut 45 plates cut from crystals that were grown by R. W. Moore (412).

Each observed the deflection of a ballistic galvanometer as a function of applied

electric and mechanical stresses, together with the fact that marked differences exist

between individual plates, even from the same crystal. Anderson found the polariza-

tion to depend upon the sign of the applied voltage and also upon the sign of the

mechanical stress. This was the first observation of what is now known as the uni-

polarity of Rochelle salt (433). He also made the first record of hysteresis effects

with Rochelle salt. Among his most significant results was the fact that the ballistic

throw upon application of a given electric field was increased by mechanical pressure

up to a certain value of the pressure and that above this point the throws, for the same

field, diminished.

In this laboratory the wet-thread method was used for cutting Rochelle-salt

crystal plates. f The author's chief experimental results were as follows: For the

first time, Young's modulus was determined for stresses at 45 to the Y- and Z-axes,

from observations on vibrating rods. The dielectric constant, for .X-cut plates at

"Vol. 3, p. 122.

fThe suggestion that led to this device, which has since been widely used, origi-

nated with one of the author's students, P. E. Eckstorm.
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high frequency, was found to be around 80. The importance was noted of having
the electrodes closely adherent. Piezoelectric fatigue caused by mechanical stress

and recovery on application of an electric field or after baking at 55C were observed.

A decrease was found in the piezoelectric effect in the neighborhood of 23C (first

observation of the Curie point). It was found that different plates under various

conditions gave values of du from 3.4 (10~
6
) to 40 (10~"

6
), thus foreshadowing the

enormous values found by later observers.

The anomalous behavior of Rochelle salt as revealed in these two investigations

is for the most part explained in the light of the investigations discussed in later

chapters.

The first descriptions of technical applications of Rochelle-salt crystals,

with information on the properties and methods of producing crystals,

were published by A. M. Nicolson in 1919. Nicolson's crystals were

of the composite, or
"
hourglass,

"
type, produced by the rapid cooling

of a saturated solution. His experiments were with entire crystals, and

he laid great emphasis on treatment with alcohol and heat. Although
this type of crystal preparation is now obsolete, his papers are of interest

i
r ofar as they record some of the earliest observations of the electric

response to various stresses and the converse; the dependence of the

reactance of Rochelle-salt crystals on frequency; and the evidence of

hysteresis.

These early investigations were followed a few years later by a series

of important papers by J. Valasek, in which the characteristic dielectric

and piezoelectric properties were very thoroughly treated, although some
of his conclusions have been subject to revision. It was he who intro-

duced the term "two Curie points" for Rochelle salt. His most impor-
tant contribution was the pioneer work on the analogy between the

dielectric properties of Rochelle salt and ferromagnetism, an idea that

seems to have been first conceived by W. F. G. Swann.

Widespread interest in the internal properties and structure theory
of this substance began about the year 1929. Initial impetus came from

the Physical-Technical Institute in Leningrad, through the publications

first of Shulvas-Sorokina, later of I. Kurchatov and his collaborators.

This has been followed by many investigations, both theoretical and

experimental, outstanding among which are those of Scherrer and his

associates in Zurich, of Fowler in England, and of Mueller and Mason in

this country.

Recently the investigations have been extended to
"
heavy-water"

Rochelle-salt crystals containing deuterium oxide in place of ordinary

water.

405. General Chemical and Physical Properties. Rochelle salt, or

sodium potassium tartrate tetrahydrate, is the sodium potassium salt of

tartaric acid with four molecules of water of crystallization. Its formula

is NaKC4H 4 6-4H20.
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KOV
H C-OH

I -4HjO
H C OH

i

O ONa
As the structural formula indicates, the molecule, and hence the

crystal, is enantiomorphous. Since only the dextro form of tartaric

acid occurs commonly in nature, it is in general true that all Rochelle

salt crystals are right-handed. All data here presented refer, therefore,

to the so-called "d-Rochelle salt" (dextro). Hence there is no twinning
of the Brazil type (15) in Rochelle-salt crystals, as is so often the case

with quartz.

The molecular weight of Rochelle salt is 282.184; the density at 25C
is 1.775 0.003 (W. P. Mason336

-*). The solubility per liter of water

at 0C is 1.50 moles (420 g.) ;
at 30, it is 4.90 moles (1,390 g). It has been

stated by Hedvallf that the velocity of solution undergoes an abrupt

change at the upper Curie point. The growth of crystals from solution

must take place at temperatures below 40C, since above this tempera-
ture sodium tartrate is deposited. The crystal itself changes at 55.6

to a mixture of Na and K tartrates and their saturated solution, and at

58 these salts are completely dissolved in the water.! This is what
has commonly been referred to as the "melting" of the Rochelle-salt

crystal. The process is irreversible.

For the axial ratio and structure of Rochelle salt, see 542.

406. Etch Figures on Rochelle Salt. The following account of tests

made by the author may be helpful in determining the axial directions

in plates cut from this crystal. Very characteristic figures are easily

produced by lightly moistening a polished surface. When being dried, a

face normal to the X-axis is found to be covered with fine striations parallel

to the Z-axis. On faces normal to the F- and Z-axes minute rectangular

pyramids ("etch hills"), sometimes truncated, extend upward from the

surface. Some characteristic forms for the XF-plane are shown in Fig.

104, as seen from above. The X-axis bisects the projection on the

.XT-plane of the acute angle a, which has a value of roughly 60. On a

*The estimate of precision was kindly furnished by Dr. Mason. Within the

probable error the value given above holds from 15 to 35C.

t In a discussion of P. Scherrer's paper.
451

j J. DOCTEBS VAN LEEUWEN, Z. physik. chem., vol. 23, pp. 33-55, 1897; J. F. G.

HICKS and J. G. HOOLLY, J. Am. Chem. Soc., vol. 60, pp. 2994-2997, 1938.
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face normal to the F-axis the pyramids are of the same general nature
as in Fig. 104, the longer dimensions of the base being in most cases

parallel to the Z-axis.

Owing to the strong polarity in the X-direction, one might expect
marked differences in the etch figures on opposite sides of an JC-cut plate.

On the contrary, the striations look just alike. It was hoped that the

domain structure might be revealed by the arrangement of the etch

figures, especially on the Z-faces. All that can be said at present is

that a cursory examination gives no indication of domains. It is possible

that a minute inspection, perhaps with the aid of the rodometer, would

yield positive results.

FIG. 104. Etch figures on a Rochello salt surface normal to the 2-axis.

X-axis is horizontal, the F-axis vertical.

In each case the

407. Thermal Expansion. Observations by Vigness
666 indicate an

almost exactly linear dependence of dimension upon temperature along
each of the three crystallographic axes. The only peculiarity is a very

slight bend at the upper Curie point for the F- and ^-directions, for which

there is no obvious explanation. Vigness's expansion coefficients have

the following values: in the X-direction, 12 to 35C, 58.3 (10~
6
); F-direc-

tion, 12 to 24C, 35.5(10-
6
), 24 to 35, 39.7(10~

6
); Z-direction, 14 to 24C,

42.1(10-
6
), 24 to 35, 43.6(10~

6
). The coefficient of volume expansion

calculated from these data is approximately 0.00014. Earlier observa-

tions by Valasek^s are in fair agreement with those of Vigness.

On the other hand, Hablutzel198 does not find this normal behavior.

In particular, he finds an anomaly in the direction bisecting the F- and

Z-axcs, which, as will appear in 482, can be understood as a converse

piezoelectric effect due to the spontaneous polarization.* Hablutzel

also recorded certain anomalies in the ^-direction, a possible explanation

of which will be found in 464.

To some degree these discrepancies may also be due to different elec-

trical states of the crystals used by different observers in their measure-

ments of thermal dilatations. According to 199, the value of the strain

caused by a given stress depends on whether or not the electrodes attached

to the crystal are short-circuited. Since a thermal strain may be regarded

as the result of thermal stress, it follows that reproducible results can be

* This anomaly had been predicted by E. P. Harrison (Nature, vol. 120, p. 770,

1927).
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attained only when the specimen is maintained in a definite electrical

state. It can usually be assumed that thermal observations take place

so slowly that the surface of the specimen is substantially equipotential

at all times.

The thermal conductivity of Rochelle salt is several times lower than

that of quartz.*

408. The Dielectric Constants in the F- and Z-directions. According

to Table XIV (page 162), crystals of the rhombic system have three

principal dielectric susceptibilities i?n, ^22, fas- Different values of the

permittivities kx,
kV) kz along the crystallographic axes are therefore to

be expected. kx,
the enfant terriblej will be dealt with in later sections.

Concerning kv and kz the data are fairly consistent and indicate no

anomalies. Mueller876 recorded values of kv = 10, kz
=

9.6, with tem-

perature coefficients +0.007 for kv, +0.003 for kz . Measurements over

a wide range of temperatures have been made by Habliitzel. 199 He finds

the values for ordinary and heavy-water Rochelle salt to be almost

identical. From 180 to +40C his value of ky increases pretty uni-

formly from 6 to 10, with a flat region between the Curie points. Over

the same temperature range kz increases from about 5.3 to 10. At 20C,
ky 9.4 for both forms of Rochelle salt; the values of kz are 9.5 and 9.8,

respectively, for ordinary and heavy-water Rochelle salt. The tem-

perature coefficients are of the same order of magnitude as those of

Mueller.

Probably the best values at present are those of W. P. Mason,
B3B

for which, unfortunately, the only datum concerning temperature is

that the values "vary little with temperature."

Mason's values are to be recommended for use at ordinary tem-

peratures, t

kv = 9.8 k'z = 9.2 (488)

The primes indicate that these values are for mechanically free crystals.

The corresponding susceptibilities from the equation k' = 1 + 4nV are

tly
= 0.70 rj'z

= 0.65 (488a)

The susceptibilities iff
and if! for clamped crystals* are found from

Eq. (262), together with values of d26 ,
dZ6t e25,

and eu from 141 :

iff
= 0.63 ifn

f = 0.64 (4886)

*From unpublished observations by Dr. II. Jaffe at the Brush Development

Company.
t Since writing this section the author has been informed by Dr. Mason that his

most recent determination of k'v yields a value somewhat greater than the one quoted

here. From observations of the frequency of a F-cut 45 bar he finds for k'v the

value 11.1 from -10 to +24C, followed by a linear increase to 12.5 at 45C.
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409. Anomaly in the Specific Heat. Just as ferromagnetic theory led

to the expectation of a sharp rise in the specific heat of iron at the upper
Curie point (556), which has been fully verified, so by the analogous

argument several investigators have looked for a corresponding effect

with Rochelle salt. It is easy to prove that, while an anomalous value

of specific heat is to be expected in the neighborhood of either Curie

point, the theoretical magnitude is extremely small. As in the case of

ferromagnetism, the increase above the normal value of the specific heat c

at the Curie point is

Ac ==
\w erg cirr3 deg

~*

where 7 is the internal field constant, P the spontaneous polarization,

and T the temperature. From his data on the variation of P with T,

Mueller382 finds that this expression, for Rochelle salt at the upper Curie

point, reduces to

Ac = 4.67 (10
4
) erg cm"3

deg"
1 = 0.157 cal mole" 1

deg"
1

At the lower Curie point the theoretical value is a little greater, with sign

reversed.

For any reasonable value of 7, these theoretical values are very small.

This fact was confirmed by the very careful observations of A. J. C.

Wilson,
588 who measured the specific heat of Rochelle salt from 30 to

+30C. He found that this quantity could be well represented by the

equation c = 1.290 + 0.0031J joule g"
1
deg"

1
(t in degrees centigrade)

for single crystals; the mean deviation of individual points was 0.3 per

cent. At the lower Curie point a small anomaly in the right direction

was found, the value of Ac amounting to somewhat less than 1 cal mole" 1

deg"
1

. No anomaly at the upper Curie point could be detected by the

calorimetric method used; these observations indicate that if any exists

it must be much smaller than 1 cal mole" 1
deg"

1.* When these results

are compared with Mueller's expression for Ac above, it appears that 7
is of the order of magnitude of 1, and certainly not appreciably greater

than the Lorentz factor 47r/3.

As to the absolute value of c, Wilson's value is about 11 per cent

smaller than that of Rusterholz,
441 but it agrees within one-half of 1 per

cent with the value given by Kobeko and Nelidov. 264 The "Inter-

national Critical Tables" give 1.37 joule g"
1
deg"

1 2 per cent as the

specific heat of Rochelle salt.

The specific heat of Rochelle salt from 15 to 340K has been investi-

* Observations on the specific heat of Rochelle salt by Wildberger are in agree-

ment with these findings (A. Wildberger, Diplomarbeit, Zurich, 1938; cited by P*

Bclxerrer, Z. JSfe&ractew., vol 45, p. 1734 1939).
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gated by Hicks and Hooley.* They find a sudden change at the decom-

position point at 328.78K (55.6C, 405), but no anomaly at either

Curie point.

410. Electrical Conductivity and Dielectric Strength; Magnetic Proper-

ties. The values of conductivity for the X-direction given in Table

XXXIII were obtained by Valasek642 - 643
using direct current. From

-65 to +35, field strengths up to 10,000 volts/cm were used; the

remaining data were obtained with a Wheatstone bridge at low voltage.

After tin-foil electrodes had been attached with shellac'to the well-dried

crystal, the whole was coated with paraffin.

The two values at and +20 were obtained by reversing the emf

and are related to the unipolarity of the crystal (prevalence of domains

polarized in one direction: see 433). Somewhat higher values of con-

ductivity were recorded by B. and I. Kurchatov293
;
from data in Oplatka's

paper
897 it appears that his crystals had a conductivity thousands of

times greater than Valasek's. Moisture on the surface can affect the

apparent conductivity enormously. On the other hand, a dehydrated

surface ot a layer of cement between crystal and electrode may cause the

observed conductivity to be much too low. This was probably not the

case with Valasek's data in Table XXXIII, since his values agree approxi-

mately with those obtained at the Brush Laboratories.! Moreover, the

anomalous values in the region of spontaneous polarization could hardly

have been so pronounced if the high resistance had been due chiefly to

the shellac. From Table XXXIII it follows that at room temperatures,

with a dielectric constant of 10 s
, several minutes would be required

*
J. F. G. HICKS and J. G. HOOLEY, /. Am. Chem. Soc., vol. 60, pp. 2994-2997,

1938.

t The author is indebted to the Brush Laboratories for this information.
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for the charges to fall to half values if there were no other leakage than

that through the body of the crystal.

It is probable that the data in Table XXXIII are not representative
of Rochelle salt exposed to the air under ordinary conditions.

Between the Curie points, the observations of hysteresis may be com-

plicated by conduction effects. If the humidity is excessive, both the

height and the width of hysteresis loops are increased, and the tips

of the loops tend to become rounded off. The latter effect can be detected

on some of the oscillograms shown in later paragraphs. Observations of

dielectric constant, coercive field, and dielectric losses can easily be some-

what falsified by the presence of leakage.

According to Vigness
666

exposure to X-rays causes a roughening of the

surface as well as a yellow coloration.

Mueller finds that a properly annealed and dried crystal (415) has a

dielectric strength in air better than 20 kv/cm. No such value as this

can be depended on for plates that are not carefully prepared. Naturally
the danger of breakdown is very greatly increased if even the minutest

flaws are present. According to Gorelik* a Rochelle-salt plate under

oil at high hydrostatic pressure will withstand 600 kv/cm.

Magnetic Properties. Rochelle salt is diamagnetic. The only
measurements appear to be those of Lane,

303 who finds the magnetic mass

susceptibility to be 0.54(10~
6
) in all directions, independently of tem-

perature. This value does not vary more than 0.25 per cent between

10 and 30C. Thus the "ferromagnetic analogy" of Rochelle salt does

not involve any magnetic anomaly.
411. Requirements for Reproducible Results. Among the following,

requirements 2 and 3 should always be observed. The others are impor-
tant chiefly in measurements of precision.

1. Homogeneous crystal material. The crystal should be crystallo-

graphically and optically as perfect as possible, free from the flaws men-
tioned in 414.

2. Clean and smooth surfaces, well dried, yet with surface layers not

deprived of their water of crystallization. The drying is of importance
to avoid surface conduction; on the other hand, the material close to the

surface should not become a dehydrated layer of relatively low dielectric

constant. For example, if kx = 10,000 for the crystal and if a dehydrated
or otherwise damaged surface layer only 0.001 mm thick has kx = 10,

the thickness of the crystal being 10 mm, the measured value of kx will

be in error by 10 per cent.

3. From the foregoing paragraph it follows that the electrodes should

make extremely close contact with the crystal in order that the applied
* B. GOBBLIK, Electric Breakdown in Rochelle Salt, Jour. Tech. Phys. (U.S.S.R.),

vol. 10, pp. 369-375, 1940.
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potential drop shall be impressed on the crystal, and not largely on the

surface layers.

4. Freedom from mechanical stresses caused by electrodes or mount-

ing. This requirement is due to the piezoelectric sensitiveness and to

the close interaction between piezoelectric and dielectric effects.

5. Constant and uniform temperature. Rochelle salt is very sluggish

in attaining equilibrium (427) so that for reproducible results it may be

necessary, after a change in temperature, to wait several hours before

making observations. *

The means of fulfilling these requirements as completely as possible,

together with further technical details, will now be discussed. Their

disregard undoubtedly accounts for many of the discrepancies between

the results of the different observers.

412. Production of Rochelle-salt Crystals. Rochelle-salt crystals are

always grown from a solution. Supersaturation may be caused by cooling

or by evaporation. In the latter case, the solution may be either placed

in a desiccator or subjected to reduced pressure. Although the cooling

method is more commonly employed and seems to be the only one used

on a commercial scale, nevertheless for scientific purposes the evaporation

method is to be preferred, since the temperature may be held approxi-

mately constant, internal elastic stresses being thus avoided.

Crystallization by cooling. R. W. Moore* produced very beautiful

and perfect Rochelle-salt crystals, measuring several centimeters in the

smallest dimension, by suspending one or more minute Rochelle-salt-

crystal "seeds" in a jar of solution, which in turn was placed in a larger

jar of water provided with electric heater and thermostat. The tempera-

ture was allowed to drop 0.1C per day at first, the rate increasing to

0.6 per day as the crystals grew. The same process is also described in

detail by Schwartz. 454>
t For the suspension, silk threads have commonly

been used, although Hiltscher228 used a fine silver wire. Hiltscher also

caused the seed to rotate slowly in the solution.

The largest and most flawless Rochelle-salt crystals hitherto recorded

are produced by the Brush Development Company.! According to the

patent specifications, seeds, often several centimeters long, are laid in a

depression on the bottom of a tank of saturated solution, which is very

slowly rocked about a horizontal axis. The solution is saturated at

35C but is heated to a somewhat higher temperature before the cooling

process commences. Crystallization is more rapid if a suitable hydrogen-

* R. W. MOOBE, Jour. Am. Chem. Soc., vol. 41, p. 1060, 1919; U.S. patent 1,347,350.

t See also H. Hinz and P. Vadilov (Jour. Exptl. Theoret. Phys. U.S.S.R., vol. 6,

pp. 496-500, 1936) for comparison of various methods.

J B. KJBLLGBEN, U.S. patents 1,906,767 and 1,906,758 (also reissues. 19,697 and

19,698).
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ion concentration is maintained, for example, by the addition of KOH
or of NaOH, corresponding to one-tenth normal solution. Sugar or

formaldehyde is also sometimes added. It is found that growth takes

place most rapidly in the direction of flow of the liquid, and the seed is

also correspondingly oriented in order to have the long dimension of the

finished crystal parallel to the desired axis. Seeds are usually placed
with their X-axes vertical; each finished crystal is in the form of a long

prism parallel to the Z-axis. The crystallizing process requires several

days, the temperature being allowed to fall gradually and uniformly by
thermostatic control. On being taken from the bath, the crystal may be

rinsed with dilute alcohol and dried with a soft cloth. Single crystals

weighing more than 2 kg have been grown by this method.

The method of Christopher* may also be mentioned, according to

which a seed, suitably oriented, is placed in a Rochelle-salt solution

between parallel glass plates, so that the finished crystal is in the form of a

flat slab. For example, if a plate of large dimensions in the Y- and

Z-directions is desired, the Jf-axis of the seed should be perpendicular to

the glass plates.

The properties of the finished crystal are of course independent of

its shape and of the orientation of the seed. A crystal plate cut in any

particular orientation with respect to the crystal axes will theoretically

and so far as is known also experimentally give the same results what-

ever may have been the shape of the crystal as determined by conditions

of growth.

Crystallization by evaporation. Kurchatov382 places the solution,

containing a seed, in a desiccator in the presence of concentrated

H2S04 or P2C>5 at approximately constant temperature. In 5 to 6 days

crystals weighing about 100 g are produced. The method of Busch87

differs from this in that the solution, which is kept at a temperature con-

stant to within 0.01C by means of a thermostat, is connected to a trap

immersed in C0 2 snow. The rate of evaporation is controlled by varying

the pressure over the solution. An initial pressure of 50 mm Hg is recom-

mended, changing to 25 mm toward the end of the process. Several

50-g crystals are produced from such a solution in 2 weeks.

Seidl and Huber480 use a similar method, with liquid air instead of

C02. The Moore patent mentioned above includes a description of

crystallization at constant temperature by passing a current of dry air

over the solution. For StilwelPs method see 478.

Further details on the process of crystallization of Rochelle salt and

other Seignette-crystals may be found in papers by Bloomenthal,
65

Busch,
88 and Hinz. 229

*
J. H. CHRISTOPHER, U.S. patent 1,746,144 (1930).
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413. The Cutting of Rochelk-salt Crystals. Mandellm finds it advis-

able not to cut the crystals until a month has elapsed after growth.

Others do not appear to have observed this precaution. Most experi-

menters have used a wet thread or wet stretched rubber band. Details

of this procedure are given by Busch,
87

David,
119

Staub,
478 and Hinz. 229

The author, who first used this method, has had good success with the

apparatus shown in Fig. 105.

A stout endless' linen thread is passed four times over a system of pulleys, so that

from one to four cuts can be made at a time. The presence of A single large knot

where the ends are joined is avoided by splaying the fibers at each end of the thread

into three slender strands. These strands are tied separately with the knots stag-

gered. The driving pulley, fixed to the shaft at A, has four grooves and is itself

Fio. 105. Machine for cutting Rochelle-salt crystals by means of a wet thread.

driven by a small motor at such a rate as to move the thread at a speed of about

15 cm/sec. The distance AC is about 40 cm If fewer than four cuts are made, the

unused turns pass over idler pulleys at D and E, which are simply glass tubes on brass

rods. Pulley C is mounted on a post, the base of which fits on a track, so that the

tension can be regulated by the weight W The tension should be quite large to

ensure an accurate cut. The lower part of the pulleys at B dips slightly into water

in a flat tray T. Across the top of the tray is a strip of wood (not shown in the figure)

carrying a piece of thick felt against which the threads rub in order to wipe off excess

water. The crystal Cr is held in place by adjustable clamps on a brass plate P,

fastened to the back of the apparatus, and the threads are guided by vertical brass

rods GG. It is a wise precaution to give the crystal a waterproof coating, especially

on the lower surface, before clamping it in place. About half an hour is required to

make a cut of 5 by 5 cm. With some crystals there is a pernicious tendency for the

thread to wander from the path prescribed by the guides, as if avoiding a hard or

relatively insoluble region in the interior of the crystal. As was stated in 404, the

electrical and elastic properties also have sometimes been found to depend on the

region from which a specimen was cut.

Rochelle-salt crystals can also be cut with a suitably constructed saw.

Ordinary hack saws, whether coarse or fine, are not suitable, since they

produce large chips and cracks. However, for cutting small specimens, a
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jeweler's No. 6 hack saw, dry or moistened with water, is quite suitable.

A band saw can also be used, if the teeth are sharp and well set, so as to

make a cut somewhat wider than the thickness of the saw. An ordinary

i-in. metal-cutting saw with 14 teeth per inch, having every tooth set,

has been found in this laboratory to be entirely suitable; a woodcutting
blade about i in. wide also gives good results. In any case, all traces

of salt should be removed from the teeth after use.*

414. Flaws in Rochelle-salt Crystals. When visible flaws are present
in Rochelle-salt crystals, they may usually be attributed to too rapid

cooling or non-uniform crystallization, to some disturbance in the course

of the crystallizing process, or to impurities in the solution. Flaws may
appear as fine streaks or as phantom planes within the crystal, parallel

to one or more of the crystallographic faces. There are no well-defined

cleavage planes. With the very flawless Brush crystals, such cleavage
as- there is seems to take place most easily in planes approximately per-

pendicular to the Z-axis. In less perfect crystals there sometimes geems
to be a tendency for cracks to start most easily in planes containing the

Z-axis, so that Z-cut plates are the most fragile, f This is especially the

case when such plates contain phantom planes, for the latter, so far as the

author's experience extends, are found mostly parallel to the Z-axis.

There may be some relation between these facts and the observation

made on one occasion while a cut was being made by the wet-thread

method at an angle oblique to the .Z-axis, when the thread tended very

decidedly to follow a course parallel to this axis. Moreover, it has been

found that fracture, at least along phantom planes, becomes very much
easier with plates that have been kept in a desiccator long enough for a

large amount of superficial dehydration to take place. This seems to indi-

cate that dehydration and consequent weakening can take place along
these almost invisible flaws.

In his experiments on Rochelle salt under hydrostatic pressure,

Bancroft20 found that a sudden change in pressure, even though small,

almost invariably cracked the crystal.

It is not at all impossible that some of the erratic results that have

been reported for Rochelle salt are due to the presence of minute cracks

or other flaws originating in the growth or treatment of the crystal.

Such imperfections may be expected to affect the elastic properties and

thus the electric reactions; and insofar as they introduce local peculiari-

* For a description of the band-saw method used on a large scale by the Brush

Development Company, see U.S. patent 1,764,088 by C. B. Sawyer (also Canadian

pat. 302,528). For large crystals, the saw here described moves with a speed of

500 ft/min; a scraper removes excess material from the teeth. It is important that

the saw be at approximately the same temperature as the crystal.

t The great fragility of Z-cut plates is also mentioned by Mandell (ref. 326, p. 632).
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ties in the state of hydration, they may alter the dielectric properties

as well. Variable behavior on the part of the same specimen may then

be brought about by changes in temperature or humidity.
A special contributing cause of the fragility of Rochelle-salt crystals

probably lies in the fact that they consist of domains of varying size and

of opposite electric polarization. With changing temperature these

domains tend to undergo opposite shearing strains, causing large stresses

at the interfaces.

416. Grinding and Finishing of Preparations. After a,, plate has been

cut from the parent crystal, it usually has to be reduced to a definite size

and shape, with due regard to exactness of orientation. Large specimens
should be handled carefully, since cases are on record in which cracks

were started from the heat of the hand.

For demonstrations, qualitative tests, and many technical applica-

tions, a very small amount of smoothing and truing suffice. Any qne

of several techniques may be used, provided that care is always taken

not to overstress or overheat the specimens. For example, preliminary

grinding may be done with rather coarse garnet paper, followed by
finer garnet- or sandpaper. It is an aid both to speed and to accuracy
to have the grinding paper glued to a flat disk, which can be rotated by a

motor or lathe at the rate of one or two turns per second. A method

preferred in this laboratory consists in the use of a 12-in. curved-tooth

flat file, of the type designed for filing soft metals. By this means the

surfaces can easily be made so flat and true that, except when extreme

accuracy is required, little or no subsequent treatment is needed, except
the final polishing.

For the local truing of crystal surfaces a razor blade is also found

useful. Hinz 229 describes a special form of plane in which the cutting

edge is that of a razor blade. Some workers (Korner,
287

Vigness,
565

Busch87
) have trued their plates by rubbing them on moist ground glass.

Many procedures have been used for lapping Rochelle-salt plates.

The simplest is to rub the plate on a damp, thin silk cloth stretched on a

plane surface; since this process leaves the surface covered with minute

etch pits, it cannot be used for optical purposes.* Staub478
lapped the

surfaces with pumice powder, finally cleansing them with pure water

(for X-ray reflections); Schwartz454 used pumice powder mixed with

saturated Rochelle-salt solution; Evans,
140 fine carborundum powder

and paraffin. Stamford476 recommends rubbing the plates on a ground-

glass lap, using fine pumice powder and turpentine at first, followed by
methylated spirit. Holden and Mason231

lap the surface first with car-

borundum and machine oil; the resulting powdery surface is dissolved

* Prof. Hans Mueller informs the author that for optical work good results are

obtained by poHsiiing-the surface with optical rouge in nujol.
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off in the solution used for growing crystals and warmed above the

saturation point, after which a fresh surface is crystallized on for about

5min.

One important advantage in fine lapping is that it removes minute

irregularities and broken fragments that would otherwise form an

undesirable layer between crystal and electrodes.

For ordinary purposes no special aging process is necessary. Earlier

workers advised treatment with alcohol; for example, Valasek544 has

stated that his crystals, after immersion in alcohol, showed a great

increase both in piezoelectric activity and in dielectric constant. There

is, however, no indication that these values were any greater than those

obtained by other observers with normal crystals. If the surface layers

are dehydrated or otherwise impaired, it seems possible that alcohol

treatment may increase either the conductivity or the dielectric constant

close to the surface, thus yielding values more nearly characteristic of

the normal crystal.

Those who experiment with home-grown crystals containing visible

flaws may also find protracted soaking of the crystal or plate in very pure

alcohol helpful in removing water from the flaws, since the presence of

water may render the crystal practically inactive. Accidental cracks

can sometimes be healed though perhaps not permanently by prompt

application of pressure.

In order to avoid dehydration of surface layers, preparations should

not be kept long in a desiccator, nor at low pressure. Disregard of this

consideration doubtless accounts for some of the discrepancies in pub-
lished results. There is probably no better procedure in preparation for

quantitative work than that of Mueller,
376 who annealed his preparations

several hours at 45C and then dried them for 20 min over phosphorus

pentoxide. This dries the surface sufficiently without causing dehydra-

tion. But if there is any possibility that the surface is dehydrated, the

outer layers should be washed off before this is done.

Under normal atmospheric conditions Rochelle-salt crystals are not

deliquescent, nor do they desiccate. The reason is that at room tempera-

ture the vapor pressure is only about one-third of that of pure water,

while the vapor pressure of the saturated solution is somewhat less than

nine-tenths of that of water. *
Nevertheless, the amount of H2O present

in the crystal is quite variable; according to Valasek541 the weight of a

crystal may vary with the humidity of the surrounding air by as much
as 5 per cent. Crystals and plates cut from them that have stood unpro-

tected on cabinet shelves in this laboratory for over twenty years show

no loss in transparency or sharpness of outline. Such disintegration

* H. H. LOWRY and S. O. MORGAN, Jour. Am. Chem. Soc. t vol. 46, pp. 2192-2196,

1924.
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as has been observed in certain cases is due either to extremely dry air or

to chemical or electrolytic action caused by contact with other materials.

Plates to which metallic coatings have been cemented seem to be subject
to attack, as are also plates wrapped in ordinary paper or cheap cotton

batting. Crystals are not permanently injured by moist air as long as

the relative humidity is below 86 per cent.

If Rochelle-salt crystals or plates cut from them are to be preserved
over long periods of time, it is advisable to wrap them in very clean, soft

paper or paraffin paper. Ground surfaces had best be glazed over first

by treatment with water as indicated above. Places that are not

intended for use as resonators may be coated with "ambroid," shellac,

rubber cement, varnish, or paraffin.* Of these, the author prefers

ambroid. Some such protection is especially desirable for plates to

which metal coatings are attached, since when exposed to the atmosphere
the coated plates seem to disintegrate more rapidly than if left uncoated.

If it is desired to keep otherwise unprotected plates under very con-

stant conditions, they may be sealed in a jar containing saturated solu-

tion of Rochelle salt477 ' 666 or in a container in which the humidity is

under cpntrol; Schwartz464 uses slightly diluted sulphuric acid for this

purpose. In all such cases due regard should be given to the dependence
of vapor pressure upon temperature. In a paper giving many useful

technical details Korner207 states that he coats his plates with an alcohol-

free cement immediately after they have been sufficiently dried in vacuum
or in a desiccator.

416. Ekctrodes for Rochelle-salt Plates. The choice of electrodes

depends on the use to which the plates are to be put. For quantitative

observations of the properties of the crystal it is essential, as was pointed

out in 111, that the electrodes make extremely close contact with the

crystal surfaces and that at the same time the crystal be free from

mechanical stresses. For crystals used in acoustic applications the former

of these requirements is the more important. It is important to have the

electrodes cover the entire face of the crystal, since otherwise the outlying

portions diminish the piezoelectric strain. The following types of

electrodes have been used by different observers:

1. Finely divided metal particles. This includes molten Wood's
metal or Rose metal sprayed onto the crystal (Nicolson) and evaporated
silver deposited on the crystal in vacuum (Valasek). Neither process

has been widely used.

2. Liquid electrodes. Korner,
287

Goedecke,
174 Schwartz454 and Hab-

llitzel,
199 have used mercury, while Kobeko and Kurchatov268 and

Errera134 have used saturated Rochelle-salt solution. Although this

*
Special treatment of Eochelle-salt plates with a waterproof coating is described

by J. H. Ream in U.S. patent 2,324,024 (1943).
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method removes the possibility of a layer of low dielectric constant

between electrode and crystal, still the technique involves objectionable

mechanical stresses.

3. Metal-foil electrodes are most commonly used. For precise

measurements the foil must be exceedingly thin to avoid mechanical con-

straint. Cements containing alcohol should be avoided; most of the

recent experimenters have used a dilute solution of Canada balsam in

xylol. Sawyer and Tower449 used beeswax in benzol with the addition, of

a little rosin. Sawyer (U.S. Patent 1,994,487) recommends the addi-

tion of powdered carbon to the Canada balsam-xylol cement, to render

the layer of cement conductive; his procedure is to apply the electrode,

rub it down into close contact, bake at a temperature well below 55C,
and then rub again with a warm pad. A layer of colloidal graphite on the

crystal, covered with metal foil, is advocated by Kurchatov and by Seidl

and Huber,
460 while Valasek644 has used amalgamated tin "squeegeed"

on to the polished surfaces.*

In this laboratory it was found several years ago that a very satis-

factory material for electrodes is gold leaf. The polished crystal surface

is lightly moistened by breathing upon it and then brought down carefully

over a horizontal sheet of gold leaf, which adheres very smoothly and

firmly. The same procedure was later described by Korner287 and

Busch. 88 Aluminum leaf 0.003 mm thick has been used by the Zurich

school. Electric connection with the circuit is established in various

ways, for example by having the connecting wires soldered to thin,

flexible metal foil, which touches the electrode lightly. It has been

found that delicate contact between the gold-leaf electrode and the

hairspring from a clock serves excellently; it is especially useful in h-f

resonator experiments. H. Mueller376 states that "electrodes of conduct-

ing paint, graphite or metal foil were found equally suitable and gave
the same results. The tinfoil electrode, provided it is properly attached,

was found most convenient."

The newest method of all, and perhaps the best, is the use of gold

electrodes evaporated onto the crystal surface in vacuum, as described in

444.

In order to avoid secondary effects from stresses near the boundaries

of plates, in all work of precision the electrodes should cover the entire

surface. An alternative method is that of David,
119 who secured a uni-

form electric field and at the same time immunity from edge effects

by the use of a "guard ring" kept at the same potential as the electrode

proper. To this end the inner portion of each electrode is separated
from the outer by a gap 0.5 mm wide. David's comparative tests show

*
"Graphoil" electrodes are described by A. L, Williams in U.S. patent 2,106,143

(1938),
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this precaution to be of some importance. So far as securing a uniform

field is concerned, the method is not needed, since owing to the large

dielectric constant, at least in the X-direction, the field is sufficiently

homogeneous if the electrodes cover the entire surface.*

Owing to the interaction of dielectric and piezoelectric effects, the

mounting of the crystal should, be so designed as to introduce no dis-

turbing stresses either before or after the application of an electric field.

This may be accomplished by suspending the plate freely or by letting

it rest on supports so located as not to hamper the defqrmation of the

plate.

In the case of plates that are not intended for precise measurements,

many of the above precautions may obviously be disregarded.

While Rochelle-salt plates of various cuts function strongly as

resonators and oscillators, still on mechanical and thermal grounds it

seems unlikely that they will find applications as standards of frequency.

* The use of guard rings to prevent surface leakage is described by J. P. Arndt

in U.S. patent 2,289,954.



CHAPTER XXI

ROCHELLE SALT : PIEZOELECTRIC OBSERVATIONS

Sel de Seigneile. La forme h<Smi6dre la plus ordinaire est un te"traedre 6*
;
les axes

d'61ectricite polaire sont diriges d'un sommct de ce t6tra6dre a la base oppos6e; ils

ne coincident done avec aucuii des axes cristallographiques; quant a leur direction

exacte, nous ne Pavons pas encore d6termin6e: la pr^voir th6oriquement ne nous a pas
6t6 possible, le te"traedre 6tant irrSgulier, et la trouver expeYimentalement demanderait

une s6rie de mesures tres dedicates des quantit6s d'61ectricit6 d6velopp6es suivant des

directions voisines; du reste, cela n'a pas d'importance pour la question qui nous

occupe; il suffit de savoir que 1'axe va du sommet & un point de la base du t6traddre; le

pdle positif par contraction cst situc* vcrs le sommet.
P. and J. CURIE.

Piezoelectric observations fall into two general classes, according to

whether they are made by moans of the direct or the converse effect.

The experimental investigations from various sources described in this

chapter illustrate some of the anomalies of Rochelle salt and the general

resemblance of piezoelectric to dielectric effects. In addition to the

determinations, under various conditions, of the piezoelectric^ constant

du recorded here, other determinations from observations with h-f

vibrations will be given in later chapters.

THE DIRECT PIEZOELECTRIC EFFECT IN ROCHELLE SALT

In this chapter we are concerned mainly with stresses in the FZ-plane
and polarizations in the Jf-direction. * So much of the published material

is only qualitative, fragmentary, or obtained under questionable condi-

tions, that reliable data with properly prepared specimens over wide

ranges of stress and temperature are still lacking. From the close

relationship between the piezoelectric and dielectric coefficients it is

natural to anticipate a similarity between the curve of polarization vs.

pressure and that of polarization vs. electric field, including the case in

which the mechanical or electric stress is carried through a complete

cycle. While the electrical case has been investigated with some thor-

oughness, surprisingly little attention has been paid to the mechanical.

417. Methods of Measurement. For static observations, both elec-

trometer and ballistic galvanometer have been used. Dynamic measure-

ments are described in 310 and 375. For static measurements of d J4,

d2 5, and cZ36, rectangular X-, F-, or Z-cut 45 plates are used, and com-

pressions are applied parallel to one pair of edges of the major surfaces,

* For dit and d36 see 141 and 418.

531
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as explained in 184. For example, in the case of the X-cut, we may
suppose the length I of the plate to be parallel to the F'-axis, along which

the stress Y f

y F/eb is applied, F being the force in dynes parallel to F';

b and e are the breadth and thickness of the plate in centimeters. If

Q (esu) is the total charge liberated, we have, for the piezoelectric polari-

zation^ = Q/bl = -d'12 Yl = -d(<F/be, whence d'u = -Qe/Fl Then,

from Eqs. (203), du = 2d'n = ~2Qe/FL The same final equation holds

also for c?25 and d S6 .

The galvanometer method is sufficiently sensitive and does not require

a knowledge of the capacitance of the crystal specimen. This is a great

advantage in view of the uncertainty in the dielectric constant and its

variability with changing field. At temperatures high enough for

electrical conductivity to be troublesome the galvanometer method has

been found preferable. Schwartz464 called attention to the importance

of connecting a condenser of large capacitance in parallel with the crystal

when the electrometer method was used. With this precaution he

obtained identical results by the two methods. Mandell328 corrected his

electrometer readings for the error due to leakage by extrapolation to the

value for zero time. No observations with such crystals as Rochelle

salt should be made without due regard to these or equivalent precautions.

Pockels in his early investigations observed that upon compressing

a 45 bar the polarization in the Jf-direction required a considerable time

to reach its full value. According to Shulvas-Sorokina466 from 3 to

4 min are required when the pressure is not over 1 kg/cm 2
. With large

pressures no such effect is observed. This piezoelectric lag is very like

the dielectric effect described in 431 and suggests that the underlying

cause may be the same (cf. also 84). Nevertheless, Schwartz,
464 whose

observations of dielectric lag are shown in Fig. 117, does not appear to

have found the effect in his piezoelectric measurements.

On the other hand, Pockels found the discharge upon removal of pres-

sure to be instantaneous. In view of this, it is astonishing that all later

observers made their measurements upon application of pressure.

418. Dependence of the Direct Piezoelectric Effect upon Stress and

Temperature. Neither Pockels, Valasek, nor Mason, whose measure-

ments of rf25 and du are in fair agreement (141), reported any dependence

of these quantities upon stress. From the general absence of anomalies

in the Y- and Z-directions none is to be expected. Nevertheless, Schwartz

found dz6 and d36 to increase as the compressional stress on 45 bars

increased up to 6 kg/cm2
. Greater significance would be attached to

this statement were it not that Schwartz's values of du and dw are in

very poor agreement with those of Pockels, Valasek, and Mason.

The dependence of dz& and dn upon temperature is shown in Fig.

106, from Valasek. 645 The numerical data for d^ and d8e have already
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been given in 141. Valasek's curve for du (stress not specified) fails to

show the expected maxima at the two critical temperatures, probably

owing to the use of relatively large

stresses (480). These maxima
have been observed by Schwartz,

454

who, like Valasek, fails to state the

stress. Similar observations by
Shulvas-Sorokina are discussed
below. *

The earliest observation that the

piezoelectric polarization is not a

linear function of stress except out-

side the Curie points appears to

have been made by Iseley,
243 as

shown in Fig. 107. He applied

compressional stresses Y'
v (39) to

an X-cut 45 bar and measured the

piezoelectric charge with a ballistic

"
60 "

40 ~20 20 40

galvanometer. The normal be-

havior of the crystal at the higher

temperatures and the approach to

saturation at temperatures between the Curie points are very evident.

The greatest charge recorded was at 22.25C (approximately the right

temperature for the upper Curie point), with a stress of 2.225 kg/cm
2
,

22*25.

FIG. 106. Dependence of piezoelectric
strain coefficients of llochello salt upon
temperature, from Valasek.

0.5 1.0 1.5 2.0

Kg. per cm.2

FIG. 107. Curves relating charge-density <r in 10~8 coulombs/cm9 with stress Yv
' in kilo-

grams per square centimeter, for various temperatures, from Iseley.

beyond which the observations did not extend. From Fig. 107 the value

of du under these conditions is found to be about 17,000(10~
8
). A still

*
Using Schwartz's apparatus, K6rner288 measured du,

titative interpretation of his results is uncertain.

and du, but the quan-
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greater value would doubtless be found at smaller stresses. Iseley's

elastic observations on the same crystal are discussed in 462.

Figures 107 and 108 represent almost all the published data on the

polarization-stress relation. Mention should be made also of the work

of Schwartz,
464 in whose paper is a curve in which, unlike Figs. 107 and

108, the polarization at 18.8C has a very low value for pressures up to

about 1 kg/cm2
,
followed by a gradual rise. In view of the theory

outlined in 480, as well as the form of the curves relating polarization to

field and of those relating strain to field in the converse effect described

in 422, this observation seems reasonable enough ;
it is unfortunate that

others have not corroborated it. Figure 108,* from a paper by Shulyas-

+I5C

+29*

10 5020 30 40

Kg. per cm.
2

FIG. 108. Polarization Px as a function of pressure, at various temperatures, from Shulvas-

Sorokina. Ordinates are in arbitrary units, not the same for all the curves.

Sorokina,
465 covers a wide range of stresses and temperatures, but it

suffers in value from failure to state the unit of polarization, which is

not the same for all curves. It can at least be regarded as definitely

established that the piezoelectric polarization curve shows saturation in

the range of spontaneous polarization and that there may be an inversion

in the curve at low pressures. If this is true, the analogy with the polari-

zation curves obtained with applied field is complete. The linear relation

between Px and stress outside the Curie points, changing to a saturation

curve between these points, is fully in accord with theory. It will be

observed that, from pressures of 50 kg/cm2
on, saturation (rotation of

dipoles) is practically complete, which means that the differential piezo-

electric coefficient approaches zero at large stresses.

These relations are presented in an instructive manner in Fig. 109,

also from Shulvas-Sorokina. 466 The outstanding features are the enor-

mous value of du (26,000 X 10~8
) between the critical temperatures at

small pressures, the effects of saturation, and the low and uniform value

of du outside the critical temperatures. The only unaccountable feature

is the comparative flatness of the curves at the lower Curie point. From
* From Shulvas-Sorokina's data we have computed Y for Figs. 108 and 110 and

du for Fig. 110.
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Fig. 109 the saturation polarization is calculated as about 1,000 esu,

of the same order, though nearly twice as great, as the dielectric satura-

tion polarization discussed in 438. In collaboration with Posnov469

the same author later finds the value to be 940 esu.

419. The value of 26,000(10~
8
) for du is the largest we find published

as obtained by the direct effect, except that the author, from observa-

tions on an L-cut plate as described in 140, derived values as high as

32,500(10~
8
). The maximum observation by Shulvas-Sorokina, men-

tioned below, for which no numerical value is stated, may have been

still higher. For the very large values obtained by the converse effect

40

FIG. 109. Dependence of du on temperature, from Shulvas-Sorokina. Stress Yt for

curve a is 0.5 kg/cm 2
; 6, 4 kg/cm 2

; c, 15 kg/cm 8
; dt 25 kg/cm 2

.

see 423. The value of 26,000 (10~
8
) is ten times as great as Valasek's

in Fig. 106. To account for such discrepancies one must take into

account the variability of the piezoelectric constant with pressure, differ-

ences between different specimens, and such systematic sources of error

as faulty mounting and depolarizing effect of surface layers. Since the

various sources of error tend to make the observed value of c?i4 too small,

it may be said that in general the highest recorded values are the most

representative.

In a later paper
466 Shulvas-Sorokina reports that, by careful tempera-

ture regulation and application of pressures not exceeding 2 kg/cm2
,

a very sharp and narrow maximum in du is found at 22.5C. The height

of the maximum is found to be less with thick than with thin crystal

plates; this is attributed to lack of uniformity of temperature in the thick

crystals. She finds the maximum in kx to come at exactly the same tem-

perature. At 38 kg/cm2
, however, there is no trace of a maximum at.

the Curie point. Correspondingly, the maximum in kx disappears when
the field strength exceeds 300 volts/cm. With pressures above 50

kg/cm
2 the piezoelectric properties were found to be the same at all

temperatures.
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The dependence of piezoelectric polarization upon stress is further

shown in Fig. 110, from Shulvas-Sorokina. 466 The data are for 3C,
and they illustrate the importance of keeping the stress small if the great-

est piezoelectric effect is to be realized. The sudden drop in du from the

very large initial value of about 26(10~~
6
) esu, shown at 2 kg/cm2 in Fig.

110, does not seem to have been confirmed by other observers.

It was observed by Shulvas-Sorokina467 that when a periodic mechani-

cal stress was applied to a Rochelle-salt plate the value of du diminished

rapidly as the frequency was increased from 10 cycles/sec. This observa-

32

24

16-

10 50 6020 30 40

Kg. per cm2

FIG. 110. Dependence of du on pressure at 3C, from Shulvas-Sorokina. Y* is in kilogram
per square centimeter.

tion can be correlated with the facts concerning "lag" discussed in 427.

In a later paper
468 Shulvas-Sorokina describes experiments, with theoreti-

cal interpretation, in which periodic mechanical pressures up to 10 gm/cm 2

at frequencies from 3 to 3,000 ~ were impressed.

420. The following early observations by Valasek541 made at room

temperature should be mentioned here, since they afford a qualitative

confirmation of the theory discussed in 459. With a ballistic galvanom-
eter he measured the charge Q liberated when a force F =

Y'Jbe was

applied to an X-cut 45 plate, according to 417. The distinguishing

feature of these experiments was that the force was applied while the

plate was in a known electric field. The total polarization is then

p* = po 4. ps 4. ppf
where P is the spontaneous polarization and Ps

and Pr are the contributions due to the field and to F. The results are

shown in Fig. Ill, in which the ordinates are Q = blPF . It is seen that

the maxima of PF occur at certain negative values of E\ that these nega-

tive values become greater with increasing stress; and that, for the same

stress, P* is greater for large negative values of E than for large positive
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values. Either because a long time was allowed to elapse between suc-

cessive observations or because E was not carried through a complete

cycle, PF appears in Fig. Ill (the dotted curve being disregarded) as a

single-valued function of E. In a later paper,
642 Valasek describes

similar observations, made in rapid succession, in which E was varied

through a complete cycle. The result is illustrated qualitatively in Fig.

Ill for the largest stress, the full line indicating the form of the curve for

increasing E, while the dotted curve indicates <he form for decreasing

-800 E800
Volts per cm.

Fia. 111. The direct effect in Rochelle salt. Piezoelectric response for various

stresses with crystal in an electric field, from Valasek. Ordinates are in 10""" coulomb,
abscissas in volts per centimeter. Curve o, force F = 880 g; 6, 660 g; c, 350 g; d, 140 g.

E.* This result, as well as the other features mentioned above, can be

interpreted in the light of the discussion in 462 and by reference to Fig.

139, on the assumption that a stress Yg is equivalent to a field strength

-E/bu .

421. Unipolarity in the Direct Piezoelectric Effect. Although the

effect of unipolarity has recently been observed in connection with the

converse effect (422), little attention seems to have been given to its

influence on the direct effect since the pioneer work of Anderson, to which

reference was made in 404. Anderson used square X-cut plates with

edges at 45 with the F- and -axes. The sign of the strain yz was

* This loop may be said to illustrate a sort of mixed piezoelectric and dielectric

hysteresis. Piezoelectric hysteresis loops, by both the direct and the converse effect,

are discussed in 422 and 492.
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reversed by changing the direction of pressure 90 in the FZ-plane, as

explained in 184. He found that with some specimens the polarization

was increased many times upon reversal of the sign of the stress. Later

observations by Vigness are described in the next section. The explana-

tion of the effect, in terms of the domain theory, will be found in 462

and 477.

f
THE CONVERSE EFFECT

In the Seignette-elcctrics there are anomalies in the converse effect

similar to those in the direct effect previously discussed, demanding

special experimental and theoretical investigation. We are here con-

cerned chiefly with Rochelle-salt plates having the field in the JT-direc-

tion. The theoretical discussion is reserved for 460.

For measuring the piezoelectric constants of crystals the converse

effect offers the advantage that no correction need be made for leakage

of charge through or over the surface of the specimen. As always, it is

important that the electrodes lie in immediate contact with the crystal:

no appreciable layer of impurities, cement, or, in the case of such crystals

as Rochelle salt, dehydrated material must be allowed to intervene.

In order to satisfy this condition without hindering the deformation of

the crystal, very thin electrodes should be used, as for example of evapo-

rated gold.

The principal experimental work is that of Sawyer and Tower,
449

Bloomenthai,
65

Vigness,
566 '566 Norgorden,

393 - 394 and Hinz. 229 In broad

outline it may be said that greater values of du have been observed than

with the direct effect; that the mechanical strain produced by an applied

field, like the electric strain (polarization), shows both saturation and

hysteresis, and depends on temperature in a manner similar to the

dielectric and the direct piezoelectric effects; and that the phenomena of

fatigue and unipolarity are present. Bloomenthai and Hinz applied

static fields, while the other observers measured maximum strains under

alternating fields. In most cases the change in length AZ of 45 X-cut

bars or plates was observed. The basic formula is

(489)

422. Static Fields. Vigness's plates had the ^-dimension normal to

the (021) faces of the crystal, hence 4053 / from the Z-axis. This is

near enough to 45 to permit the substitution in Eq. (489) of AZ. Vigness

calculated AZ from observations of X-ray reflections. This seems to be

the only investigation in which X-rays have been used for the measure-

ment of piezoelectric deformations. The method appears to be reliable,

provided that one can be sufficiently certain as to the lattice planes
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from which reflections occur. A drawback is the formation of super-
ficial imperfections or disintegration of the crystal after some hours of

exposure, which causes a broadening of the lines on the photographic

plate. Vigness found good agreement between the X-ray data and
those obtained with a microscope. His chief results are shown in Figs.

112 and 113. The curves are of the same form as those shown in Fig. 118

for the dielectric effect and in Figs. 106 to 110 for the direct piezoelectric

effect. The conspicuous features are the characteristic behavior near

the upper Curie point and the extremely large value of du around ten

\VUi4

50 200100 150

Volts per cm.
FIG. 112. Converse piezoelectric effect in Rochelle salt, from Vigness. 685 Dependence

of strain, also of di4, upon static field. If 2Ar is the total change in length r of an Jf-cut

plate observed on reversal of field, the mean strain corresponding to the field strength
shown in the figure is yz = 2Ar/r.

times as large as the values recorded for the direct effect. Although

Vigness 's observations do not include the initial value of du, still it appears

from the strain curve for 20C in Fig. 112 that around this temperature

the comparatively low initial value of du begins to increase at a field

strength of the order of 10 volts/cm. This increase at low fields, char-

acteristic of static observations, is similar to that for the dielectric con-

stant, as mentioned in 431.

The importance of a consideration of lag and fatigue (427) in inter-

preting piezoelectric data is brought out in the following observations by

Vigness.
565 With small fields (27 volts/cm) deformation and recovery

are slow, occupying several seconds. With larger fields (165 volts/cm)

the deformation is almost instantaneous up to nearly the full value,

followed by a slow exponential creep that may last for hours. After

long application of a large field, recovery requires more than a minute.
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After application of a field in one direction, a field in the opposite direction

causes a greater deformation than if the first field had not been applied.

Vigness claims to have found experimental evidence for the existence

of three different relaxation times in Rochelle salt: (1) a small fraction of

a second, which makes possible the acoustic and h-f vibrations; (2) a

relaxation time reaching a maximum of about 15 sec at 164 volts/cm,
7.5 sec at 27 volts/cm, a little above 0C, falling to zero at each Curie

point; (3) a longer relaxation time, lasting for minutes or hours (see also

427).

FIG. 113. Converse effect in Rochelle salt, from Vigness. 866 Dependence of du upon
temperature for various field strengths.

Mention is made in 421 and 433 of the unipolar effect in the dielec-

tric and the direct piezoelectric properties of Rochelle salt. It has been

found by Vigness
566 that the magnitude of the strain in X-cut plates

in the converse effect is not always the same upon reversal of sign of

the electric field. It may be several times greater in one direction than

in the other. This unipolarity with respect to strain in an electric field

is analogous to the dielectric unipolarity discussed in 433. It was in

effect an observation of the spontaneous . strain and was used later by
Jaffe (482), in making the first calculation of the actual value of this

quantity.

Bloomenthal used a combined optical and mechanical lever system
for measuring the change in length of 45 X-cut bars of Rochelle salt

containing 0.37 per cent of CJ^OeTlNa^H^O. The field strength E
was varied in steps through a cycle between 400 and +400 volts/cm.

The plot of y:E forms a hysteresis loop except at temperatures above the

upper Curie point. The temperature range was from about 10 to 35C.
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The coefficient du at each temperature was computed from the maximum
slope,of a curve like that shown in Fig. 151. The maximum value, which
comes at 19, is 70(10~

5
)- The time of recovery from the residual strain

with field removed was not recorded. For pure Rochelle salt, his values

of d2 5 and d36 ,
and also of du for temperatures above 25C, agree with

those of Valasek shown in 418.

J-l

FIG. 114. Converse effect in Rochelle salt, from Hinz. Abscissas are in volts applied
to the 45 X-cut plate. Maximum field strength, for 60 volts, was 285 volts/cm. Ordi-

nates multiplied by 0.00145 give the elongation in mm; when multiplied by 4.35(10~8
)

they give the piezoelectric strain yt .

Hysteresis loops for the converse effect have been obtained by Hinz,
229

who observed the change in length of an Jf-cut plate 40 by 15 by 1.75 mm,
to which potential differences up to 50 volts (E to 285 volts/cm) were

applied. The potential was reversed after each step of 10 volts. An
optical lever with rotating mirror was used, as in the measurement of the

elastic constants (77). The electrodes were of tin foil cemented on

with "Acetonlack." The results, shown in Fig. 114, are in general agree-

ment with those of Vigness and Bloomenthal. The observed elongations
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are proportional to the strain y'v
= yz/2 = duE/2 = buPE/2. From

these relations, together with Eq. (500) or (5126), a theoretical explana-
tion is found for the "saturation effect" made evident by these curves

for temperatures between the Curie points. Hinz shows also a curve

relating the change in length of plate at maximum field strength (ordinates

of the tips of the loops in Fig. 114) with temperature; the form is some-

what similar to Valasek's direct-effect curve (Fig. 106) for the cor-

responding range in temperature, but with a less steep drop at the Curie

point. This discrepancy may be due to lack of sufficient freedom from

constraint in Hinz's crystal plate or to the relatively high field strength
that he employed.

Comparison of Fig. 114 with the oscillograms shown in Figs. 123,

124, and 125 reveals the close parallelism between mechanical strain

and electric strain in their dependence on the field strength. In

particular, one notices similar saturation characteristics and a similar

dependence on temperature.
It will be observed that the loops in Fig. 114 are not quite symmetrical

about the horizontal axis. This fact points to some degree of unipolarity

in the crystal the effect is too large to be ascribed to electrostriction.

By applying to Fig. 114 the equation yz
= duE, one can calculate,

at each temperature, either the differential (d\^d = dy,/dE from the

slope of the curves or the over-all du corresponding to the peak value of

E. The over-all value diminishes from 36(10~
6
) at 18.5C to 3.1(10~

6
)

at 27.9C.

Above the Curie point one can calculate the coefficient bu of the

polarization theory (452) by the formula bn = yz/P = yg/r)'E. For

example, from Fig. 145 one finds, at 27.9C, 17' 32, whence from Fig.

114, &i4 = 6.5(10~
7
)> in fair agreement with the value 6(10~

7
) from Fig.

146. Below the Curie point the calculation is impossible, since the

susceptibility under the conditions of Hinz's experiments is not known.

Moreover, if, as seems probable, especially in view of the experiments of

Vigness,
565 - 566 the piezoelectric strain in the Seignette-electric region is

as dependent on the specimen and on its mode of treatment as is the

polarization when observed with static fields, one cannot expect the

hysteresis loops in Fig. 114 to be generally reproducible.

For an estimate of the spontaneous strain yl from Fig. 114 see 482.

423. Alternating Fields. Sawyer and Tower449 observed the shear in

an X-cut plate with edges parallel to the Y- and Z-axes. A surface

normal to the Z-axis was cemented to a metal block, and the maximum
displacement of the opposite face in the F-direction was observed with a

microscope when a 60-cycle field was applied. The amplitude of shear

yz is the quotient of this displacement by the length of the plate in the

Z-direction. The result is shown in Fig. 115. Especially noticeable is
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the fact that the converse effect fails to appear in this figure at field

strengths below 50 volts/cm. The experiments of Norgorden, which

will be considered presently, show that strains are indeed produced by
fields below 50 volts/cm, although they are too small to have been made
evident by the method of Sawyer and Tower. Except at low voltages

there is fair agreement between Sawyer and Tower's a-c results and those

of Vigness under static conditions.

lOOOxld
6

800

600

400

200

-25

E
400100 200 300

Volts per cm.

FIG. 115. Dependence of strain upon field in an X-cut Rochclle-salt plate, for various

temperatures (Sawyer and Tower). To avoid confusion, only the upper portion of the

curve for 1C is shown.

The strain in Fig. 115 approaches saturation at a value between

4(10~
4
) and 9(10~

4
), depending on the temperature in the same manner

as the dielectric constant shown in Fig. 123.

From the slopes of the curves in Fig. 115 the maximum differential

values of du may be calculated. For example, at 14 it is found to be

about 200(10~
5
), of the order given by the preceding authors. The

maximum over-all value, obtained from the tangent drawn from the

origin to the curve at 14, is about 100(10-
5
), four times as great as

the maximum for the direct effect shown in Fig. 109.

424. With frequencies from 30 to 4,000 ~ and maximum fields from

5 to 47 volts/cm, Norgorden
393 - 394 observed the maximum change in length

of a 45 X-cut cube over a temperature range from 13 to 35C. The cube

edge was 2 cm in length. Mueller's method (415,416) was followed

for annealing the crystal and for attaching the electrodes to the faces
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normal to the X-axis. One of the 45 faces also carried an electrode

which served as one plate of a condenser, the other plate being fixed in

close proximity. These condenser plates, across which was a bias of

184.2 volts, were connected to an amplifier so that as the crystal vibrated

the maximum strain could be calculated from the amplifier output. The
circuits were carefully shielded electrically.

Norgorden's work is in effect a study of the initial converse (di4)o, as

defined in Eq. (512). While his results are of great value qualitatively,

the numerical values of du are so low that they canngt be accepted as

typical. In the first place, they are hundreds of times smaller than those

of Vigness, a fact that can be only partly accounted for by the fact that

Vigness used a static method. Second, these values are only about one-

third as large as those shown in Fig. 146, with which they can fairly be

compared in spite of the difference in method. If, notwithstanding

Norgorden's precautions, surface layers of low dielectric constant were on

his crystals, the recorded field strengths would be too high and the

calculated du too low. Excessive mechanical constraint from cemented

electrodes would also make du too small.

With this reservation, one may summarize Norgorden's results as

follows: Like its analogue, the initial dielectric constant kQ (434), (di 4)o

is nearly constant up to at least 50 volts/cm. The relation between the

reciprocal strain l/yt and the temperature interval (T M) is linear,

at a given field strength, on both sides of the Curie point. We have

here the first, and so far the only, confirmation of the Curie-Weiss law

for the piezoelectric effect (see 467).

Norgorden's observations show also a tendency toward saturation

in du with increasing field, as is to be expected from Eq. (5126) and from

the analogy with the dielectric constant. He finds the strain to be

nearly independent of frequency from 100 to 4,000 ~.

COMPARISON OF THE DIRECT AND CONVERSE EFFECTS

425. Let us suppose that a stress Yt is impressed on a Rochelle-salt

crystal in zero electric field, at some temperature between the Curie

points, causing a strain yz and a polarization P. Then let a field E be

applied of such magnitude as to bring the strain back to zero. We
inquire first how the polarization P' due to E compares with P.

For the direct effect, P = -duY, = duys/su = e^y*. For the

converse effect, we may write y't
= d'^E and P1 =

i\E, where the primes

indicate the converse effect. The symbol d'u allows for the possibility

that the piezoelectric strain coefficient may have different values in the

direct and converse effects. 17 is the effective susceptibility, which in

ordinary piezoelectric crystals would be denoted by rf (constant stress)

but which in Rochelle salt depends on both Y and E, and is usually less
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than i)'. Then if y'f
= -yz,

L m <*"<*" = H*li
P' 1?44 1?

With ordinary crystals ij
= V and dJ4

= dn, whence

614^4 = 014^14 = *?'
~

1?"

by Eq. (516). Then P/P' = -(V -
*")/V; and since usually

it follows that P P'.

On the other hand, in Rochelle salt, owing to the large value of du,
for certain ranges of temperature and of field, if > > t\'\ so that P' can

be nearly as large as P. That is, the same strain is then associated with

nearly the same polarization in both the direct and converse effects.

It must be emphasized that equality in yz in the two effects is defined

in terms of the external configuration of the crystal (more properly, of

the domain). Yet the fact that in the direct effect the field can be zero,

which is not the case in the converse effect, indicates that the internal

forces in the unit cell, and hence the arrangement of atoms in the cell,

cannot be the same in the two cases. In terms of dipole theory one may
say that in the direct effect the mechanical stress turns the dipoles,

while in the converse effect the rotation of dipoles in the applied field

deforms the lattice.

One would suppose that this disparity in lattice configuration in the

two cases might make the process irreversible and explain the fact that

the observed values of du, at least under static or 1-f conditions, have

usually been found greater in the converse than in the direct effect.

Nevertheless, doubt is cast on this view by Vigness's observation of the

same value of the strain whether the measurement was by X-rays or

microscope. For by X-rays only strains in the primary lattice can be

observed; and since the microscope, which yields the same yg,
measures

the change in external configuration due to the field, one must conclude

that approximately the same strain in the primary lattice is produced by
the converse as by the direct effect. One can go no further at present

than to say that the relatively large values of du by the converse effect

may be found to be due entirely to the absence of some of the sources of

error that tend to make the value by the direct effect too small. If

after the elimination of all sources of error there is still found a disparity

between the values of du in the two effects, one can only conclude that the

piezoelectric process is thermodynamically irreversible.

A better comparison between the two effects would be possible if

observations were made with the same specimen, leading to curves for
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P:Yt and yz:E at various temperatures, especially between the Curie

points; and it would be better yet if the P:E curve were included, with

P observed at the same time as yz . For lack of any such comprehensive

study as this, we can only summarize some of the fragmentary results

recorded in this chapter. We note first that the piezoelectric strain

in the converse effect, which as has been seen leads to a larger du than

does the direct effect, also shows, like the polarization curve, three stages.

In the first stage, up to fields of about 40 volts/cm or less, yz is relatively

small. Then, as is shown by Figs. 114 and 115, corfies a rapid rise,

followed by an approach to saturation. On the other hand, Figs. 107

and 108 for the direct effect show only a rapid rise in the piezoelectric

polarization at small stresses, followed by saturation. Only the observa-

tions of Schwartz, mentioned in 418, indicate the existence of a first

stage of low polarization.

426. The Effective Value of du in Piezo Resonators. At high frequency
and in weak fields, very large values of du, such as those observed by
Vigness, Bloomenthal, and Hinz in static fields or those of Sawyer and

Tower at 60 ~ with fields above 50 volts/cm, are not to be expected.

One would rather expect to find values of the order indicated in Fig. 146.

It should be pointed out that the du derived from observations on

resonators is due to the combined action of the direct and converse

effect, as, shown in 221.

Concerning the performance of resonators in strong fields very little

is known. One may expect du in the Seignette-electric region to vary

throughout the cycle, somewhat as is suggested by the form of the

curves in Fig. 114. The effect of this non-linearity on the resonator

performance is mentioned further in 370 and 480. The only practical

application of strong fields in vibrating crystals is found in certain types
of transducer, and here again next to nothing is known concerning the

effect of the performance of mechanical work on the effective value

of du.

427. Lag and Fatigue. The more important experimental results,

some of which are recorded in 417 to 424 and 431 to 437, will now
be summarized.

The term lag refers to the slow development of electric or mechanical

strain on the application of electric field or mechanical stress. It is

somewhat dependent on the*/a%ue, which means the state of the crystal

as a result of previous electrical or mechanical treatment. Both terms
are used chiefly with respect to static observations.

Observations of Lag. (a). In charging a Rochelle-salt condenser
,
the

amount of charge for a given field strength Ex is found to increase with

the charging time tc as long as te is only a few thousandths of a second.

For values of tc from a few seconds to several minutes the charge is the
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same, and on discharge the entire amount is given up rapidly enough
to be observed with a ballistic galvanometer. With strong fields (over
400 volts/cm) the full charge is reached in about 0.01 sec, while with

fields corresponding to the steep part of the polarization curve the growth
of charge is more gradual.

With thick plates the saturation polarization has been found to be

attained at smaller fields than with thin plates; but if fields lower than

the saturation values are applied, the thick plates require a longer

charging time than the thin (Kurchatov). The thick crystals also

discharge more slowly.

b. Lag in piezoelectric observations. In the direct effect the full polariza-

tion Px corresponding to a given stress Yz may require several minutes to

develop; on the other hand, the discharge is instantaneous (417). In

the converse effect, if the impressed field is small, both the piezoelectric

deformation yz and the recovery on removal of the field are slow. With

large fields the deformation is almost instantaneous, but recovery may
require more than a minute (422).

c. Lag in elastic observations. Iseley
248 found that, on the application

of compression to a 45 X-cut bar, as much as 30 sec. was required for

the full attainment of the strain. Mandell326 records a similar experience.

Observations of Fatigue. Both dielectric and piezoelectric fatigue

(404) have been observed, though the latter has been but little investi-

gated. Dielectric fatigue consists in a reduction in the discharge after

prolonged application of a field. Recovery is very slow, but it can be

hastened by application of an opposing field. It is also stated that

fatigue can be avoided by the use of "solution" electrodes; if this turns

out to be generally true, it must point to conditions at the surface rather

than in the interior of the crystal as the seat of the fatigue effect.

In his measurements of the elastic constants of Rochelle salt and of

ammonium-sodium tartrate crystals (78, 88), Mandell encountered

elastic fatigue; unfortunately, quantitative particulars are lacking.

Observations in Alternating Fields. Corresponding to the increase in

polarization with longer application of a field is the observed diminution

when an alternating field is used. Up to about 50 or 100 cycles per second

there is a transition state, beyond which the results are not very different

up to 10,000 cycles per second (see 432, 436, 438). Similar results are

found with the converse piezoelectric effect (422).

428. Relaxation Times. It is probable that in most if not all of the

observations on lag and fatigue the electrodes were separated from the

normal Rochelle-salt structure by cement or dehydrated layers. Not

only is the field in the crystal reduced thereby (411), but in such lavers

there may also be depolarizing effects that affect the observations.

For example, the wide discrepancy between Kurchatov's and Schwartz's
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results, as shown in Fig. 117, does not strengthen the view that the lag

effect is a property inherent entirely in the crystal.

The slow adjustments due to surface layers are not the only effects

present in Rochelle salt that must be taken into consideration before

one can begin explaining anomalies by the theory of relaxation times in

the Debye sense. Non-linearity in the Px :Ex relation
;
interaction effects

(448); hysteresis, with attendant readjustments of boundaries between

domains* all these may depend upon time in ways that can fully

account for most of the observed effects of lag and fajigue. Mueller380

goes so far as to assert that "the existence of a relaxation time longer

than 10~6 second is not justified by any experiment."

As instances of attempts to throw the responsibility for observed

effects onto relaxation times may be mentioned certain conclusions of

Vigness
666 ' 566 (422), Norgorden (424), Staub,

477 Shulvas-Sorokina and

Posnov (437), Shulvas-Sorokina,
467 and Goedecke. l74

t The last two of

these papers contain a mathematical treatment of the problem.

In an alternating field, Rochelle salt reacts like a capacitance associ-

ated with a resistance. The power factor may be affected by any or

all of the following: (1) true relaxation times; (2) energy required to

reverse domains; (3) shifting of the boundaries of domains; (4) leakage

of charge through or over the surface of the crystal; (5) vibration of the

crystal as a whole. Power losses are too complicated to make a com-

plete analysis possible.

The problem has been attacked empirically by Mason,B35
338 who

treats not only the dielectric constant but the piezoelectric and elastic

constants as well as complex quantities. He derives an expression for

the impedance of a crystal vibrated at any frequency, involving Debye's

theory of relaxation times, but does not apply it quantitatively. The

equivalent network of the crystal according to Mason is discussed

further in 375.

In 425 we touch upon the question of the reversibility of the piezo-

electric process in Rochelle salt. One might hope that light would be

thrown on this problem by the observations of energy losses in vibrating

crystals under various conditions. On the one hand, there is the intimate

relationship between the piezoelectric and the dielectric constants. On
the other hand, it is the square of the piezoelectric constant du that

appears in the resonator equations, and this square is really the product
of the direct- and converse-effect values of du. The analytic and

experimental separation of these two contributions would not be easy.

* For the magnetic analogy see C. W. Heaps, Phys. Rev., vol. 54, pp. 2S&-293, 1938.

t He reports relaxation times of the order of 10~4
, 10~

5
, and 10"6

,
which correspond

to the smallest of Vigness's values in 422.



CHAPTER XXII

ROCHELLE SALT: DIELECTRIC OBSERVATIONS

As often happens, the phenomena which are the easiest to observe are the most
difficult to interpret. E. C. STONER.

429. This chapter has to do chiefly with fields in the ^-direction.

The dielectric constants in the F- and Z-directions, which have no

anomalies, were treated in 408.

The dielectric properties of Rochelle salt for fields parallel to the X-
axis are very complex. The dielectric constant varies enormously with

temperature, field strength, and mechanical strain. The literature is

so extensive that it is impossible to do more than select and correlate

some of those data which are most significant and trustworthy. Beyond
the material in this chapter, further observations are recorded in 474

and Chap. XVIII.

Whenever the subscript x is omitted, it is to be understood that

fields and polarizations are in the ^-direction.

Owing to the large value of du and its reaction upon the permittivity,

dependable values of kx are difficult to obtain, since it is not easy to

mount the crystals with their adherent electrodes in a manner sufficiently

free from external stress. It is partly for the latter reason that most
observers have failed to record the extremely large kx that is to be

expected at the Curie points. Much of the experimental work, espe-

cially that prior to about 1934, is of only qualitative value, and there has

been a considerable amount of premature theorizing. Especially

conspicuous is the lack of trustworthy quantitative data with static

fields; perhaps this is because experience soon taught that more repro-

ducible results could be obtained with alternating currents, though
even here the observations of different workers are often far from har-

monious. One reason for discrepancy doubtless lies in differences

between unrecorded "room temperatures," an unfortunate circumstance,

since such temperatures are so little removed from the upper Curie

point. Other reasons, which will be made clear in the following dis-

cussion, are differences in thickness and degree of unipolarity of different

specimens, previous history of the specimens used, differences in elec-

trodes and in the cement between electrodes and crystal, and surface

impurities on the crystals. Some of these sources of discrepancy are

not present in alternating fields. The only results under static fields

549
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that can fairly be compared with those obtained with 1-f alternating

current are at smallest and largest fields.

The permittivity has usually been deduced from observations of

polarization P, at various field strengths E, temperatures, and degrees

of mechanical constraint. Observations may be classified as follows:

(1) Under static fields, polarization curves obtained by a point-by-point

method, usually with ballistic galvanometer; it is chiefly by this means

that the phenomena of lag, fatigue, and unipolarity have been studied.

(2) Observations at low frequencies, up to 1,000 or in'a few cases up to

10,000~. The three effects just mentioned, which vary from crystal

to crystal, are mostly eliminated. The most nearly reproducible results

are obtained by this method, using an a-c bridge or oscillograph. (3)

At high frequency, with the crystal in or coupled to a tube generator

circuit. The principal disturbing effects in Cases (2) and (3) are reso-

nance with various vibrational modes and heating of the crystal.

As long as the frequency is sufficiently far from resonance with any

vibrational mode, methods (2) and (3) may be assumed to give approxi-

mately the dielectric constant corresponding to the tips of the hysteresis

loop. Depending on the circuit employed, the bridge method gives

either the equivalent parallel capacitance Cp of the resonator or the

equivalent series value C,, as defined in 271 and 273* These two

quantities differ very widely in the resonance range but approach equality

in either direction away from this range. Sufficiently far from resonance

one may therefore write k = 4neCp/A = 4areC9/A, where e and A are

thickness and area of plate and CP and C8 are in esu. That the departure

from resonance may have to be very great before the value of k thus

derived is even approximately free from the effect of resonance is pointed

out in 259.

430. Definitions and Symbols. We shall have occasion to use several

different expressions for permittivity and susceptibility, illustrated in

Fig. 116 (cf. Fig. 108 for the magnetic analogy). In the first place there

is the "normal," or "over-all," permittivity kx at a point such as A (the

subscript x will often be omitted, since only X-polarizations are here

considered), defined as k = 1 + 4^, where tj
= P/E. In some cases,

especially in the discussion of hysteresis loops, the differential permit-

tivity kd = 1 + 47n?d will be used, where rjd
= dP/dE (the slope of the

curve at any point) is the differential susceptibility; the point in this

case may be on the virgin curve or on the hysteresis loop. The initial

permittivity k (susceptibility 170) is the differential permittivity for

7 = 0. The saturation permittivity kd, is the differential value kd with

large fields, on the linear portion of the polarization or hysteresis curves,

while the value of kd at the steepest portion of the curve is denoted by
kdm. The reversible permittivity kr is the limiting value of the quantity
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1 + 4-7T dP/dE observed when a small alternating field is applied at any

point on the P:E diagram. The vanishingly small variations in P are

then linear and show no hysteresis; the slope of the short P:E lines, from

which the reversible permittivity is calculated, is that of the hysteresis

curve which has its tip at the point in question. Unfortunately, in the

literature it has not always been made clear which of the foregoing

definitions of permittivity was meant. All that has been said concerning

the different permittivities applies equally to the susceptibilities.

All the types of permittivity are derivable from data obtained with

ballistic galvanometer or oscillograph. Alternating-current bridge

FIG. 116. Types of permittivity. The "normal" value is 1 + 4irP/E at A. The
differential permittivity is indicated at a and b, reversible permittivity at c and d. Differ-

ential and reversible values unite at large fields to become the saturation permittivity, and

at small fields to become the initial poimittivity at the origin.

observations give the "normal" value, which obviously varies widely

with the field strength employed, becoming the initial value when the

field is small. Unless otherwise specified, k will be understood to denote

the normal value for the mechanically free crystal.

With Rochelle salt, in many cases it is sufficiently accurate to write

k 47H7
= ^P/E (or 4w SP/dE).

Most of the observations recorded here lie in the region of spontaneous

polarization. Outside this region, except close to the Curie points, the

anomalies disappear. The best data outside the Curie points have

been obtained with alternating current and are considered later in this

chapter.

431. Observations with Static Fields. In the earlier publications,

for example by Valasek541 and Kurchatov,
B32 one finds polarization curves,

but they are of little quantitative value owing to the incompleteness in

the data. We shall discuss here only enough of the very meager material

to illustrate the salient facts.
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The general form of the polarization curve as well as the effect of

lag (427) is illustrated in Fig. 117, curves a and b from Schwartz. 454

The resemblance to a magnetization curve with its three stages is evident.

The highest values of polarization, around 500 esu, are of the same order

as the saturation values obtained by other methods. From about

500 volts/cm on, the polarization is independent of the charging time.

In order to show how variable the results by ballistic methods are,

curve c, based on Kurchatov's

observations,* is^
included in Fig.

117. This curve is at 0C, charg-

ing time 0.07 sec, thickness of

crystal plate 7.2 cm; the thickness

of Schwartz's crystal is not stated.

Kurchatov, like Schwartz, finds

the polarization to increase with

charging time.

A second example is Fig. 118 in

which the charging time is 10 sec.

The difference lies chiefly in the

somewhat stronger polarization.

In this figure is shown also the

permittivity kx 4wP/E as func-

tion of field strength (c/. Fig. 127).

Owing to the danger of error

caused by lag and the conductivity

of the crystal, most observers have

measured the static polarization

in terms of discharge rather than of charge. It has been found that as long

as the charging time does not exceed a few minutes, the entire discharge is

so nearly instantaneous that a ballistic galvanometer can be used.

When the charging time is allowed to run into hours instead of

minutes, the fatigue effect is encountered. In such cases the discharge is

not sensibly instantaneous, but a considerable portion of the charge is

returned slowly, at a rate depending on the time of charge, and lasting

sometimes for days. The effect is also dependent on the strength of the

charging field.

Since the entire charge is returned sooner or later897 (i.e., there is

no permanent remanence as result of a polarizing field), it may be con-

cluded that the area of a hysteresis loop, at sufficiently low frequency,

should be zero. That is, there should be no hysteresis if the observations

with increasing and decreasing fields were made by a step-by-step

-20

FIG. 117. Polarization P for short charg-

ing times (field parallel to X). Curve a is for

charging time 0.148 sec, curve 6 for 0.007 sec,

temperature 19C, from Schwartz. Curve c

is from Kurchatov, charging time 0.07 sec,

temperature 0C.

*Bef, B32, Fig. 24; see also
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method, sufficient time for complete adjustment to take place being
allowed to elapse at each stage. This is by no means the case at the

speed with which such observations are commonly made (cf. 422). For

example, Valasek's observations* with a ballistic galvanometer (time
intervals between observations not stated) yielded typical hysteresis

loops in good agreement with those obtained by alternating current.

The field necessary to reverse the domains, when measured slowly

by the d-c method, is several times smaller than by a-c (436). The

8000

4DOO

7

E
-400 -200 200 400

Fio. 118. Polarization P and permittivity k for Rochelle salt at 20.3C, as functions
of field strength E (in volts/cm) in the .X-direction. The polarization is in arbitrary units;

at 400 volts/cm the estimated value is about 18(10~ 8
) coul/cm 2

. From Oplatka, ref. 397.

smallest recorded value, less than 15 volts/cm (presumably at room

temperature), seems to be that of B. and I. Kurchatov. 293 This observa-

tion means that with static fields the initial permittivity kQ extends over

a range of less than 15 volts/cm.

432, Both fatigue and lag are illustrated in the following table from

Valasek,
544 from observations at 20C, charging field 900 volts/cm.

The first two data may be compared with Fig. 117; from them it is evident

Charging Time,
Sec

0.03

0.50

180

1,200

5,800

Discharge, Galvanometer

Divisions

2.15 -

2.46

2.47

2.33

1.94

> Kef, 541,
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that the charging process is over in about a second. The last two show

the effect of fatigue, not all the charge being instantaneously discharged

through the galvanometer.*
Valasek also records some interesting observations on the removal

of fatigue by an opposing field. Thus, the effect of a field of 100 volts/cm

applied for 24 hr in one direction can be eliminated by subsequent

application for 20 min of an equal field in the opposite direction. He
also finds that the discharge through a ballistic galvanometer after

application of a field in a given direction is greater after the crystal has

been strongly fatigued in the opposite direction. Further effects of

fatigue are discussed by David. 119

Kurchatov's explanation
296 of the fatigue effect is that it is due to

the migration of ions into the surface layers of the crystal: when the

crystal is short-circuited through a galvanometer, the ions migrate very

slowly back again. He found that fatigue was absent when solution

electrodes were used (see 427).

Mention should be made of certain differences in behavior between

thick and thin plates, even though their significance lies mainly in directing

attention to the importance of avoiding even minute surface layers or

gaps between crystal and electrodes. Such layers form a region of

relatively low permittivity, as was pointed out in 111. They therefore

make the actual field strength in the crystal less than that computed
from the potential difference V and thickness e\ moreover, they give

rise to a depolaiizing field that hastens the discharge. The situation

is further complicated if the surface layer is a partial conductor. Thin

plates should show these effects more than thick ones. This dependence
on thickness was indeed found to be the case by Kurchatov295 and by
Kurchatov and Shakirov,

296 who also offered the explanation given above.

A few of their representative results will now be summarized, illustrating

the fundamental dielectric properties of Rochelle salt as well as the

effect of surface layers. They found, for example, that while for plates

of all thicknesses the final state of charge corresponding to the applied

field was in general attained in a few hundredths of a second except

that with increasing thickness longer charging times were required when
the field strength was relatively weak there was a marked difference

in the case of discharge. Provided that the crystals were not left

charged long enough for fatigue to set in, it was found that for thin

crystals the times of charge and of discharge were about equal, but that

the discharge was much slower in the case of thick crystals; for a crystal

7.2 cm thick it amounted to 30 sec. The same crystal, on application of

130 volts/cm, became fully charged in 0.02 sec, while with 45 volts/cm
the charge had not attained one-tenth of its final value in 0.07 sec.

* Somewhat similar observations are recorded by Oplatka.
397
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Using a series of plates from 0.23 to 7.2 cm in thickness, the time of

charge being 1 to 2 min, Kurchatov found that the approach to saturation

required very much higher applied potentials with thin than with thick

plates, in accordance with the explanation offered above. He also found

the initial permittivity, with E = 0.1 volt/cm, to be 1,340, whereas

with alternating current at 50 ~ or 500 ^> it was only 150.

The following conclusions seem justified: (1) that the characteristic

properties of Rochelle salt can be studied better with thick than with

thin plates, unless the effects of surface layers are completely eliminated;

(2) that, insofar as it is desirable to avoid the effects of lag and fatigue,

polarization measurements with alternating currents should be more

reliable and reproducible than those made with static fields, and the

effect of differences in thickness should be less pronounced. In the

following sections we shall see that this expectation is realized.

No investigator seems to have measured kx by a ballistic method over

the entire range of spontaneous polarization, with a crystal so well

prepared and mounted and with a field strength of such a value that

the highest attainable values were recorded. At 15C B. and I. Kur-

chatov293 observed a differential value of 190,000, with a very pure

crystal that showed saturation at only 15 volts/cm. With a strong

field (value not specified) Schwartz 454 found kx to reach maxima of

about 4,000 and 3,500 at the upper and lower Curie temperatures, respec-

tively, with almost equally high values between; obviously, his observa-

tions corresponded to points too far along on the polarization curve to

show the highest values of kx . From the theory one would expect that

at either Curie point an extremely small field would cause a relatively

great polarization, yielding a very large value of kx . Between the Curie

points the coercive force, though small, is greater than at the critical

temperatures, with a corresponding decrease in kx . Yet even here

very large differential values of kx are to be expected as witness that

of 190,000 at 15.

433. Static Observations on Unipolarity. This characteristic of

Rochelle salt was discovered by Anderson (404). The reader may
already have noted a peculiarity in Figs. 117 and 118: the polarizability

of Rochelle salt along the X-axis is not symmetrical upon reversal of

field, although the symmetry of rhombic crystals is such that both

directions along the X-axis are equivalent.

This effect is a consequence of the spontaneous polarization of the

crystal, by virtue of which there exists, between the Curie points, a

"natural moment 7 '
for each domain in the direction of the X-axis.

As is explained in Chap. XXV, in this region the crystal is properly to

be considered monoclinic. In any given specimen, unless the opposing
domains happen exactly to neutralize one another, there is a resultant
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mohient. Under ordinary circumstances the polarization charges may
be assumed to be neutralized by equal and opposite compensating

surface charges.

If now a unipolar crystal consisting of a single domain is provided

with electrodes to which an external potential is applied and if the field

thus impressed is opposed to the spontaneous polarization, the latter

undergoes a more or less sudden reversal when the field reaches a certain

value. Enough charge must flow to remove the compensating charges

mentioned above in addition to polarizing the crystal* to an extent

depending on its susceptibility. On the other hand, if the impressed

field is in the same direction as the spontaneous polarization, these

compensating charges remain and the charge flowing to the electrodes

is much less. For the same applied voltage the apparent susceptibility

is greater in the former case than in the latter. This effect is further

discussed in connection with Fig. 139. If, as is practically always the

case, several domains with opposing polarities are present, some trace

of the effect will be found unless the domains are exactly balanced.

The degree of unipolarity may be expected to be greater with small

specimens than with large. Large plates should show unipolarity in

opposite senses over different portions of the surface, corresponding to

the pyroelectric patterns described in 521. Such regions were identified

by Kurchatov332 on a large crystal that showed as a whole no unipolarity:

by moving a small electrode across the surface he found regions of very

unsymmetrical polarizability.

Evidences of unipolarity were also recorded by Valasek641 and by

Frayne.
149

The Dielectric Constant of Rochelle Salt at Low Frequencies. The

range of frequencies considered here extends from 50 or less to 10,000

cycles/sec. Since the effects of lag and unipolarity are inappreciable,

the results are more consistent and reproducible than those obtained

under static conditions. As a rule, for frequencies in this range no

effects from resonant vibrations need be feared. As the frequency

increases from 50 to 10,000 the results differ mainly in increasing width

of the hysteresis loops, as will be seen in 436.

434. Observations of the Initial Dielectric Constant fcj of Free Crys-

tals at Small Field Strength. When the field is sufficiently weak, the

relation between P and E is linear, without appreciable hysteresis.

The range of linearity depends on the temperature. The critical field

strength at which the P:E curve begins to turn upward is zero at the

Curie points, increasing rapidly to an indefinitely large value outside

these points. In the Seignette-electric region the available data indicate

that the value is of the order of 50 volts/cm except close to the Curie

points, for frequencies at least from 50 to 10,000 cycles/sec. Under
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static conditions (point-by-point method with ballistic galvanometer)
the field range is smaller.

In the parelectric regions the values of k'Q obtained by different

observers are in very close agreement. The agreement is not so good
in the Seignette-electric region, especially in the middle of the region
where the values are smallest. Among those who have published values

of fcj (in niost cases by a bridge method) may be mentioned Frayne,
149

Errera,
184

Schwartz,
454 Kurchatov and Eremeev,

292 B. and I. Kur-

chatov,
293

David,
119 Bradford (474), Mueller,

376
Bancroft,

20
Hablutzel,

198

and Mason. 336 Further reference to some of these measurements will be

1400

1200

1000

8

600

400

200

16 24
C

32 40

Fia. 119. Initial free dielectric constant fco' of Rochelle salt, field parallel to the X-axis,
from Mason, ref. 335. The field strength was not over 5 volts/cm.

made in the paragraphs immediately following. Bradford's values are

shown in Figs. 145 and 147, Bancroft's in Fig. 132, and HabliitzeFs in

Figs. 134 and 135.

A typical curve showing the dependence of k'Q on temperature is

given in Fig. 119, obtained with a 1,000-cycle bridge.

The most careful and complete measurements of the initial dielectric

susceptibility rf at low fields (less than 10 volts/cm), chiefly outside the

Curie points, are those of Mueller,
376 who used a 1,000-cycle bridge

method, and of Hablutzel (444). Mueller's observations, extending

from -140 to -18, and from +21 to +50C, verify the Curie-Weiss

laws discussed in 465. The results at the higher temperatures are

shown in Fig. 120. From 25 to 32 the following relation holds (all

temperatures centigrade) :
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[434

(490)

where *c 23.0 0.5 and C = 178 5. te is the "Curie temperature"
and C the "Curie constant."

Above 34 the crystal is well outside the influence of the Seignette-

electric range, in a region which, by analogy with paramagnetism, may

0.20

0.15

0.10

0.05

20 30

FlO. 120. Reciprocal susceptibility x'

40 50

' 1/V at high temperatures, from Mueller.

be called the parelectric range. Here the relation is very strictly linear;

from 34 to 50 Mueller finds tc
= 25.3 0.05C and C = 136 0.5.

The corresponding relation for the range below the lower Curie point,

from -18 to -28, is

*-7 (490a)

where t'c
= -17.9 and C' = 93.8.

Data for the entire low-temperature range down to 140C are

shown in Fig. 121. It will be observed that x' rises almost linearly

until the temperature 160 is reached, after which it assumes the

constant value 2.1, corresponding to a dielectric constant of 7.

The slight bend in the curve for x' at about 33 in Fig. 120 was found

also by Mueller in a similar relation for the Kerr effect. Such bends

are also encountered in the experimental curves for magnetic suscep-

tibility.
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Mueller's values of the two Curie points are the temperatures at

which the lowest values of x' were recorded. These values are adopted

in this book, viz.,

Oi
= -18C 0u = +23.7C

Mueller derived the same value of tt from the Curie-Weiss law in the

Kerr effect.

Attention is called especially to the linear relation shown in Fig. 120

just below the Curie point: in accordance with theory (465), the down-

ward slope is just twice as steep as the upward slope above the Curio

point. The Curie point is to be taken as the temperature at which the

two lines meet. In an ideal crystal, with sufficiently small field strength,

-180

C
-140 -120

1.5

1.0

X'

0.5

-100

\

\

S\

2.0

1.5

-100 -80 -60

FIQ. 121. Reciprocal susceptibility x' " 1/V

-40 -20

r temperatures, from Mueller.

the two lines would be expected to converge on the axis of abscissas,

indicating an infinite susceptibility at the Curie temperature. In

the actual crystal, tc and t' are not quite the same as the Curie tem-

peratures.

These observations of Mueller are in excellent agreement with

those of Hablutzel, illustrated in Fig. 135.

An experimental and theoretical study of initial susceptibility has

been made by Shulvas-Sorokina468 with fields up to 12 volts/cm and

frequencies from 3 to 3,000 ~.
Further data on the susceptibility between the Curie points are

discussed in connection with Fig. 145.

435. Observations in Stronger Fields : Oscillograms and Hysteresis

Loops. The Oscillograph Circuit. In most of the oscillographic work
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referred to below, the horizontal deflection of the electron beam in a

cathode-ray oscillograph is sinusoidal in time and proportional to the

supply potential, while the vertical deflection is proportional to the

charge on a condenser in series with the crystal and hence approximately

proportional to the polarization in the crystal. The result is not a

correct hysteresis loop, since the impedance of the crystal is variable;

the potential drop across the crystal is not sinusoidal and hence not

proportional to the abscissas. The ideal circuit, discussed by David,
would have the crystal connected

directly to one pair of deflection

plates, so that the corresponding

deflection would be proportional to

the field in the crystal. This has not

been found feasible, and all the

experimenters used circuits that are

in principle of the type shown in Fig.

122.*

The resistance R corrects for the

power loss in the crystal CR . Since

the resistance across C is very high,

the instantaneous charges on C and

CR are approximately equal, so that

the vertical sweep (ordinates of the

curves) is approximately propor-

tional to the polarization P in the

crystal. If the vertical scale value

(oscillograph sensitivity) is sv
~ Vc/y volts/cm, where Vc

= instantan-

volts across G and y is the deflection of the electron beam in

FIG. 122. Oscillograph circuit for Ro-
chelle-salt hysteresis curves, from Mueller.

eous vots across

centimeters, the polarization is given by

p CV _ Csyy^-^-
A being the area of the crystal plate in square centimeters. The hori-

zontal sweep is proportional to the potential drop across Cz, and this in

.turn is proportional to 7, provided that R is sufficiently small. Calling V
and Vc the instantaneous voltages across the entire circuit and C, respec-

tively, we have, approximately, for the drop across CR,

Vn = V - Vc
:

where sx and x are the horizontal scale value and deflection. If, as was

the case with Sawyer and Tower, resistances Ri and Rz were used in

* The circuit shown in Fig. 122 is Mueller's modification*78 of that introduced by

Sawyer and Tower.*49



ROCHELLE SALT: DIELECTRIC OBSERVATIONS 561

place of the condensers Ci and 2, the ratio (Ci + Cz)/Ci would be

replaced by (Ri + -R2)/#2 . Setting r for this ratio, we have in either

case

VR = r$xx - syy

This equation can be used to compute the potential drop across the

crystal corresponding to any measured point x, y on the actual curve.

436. Some Typical Hysteresis Loops. The most complete series of

hysteresis loops, for temperatures from 19.5 to +27C and frequencies

from 100- to 100,000 cycles/sec, are those of Habliitzel. 198 In 444 we
discuss the similar loops obtained by him with heavy-water Rochelle

salt. His photographs show that, up to 104
cycles/sec, variations in

7

26 23.3 21.8

15 -8C
Fio. 123. Rochello-salt hysteresis curves, 60 cycles a-c, from Sawyer and Tower.

JXT-cut plate 85 X 85 mm, 5 mm thick. Abscissas in volts/cm, max 387; ordinates are pro-

portional to polarization.

frequency have but little effect on the form of the loops. From that

point on, the width of the loop begins to increase, the polarization at

saturation is less, and the loop* becomes distorted. The distortion

sometimes appears in the form of ripples, which may be due to natural

vibrational frequencies or to shock excitation induced by the rapid

variations in polarization.

The oscillographic records shown in the following figures are in

general agreement with those made by Habliitzel under similar conditions,

except that in most cases the steep portions are less nearly vertical and

the saturation regions less flat. It will be observed that the hysteresis

loops are widest from to 10C, becoming narrower and smaller as

the Curie points are approached. At temperatures outside these points

the hysteresis vanishes.

Figure 123 shows oscillograms at 60 cycles by Sawyer and Tower;
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those of David, obtained by a closely similar method at 50 cycles, are

illustrated in Fig. 124.

Owing to the very large permittivity it is usually sufficient, even

with thick plates, to compute this quantity from the simple formula for

capacitance, C = kA/4ire. Only under extreme conditions of tempera-
ture or mechanical stress should there be any appreciable gain in precision

by the use of a guard ring
119 or by applying Kirchhoff's correction for the

edge effect. 87
Nevertheless, David claimed a slight improvement in

the form of the hysteresis loop when a guard ring was usfed.

c ct

FIG. 124. Rochelle-salt hysteresis curves, slightly retouched, 60 cycles a-c, from David.
X-cut plate 20 X 20 mm, 9 mm thick, edges at 45 with the Y- and Z-axes, at room tem-
perature. For a, b, c, d the maximum field strengths are, respectively, 30.7, 61.4, 123, and
384 volts/cm; remanence at zero field 0.76, 0.75, 23.8, and 23.1 X 10~8 coul/cm2

.

Figure 123 shows the effect of varying the temperature. In Fig. 124

the effect of varying the maximum voltage (presumably at room tem-

perature) is seen.

Examination of all available data indicates that the coercive force

E with alternating fields rises gradually from zero at the Curie points

to a maximum somewhere between 5 and 15C, of the order of 200

volts/cm, as shown in Fig. 147 (for the theory, see 482). Mueller

finds that it is greater with thick plates, as shown in Fig. 125, while

according to David it varies with maximum field strength. Habliitzel198

finds no dependence of Ec upon thickness.

The forms of the curves in the foregoing figures are in full agreement
with theory. Especially noticeable are the disappearance of hysteresis,

the small polarization, and the linear relation between polarization

and field at 26 in Fig. 123, i.e., at a temperature slightly above the

upper Curie point. Figures 124 and 127 indicate that even in the range
of spontaneous polarization the observed polarization is almost linear
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and reversible for maximum field strengths up to about 50 volts/cm.
We see here the first stage in the process of polarization described in

431. At 61.4 volts/cm in Fig. 1246 the hysteresis is already large.

This observation is at variance with that of Kobeko andKurchatov,
268

who found no hysteresis with their crystal even up to 70 effective volts/cm.

The second stage in the polarization process is that in which the

polarization increases rapidly with increasing field. The differential

permittivity kd has here its greatest value, owing to the contribution

made by the piezoelectric deformation. This stage lasts until the knee

FIG. 125. Rochelle-salt hysteresis curves, 500 cycles a-c, from Mueller. Curve o, X-cui

plate 3 mm thick at 0C; 6, thickness 12 mm, 0C; c, at 22; d, below tae lower Curie point.

of the curve is reached, at about 150 volts/cm. From this point on

we have the third stage, characterized by an approach to saturation,

with a value of the differential permittivity kds of the same order as

that in the first stage, as is shown in Fig. 124, curves a and d.

From any of the curves the over-all permittivity k = 4a-P/E, the

initial permittivity kQ,
or the differential permittivity kd = 1 +4irdP/dE,

may be calculated. For example, from the slope in Fig. 123 at 26 we
find k of the order of 650, in fair agreement with 740 as calculated from

Eq. (490). Values of A; corresponding to the tips of the curves in Fig. 123

have been calculated, to show how the over-all dielectric constant varies

with temperature, the field strength having a maximum value of 387

volts/cm in each case.



564 PIEZOELECTRICITY

'

At room temperature and 387 volts/cm Fig. 127 indicates a value of

k twice as great as do the data above. Possibly David's crystal was

less constrained than Sawyer and Tower's.

From the slope of the "
saturation

"
portion of the curve for 15 in

Fig. 123 the saturation permittivity kd, is estimated as about 330; the

corresponding value from Fig. 124 at room temperature is about 200.*

1000 1500 2000 2500

Volts per cm.

FIG. 126. Polarization of Rochelle salt at room temperature, from David. The
abscissa for each point is the maximum field strength at 50 cycles/sec, and the ordinate is

the corresponding polarization.

xlO
3

25

20

15

10

500 2000 25001000 1500

Volts per cm.

FIG. 127. Dielectric constant of Rochelle salt as a function of field, 50 cycles/sec, from
David. The curve is derived from Fig. 126.

In these curves, as in all polarization curves with Rochelle salt, complete
saturation is never observed. Only under enormously large fields could

the susceptibility be made to approach zero.

As in the analogous case with magnetic hysteresis loops, the highest

permittivities are found along the steep portions of the curves. For

example, the highest value of the differential permittivity derived from

Fig. 123 is at least 200,000; the highest value from Fig. 124, about

* One would expect the value at room temperature to be greater than at 150.

The discrepancy must be due to causes other than the properties of Rochelle salt.
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100,000; and the highest value observed by Kurchatov was 190,000 by a

ballistic method.

The dependence of polarization on field strength is represented in

another manner by David in the paper cited. Figure 126, obtained by
plotting the extreme tips of hysteresis curves at different maximum

fields, shows clearly the three stages in the growth of polarization, again

recalling the magnetic analogy. From Fig. 126 David has derived

Fig. 127, showing the dependence of kx upon field strength. The data

for these curves were presumably obtained at room temperature. The
fact that as long as the peak value of the field strength is below 50

volts/cm the value of k9 as thus obtained is small and independent of

the field is of special significance, as was pointed out in 403 and 434.

David finds that in this range the initial permittivity &o is from 400 to

500 and that hysteresis is almost if not entirely absent (cf. Fig. 124a).

This value of & is larger than that found by other observers. For

example, B. and I. Kurchatov293
assign to the initial permittivity at

15C the value of 150 and state that it holds up to 70 maximum volts/cm.

From Fig. 119, the value at 15C is about 250.

437. Other Observations with Alternating Fields. The contrast between

the effects of weak and strong fields is illustrated in Fig. 128. Curve <x,

from B. and I. Kurchatov, 293>B32 was obtained with fields not exceeding

15 volts/cm at 50 ~, by a bridge method. Values of & from 100 to

400 are found except in the regions close to the Curie points. Sharp

maxima were found at 15 and +22.5; the Kurchatovs considered

the Curie points to be thus determined. These temperatures differ

somewhat from Mueller's values of -18 and +23.7 (434), which he

obtained from both dielectric and optical observations. An extremely

sharp maximum at the upper Curie point is also recorded by Shulvas-

Sorokina,
466 of exactly the same form as in the analogous case for iron.

Such maxima are to be expected with weak fields, in view of the theo-

retical vanishing of the coercive force at the Curie points. Curve a

agrees satisfactorily with Fig. 147.

Curve b is from ballistic observations by Schwartz,
484 with strong

fields and long times of charge. In accordance with theory (455) the

values at the Curie points are lower than in curve a, but between these

points they are higher. Curve c, also from Schwartz, at maximum field

strength of 10 volts/cm, frequency 500, represents the initial permit-

tivity &o. In the range of spontaneous polarization, ko is in the neighbor-

hood of 250, rising to maxima of 500 and 850 at the lower and upper

Curie points. At 20 the value is about 350, in good agreement with

that calculated from Mueller's observations (434). It is impossible

to say whether Schwartz's failure to record high maxima at the Curie

points, comparable with those of B. and I. Kurchatov, is due to his
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slightly weaker field or to greater mechanical constraint. The latter is

a plausible explanation, since his plate was clamped between the cells

that held the mercury electrodes.

In a stronger field (100 to 1,200 volts/cm), Kobeko and Kurchatov268

found, on the other hand, in agreement with Valasek and Schwartz,
454 an

almost uniformly high value of kx between the Curie points, falling off

sharply outside of this range. The theoretical explanation of this is

given in 479. Their paper is among the first to give data on dielectric

saturation at large field strengths. *
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FIG. 128. Effects of temperature on the dielectric constant of Rochelle salt. Curve a from
Kurchatov, b and c from Schwartz.

A very curious dependence of dielectric constant upon frequency

at very low frequencies has been reported by Shulvas-Sorokina and

Posnov. 469 They find a sharp maximum in k at a frequency between 2

and 30 cycles/sec, the value of the frequency depending on field strength,

temperature, and thickness of plate. They offer a theoretical explana-

tion in terms of relaxation times, support for which is found in the slow

growth of piezoelectric polarization under small mechanical stresses (427).

438. The Spontaneous Polarization P. The earliest estimates were

made from the remanent polarization in hysteresis loops obtained by a

step-by-step method, using static fields. From the work of Valasek541 '642

and Frayne,
149 as well as from Figs. 117 and 118, values may be derived

ranging from 30 to 180 esu. These values are not unreasonable for

temperatures just below the Curie point; they are on the whole probably

too -small, owing to the leakage of charge between observations. The
most reliable data are from oscillograms of hysteresis loops at frequencies
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from 50 to 1,000 cycles/sec. Mueller's curve for P in terms of

temperature, obtained by this method, is shown in Fig. 147. It is in

excellent agreement with HabliitzeFs observations (Fig. 136). Fair

approximations to these values may be deduced from the observations

of Kobeko and Kurchatov and from the oscillograms of Sawyer and

Tower, of David, and of Mueller, which were shown in previous sections.

At temperatures well outside the region of spontaneous polarization

the results of all observers show that hysteresis is absent and that the

polarization is directly proportional to the field. For temperatures only

slightly outside the Curie points there is still some variation with field.

The effect at low temperature is shown in Fig. 125d Under extremely

large magnetic fields certain paramagnetic substances show an analogous

dependence of permeability upon field strength.

439. Hysteresis Loops with Mechanical Bias. If while in an alter-

nating electric field the crystal is also kept under a constant mechanical

stress of such a nature as to produce a fixed piezoelectric polarization

on which the polarization due to the field is superposed, the hysteresis

loops are distorted and unsymmctrical. Such curves, first mentioned

by Valasek, have been recorded by Sawyer and Tower,
449

David,
119

Mueller,
378 and others. Ballistic observations of the effects of mechanical

or electrical bias have been made by Anderson (404), Valasek,
642 and

Schwartz. 454

Some of the results are shown in Figs. 129 and 130. The interpreta-

tion of the oscillograms is further discussed in 441. Sawyer and Tower
cemented their crystal plate between two thick aluminum plates; the

others applied mechanical pressures at 45 to the Y- and Z-axes by
means of flat blocks of solid material.* We shall use the term "single

constraint" for equal and opposite pressures along one of the two 45

directions, and "double constraint" for two pairs of pressures, one

pair along each of the 45 directions. Under the single constraint a

piezoelectric polarization becomes superposed upon that due to the

electric field, thus shifting the position of the origin on the hysteresis

loop. Unless the mechanical arrangement is such as to keep the stress

actually constant throughout the cycle, the oscillograms are of more

qualitative than quantitative value. Under double constraint, if the

pairs of pressures are always equal they produce equal and opposite

contributions to the polarization. The bias is thus reduced to zero.

This restores the symmetry, but the polarization recorded on the oscil-

lograms is diminished, since the crystal is no longer free.

* As is shown in 139, a pressure n at 45 causes a shearing stress Yt Jd/2.

The resulting polarization is P di4Y, di Jl/2, subject to correction for capaci-

tance connected to the crystal. All the investigators named used rectangular (in

most if not all cases square) Z-cut plates with edges at 45 to the F- and Z-axes.
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The following conclusions may be drawn from Figs. 129 and 130.

Any constraint, whether single or double, flattens the hysteresis loop,

until under heavy pressure the polarization is so suppressed that the

d e
Fio. 129. Effect of mechanical constraint on the hysteresis curves for Rochclle salt

at 500 cycles, 0C, from Mueller. Maximum field strength 2,000 volts/cm. Curve a, free

crystal; b, double constraint, pressure 1 kg/cm2
; c, double constraint, 7 kg/cm*; d t single

constraint, 2 kg/cm 2
; e, single constraint, 3 kg/cm2

, applied in a direction 90 from that in d;

f, single constraint, 7 kg/cm 2 in same direction as in e.

loop approaches a straight line having approximately the slope of the

"saturation" portion of the unconstrained curve. The effective per-

mittivity then becomes the same as the differential permittivity at

saturation, which in 436 was seen to be of the order of 200. The fact

that 200 is also the order of magnitude of the (monoclinically) clamped

Fio. 130. Effect of single constraint on Rochelle-salt hysteresis curves at pressure 8.35

kg/cm9
, from David. Maximum volts per cm : a, 383 ; 6, 768 ; c, 1532. Frequency 50 cycles.

dielectric constant, as may be seen from the curve for x" in Fig. 145 at

20C, is evidence that David's constraint was sufficient to cause the

crystal to be very effectively clamped.
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Sawyer and Tower449 also obtained oscillograms with a constrained

plate, finding a dielectric constant of 430 at 15. This value agrees

fairly well with that which they found for the unconstrained plate at

saturation, but it is so much greater than the value for a clamped crystal

derived from Fig. 145 as to indicate that the constraint was far from

complete.
The characteristic effect of a single constraint is the asymmetry

that it introduces in the hysteresis loop, and is especially conspicuous
in Fig. 1306 and c. Furthermore, Fig. 130a shows that the range of

field strengths over which the initial permittivity is practically constant

is greatly extended by a single constraint: the maximum field strength
for this curve is 383 volts/cm, whereas in 436 the value for a free

crystal was only 50. On the other hand, David finds that the initial

permittivity is diminished by a single constraint and that the diminution

is made greater by repeated mechanical loading.

If the mechanical bias used in conjunction with a-c experiments is

to be constant throughout the cycle, the natural frequency of the

mechanical pressure system must be higher than that of the crystal.

Or if the pressure is simply due to the gravitational weight of a certain

mass, the maximum acceleration of the face of the crystal plate must

be less than 980 cm/sec
2

.

A little consideration shows that, if the mechanical pressure varies

cyclically, the effective bias at one end of the hysteresis loop will be

greater than at the other. The loop is thus still further deformed.

Furthermore, a variable pressure causes variable piezoelectric charges

to be liberated, which produce a disturbing periodic field unless the

resistances in the bridge arms are sufficiently low.

Friction between the pressure blocks and the crystal must tend to

suppress the slight periodic changes in dimensions and thus to reduce

the polarization. This fact may possibly account for the observed

reduction in polarization under double constraint.

David also made oscillograms with the plate under a hydrostatic

pressure (in oil) of 35 kg/cm2
. The curves were exactly the same as

when the crystal was free. This result was to be expected, except insofar

as the hydrostatic pressure brought the crystal to a slightly different

position relative to the two Curie points (443).

440. Experiments on the equivalence of mechanical and electrical bias

have been made by David. He found that when, instead of mechanical

pressure, a d-c source was connected across the crystal while it was in

the oscillograph circuit the same asymmetrical curves were obtained.

The asymmetry of mechanical origin could be completely removed by

application of a field Eb opposing the piezoelectric polarization. Some
idea of the number of volts per centimeter equivalent to 1 kg/cm2 can be
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gained from the asymmetry of the curves in Fig. 129 and 130; it appears
to range from about 70 to 300. A value of the same order of magnitude
as this is derived from the equation Eb

= Yz/bu in 462, where &i 4 is

the piezoelectric strain coefficient according to the polarization theory.

In each case the equivalent bias is derived from the estimated horizontal

displacement of the origin from the center of the loop. The sum of the

piezoelectric and purely electric polarizations never exceeds the usual

saturation value.

In this connection may be mentioned an experiment of Mueller's,
376

who made measurements, with a low-voltage a-c 1,000-cycle bridge,

of the capacitance of a crystal on which there was superposed at the

same time a much greater direct potential difference E of various positive

and negative values up to 800 volts/cm. This potential was put

through a step-by-step cycle of increasing and decreasing values in both

directions. The bridge measurements gave values of the reversible

permittivity kr
= 1 + ^7rdP/8E (430). When plotted in the form of a

curve (Mueller's Fig. 22), they gave evidence of hysteresis intheP:j&
relation. This result is in agreement with that of Valasek, obtained

with a ballistic galvanometer, mentioned in 431.

441. Explanation of the Biased Hysteresis Loops. It has been stated

that the effect of bias, whether electrical or mechanical, is to shift the

origin. This is represented in Fig. 131, in which the normal unbiased

loop has the total sweep AB in field strength. If a large biasing polariza-

tion of value EiOi is imposed on the crystal, the origin for the new
curve is at Oi, this being the point on the virgin curve corresponding to

the given bias. The bias then has the abscissa OEi. The same sweep
in field strength as before is now represented by AiBi, and the resulting

loop extends from MI to Ni. If the sweep in field strength were a little

less, from A( to JBJ, the loop would extend from M[ to N(. The point

02 represents the origin for a small amount of bias, and the loop for a

small horizontal sweep is then somewhat as indicated by MzNz.
The location of the origin with respect to the hysteresis loops is

not the same in Figs. 129 and 130 as in the schematic drawing of Fig. 131.

The reason for this lies in the fact that in oscillograph circuits of the

type shown in Fig. 122 the bias, whether electrical or mechanical, does

not cause a biasing static charge on the condenser C. In Fig. 122 the

resistance across C, high though it is, prevents this. Hence, taken

around the cycle, fVc dt = 0. This result is independent of the time

scale of abscissas, which is usually sinusoidal. If the hysteresis loop
were redrawn to a linear time scale having abscissas proportional to

the time, it would be found that equal areas would be described on each

side of the horizontal axis. With a sinusoidal time scale this is still

Approximately true, as can be verified from the curves. In Fig. 131
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the distorted loops have the locations where they would be recorded if

the biasing polarization were accompanied by a corresponding fixed

charge on the condenser C of Fig. 122. Distorted hysteresis loops such

as these have their analogy in magnetism, when a ferromagnetic sub-

stance is subjected to the combined action of a fixed and an alternating

magnetic field.

By a suitable choice of bias and of horizontal sweep, all the single-

contraint curves in Figs. 129 and 130 can be qualitatively reproduced
on Fig. 131. The equivalence of biases produced electrically and

FIG. 131. Hysteresis loops with various amounts of bias.

and polarization P.
Coordinates are field strength E

mechanically is thus made evident. The relation between electrically

and mechanically produced polarizations is discussed in Chap. XXIV on

the polarization theory, especially in 459 and 462.

442. The Dielectric Constant of Rochelle Salt at High Frequencies.
If observations could be made with specimens so small as not to resonate

mechanically at any frequency within the range of investigation, the

dielectric constant measured would be that of the free crystal. This

procedure is not practicable; in all the h-f observations mentioned below,

resonance conditions were encountered.

We saw in 258 that the measured dielectric constant is always

abnormally high on the 1-f side of resonance (just as in optical anomalous

dispersion) and abnormally low on the h-f side. The expression for the

complex dielectric constant in terms of the mechanical and electrical

characteristics of the crystal is derived in 258. At the highest fre-
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quencies the configuration of the crystal is that described in 450 as

"rhombic clamping" outside the Curie points and as "monoclinic

clamping" between these points. The concept of rhombic clamping
between the Curie points is of only theoretical significance.

Data on values of the dielectric constant kx are assembled in Table

XXXIV. For comparison, some of the 1-f values recorded by the same

investigators are included, although in most cases they do not appear
to be typical of Rochelle salt at low frequency.

TABLE XXXIV

Most noteworthy is the approach of kx to a value of the order of 100

at the highest frequencies. It is here that the value of the dielectric

constant of the "free" crystal approaches that of the crystal clamped,
which we denote by k'x'. At the lower ends of the frequency ranges the

discrepancies in kx as between different observers can be attributed to

differences in frequency, mechanical constraint, and field strength, and
also perhaps to the effect of surface layers.

Supplementing the data in Table XXXIV it may be said that Frayne,
whose observations had to do only with the initial permittivity ko,

found maxima for this quantity at both Curie points at all frequencies;

he found also that, below 80C, ko was approximately 12 at all fre-

quencies (cf. Fig. 121). Errera found a fairly uniform diminution in

kx with increasing frequency, except of course in the various resonance

regions. From 1.6 to 20 kc/sec he observed that kx was increased by
about 100 per cent as the field strength increased from 56 to 226 maximuir

volts/cm. This fact indicates that at these frequencies the steep portior'

of the polarization curve comes at higher field strengths than it does a!

lower frequencies.



443] ROCHELLE SALT: DIELECTRIC OBSERVATIONS 573

Busch's observations were made at several different temperatures
from 6 to 36C. His data point to a permittivity in the neighborhood
of 100 at the highest frequencies, but at the lower frequencies the values

range from about 110 at 36 to 450 at 23. Bantle and Busch found a

maximum in kx at 23 even at the highest frequencies.

The value from Mason at 1 kc/sec is from Fig. 119. Hablutzel's

value is from his paper on heavy-water Rochelle salt (which contains

much valuable information on ordinary Rochelle salt as well), discusse<J

in 444.

Zeleny and Valasek600 have also made observations of permittivity
at frequencies from 30 to 10 7

cycles/sec at 0C. They found a general

downward drift from 62,000 to 220 as the frequency increased, but

otherwise it is difficult to fit their observations into the picture presented

above, since their large values of kx are not reconcilable with the low

field strength of only 8.75 volts/cm and, moreover, they report negative

values of kx at 10 7
cycles/sec, a frequency far too high for reactions from

mechanical resonance. As suggested by Bantle and Busch, this observa-

tion may have been due to the self-inductance of the leads to the crystal.

443. Effect of Hydrostatic Pressure on the Susceptibility of Rochelle

Salt. The measurements at hand are those of Eremeev, quoted by
Kurchatov,B32 and of Bancroft. 20 Eremeev's results are in the form of

polarization curves obtained with 50-cycle alternating current for field

strengths extending to 1,800 volts/cm. At 15C, for any given field

strength, the polarization and hence the susceptibility increase with

increasing hydrostatic pressures up to 5,000 kg/cm2
;
at still higher

pressures they decrease, and the flattening of the curves at high field

strengths gradually disappears, until at 8,000 kg/cm the polarization

is proportional to the field. Since a linear polarization curve is character-

istic of the region outside the Curie points, it is apparent that high

pressure shifts these points so that at 15 the crystal is no longer in

the Seignette-electric region. Similar tests at 31C showed that, while

P is proportional to E up to 2,000 kg/cm 2
,
it begins to take on saturation

characteristics at higher pressures; at 3,000 kg/cm
2 the curve at 31

is exactly like that at atmospheric pressure and 22.5. Thus a pressure

of 3,000 kg/cm2 raises the upper Curie point by about 9. Kurchatov

interprets this result as evidence that the Curie point, on the absolute

temperature scale, is proportional to the concentration of the dipoles;

for from the elastic constants of Rochelle salt the increase in density

for 3,000 kg/cm
2 amounts to 3 per cent, and this fraction of the absolute

temperature is 9.

By Bancroft's method a precise determination of the shift of both Curie

points is made possible. He used 1,000-cycle alternating current with 2

rms volts applied to the crystals (field strength about 8 volts/cm) . Three
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FIG. 132. Dependence of the reciprocal initial susceptibility of a free crystal of Rochelle
salt in the X-direction upon temperature and hydrostatic pressure, from Bancroft's data.
Positive values of x' correspond to the region outside the Curie points, where the sus-

ceptibility of the free crystal is 17'
= 1/x'- Between the Curie points x' is negative, and

the observed susceptibility of the free crystal, by Eq. (499), is ij,'
=> 1/x,' = l/(2x')

Curve 1 is for atmospheric pressure. The numbers beside the other curves denote the
number of thousands of kilograms per square centimeter.
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FIG. 133. Dependence of the upper and lower Curie temperatures on hydrostatic pressure,
from Bancroft. U - upper, L = lower Curie point.
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crystals were used, of thicknesses 0.424, 0.356, and 0.313 cm. Tempera-
tures were measured to 0.1C, and pressures were accurate to 10

kg/cm
2

. Jf-cut crystals were suspended in such a way as to eliminate

mechanical constraints and to yield reliable values of the initial suscepti-

bility i)

r and ij'a the X-direction. The results are shown in Fig. 132, taken

from Mueller. 381 The agreement with Mueller's values 376 is better than 5

per cent. Bancroft found the following approximate relations between the

Curie temperatures and pressure (p in kg/cm2
) :

6U = 24.5 + 1.073p(10~
2
)

Bi
= -19.4 + 3.769p(10-

3
)

Under increasing pressure both Curie points are raised and the interval

between them becomes greater, as is seen in Fig. 133. According to this

diagram there should be found at about 12,000 kg/cm 2 a lower Curie

point at the same temperature as that of the upper Curie point at atmos-

pheric pressure. Under suitable pressure there can be a Curie point
at any temperature above 18C.

Although Bancroft's paper does not record the observed values of

susceptibility at the Curie points, it is evident from his Fig. 2 that they
were finite, though very large, and that, the higher the Curie-point

temperature, the greater the measured susceptibility.

Since Kurchatov's data do not indicate with sufficient precision the

susceptibility at small field strengths, direct comparison of his results

with Bancroft's is impossible. So far as one can judge from Kurchatov's

results at high field strength, the agreement with Bancroft is satisfactory.

For details of Bancroft's theoretical treatment of his results the

original paper must be consulted. He correlates his results with an

equation of Fowler's 142 for the dependence of susceptibility on tem-

perature and arrives at the conclusion that the increase in the Curie

temperatures under pressure is a volume effect, due to distortion of the

crystal lattice under pressure. For further discussion of these results

see 470.

444. Heavy-water Rochelle Salt. The investigation of the effects

of substituting deuterium for hydrogen in Rochelle salt is important
from its bearing on the part played by hydrogen atoms in the dielectric

phenomena. Habllitzel108 was the first to publish results, followed a

few months later by Holden and Mason231
. In both cases the crystals

were prepared by dissolving in highly concentrated D 2 ordinary

Rochelle salt that had been thoroughly desiccated at a high temperature

(Habliitzel, 40C; Holden and Mason, 100C). From this solution the

crystals were grown. According to Habliitzel, not only does the water of

crystallization in these crystals consist of D20, but the hydrogen atoms

in the OH groups (405) are replaced by deuterium, so that the formula
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becomes NaKC4H2D20 8-4D20. The density, according to Holden and

Mason, is 1.830 0.003. Gold films were evaporated onto the crystals

in vacuum in all these experiments, except that at high frequency
Habliitzel found it necessary to use mercury electrodes, owing to minute

sparks betweeh the gold films and the wires with which they made light

contact. Habliitzel found that the loss of water of crystallization was

negligible when the crystals were in vacuum for the short time necessary
for the deposition of gold. ,

-160

Fia. 134. Dielectric constant of Rochelle salt (curve R) and deuterium-Rochelle salt

(curve D), as functions of temperature, from Habliitzel. Below 40C, E = 50 volts/cm,
/ 1,000 cycles. Above 40C, E - 4 volts/cm, / = 900 cycles.

Dielectric Constant. In both papers a bridge method is described,

with relatively low frequencies, and with a voltage so low that the

measured constant is the initial permittivity &o. For observations at

higher voltages, Habliitzel used a cathode-ray oscillograph.

In Fig. 134 are shown Hablutzel's values of the initial dielectric

constant &o for fields parallel to X, for both ordinary and heavy-water

Rochelle salt. The values for ordinary Rochelle salt run somewhat

lower than those that we have adopted for Fig. 147; those for deuterium-

Rochelle salt are in satisfactory agreement with Fig. 5 in Holden and

Mason's paper.

Habliitzel finds the Curie points for the deuterium salt to lie at

-22C (251K) and +35C (308K); Holden and Mason find -23 and
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+35. HabliitzePs values of &o at the Curie points are approximately

4,000 at each point for ordinary Rochelle salt; approximately 2,300 and

1,550 at the upper and lower temperatures, respectively, for the deuterium

salt.

From his results Habliitzel calculated the reciprocal susceptibility

x', which is shown as a function of temperature outside the Curie points

in Fig. 135. The curve for ordinary Rochelle salt agrees completely

with Mueller's findings (Figs. 120 and 121). That for the deuterium

salt is similar, being nearly linear close to the Curie points, in accordance

with the Curie-Weiss law.

J>

-160 -120 -80 -40

Fio. 136. Dependence of reciprocal susceptibility upon temperature, illustrating the

Curie-Weiss laws outside the Curie points, from Hablutzel. R ~ llochelle salt, D *
deuterium-Rochelle salt.

With fields of 8.5 volts/cm parallel to X, the dielectric constant & of

both ordinary and deuterium-Rochelle salt was found by Hablutzel

at 0C to be practically the same for frequencies from 100 to 10,000

cycles/sec. The values are approximately 200 for ordinary Rochelle

salt (Table XXXIV) and 65 for the deuterium salt.

Hysteresis and Saturation. HabliitzePs paper contains two series

of very instructive oscillograms. The first series was recorded with

2,000 volts/cm maximum, 50 cycles, at various temperatures from 19.5

to +37.5C, for both kinds of Rochelle salt. Those for ordinary Rochelle

salt are in general agreement with the oscillograms pictured in this

chapter; they differ from the latter chiefly in that the steep slopes of

the hysteresis loops are more nearly vertical, thus approximating more

closely to the ideal loop in Fig. 167. The absence of hysteresis at

temperatures outside the Curie points is clearly shown.

For the deuterium salt the loops are both higher and broader than

for the ordinary crystal, indicating considerably greater hysteresis loss,
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greater coercive force, and a higher spontaneous polarization. The

remanent polarization, which, as we saw in 438, is a measure of the

spontaneous P, is shown in Fig. 136, while Fig. 137 indicates the coercive

field strength, plotted in terms of temperature. From Fig-. 136 we

find, for ordinary Rochelle salt, maximum PQ 735 esu/cm
2 at about

1500
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Fio. 136. Remanent polarization P as a function of temperature, from Habliitzel.

R * Rochelle salt, D = deutcrium-Rochelle salt. Ordinates are in esu.
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C
Fia. 137. Dependence of coercive field strength on temperature, from Habliitzel. R

Rochelle salt, D = deutcrium-Rochelle salt. Ordinates are in volts/cm.

3C, in good agreement with Mueller's value of 740 in Fig. 146. The
deuterium salt has P 1,110 esu/cm

2 at about 6C.

According to Fig. 137, the coercive field strength for ordinary Rochelle

salt has a maximum value of 200 at about 15C (cf. 436). Hablutzel

finds, contrary to Mueller, that the coercive field strength does not

depend on the thickness of the plate. Mueller's coercive field values,

shown in Fig. 147, are about twice as large as HablutzePs (see 479).

HabliitzePs second series of oscillograms, made at room temperature
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with 3,000 maximum volts/cm, show the effect of increasing frequency
on the form of the hysteresis loops. From 100 to 1,000 cycles/sec there

is not much change. From there on, the loops become broader, the

maximum slope is less, higher voltages are required for saturation, until

at 100,000 cycles/sec the maximum field strength is insufficient for

saturation and the curves show pronounced asymmetry. Hysteresis
is present at all frequencies.

Fields Parallel to Y and Z. Habliitzel's values are given in 408.

Holden and Mason assign the value 18.0 to kv at 30C, which is so large

that its correctness is doubtful. For k they find the value 10.4. The

piezoelectric constants are given in 143.



CHAPTER XXIII

THEORY OF ROCHELLE SALT, PART I. INTERACTION THEORY
AND DIELECTRIC PROPERTIES

. Regola che mai, o raro falla: Non si multi dove non e difetto, perche non e dltro che

di&ordine. Dove perd tutto e disordine, meno vi rimane del vecchio, meno vi rimane del

cattivo. MACHIAVELLI.

After a brief account of the historical development there will follow,

in this chapter and the next, a formulation of the "interaction theory,"
based chiefly on the researches of H. Mueller. The formulation is as

free as possible from molecular assumptions and general enough to

apply to all crystals exhibiting the ferromagnetic analogy; thus it is

well suited to serve as a basis for discussion of the more specialized

theories of the various Seignette-electrics, of which Rochelle salt is the

original and so far the most important member.
It is historically interesting to recall that the first attempt at a

quantitative theory of ferromagnetism employed a method that had
been developed for the study of electric dipoles. That theory, grown to

maturity, has now returned to the field of dielectrics.

The ferromagnetic analogy in Rochelle salt seems to have been first

discussed in a paper by Valasek. 542

The foundation for the theory of Rochelle salt was laid by I. Kur-
chatov. From observations of the dielectric constant of this crystal,

made by himself and his collaborators, he was led to formulate a theory,
based on the earlier work of Langevin, Debye, and Weiss, in which

Rochelle salt was treated as possessing dielectric properties analogous
to the magnetic properties of ferromagnetic substances. A brief account

of his theory, as well as of the somewhat parallel work of Fowler, can

most appropriately be given in this chapter, even though their theoretical

investigations were of a molecular nature.

446. Kurchatov's Theory. In an important paper by Kobeko and
Kurchatov in 1930283 appeared the first formulation of Rochelle-salt

theory in mathematical terms similar to those employed in the Langevin-
Weiss theory of ferromagnetism. From the dependence of the dielectric

constant upon temperature, these authors concluded that Rochelle

salt must contain rotatable dipoles, each having a moment that they

computed to be of the order of 10~~18 esu and a molecular field* of the

order of 10 7
volts/cm.

580
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This molecular theory was elaborated by Kurchatov and his associates

in later papers and is now available in Kurchatov's book. Reference to

their experimental work is made in other chapters. The theory, as

set forth in Chap. XXVI, is based on Debye's theory of electric dipoles,

an essential feature of which is Langevin's treatment of the effect of

thermal agitation [Eq. (556)], originally derived for paramagnetism and

adapted by Debye to the analogous electrical problem. It is assumed,
as in the case of paramagnetism, that the dipoles are free to rotate in all

directions, like those of a gas. The dipolar property is supposed to

reside in the H2O molecules, a hypothesis that was first suggested by
Valasek. Kurchatov shows that the electric interaction between dipoles

causes an internal field of sufficient magnitude to account for spontaneous

polarization below a critical temperature, without the need of invoking

anything corresponding to the exchange forces, as was the case with

ferromagnetism.
The Kurchatov theory predicts a critical temperature (the upper

Curie point) at which the dielectric susceptibility 7711 parallel to the

X-axis has an infinite value and below which the crystal is in a state of

spontaneous polarization. In order to account for the lower Curie

point it postulates a "
reciprocal action

" between dipoles which leads

to the formation of mutually neutralizing chains, so that the number of

dipoles effective in producing a spontaneous polarization decreases with

decreasing temperature. The fact that most dipolar crystals fail to

exhibit Seignette properties is explained on the supposition that in

them the reciprocal action is so strong as to prevent orientation by an

external field.

It is noteworthy that this theory postulates separately polarized

domains analogous to those in iron, but erroneously supposed to be, just

as in iron, of submicroscopic size. Those peculiarities which have come
to be recognized as due to a large-scale domain structure were attributed

by Kurchatov to imperfections in the crystal. To Rochelle salt and

those crystals isomorphic with it that possess similar electric properties,

Kurchatov applied the term "Seignette-electrics."

446. Fowler's Theory. The route followed by R. H. Fowler1818' 142 in

arriving at an expression for the dielectric constant as a function of

temperature is that of "cooperative states/' a concept similar to the

"cooperative phenomena" introduced by Zwicky and which, though
without precise formulation, enters into Kurchatov's theory of Rochelle

salt. According to Fowler's theory there exist, for each dipole of a

Rochelle-salt crystal, certain preferred positions, owing to the effect

of neighboring dipoles. The energy of each dipole is a function of the

amount of rotation present. The dipoles are subject to a restraining

field that becomes more effective as the temperature decreases. This is
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closely similar to Kurchatov's hypothesis of a decrease in the effective

number of dipoles.

The dipoles are assumed to be the molecules of the water of crystalliza-

tion. Above the upper Curie point there is complete disorder and no

spontaneous internal field. Between the Curie points a certain portion
of the dipoles form groups or filaments, their polarities oriented in

either the positive or the negative direction of the X-axis. This is the

cooperative state, giving rise to a field that prevails throughout an

entire domain. Whichever orientation prevails determines the spon-
taneous polarization, the value of which depends on the temperature.
Below the lower Curie point the dipoles become "frozen" in small local

groups with external fields so weak that spontaneous polarization dis-

appears. Cooperation is here replaced by association.

The internal field constant y is assumed by Fowler to have different

values parallel and perpendicular to the X-axis of the crystal. In the

region of spontaneous polarization the energy of interaction between

dipoles is found (in agreement with Kurchatov) to be of the right magni-
tude to account for the large internal field. An expression is derived for

the dielectric constant, which, on substitution of suitable trial values for

certain parameters that cannot be quantitatively determined from

theory, gives a dependence on temperature over a range extending

beyond both Curie points that agrees at least qualitatively with experi-

ment. It predicts, in agreement with Kurchatov's theory, infinite

permittivity at the two Curie points. Fowler considers the rotation of

dipoles in Rochelle salt as a special case of the large group of recently

discovered oscillation-rotation transitions in various solids, for example
in halogen hydrides and ammonium salts.

The theories of Kurchatov and of Fowler, interpreting the state of

spontaneous polarization as one stage in the progressive transition from

complete disorder at high temperatures toward complete order as the

temperature is diminished, may still play an important part in the

theory of the Seignette-electrics. Their greatest defect is the failure

to take account of the deformation of the lattice in an electric field;

i.e., they ignore the effect of the piezoelectric property on the dielectric

constant, which was pointed out by Cady, 100 and later developed very

fully by Mueller in a series of papers that will presently be discussed.*

447. Mueller's Theory. The chief observational materials out of

which a theory of Rochelle salt is to be built are the following:

1. Normal dielectric and piezoelectric properties for fields per-

pendicular to the X-axis, at all temperatures.

* Critical comparisons of the various theories of Rochelle salt are found in Mueller's

papers.
876- 878- 884
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The following phenomena are confined to fields and polarizations

in the X-direction :

2. For fields of certain strengths parallel to the X-axis, the dielectric

susceptibility v\x and the piezoelectric constant d\\ rise to enormously

high values over a certain temperature range. Their behavior is normal

at temperatures well outside of this range.

3. Within this temperature range the dielectric polarization, as

well as the direct and converse piezoelectric effects, shows saturation

and hysteresis.

4. There is a time lag in the response to electric or mechanical

stress, together with certain effects dependent on the previous history

of the crystal.

5. The existence of a spontaneous polarization P parallel to X,

accompanied by a spontaneous strain yz ,
between two well-defined

temperatures, the lower and upper Curie points, 6t and tt . Maxima
in P and y* are found at about 5C.

6. Between the Curie points the strain xx is proportional to the

square of the polarization Px .

7. Linear relations exist outside the Curie points and over small

ranges between these points, between temperature and the dielectric,

piezoelectric, and elastic constants (the Curie-Weiss laws).

8. For small fields and stresses the susceptibility tf of the free

crystal, the piezoelectric constant d\^ and the isagric elastic compliance

sf4 ,
tend toward infinite values at the Curie points, with minima at

about 5C. Also, the ratio dn/V is nearly constant.

9. The compliance coefficient s44 of an isolated crystal (199) is very

nearly independent of temperature.

10. Between the Curie points anomalous optical effects are observed.

11. Rochelle salt consists normally of domains some millimeters in

extent, characterized by opposite spontaneous polarizations (always

along the X-axis) in adjacent domains. Related to this is the unipolarity

sometimes observed, especially in small plates.

Most of the properties of Rochelle salt as in the analogous case

of iron are characteristic of the single domain, although some require

the assumption of adjacent domains of opposing polarities for their

explanation.

Many details of considerable importance have been omitted in the

list above. Among other phenomena to be considered in the theoretical

treatment are the properties of clamped crystals, the possible change
in specific heat at the Curie points, the effect of hydrostatic pressure on

the Curie points, and the modification of Rochelle salt by isomorphic

mixtures and by heavy water.

The earlier theories of the anomalous electric behavior of Rochelle
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salt proceeded from the ferromagnetic analogy and attributed the

anomalies to the rotation of free dipoles. From this concept grew the

first theory of Mueller,
376 which related the dielectric and piezoelectric

effects to the strong internal field accompanying the dipoles, although
the dipole moments and rotations were not explicitly introduced. In

this form the theory was in excellent agreement with observations

outside the Curie points but was not adapted to a quantitative description

of effects between these points.

As Mueller pointed out in his second paper,
378 there is no conclusive

evidence of the existence of freely rotating dipoles in Rochelle salt.

As will be seen in Chap. XXXI, the X-ray analysis of Beevers and

Hughes suggests the presence of strain-sensitive bonds that may have

dipole moments in terms of which the anomalies of Rochelle salt can

be explained. We return to a consideration of dipoles in Chap. XXVI.
448. In his later papers Mueller disregarded the internal field, finding

that a satisfactory description of essential phenomena over the entire

temperature range could be derived from the following hypotheses:
1. Piezoelectric stresses are proportional to the polarization rather

than to the field.

2. The electric field strength E is not linear in the polarization P.

As a first-order approximation to the non-linearity he introduces a

term in P 3
.

3. For the anomalous behavior of Rochelle salt the dielectric proper-

ties of the unstrained (clamped) crystal are held chiefly responsible.

In terms of these properties alone, without invoking any abnormalities in

the "true" piezoelectric and elastic coefficients, the peculiar dielectric,

elastic, and piezoelectric behavior of the free crystal, including the

existence of two Curie points and the spontaneous polarization between

these points, finds an explanation. The most fundamentally important
critical temperature is that in the neighborhood of 5C, at which tempera-
ture maxima or minima occur in the spontaneous polarization, spon-

taneous deformation, clamped and free susceptibilities, piezoelectric

constant du, and elastic compliance sf4 ;
the optical properties also undergo

a change at this temperature.
This "interaction" theory of Mueller's is more strictly phenomeno-

logical than his earlier one. Although he suggests possible theoretical

explanations,
380 his equations are empirical, based on his own observa-

tions and those of others. The effects of temperature are expressed in

terms of experimentally verified linear relations between the various

physical constants and temperature, relations that in the last analysis

can be traced to the dependence of the clamped dielectric susceptibility

upon temperature. This dependence is of the same form as the Curie-

Weiss law in magnetism and strongly suggests an analogous origin.
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The germs of the interaction theory, already present in Mueller's

first paper (1935), were gradually developed in his papers II, III, and
IV (1940) and extended so as to include a quantitative treatment of

phenomena between the Curie points.

449. We now undertake a unified presentation of the interaction

theory, assembling first the fundamental equations.

Mueller's treatment is expressed in terms of the polarization theory

of piezoelectricity, which has already been developed in Chap. XI. The

present treatment involves the further assumption that the observed

relation between polarization P and field strength E requires the

addition to the energy functions J and f of a term inP 4
,
which contains a

new saturation coefficient B. There is, moreover, the assumption of a

quadratic piezoelectric effect between the Curie points, originating in

the monoclinic character of Rochelle salt in this region. Since this

effect is dependent on the spontaneous strain, it is not conveniently

expressed in the energy equations but will be considered in 464.

The Curie points are defined as the temperatures between which

there are a spontaneous polarization P and a spontaneous strain yj.

This interval is the Seignette-electric region, in which the free crystal

takes on monoclinic properties.

The theoretical development that is to follow will perhaps be better

understood if at this point we indicate the manner in which the experi-

mental data are used to test the theory. In all cases the electric fields

and polarizations are parallel to the X-axis, and the observations extend

over a wide range of temperatures. First, and most essential, are the

observations of the initial susceptibility rjJ of the free crystal and the

dependence of susceptibility on field strength, from which the saturation

constant B is derived. Beyond this are observations of P (from hys-
teresis loops and also from pyroelcctric measurements), of y

Q
z ,

and of

the compliances sf4 and s 4 from resonating bars. From these data are

derived the piezoelectric constants du, eu, OH, and &i 4 ,
as well as a theoreti-

cal expression for the saturation coefficient B. In particular, the

clamped dielectric stiffness xi is derived from 17', a\i, and 6 14 ; thereby
Mueller's assertion that xi sinks to a very low minimum in the neighbor-

hood of 5C can be tested.

In his theory, Mueller reverses the experimental sequence indicated

above, gives a theoretical reason for the extraordina-ry variation of the

clamped dielectric constant with temperature, and shows that the

spontaneous polarization and all other anomalies are a necessary con-

sequence of this variation. That is, the clamped dielectric constant,

deprived of all piezoelectric characteristics, turns out to be the culprit

responsible for the abnormal behavior of Seignette-electric crystals

(but c/. 468).
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460. Definitions. Before entering upon the theory, it is necessary to

supplement by the following special definitions the explanation given

in 194 of the various symbols in Eqs. (243) to (245a). We consider first

the dielectric stiffness coefficients x" and x' With normal piezoelectric

crystals these are independent of strain and of stress, respectively, and

also independent of the field strength E. In Rochelle salt, x" is a

function of the strain, x' a function of the stress, and both depend on

temperature (their dependence on field is taken
care^

of by the terms in

B). The treatment is simplified by defining if'
= 1/x" as the sus-

ceptibility of a clamped crystal at zero strain instead of merely at con-

stant strain; we shall use the special symbols tji
= 1/xi for the initial

susceptibility at zero rhombic strain (see the discussion of rhombic

clamping below). For a free crystal (zero stress) outside the Curie

points, V = 1/x' is the initial susceptibility; in the Seignette-electric

region, as indicated below, we write r?'
=

1/xi- I*1 the energy equations

(243) and (243a) the dielectric terms therefore represent the electrical

energy at zero strain and zero stress, respectively. The effects of

strain and stress on the energy are to be regarded as contained in the

piezoelectric terms.

As to the strains, unless it is otherwise stated, we shall let yz signify

the strain as for a rhombic* crystal, at all temperatures. The reason for

mentioning only yz is that the theory is concerned only with fields Ex

parallel to X, and for this direction the only piezoelectric constant for

Rochelle salt outside the Curie points is d\^ so that yz is the only strain

associated with Ex . It is true that in the monoclinic phase there are

three more piezoelectric constants associated with Ex \
but they are

relatively small, and their possible effect on the behavior of the crystal

is postponed to 464. Between the Curie points, where the crystal is

properly regarded as monoclinic, yz would normally be the strain with

respect to the monoclinic configuration, which is not the same as the

rhombic configuration, owing to the presence of the spontaneous strain

yz . When the crystal is so clamped that the rhombic strain is zero,

i.e.j so that the crystallographic 6- and c-faces are at right angles, we
shall use the term rhombic clamping. At temperatures outside the Curie

points this means that the crystal is clamped while in its unstressed

state. Between the Curie points, where the b- and c-faces in the absence

of stress are at an angle differing from 90 by yj, rhombic clamping

implies a stress system such that, starting with the crystal free at the

given temperature, these faces are constrained to be at 90.
On the other hand, it is sometimes desirable to conceive of the

*The alternative term "orthorhombic" would be especially appropriate here,

since it implies that the crystallographic a-, &-, and c-axes are mutually perpendicular,
as stated in 5.
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crystal as clamped, at a given temperature between the Curie points,

while in the monoclinic state, with the spontaneous strain present and
not neutralized by the clamping stress. This type of clamping will be

called monoclinic clamping; the corresponding susceptibility will be

denoted by 17" = 1/x" (456).
In general the clamping, whether rhombic or monoclinic, is to be

regarded as complete, in the sense that the infinitely rigid clamping
device is so attached to the crystal as to prohibit all components of

strain when an electric field is applied.*

In conformity with the foregoing statements we shall follow Mueller

and write the basic equations as if Rochelle salt were rhombic at all

temperatures. Between the Curie points this assumption involves letting

P, in some of the terms, include the spontaneous polarization P;
yz then signifies the strain measured from the state of rhombic clamping,

i.e., with the 6- and c-faces mutually perpendicular; for x" we use xi as

defined above, and x', as will be seen, assumes the special value xi> where

the subscript indicates the value between the Curie points (the Seignette

region).f This procedure is the more permissible because the monoclinic

piezoelectric coefficients that are not present in the rhombic state of

the crystal are very small. We shall refer to this method of describing

the phenomena in Rochelle salt as the rhombic method. As will be

seen, it offers the advantage of presenting a unified treatment, valid at

all temperatures. Its chief usefulness will be in the development of

Mueller's theory in the present chapter. When it is applied to the

treatment of practical problems at temperatures between the Curie

points, there is a certain awkwardness in having to regard the strain

as zero only when the crystal is under stress, and vice versa. As long
as the field is small, so that all relations are linear, such problems are

better dealt with by the normal method, which is described in 458.

The concept of rhombic clamping employed in the present chapter
defines a sort of dielectric ground state for the crystal, which, though
not experimentally realizable, is, according to the theory, the state in

which the crystal possesses its fundamental susceptibility, free from

piezoelectric influence.

451. Energy equations like (243) and (243a), specialized for Rochelle

salt, for fields in the .X-direction, are given below. The subscript x

* In his earlier papers, Mueller regards the clamped state as that in which only y
is suppressed; this might be called partial rhombic clamping. In his fourth paper,

381

he recognizes the distinction between this type of clamping and the complete rhombic

clamping defined above. Outside the Curie points the distinction vanishes; in the

monoclinic phase, the distinction is small enough to be ignored in formulating the

basic equations.

f This subscript s must not be confused with the subscript ds denned in 430 to

indicate the differential permittivity at saturation.
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will be omitted in the case of symbols denoting electrical quantities.

In accordance with the statement in 449, each equation is now to

include a term in P 4
. This term suffices to account qualitatively for

the non-linear relations observed in Rochelle salt and yields expressions

which, except for the complications introduced by the multi-domain

structure in the Seignette-electric region, agree fairly well with experi-

ment up to moderately large fields of perhaps 200 volts/cm. In order

to describe the observed flatness of the saturation portion of the polariza-

tion curve in larger fields a different theoretical function would be

necessary. One might, for example, write /i(P) in place of BP* in Eqs.

(491) and (491a), and/(P) = dfi(P)/dP in place of P 3 in (492a), (492c),

and succeeding equations. The form of /(P) would have to be deter-

mined experimentally.

The equations assume different forms according to whether the rhom-

bic method or the normal method is followed. Outside the Seignette-

electric range the two methods are identical. Under each method yx

represents the strain, with the understanding that in the rhombic method
it is measured from the configuration of rhombic clamping, while in

the normal method it is measured from the configuration of the unstressed

crystal in zero field at the temperature in question.

From all that has been said it should be clear that the rhombic method,

to which most attention will be given, treats Rochelle salt as if it were

a rhombic crystal at all temperatures, while the normal method recognizes

the configuration of the free crystal between the Curie points as being
monoclinic. Each method pays due regard to spontaneous polarization

and spontaneous strain, but in a different way. Methods analogous
to these may prove to be useful in the case of other Seignette-electric

crystals.

With Rochelle salt between the Curie points one ought strictly to

include in the term for piezoelectric energy the piezoelectric constants

mentioned above that are theoretically present in monoclinic hemi-

morphic crystals, but not in crystals of the rhombic sphenoidal class

to which Rochelle salt belongs in the parelectric regions. In a first-

order discussion such terms may be disregarded as of small magnitude;
a special treatment of them will be found in 464.

Throughout this chapter the theory will be concerned mainly with

the ideal single-domain crystal. Outside the Curie points there are

no domains, and theory accords well with observation. The interactions

between domains are so little understood that it is not feasible to intro-

duce them in the basic theory. One must therefore be prepared to

use the theory, insofar as it is applied to the Seignette-electric region,

rather as a qualitative than a quantitative description of phenomena.

Nevertheless, as will be seen, certain quantitative deductions can be
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made, and the theory serves as a basis for the later discussion of actual

multi-domain crystals.

462. Basic Equations for Rochelle Salt, Field Parallel to X. In the

elastic term of the equation for the free energy in terms of strains, which
is to be derived from Eq. (243), 192, with the addition of a term in P 4

,

the strain must be expressed as (yg y%). This is because part of the

energy is due to the mechanical constraint needed to bring the crystal

initially to the rhombically clamped state. Since when yg
= the

clamping neutralizes P, the latter quantity does not appear in the expres-

sion for polarization, but only PE
,
the polarization due to the impressed

field E when yz
= 0.* One thus obtains

. (491)

The free energy in terms of stresses assumes the crystal mechanically

free except for the externally applied yz . The dielectric energy, expressed

by the second and third terms in Eq. (491a), is due to the polarization

P when Yz
=

0, and this polarization now includes P, since P is no

longer suppressed by clamping, so that P = PB + P.
We thus obtain, by specializing Eq. (243a) for the present case and

adding the term in P 4
,

f = W^ + ix'P
2 + *BP4 - &uPF. (491a)

The derivatives of Eqs. (491) and (491a) are

(492)

+ alty.
= (N)" (492a)

41-
= S F ~ 6ltP " -V' (4926)

OI z

t = x'P + P 3 - buY. = (E)' (492c)

These four equations are similar to Eqs. (244) to (245a), specialized

for Rochelle salt. The symbols (E)" and (E)
1
are discussed below.

Attention is called first to Eq. (4926), which expresses the strain due

to the combined effects of a mechanical stress and an electric polarization.

If there is no electric field, P = P; and if also Yt
=

0, we find

y* = 6 14P s yl

y\ is the spontaneous strain, measured from the configuration of rhombic

*
Owing to the non-linearity expressed by the term in PE\ we cannot define Ptt

as the polarization due to E at constant strain. Ps has a definite meaning only

when y,
- 0,
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clamping. This part of the total strain is still present when Yz and E
are impressed, so that ys is the total strain measured from the rhombically

clamped state, just as in Eqs. (492) and (492a).

Equation (492) can be simplified by the substitution of 614? for'yj.

Also in (492) we can write the externally applied stress Y in place of

(Yz) by changing the sign of auP*, according to Eq. (246).

It is to be noted also, since PE
is the polarization when yz = 0, that

in Eq. (492a) E can be written in place of xiPE + BPE\ The term

any* is equivalent to a field, and yz causes a further contribution to the

polarization, which in Voigt's terminology would be P = euyz . We
shall callPt the sum ofPB and this contribution. Similarly, in Eq. (492c)

we shall call Pt the total polarization due to E, P, and Yz .

Equations (492) to (492c) then assume final form as the basic equations

that will be used in further developments:

- Yz cl,yz
- au(P + PE

) (493)

(E)" = xiPE + BPE ' + a>uV*
= E + auy, = xft + BP? (493a)

-yz = s&Y.-bif "(4936)

(EY = x'P + BP* - *>uYz
= E - buYz

= x'Pt + BP\ (493c)

Some of the foregoing expressions, without the non-linear terms,

have been anticipated in Eqs. (252) to (255a). The nature of the

quantities (E)" and (E}' has been explained in 194. That (E)", for

example, is not the actual field in the crystal can be seen from the fact

that the strain yz produces primarily a polarization. If yz gives rise to

a field, the latter depends on boundary conditions. The term auyz in

Eq. (493a) is not a constituent of the actual field E, but when added to

E it gives the equivalent field (E)". The total polarization Pt ,
which

includes the contribution due to yz ,
is expressed in terms of (E)". Similar

remarks apply to the equivalent field (E)' in Eq. (493c) when the crystal

is free and the stress is prescribed.

In further interpretation of these equations, it may be stated that

in Eq. (493), when y,
= and E =

0, Yz = a^ Q
is the clamping stress

needed to bring the crystal to the state of rhombic clamping. When
Y =

0, the crystal is free, and cp^yz = ai4(P + PE
Y, if there is no

external field, c^yz
= ai4P . Hence from Eq. (4956) it follows that

This yz is the spontaneous strain y% so that we may write

(494)

This relation also follows directly from Eq. (4936). In fact, since from

Eq. (4956) ai4sJ4
= 6 i4 ,

and furthermore c?4 = l/s 4 ,
it follows that

Eq. (4936) is only another way of writing (493). For the numerical

value of y* see 482.

In Eq. (493a) the equivalent field (E)" is the sum of the actual field E
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and that which would produce in a rhombically clamped crystal a

polarization equal to the polarization due to the prescribed yt. A curve

relating P to (E)" has, depending on the temperature, a form like curve
c or e in Fig. 138.

Similarly, (E)' in Eq. (493c) is the sum of E and the field that would

produce in a free crystal a polarization equal to that due to the prescribed
Yg . A curve relating Pt to (E)

1 would look like curve a, 6, or d in Fig.

138.

In Eq. (4936), yz is the strain due to the combined action of the

external stress Yg and of P = P + PE
,
where PB

is the contribution to

the polarization caused by the applied field E when Yz = 0. When
Yz

= and E =
0, yz

= 614^, as we have seen in Eq. (494). When
y* = (rhombic clamping), the clamping stress is

Yz
= bnP/s^

In Eqs. (493a) and (193c), when Pt
=

0, (E) = 0. In the case of

the rhombically clamped crystal (yz
= 0) it follows from (493a) that

then E = 0. If y has some arbitrary value, E is the applied field

necessary to make P t
= 0. Similarly in (493c), if Pt

= and Yz is

prescribed, E is again the applied field necessary to make Pt
= 0.

From Eqs. (204) and (242), and (ix) to (xii) in Table XX, one finds

for Rochelle salt

&H = a14s?4 (495)

(495a)

(495c)

au , eia , = (495.)

614 - dM' - (495e)

In these equations the symbols du, eu, t?'
= 1/x' and r?"

= 1/x"
are written in the form that we have adopted for piezoelectric crystals

in general. They represent here initial values, valid only with small

stresses and weak fields. Where it is necessary in order to avoid ambi-

guity the subscript will be attached to these symbols.

With Rochelle salt, owing to the presence of spontaneous polarization

and of non-linearity between the Curie points, the expressions containing

the symbols mentioned above assume a form different from that in the

parelectric regions. In such cases the subscript or superscript s will

be used to designate the Seignette-electric region. Where there is no

ambiguity the indices s and may be omitted.

In the parelectric regions, in conformity with 450, we shall write
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7?1
BS l/Xl in place of i?"

= l/x"> while still retaining if and x'- As will

be seen in 454 x' and t\' do not correspond to observable quantities

between the Curie points.

Equations (495) to (495e) are perfectly general. They are applicable

equally to the rhombic or to the normal method.

463. Application of the Interaction Theory. In the remainder of this

chapter the equations will be written according to the rhombic method,

in which the strain is measured from the condition of rhombic clamping.

The basic equations are (493) to (495e).

The first application to be made of the basic equations is in expressing

x' in terms of xi outside the Curie points.

If Eq. (4936) is applied to an unstressed crystal, Yz
= and yz = buP,

where P is due to E alone. Since in Eq. (493a) yz is arbitrary, we may
substitute feiJP for it and find, since P is now the total polarization Ptf

E + aubuP = XiP + BP\ whence E = (xi
- aubu)P + BP\ P is

the polarization due to E in the free crystal, and the last equation is

equivalent to (493c) when Yz
= 0. Thus we have

E (xi
- aubu)P + BP* - x'P + BP* (496)

where

X' = Xi
~ ai4&u (496a)

The equivalence of the last equation to Eq. (264) in 204 will be

made clear in 461. It is important to note that, since ai4 and bu

are nearly independent of temperature, x' and xi differ by a nearly

constant amount, as is shown in Fig. 145.

In Fig. 138,* curve d represents Eq. (496) for a free crystal, and

curve e is from Eq. (493a) for a clamped crystal with ym = 0, both at

31.5C. From Eq. (496) it is seen that the values of E for these curves

differ by the amount aubuP. For example, at P = 400, the distance

KH represents au&iiP.

We are now prepared to begin the consideration of the variation

of the properties of Rochelle salt with temperature. The interrelation-

ships expressed in Eqs. (493) to (495e) are such that, when the tempera-

ture dependence of any one of the four parameters xi> x'> 44> r du is

established, the dependence of the rest follows. This subject is treated

further in 468 and 472. For the present we shall abide by Mueller's

hypothesis that the seat of the anomalies lies in the rhombically clamped

dielectric susceptibility 171
= 1/xi- The observed dielectric constant

of the free crystal varies with temperature in the manner shown in

Fig. 147 or Fig. 143; V and x' are related by k' = 1 + Wx'- By

*
Figures 138 and 139 are for a single-domain crystal. Multi-domain crystals

are treated in 479.
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means of Eq. (496a) %i can be found at any temperature when x' is

known.

The hypothesis concerning xi involves the assumption that the

structure of Rochelle salt is such that xi depends on temperature accord-

ing to the upper curve in Fig. 143, and in particular that it diminishes

1

800

Fia. 138. Theoretical polarization curves for Rochelle salt. Curve a, at 15, crystal

free; curve b, at the upper Curie point, crystal free; curve c, at 15, crystal clamped; curve d,

at 31.5, crystal free; curve e, at 31.5, crystal clamped.

as the Seignette-electric region is approached from either direction, with

a finite value at each Curie point. From Eq. (496a) it is seen that

x' = 0, and hence k' = >
>
when xi = flu&u. In the Seignette-electric

region xi < ttu&u.

In Fig. 138 we have plotted, approximately to scale, curves showing

the relation between polarization P and applied field E for free and

clamped crystals,* at two different temperatures. In curve e, above

the upper Curie point, the initial slope OE at the origin gives in = I/XL

* The curves in Fig. 138 are drawn to scale from Mason's observations as sum-

marized in Table 2 of Mueller's second paper
378 and illustrated in Figs. 145 and 146.

For curve d the temperature 31.5C was chosen because at that temperature the

Initial x' of tne free crystal happens to have the same value, 0.05, as the initial \t

(450) at 15, as shown in curve a. The lines O'A and OD are therefore parallel.

All curves were plotted on the assumption that B has the value 6.5 (10~
8
); the true
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At higher temperatures the slope decreases; in general, outside the

Curie points the effect of the J5-term in Eq. (496) or (493a) is very small

at all attainable field strengths. As the temperature decreases, with a

corresponding decrease in xi> the slope increases, until at 15C it is

represented by the line OC. At 5C the slope would reach its maximum
value (469). The polarization curve for the clamped crystal at 15,

representing Eq. (493a) with yg
=

0, is curve c.

This change with temperature of the curve for the clamped crystal

is accompanied by a similar change in the curve for the free crystal.

Thus at the Curie point, where xi = Oi4&i4, we see that x' = 0, and from

Eq. (496) it is seen that the curve for the free crystal coincides with

curve 6, which represents BP 3
. This curve has an infinite slope at the

origin, indicating that dP/dE > oo as E > 0. The infinite dielectric

constant of the free crystal at the Curie point M is thus accounted for

(similar reasoning leads to a like conclusion at 0*); at the same time it

becomes clear that very large observed values at the Curie points are

to be expected only when E is very small.

464. A curious state of affairs is encountered when xi in Eq. (496)

becomes less than aubu, i.e., when x' is negative and the temperature

passes below tt . The curve for the free crystal, which is already tangent
to the axis of ordinates at 6U , becomes, so to speak, pushed still farther

to the left, with a bulge in the negative direction starting at the origin.

Close to the Curie point this negative segment is small, with a large

negative initial slope. With decreasing temperature the negative slope

(1/x') diminishes and the height of the negative segment increases, until

at 15C curve a is reached. The maximum height would be found at a

temperature around 5C.

Obviously, x' cannot be the reciprocal susceptibility of a free crystal

between the Curie points, for it implies a positive polarization produced

by a negative field. The theory is saved from disaster by the fact

that at 0' the curve returns to the positive side of the ordinate axis.

At 0' there is present in the crystal a polarization, although the impressed
field is zero. We are thus led by the fundamental equations to the

concept of a spontaneous polarization in Rochelle salt between the Curie

points. We may conclude further that any crystal having a clamped

reciprocal susceptibility xi that becomes equal to aiJ)u (or its equivalent
for the class to which the crystal belongs) at a definite temperature
must have a Curie point with infinite susceptibility for the free crystal

at this temperature, together with a spontaneous polarization when

Xi is less than a^bu. The quantity xi itself can be of quite normal

value at temperatures above U is probably greater than this. The equation for

curves a, 6, and d is (496) with appropriate values of x'. For curves c and e we set

y, and Pt
- P in Eq. (493a), with xx = 0.030 and 0.094, respectively.
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magnitude. It is the condition xi < 014614 that accounts for all the

abnormalities.

In terms of xi the spontaneous polarization P is found by setting
E = in Eq. (496), whence

BP* = -x' = -
Xi (497)

Outside the Curie points, P in this equation becomes imaginary and
there is no spontaneous polarization. The curve for P as a function

FIQ. 139. Qualitative curves illustrating the theoretical dependence of P on E for a
free single-domain Rochelle-salt crystal at different temperatures. Curve a is for 5, a'

for 22, b for the Curie point 0, c for 26, d for 31.5, and e for 40C.

of temperature is shown in Fig. 147. It rises rapidly from the Curie

points to a flat maximum at about 5C; the value shown at the maximum
is Mueller's "observed" value of 740 esu, from his third paper.

380
Using

this value in Eq. (497), together with 5, au ,
and 614 = ai^ from the

same paper, one finds, at 5, xi 0.037. This quantity is appreciably

greater than the hypothetical value at 5 in Fig. 143, but the margin of

uncertainty in both theory and observation is considerable.

In Fig. 138, only positive values of polarization are shown. The

complete graph for Eq. (496) [same as (493c) with F = 0] is shown in
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Fig. 139, in which curve a is for 5C, with maximumP = 00f
. Curves

a', 6, and c correspond to temperatures around 22, Bu (approximately

24), and 26; curves d and e are for 31.5 and 40. Considering first

curve a, we see that if the crystal consists of a single domain with P
positive the total polarization when E = is P. As E increases in

the positive direction, the portion O'C of the curve is traversed, and

the observed polarization Ps
is the ordinate measured from an axis of

abscissas through 0'. The equation relating Ps to E is obtained by

substituting in Eq. (496) P = Ps + P. Then, witlTorigin at 0, we have

E X'(P
E + P) + B(PS + P) 3

(498)

Equation (498) is the form assumed by (493c) when Yz
= 0.

When P =
0, (498) is the polarization: field equation for tempera-

tures in the parelectric regions, and x' is the actual reciprocal initial

susceptibility. In the Seignette-electric region, where x' is negative, the

observable initial susceptibility (450) if,
= 1/xi (slope of curve a,

Fig. 138, at 0') is found by taking the derivative of E with respect to

PE and then setting PE = 0:

x',
= X' + 3J5P

' = xi
-

ai4&i4 + 3P a

or)- 2(a 146i4
~

xi) - -2X' = -~ = 2P<* (499)
C44

The last expression is Eq. (lie) or (17) in Mueller's paper III; Du
is defined in Eq. (522a).

On substituting x!/2 for x' in Eq. (498), we find, for the Seignette-

electric region,

E = -
ixS(P* + P) + B(P* + P)'

= xiP* + 3J3P*'P + BP*'
= J3(2P'P* + 3PP^8 + P^ 8

) (500)

This equation gives the relation between PB and E according to the

normal method described in 458.

P is the spontaneous polarization at the given temperature; it may
have either of the two values (x'8/2B)* given by Eq. (499).

Equation (500) gives the theoretically observed PE for any E, with

origin at 0' in Fig. 138 or 139, for a single-domain crystal polarized
in the positive direction 00'.

In the last part of (500), the substitution of 2jRP 2
for xi follows from

Eq. (499). The same substitution may also be made in the equations
that are to follow. In this manner the quantity on the left-hand side

of the equation is represented in terms of P as the only parameter that

varies materially with temperature. The variation of P with tempera-
ture is fairly well known, as shown by Fig. 147 and Eq. (526). It must
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still be remembered, however, that the equations in the present sections

apply to the idealized single-domain crystal, with hysteresis loops of the

form represented by M'NN'M in Fig. 139, in which the coercive field is

far in excess of the Ec found in practice.

If the spontaneous polarization P is negative, then for curve a,

Fig. 139, the origin is to be taken at 0( instead of at 0', and in Eq. (500)

the negative sign is to be attached to P. The form of the hysteresis

loop is the same whether P is + or ;
the only difference is in the

position of the origin of coordinates. This statement remains sub-

stantially true also when, as is practically always the case, the crystal

has a multi-domain structure (see 479).

The over-all susceptibility (i/J of the free crystal (430), which is the

ratio PB/E for any given value of E, is found from Eq. (500) :

= xl + BP** + WP*P (501)

This susceptibility is the one derived directly from observations with a

ballistic galvanometer.
The slope at any point on the P : E curve is the differential susceptibil-

ity (ri[) d ;
from Eq. (498) it is given by

xi)<
- = x' + 3(P* + P)* (501a)-

The observed differential permittivity discussed in 436 would, accord-

ing to the present theory, be equal to 1 + 47r(r/,) rf .

456. If the field strength E applied to a single-domain crystal is

increased from zero in the negative direction from 0' in Fig. 139, a point

of instability is reached at M. The spontaneous polarization P is here

abruptly reversed by the field, the observed polarization jumps from

M to M', continuing along M'G' as E becomes more negative. On the

return trip the path C'M'NN'C is followed. This process should be

compared with the magnetic analogy described in 555. Along the

paths MM* and NN', xi becomes theoretically infinite.

We thus find a theoretical explanation of the dielectric hysteresis

in Rochelle salt. According to the theory outlined here, the coercive

field Ec (= OR' or OR, for points M and N in Fig. 139) is found from

the value of the polarization at M or N, for which dE/dP = 0. Thus

from Eqs. (496) and (497) it follows that, at M, PM = P /\/3 = 0.577P .

Then on substituting this value for P in Eq. (496) one finds

Ec
= --^BP = -0.385&P '

(502)
3 \/3

This theoretical value of the coercive field is many times greater
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than that which is actually observed. The explanation, which lies

in the ease of reversal of domains, is treated in 479, where the theoretical

and experimental hysteresis loops will be compared in greater detail.

For the present it suffices to point out the following features of Figs. 138

and 139: (1) Since the data for Fig. 138 at 15C were based on observa-

tions of susceptibility of a free crystal at weak fields (453 and Fig. 145),

the slope O'A of curve a at 0' may be taken as representative of the

values to be expected with weak direct or 1-f alternating fields up to about

10 volts/cm. (2) Even with fields as high as 10 esu = 3,000 volts/cm,

the polarization does not rise much beyond P. (3) Insofar as Eq. (496)

is applicable to very strong fields, it indicates that complete saturation,

if it exists at all, cannot be expected until the polarization has reached a

value several times greater than P.

Figure 139 illustrates the gradual diminution in P and Ec from

maximum values at 5 to zero at the Curie point 6U (see also Fig. 147).

Above the temperature 6U , polarizations are measured from a horizontal

axis through the origin at 0. In the Seignette-electric region the origin

is displaced vertically by an amount equal to P; for example, if P
happens to be negative, the origin is at 0( for 5 and at 0" for 22C.
At Ott , x' = 0, so that the equation for curve b is simply E = BP*.

Above U there is no hysteresis. With increasing temperature x'

increases (cf. Fig. 145), the term BP Z becomes less and less important,

and the curves become approximately straight lines, as is shown by the

line e in Fig. 139. In practice, the relation between P and E is found

to be linear, for all attainable values of J57, from about 32 on.

Figure 139 explains qualitatively a peculiarity noted in Fig. 128

and elsewhere, that while with weak fields the susceptibility

approaches infinity at 0, with relatively low values on either side of

0-u, still when E is large the over-all value P/E (for the same E} rises

continuously from low values in the parelectric regions to high values

between the Curie points.

For a discussion of hysteresis in multi-domain crystals see 479.

466. The Clamped Crystal between the Curie Points. Rhombic clamp-

ing is always to be understood in this chapter unless monoclinic clamping
is specifically mentioned. In Fig. 138 we have already seen P:E curves

for the clamped crystal at 31.5 and 15C. Since according to the

polarization theory, as expressed in Eqs. (493o) and (493c), the expres-

sions for the polarization curves for a clamped crystal (yz
= 0) differ

from those for a free crystal (Yz
=

0) only in the initial slope (xi and

x', respectively), it is clear that the curves in Fig. 139 may also be used



456] THEORY OF ROCHELLE SALT, PART I 599

to illustrate qualitatively the P:E relation for clamped crystals. The

straight line e then gives this relation in the neighborhood of +35 and

-30C; curve d is representative for +30 and -25C; curve c for +28
and 20C. There is no peculiarity at either Curie point (see the curve

for xi in Fig. 143), but between +28 and 20 the curves lie between

c and 5, coming closest to b at about 5C, where xi is a minimum. Below

30 and above +35 the curves are linear, lying between e and the

2?-axis. Curves a and a' in Fig. 139 are for a free crystal and have no

place in the present discussion.

Since with rhombic clamping the spontaneous polarization P is sup-

pressed (459), the quantity P in Eq. (493a) is the polarization due to the

field E alone. On setting yz
= in (493a) we have, therefore, for the

rhombically clamped crystal at any temperature,

E = XiP + BP* (503)

Between the Curie points the concept of monoclinic clamping has

both theoretical and practical significance. The configuration of the

crystal under monoclinic clamping at any temperature is given by the

spontaneous strain yl, measured from the configuration at rhombic

clamping as zero: yg
= 6uP. A second relation between y and P is

found by setting E = in Eq. (493a) and writing P for Pt :

(504)

This equation is illustrated graphically in Fig. 138, in which curve c

may be taken as typical for a clamped crystal between the Curie points.

The ordinate is now P, the abscissa is (E)y = auy, and the point is

0".

Just as is the origin for the P:E curve for rhombic clamping, so

under monoclinic clamping the origin is at 0". The relation between

the applied E and the observed polarization P*, which is the contribution

made by E to the total polarization, is found as follows: From Eq. (493a),

(E)" = E + al4y
Q
z
= E + (E)'Q

r = XiP< + BP*, where nowP, = P + PB
.

On substituting the value of (#)J' given above and expanding, we arrive

at the relation

* J + BPB*

(504a)

This equation is illustrated by a curve such as curve c in Fig. 138, with

0" as origin. The coefficient of PE in the first term determines the

slope at 0"; it is the reciprocal initial susceptibility for monoclinic

clamping, which may be written

Xi'
- xi + 3BP" (505)
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Equation (504a) expresses the relation between PE and E according

to the normal method described in 458.

From Eqs. (497) and (499), x" can also be expressed thus:

1 ^D
X'.'

-
-77

= xi + a146u = xi + txi = 3a 14&i4
- 2X i

= xi -~ (505a)
*? C44

The definition of Du is given* in 463 [Eq. (522a)]. This relation

between x" and xi for the region of spontaneous polarization should be

compared with Eq. (496a).
"

We shall find use also for the expression for the over-all susceptibility

0?")n or its reciprocal, for monoclinic clamping between the Curie points.

From Eq. (504a),

xi' + 3BPP* + BP*> (5056)

467. Further Remarks on the Clamped Dielectric Constant. When the

statement is made, as in 442, that the value of the dielectric constant

observed at very high radio frequencies approximates that of the clamped

crystal, it should be obvious, in the light of the foregoing theory, that

the word "clamped" implies rhombic clamping in the parelectric regions

and monoclinic clamping in the Seignette-electric. Practically all avail-

able experimental values were obtained with small fields. An idea of the

dependence of the initial clamped dielectric constant on temperature
can be obtained from the curves in Fig. 145 for xi and xi'.

According to Eqs. (503) and (504a), the clamped dielectric constant

may be expected to decrease with increasing field, except at temperatures
well removed from the Curie points. Thus far the only experimental
evidence has been indirect, from the fact that the susceptibility i\'x for

the free crystal does show saturation; and since, by Eq. (267),

Vx = I* +

j?" must have the same characteristic.

Although reliable data on virgin curves, either static or by alternating

current, are lacking, still one can draw certain conclusions concerning
the clamped dielectric constant from the hysteresis loops shown in

Chap. XXII. From the linearity of the saturation portions of these

loops it is evident that the differential permittivity kd8 approaches a

constant and relatively small value at large E. It is not unreasonable

to inquire whether this kd may not be identical with the clamped dielec-

tric constant. This will be the case if, when E is large, du becomes so

small that the product eudu no longer makes an appreciable contribution

to the susceptibility. That the polarization is subject to very great
* The last expression in Eq. (505a) is the same as (9c) in Mueller's paper III.
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saturation under large mechanical and electric stresses is evident from

Figs. 108 to 115. Nevertheless, the data do not suffice to prove con-

vincingly that at the strongest fields appearing on the hysteresis loops
the product eurfu is in truth negligible.

On the experimental side two values of kd* have been given in 436:

at 15C, kd, = 330; at 20 (estimated), kd. = 200. Values of the

clamped constant k" can be derived from the curve for xi' in Fig. 145: at

15C, *7 120; at 20, * 195. These values are for small fields; at

large E they would be smaller. This evidence, though slight, indicates

that kds is somewhat greater than the clamped dielectric constant.

Mueller's theory does not throw light on this question, because, as

stated in 451, the cubic equations that describe the non-linear effects

are not valid up to large values of E and do not predict the constancy in

kda at saturation.

From the theory in Chap. XXV and especially from 479, it is

evident that the polarization of the free crystal in a given static field

and its variation with the field must depend very greatly on the domain

structure of the specimen. This fact doubtless accounts in large measure

for the wide variety of polarization curves and values of k'x recorded by
different observers. On the other hand, the clamped dielectric constant,

although not directly measurable, still must be regarded as independent
of domains.

458. Equations for Rochelle Salt according to the Normal Method.

This is the method referred to in 450 as being preferable to the rhombic

method when the field is weak and relations are linear. It is simply the

method that would be applied to any normal piezoelectric crystal devoid

of anomalies. Strains are measured from the normal configuration of the

crystal at any given temperature, whether the configuration is rhombic

or monoclmic. The reason why this method is not as well suited as

the rhombic method to the treatment of large fields and large stresses

can be illustrated by considering the relation between polarization and

field for a free crystal between the Curie points. In Fig. 139, the origin

is at for curves representing Eq. (493c) by the rhombic method. Such

curves, for example curve a, are centrosymmetrical with respect to the

point 0. When E =
0, there is a spontaneous polarization in the

domain equal to +P or P, represented by 00' or 00{. As E increases

from zero, M P is positive the observed polarization is the ordinate, say

P*, measured from a horizontal axis through 0'. As was stated in 454,

the slope of the curve at 0' gives the observed initial susceptibility

at the temperature in question. The curve is not symmetrical about any
axis through 0'. This lack of symmetry is indicated by the term in

P*1
in Eq. (500). Corresponding to this lack of symmetry is the fact

that the energy equation for the normal method would not be as simple
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as Eqs. (491) and (491a) for the rhombic method, except at temperatures
outside the Curie points. Nevertheless, as long as the field is so weak
that only the first power of PB need be retained in the derivatives of the

energy equations, all equations are equally simple by either method.

Outside the Curie points, even when higher powers of P are included, the

two methods are identical.

Similar considerations apply to the clamped crystal. In this case, if

we regard curve c in Fig. 138 as typical of a clamped crystal between the

Curie points, the origin is at O by the rhombic method, with initial

susceptibility 171
= 1/xi- By the normal method the origin is at 0",

and the initial (actually observed) susceptibility is 77"
= l/x7- Equa-

tion (504a), for a clamped crystal, corresponds to a curve with origin

at 0", and it shows the asymmetry characteristic of the normal method
in the region of spontaneous polarization.

Since the normal method deals with actually observed initial suscepti-

bilities, it is well suited to the treatment of practical problems in which

only small stresses and weak fields occur.

Following are the basic equations according to the normal method,
for small stresses and weak fields, analogous to Eqs. (493) to (493c) :

(E)" = XiPE + BP*> + auyz = E + auyz - XiP* + BP* (506a)

-*/* = 8hY. - 6i4P* (5066)

(EY = X'P* + BP** - 6MF. - E - 6 14F. = x'Pt + BP\ (506c)



CHAPTER XXIV

THEORT OF ROCHELLE SALT, PART II. PIEZOELECTRIC
AND ELASTIC PROPERTIES, CURIE-WEISS LAWS,

AND CONCLUSIONS

The history of physics shows that the search for analogies between two categories
of distinct phenomena has perhaps been, of all methods employed for the construction

of physical theories, the method which is most certain and most fruitful.

P. DUIIEM.

Our exposition of the interaction theory is brought to a conclusion

in this chapter, with a discussion of the distinguishing characteristics

of Seignette-elcctric crystals and with a presentation of the experimental

evidence for the findings of the interaction theory.

Piezoelectric Properties of Rochelle Salt for Fields Parallel to the

JST-axis. It was stated in 191 that the main experimental justification

for the polarization theory lies in the approximate temperature-independ-
ence of an and 6u. We consider now the effect of electric and mechanical

stress on these constants and also on the Voigt constants eu and du-

In Eqs. (493a) and (493c) for the direct effect, the non-linearity is

expressed, at least to a first approximation, by the term in B, so that

ai4 and 6n are not required to show a dependence on stress. In Eqs. (493)

and (4936) for the converse ejject, B does not appear explicitly, yet the

non-linearity of the relation between Yz (or yz) and E is deducible from

the fact that P is non-linear in E, as is shown by the equations for the

direct effect. We may therefore confidently expect, as is, indeed,

indicated by Mason's observations,
338 that ai4 and 6u will be found

approximately constant under all circumstances. This being the case, it

follows that du and eu must be very variable with temperature, field, and
mechanical stress.

469. Direct Effect. The assumption that the application of Yz is

equivalent to the application of a biasing field buYz makes it easy to

find the relation between Yz and the polarization that it causes when
E = in a single-domain crystal; that is, we find thus the equation
for the direct effect in terms of stress, a relation that in Rochelle salt is

non-linear. In Eq. (493c) P is the polarization due to E when Y = 0;

hence, when E = 0, we have (E)' = buYz . This expression now
represents the abscissa for Fig. 139 or for the curve a or d in Fig. 138, with

603
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origin at 0. The equation for the curve in all cases, between or outside

the Curie points, is*

_ r,
=

f.' + fl? (507)
OH OH

where Pt is the polarization due to Yz when E =
0, plus the spontaneous

PQ
. The segment MN in Fig. 139 is ignored. Outside the Curie points

P = 0.

In the Seignette-electric region the relation between Yz and the

polarization P that it causes is expressed more directly by shifting the

origin to 0' (Fig. 139; see also Fig. 140). This is done by writing

Pt
= P + P

and making use of Eq. (499) :

-6 141% - x',P + 3PP2 + BP* (508)

The similarity of Eq. (508) to (500), (504a), (510), and (511) should be

noted. In 460 we shall find analogous expressions for du and CH. All

these expressions apply only to single-domain crystals. For multi-

domain crystals see 479.

The effective differential piezoelectric constant is given by

1 dY, 1 _ 1 GBPP + WP*
v ^ 2

(509)

Outside the Curie points this becomes (%' + 3JSP2
)/&H. The initial

value at small Yg between the Curie points is

(rfiOi
-

^r
=

ftirtl (509o)
Xa

which is the form assumed by Eq. (4956) in the Seignette-electric region.

In the parelectric regions we have, in agreement with Eq. (4956),

From the last two equations it is evident that at the Curie points,

where t]'9 and T[ become infinite, the initial value of the piezoelectric

constant must also approach infinity, since 614 does not vanish. The
over-all value of du is given by Eq. (5126) below.

The equation for the direct effect in terms of strain is a relation between

y, impressed on an undamped crystal and the polarization that it pro-
* This is equivalent to Mueller's Eq. (3c) in his third paper,

380 with a correction

in sign.
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duces, while E = 0. Outside the Curie points we simply set E = in

Eq. (493a) and write P for P t : auyz
= xiP + #P8

- Except close to

the Curie points, the second term is relatively small and the relation

is nearly linear. Between the Curie points Pt
= P + P, and yz ,

which

we now call yz ,
is measured from the normal, or monoclinic, configuration.

Since in the foregoing equations y is measured from the configuration

of rhombic clamping, it follows ^
that yz

= yz yz . Now, from Eq.

(493a), when # =
0, a^y" = XiP

+ BP Q\ Hence from (493a) and

(505) we find

= x'/P
BP* (510)

B'

O A TE) ~B
FIG. 140. Rochelle salt between the

Curio points. Curve a, polarization in

terms of mechanical stress; curve b, polar-
ization in terms of strain. The abscissa

(E) represents 614 1% for curve a,

#i42/* for curve 6.

This relation is represented graphi-

cally by curves of the form of curve

c in Fig. 138. P and yz are meas-

ured from an origin at 0", and P is

an increment added to or subtracted

from P.
Attention should be called to the

contrast between Eqs. (510) and

(508) : in (510) the strain is prescribed

and the coefficient of P is x'/> while

(508), with the stress prescribed, has

the coefficient % If y* is due to Yzy

P is the same in the two equations.

These relations are illustrated in

Fig. 140, in which curve a represents

Eq. (508) and curve b Eq. (510). For any arbitrary polarization P on

curve a, OA s -buY., A'C = P. For curve 6, OB s a^y,, B'D = P.

The origins are at 0' and 0", and 00' = P. The reciprocal slopes at

0' and 0" are x'. and x".

Any observed piezoelectric polarization P, measured from P, is

thus given by Eq. (510) in terms of strain and by (508) in terms of stress,

according to the normal method. In both cases E = 0; therefore the

quotient yz/Yz gives the isagric compliance sf4 at zero field [see Eq.

(517)].

The distinction between curves a and b in Fig. 140 becomes important

when an electric field is applied to a crystal already under mechanical

stress. The abscissas for both curves are thereby increased by an

amount E, but the polarizations are no longer the same. This is because

curve a represents a free crystal, which, as long as the stress F, is con-
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stant, is free to be deformed by the field, while in curve 6 the crystal is

clamped if yz remains constant.

Equation (510) can be used to prove that, when the strain is reduced

by clamping from y\ to yx
= (rhombic clamping), the spontaneous

polarization is also suppressed. Remembering that yz in (510) is meas-

ured from ylj we seek the value of ys required to make P = P and

thus reduce the total polarization to zero. Calling this strain y
r

z and

setting P = -P in (510), we find by the use of Eqsv (504)
and (505) that

(510a)

Hence y's
=

yj, and the strain is reduced to the condition of rhombic

clamping.
In 439 the effects of mechanical constraint on the form of the hyster-

esis loops have been considered. The nature of these effects becomes

clear from a consideration of Figs. 138 and 139. A constraint may con-

sist in clamping the crystal at some arbitrary strain or in impressing a

fixed stress on a crystal that is otherwise free to deform itself in the

electric field, or it may be of a more complicated sort. If we regard the

impressing of a fixed strain or stress as equivalent to impressing a fixed

biasing field on the crystal, certain conclusions can be drawn at once.

It will be recalled that in Fig. 138 curve c is for a crystal at 15 clamped
with yz

= and that for monoclinic clamping the origin of the theo-

retically observed polarization curve is at 0", with initial susceptibility

x". If the crystal is clamped with any arbitrary +yg ,
the origin becomes

displaced to a point farther up on curve c, having an abscissa displaced

to the right of 0" by the amount auyz . Wherever the origin falls, the

portion of the curve traversed when any not too large alternating voltage

is applied is not far from a straight line; hence for a clamped crystal

between the Curie points there is no hysteresis, but only a practically

linear polarization curve.

The result is quite different when the mechanical bias is a constant

stress, as was approximately the case with Figs. 129 and 130. Equation

(493c) is to be used with a constant value assigned to Yz . The polariza-

tion curves are then the same as in Fig. 139, with the origin displaced

by the amount buY, to the right or left from according to the sign of

Yt . If the origin is at A', the polarization, including that due to Fz ,

will be at A (curve a at 5 being taken as an example). A is then the

origin for the observed polarization curve. As E is varied to the right

and left from A, a distorted curve results, like those in the oscillograms.

From what has been said, it follows that a small mechanical bias,

whether constant strain or constant stress, may be expected to cause

an increase or decrease in the observed susceptibility, according to

the sign of the bias. On the other hand, a large bias of either sign,
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exceeding the limits of the hysteresis loop, should cause always a decrease

in susceptibility.

460. Converse Effect. Just as Eq. (507), relating a stress to the

polarization that it causes, expresses the direct effect, so from Eq. (500)

one can express the converse effect, with the strain produced by E as a

function of E. All that is necessary is to substitute for PE its equivalent

in terms of the associated strain, which by setting Yz
= in Eq. (4936)

is found to be yz/bu- The converse effect is then expressed as*

This non-linearity between yz and E has been verified by several observers,

as has been shown in Chap. XXI.
For small E and Yz ,

at any temperature outside the Curie points, the

initial (di4)o is found from Eqs. (495), (497), (5096), and (522a):f

-1
(512)

L>u

Between the Curie points, from Eqs. (495), (499), (509a), and (522a),

(diOS = Mi = - - ""-
(512a)

LU\\

For any E and Yz the differential (du) d is given by Eq. (509). The
over-all value of du between the Curie points, which would be obtained

experimentally from observations of P by the direct effect with a ballistic

galvanometer on applying a stress Yz ,
is found from Eq. (508) :

(5126)

For the treatment in the case of multi-domain crystals see 479. Out-

side the Curie points Eq. (5126) holds, with P Q and x' in place of x*-

From Eqs. (4936) and (500) it is easily proved that (5126) holds also

for the converse effect^ in which case P is the polarization due to E in

the free crystal [see also Eq. (511)].

* By means of Eq. (4936), this expression is easily seen to be an extension of

Eq. (36) in Mueller 380
(in the latter equation the sign of Ex should be changed).

t Equation (522a) may be anticipated here, since its derivation is independent
of the present discussion.

$ For experimental data on the converse effect, including observations of hysteresis,

see Chap. XXI.
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Expressions symmetrical with the foregoing are easily derived for

614. First there are the initial values

(ei4)o
= amii and (ei4)J

= <W/ (513)

outside and between the Curie points, respectively; the relation between

tj!
= l/xi and t\"

= 1/x" is given in Eq. (505a). The differential value

(ci4)<i
=

aniji' is found from Eq. (510) :

(JL
Vu

** = -L
(x" + 3P2 + 6J5PP)or ai4

1 JL (3P2 + 6J3PP) (513a)

Outside the Curie points we write xi in place of x" and set P = 0.

From Eq. (510) the over-all value (eu)n = P/Vz can be found, where

p = (eu)'nyg is the polarization due to the impressing of a strain yz of any

magnitude :

OH =
x';(eu-)'n + 3BP'y,(euK + By\(e^ (5136)

The solution of this cubic equation would give (eu)*n for any yz in terms

of the practically constant 014. The dependence of e 14 on strain is here

made evident, while the dependence on temperature is introduced

through xi' and P. The over-all value can also be expressed in terms

ofP:

- 3PP) = ~YS + (BP2 + 3PP)

(513c)

461. A Correlation between the Voigt and Polarization Theories. The

general' relation between the free and clamped susceptibilities according
to Voigt's theory, as applied to Rochelle salt for fields in the ^-direction,

is found from Eq. (264) to be rf
=

77" + 6i4di4. With Rochelle salt, as

we have seen, a distinction must be made between the initial, over-all,

and differential susceptibilities. We now write the expressions for the

relations between the initial and over-all susceptibilities, both between

and outside the Curie points.

From Eqs. (496a), (501), (505a), and (505&), the difference between

the free and clamped over-all dielectric stiffnesses between the Curie

points is the same as that between the initial values xi and xi'

(xi)n
-

(x'.')n
= xi

-
x'/

= x'
-

xi = -aubu (514)

In terms of 614 and du, aubu can be expressed by means of Eqs.

(509a), (5096), and (513):



462] THEORY OF ROCHELLE SALT, PART II 609

Between the Curie points, aiJbu = (eu)5(di4)ox'.x7 (515)
Outside the Curie points, au&u = (en) 0(^14) ox'xi (515o)

The corresponding equation in terms of over-all values can be found

from Eqs. (5126) and (513c), but it is less simple. The Voigt theory
does not lend itself easily to expressing the relation between the suscepti-

bilities except for the initial values.

From Eqs. (514), (515), and (515a) one arrives at an independent

proof of Eq. (264), particularized for the regions between and outside

of the Curie points:

Between the Curie points, y', 17"
=

(014)0(^14)0 (516)

Outside the Curie points, V 971
= (CH) 0(^14)0 (516a)

The symmetry between Eqs. (514) on the polarization theory and

Eqs. (516) and (516a) on Voigt's theory is obvious. The choice of

expression for the difference between the susceptibilities is a matter of

convenience.

462. The Elastic Constants SM and c4 4- Experimental evidence

indicates that the constant-polarization value sf4 = l/cJ4 is nearly

independent of stress and temperature (375). On the other hand, the

isagric sf4 = l/cf4 varies greatly with both temperature and stress.

The relation between sf4 and sjj for large stresses is most simply expressed

in terms of the Voigt coefficient (du);, in which n signifies the over-all

value given in Eq. (5126), applicable to large as well as to small stresses;

outside the Seignette-electric region the superscript s disappears. The
desired relation is obtained by assuming Pt to be held equal to zero while

Ys is applied, so that yg
= s^Y9 . The field strength needed to make

Pt
= during this process is E = +614^* by Eq. (493c). This E causes

an additional strain, which we call yf = (du)'nE = bu(di^
s
nYt . With

E =
0, 2/f is absent, and the total strain is

y*
-

yj = -K + bu(du)'n]Y, s - s?4y,
or

s?4 sJ4 + 6 14(d14); - sJ4
-^ (517)

J. a

where P is the polarization due to Yz when E = 0.* When Yz is small,

(517) becomes identical with (522c), since in the latter equation du is

the initial value.

The isagric relation between y, and Yg,
for zero field, can also be

obtained by combining Eqs. (508) and (510), with the aid of (495):

(518)

where P is given by Eq. (508).

*
Equation (517) is a special case of Eq. (283).
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Experimental curves of the form suggested by this equation are

shown in Fig. 142.

By making use of Eq. (517), together with the relations y,
= s?47,,

$f4 = l/c44 ,
and S44

= l/cJ4 ,
one arrives at the following expression for

sf4 in terms of strain, in which the relation between P and yz is given by

Eq. (510):

(519)
*

If a Rochelle-salt crystal could hold out under a sufficiently great

stress, the isagric stiffness would approach the value for constant polariza-

tion. This fact can be seen from Eq. (517) or (519), for owing to the

non-linear relation between stress and polarization the second term on

the right approaches zero with increasing stress.

Equation (517), valid at all temperatures, states that the strain when

E = is that which would be produced by Yg at constant polarization

plus a term proportional to the polarization caused by Fz . Since accord-

ing to Eq. (517) saturation effects are present, it follows that a curve

relating yg with Yz would show saturation, as is indeed the case in Fig. 142

and as was found experimentally by Iseley.
243 Thus not only are there

mechanical and electrical saturation effects under an impressed electric

field, as expressed in Eqs. (500) and (511), but also under an impressed

mechanical stress.

As will be seen later in Eq. (528), a relation can be written between

yz and Ye ,
valid above 0, in which the temperature enters explicitly.

If the assumption that Yz produces the same polarization as a field

E = Yz/bu is justified, then at a critical value of Yz there should be a

sudden reversal of P. If Yz were put through a cycle of positive and

negative values, one would therefore expect to find the relation between

P and Yg or between yz and Yt in the form of a hysteresis loop. The

coercive stress would be (Yg) c
= Ec/bu, of the order of 0.2 kg/cm

2
.

The slope dyt/dY2 of the yg:Yt curve (with constant E) at any

point may be called the differential compliance (sf4)d, by way of analogy

with the differential susceptibility. The over-all compliance is of course

44
= yz/Yt. By the same reasoning as in the discussion of mechanical

bias in 459, so here it may be shown that the observed value of sf4

should be less when a large constant biasing field E i$ impressed on the

crystal. Such was indeed found to be the case by Mueller380 in experi-

ments on vibrating Rochelle-salt crystals: the resonant frequencies,

which involve 544, were found to be greater the larger the biasing constant

field was made (see also 466).

No observations on this strain: stress hysteresis seem to have been

made. The only pertinent data are those of Iseley, discussed in 418;
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while they have the same form as the P:E curves, they throw no light

on the question of hysteresis. In any case, the analogy between Y
and E must not be pushed too far: when Yg is impressed, the lattice

moves the dipole (or its equivalent), while the converse takes place when
E is impressed. A very simple expression relating sf4 to s 4 is found when
Yg is so small that powers of P higher than the first can be omitted.

From Eqs. (510) and (508) one finds with the aid of Eq. (4956), for

small Yz ,

14 X, X, 1J,

The same relation follows directly from Eq. (495d). Since s 4 is a finite

constant nearly independent of temperature and if9
= oo at the Curie

points, it follows that for small stresses sf4 should approach infinity at

these points. This deduction from the theory is confirmed by the obser-

vations described in connection with Fig. 141.

Since for Rochelle salt sf4
= l/cf4 and s 4

= l/c^, it follows from

Eqs. (520) and (505a) that the isagric and isopolarization stiffness

coefficients for small stresses are related thus :
'

-|
=

-^
= ^ = ^ = 1 + 17^14614 (521)

Similar reasoning for the region outside the Curie points leads to the

analogous relations

44 Sfl Xl V / /fni \

~~W
~

~~P
= 7== = 1+77 <Zi4Oi4 (521a)

463. In interpreting the results of experiments with isolated plates

(electrodes far removed from crystal), account must be taken of the fact

mentioned in 190 and 199, that deformations then take place at con-

stant electric displacement* D. The relation between sf4 and $&, the

value at constant displacement, is readily found by specializing Eq. (281)

for fields parallel to X in Rochelle salt:

SE kf

44

This equation gives the ratio of the compliance at zero gap (adherent

electrodes) to that at infinite gap, for small stresses. In adopting as the

value of sJ4 that derived from observations with a wide gap we disregard

the fact that the ratio ijj/i^ in Eq. (521) or ij'/ifi in Eq. (521a) is not

quite the same as k'/k" in Eq. (5216). However, in the least favorable

* The present chapter has to do only with X-cut plates of Rochelle salt, hi which

the polarization and displacement are parallel to the field. Under these conditions f4
is identical with the quantity sJ4 derived from Eq. (273a).
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case, when kf has its smallest value, of the order of 75, the difference

amounts to only about one-half of 1 per cent, which is not greater than

the uncertainty in the observed value (see also 211).

From Eqs. (499), (505a), (520), and (521), s?4 between the Curie

points for small stresses may be expressed in the following ways:

where Z>14 xtffc
-

i4
-

/ ^ = -cp
itBP<" (522a)

4417 a14

The parameter DH, a function of the fundamental dielectric, elastic,

and piezoelectric constants, plays a prominent part in Mueller's expres-

sion of his theory. The third of the expressions in (522) is identical with

Eq. (lla) in his third paper.
380

Outside the Curie points the equations are analogous but somewhat

simpler:

(5226)

The last expression is equivalent to Eq. (521a) and also to Eqs. (4a) and

(4c) in Mueller's paper II.

The general equations (275) and (276) as applied to $44 and c44 in

Rochelle salt can also be derived from Eqs. (521) and (4956). Between

the Curie points, for small stresses,

(522c)

Outside the Curie points the same equations hold, with 17', x' 171, and

Xi substituted for ^, x',, V/, and x'/-

464. The Quadratic Piezoelectric Effect in Rochelle Salt. In a mono-
clinic crystal with constant angle /3 (corresponding to yz in Rochelle

salt), there is a linear converse piezoelectric effect expressed* by

Xx = 61^3 yy = 6i2P* Zz = 61^
Since we are concerned here only with fields parallel to X, the mono-
clinic coefficients 6 2 e and 635 (or d2 e and dss) play no part. In Rochelle

salt, the monoclinic angle is not constant but is represented by the spon-
taneous strain yl = 61^ mentioned in 456; moreover, under electric

or mechanical stress the strain can be altered by amounts even greater
than #J. According to Mueller's theory,

381 the extent to which Rochelle

salt becomes monoclinic is measured by the departure of the configuration

* For the monoclinic terminology employed here, see 450.
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of the crystal from the unstressed rhombic form. Thus even outside

the Curie points the crystal takes on monoclinic characteristics when

subjected to a shear yg ,
and the magnitude of the monoclinic coefficients

611, &i2, and 6 13 is assumed to be directly proportional to yz ,
as shown

by the equations bn = ^>iPx, 612 = ^P, bis = VaPx, where <f>i, <f>2 ,
and

<p* are constants. We are thus led to the following quadratic piezo-

electric equations, in which the subscript x is omitted from P, with

the understanding that only polarizations in the X-direction need be

considered.

yv = *>2P2
z* = PaP2

(523)

Beyond these there are also yz = &uP, zx = xv = 0.

When a field E is applied at a temperature between the Curie points,

p ^ po + ps
y
where PB

is the polarisation caused by E. It is sufficient

to consider xx alone, for which, if E =
0, we have (x)o = piP*. If E is

present, xx = (xx)o + (xx) s = <f>i(P + P*)
2
,
whence

(*.)* = vf&P'+P*) (523a)

Several deductions can be made from this equation. (1) Outside

the Curie points, where P =
0, (xx) E = <f>iP

s
*',

this irreversible converse

quadratic effect was observed by Mueller381 at 25.5C. (2) As long as E
is less than the coercive Ec,

there should be, between the Curie points, a

reversible linear converse effect (xx) E = 2<piPP1J of large magnitude.
This effect does not seem to have been observed. (3) If E > ECJ the

polarization P has the same sign as E, and both the linear and the

quadratic terms in Eq. (523a) are irreversible.

From his observations Mueller estimates <?i of the order 1.2(10~
9
)

cm 3
/erg. The crystal contracts in the X-direction for a sufficiently

large field of either sign; this contraction at 3,000 volts is of the same

order as that caused by a pressure of 100 atm (82).
Mueller finds in this quadratic effect an explanation of the anomalous

thermal expansion of Rochelle salt in the range of spontaneous polariza-

tion, to which reference has been made in 407. He also discusses an

analogous quadratic optical effect. 381

The production of the strains xx , yv ,
and zz makes a contribution to

the specific heat, and it also suggests slight changes in a^, c 4 ,
and B at the

Curie points.
380 - 381

To such effects as those treated in this section, in which new physical

constants come into being in a crystal as the result of a deformation,

Mueller gives the name "morphic effects.
"* Pushed to its logical

* The magnitude of d\\, calculated from Mueller's values of xx and Ex by the

equation dn = xx/Ex ,
is quite astonishingly large, except at fields of only a few volts

per centimeter. Thus we find, from Mueller's data, dn 500(10~
8
) when E* - 1 esu,
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conclusion, this concept is equivalent to asserting that a crystal belongs
to its assigned class only as long as it is free from stress of any sort.

When under strain it possesses a different, usually a lower, set of elements

of symmetry. Attention is called to this fact in 531 in connection with

the piezo-optic effect (see also 482). With most phenomena in the

great majority of crystals, morphic effects are doubtless of a high order,

thus escaping detection.

Mueller also points out that the quadratic effects oHhe type described

differ in principle from electrostriction, since they occur only when the

strain ys is not suppressed. Moreover, their magnitude in Rochelle salt

is thousands of times greater than any known electrostrictive effect.
*

466. The Curie-Weiss Laws. For ferromagnetic substances above

the Curie point, as is seen from Eq. (561), the Curie-Weiss law is

km C/(T - 9)

where km is the magnetic mass susceptibility, C a constant, and T any
absolute temperature above the Curie temperature 6. By proper choice

of C, the volume susceptibility may be written in place of km . Over a

narrow range just below the Curie point the susceptibility is km/2, as

shown in 552.

In 552 it is proved that the linear relations between l/km and

temperature, both above and below the Curie point, are independent
of the coefficients p and q in the generalized Langevin function [Eq. (562)].

In the first form of his theory of Rochelle salt, as will be seen in 485,

Mueller postulated a cubic equation relating the polarization P with the

molecular electric field F, together with an expression similar to Weiss's

Eq. (557). The molecular-field theory led to the Curie-Weiss law for the

dielectric susceptibility in exactly the same manner as in the magnetic
case.

The interaction theory that has been discussed in the foregoing sec-

tions does not of itself predict the Curie-Weiss law or any other depend-

rising to 1,600(10"*) when Ex 10 esu. These values are of the order of du itself.

It must be noted, however, that this is not a true longitudinal effect in the ordinary

sense, for the following reasons: (1) Since the effect is quadratic in E* t
the strain xx

maintains the same sign (a contraction) on reversal of Ex when Ex > EC* (2) Being

"morphic," it is a converse effect only. There can be no morphic direct effect involv-

ing du, since neither in the rhombic nor in the monoclinic system is there an elastic

coefficient Si 4 . For this reason there should be no piezoelectric contribution from the

morphic dn to the dielectric constant at any temperature, although Mueller holds

that there should be an effect on the dielectric constant of the clamped crystal. It is

also conceivable that Rochelle salt, being monoclinic between the Curie points, may
in this region also possess small but measurable coefficients du, ^12, du, die, and d* 6

that are not morphic (see 483).
* See also Matthias. 368
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ence of electric or piezoelectric properties upon temperature. Such

prediction is impossible without some form of molecular theory. Hence
on the basis of the interaction theory the Curie-Weiss law has to be

accepted as an experimental fact. From it, as will now be shown, can

be deduced certain other linear relations that have an important bearing

on the general theory.

The discovery of the Curie-Weiss law for Rochelle salt may be

credited to Kurchatov and Eremeev. 292 As explained in 434 and 444,

it has been most exactly established by the experiments of Mueller and

Habliitzel. According to Eq. (490), the initial reciprocal susceptibility

above Bu is given by

X' =^ (524)

When this value is substituted in Eq. (498), the following equation

results, giving the relation between P and E for any temperature for the

first few degrees above 6U :*

(524a)

In his paper I, Fig. 10, Mueller shows a set of experimental P:E
curves for temperatures from 24.3 to 31.2, which are in full agreement*
with Eq. (524a) for tc

= 23, C = 170, B = 10(10~
8
). The values of

these three constants are not far from those given in connection with

Eq. (490), which are based on other data. The curves have forms

varying between that of curve c, Fig. 139, at the lowest temperature,

and that of curve e at the highest.

Below Bu the Curie-Weiss law, expressed by Eq. (490a), is illustrated

in Fig. 120. The slope of the x' :t curve is here twice as great as that

above M ;
this agrees with theory, since according to Eq. (499) xi = 2x',

where xi is the initial value in the Seignette-electric range.

Since from Eqs. (496a) and (505a) xi = %' + a>iJ>u (rhombic clamp-

ing) and x" = xi + a>iJ>u (monoclinic clamping), it follows that the

Curie-Weiss relation holds for the clamped as well as for the free crystal r

for a few degrees on each side of M . Above and below 6U we find, from

Eqs. (499) and (524),

Xl - * + ai4bl4 = -(.-**"g) ,L! (525)

The slopes of the lines representing these equations, as indicated in

Figs. 143 and 145, are 1/C and 2/C, respectively. The constant C

* Ref . 376, Eq. (38).
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is the same for the clamped as for the free crystal. The significance

of the temperature 18 in Eq. (525) is pointed out in 468.

The linear relations between x' (or xi) and temperature lead to other

linear relations, or Curie-Weiss laws, for all physical quantities dependent
on the susceptibility. They will

now be summarized.

466. For the spontaneous polar-

ization P we find from Eqs. (497)

and (524)

50

40

30

20

10

BC h(te
-

(526)

25 30 35 40 45

where h is a constant. This equa-
tion expresses the parabolic form

of the curve forP in Fig. 147. It

is necessary, however, to assign

different values to h for the right

and left portions of the "para-
bola." According to Mueller378

the values are approximately

1.5(10
4
) and 2.65(10

4
) for the

higher and lower temperatures,

respectively.

From Eqs. (502) and (526)

an analogous expression is de-

rived for the coercive field Ec .

For the elastic compliance sf4 the following expressions for the value

with small stress follow from Eqs. (4956), (499), (522c), and (524):

Outside the Curie points,

(527)

FIG. 141. The Curie-Weiss law for the

elastic compliance 3^44 of Rochelle salt, from
Mueller. For the curve the ordinates should

be multiplied by 10~12
; for the straight line,

by 10 10
. The circles are from Mason's exper-

imental data.

044 44
~

t
-

te

~
t
- te

where C is the "electric Curie constant" and a = C6J4 is the "elastic

Curie constant" (Mueller). Between the Curie points,

(527a)

For te = 23 and C6?4
- 66.7(10~

12
), Mueller878 finds Eq. (527a) very

exactly in accord with experiment at temperatures above 6U,
as is evident

from Fig. 141. The curve for sf4 is derived from Mason's observations,*

which are illustrated also in Fig. 146. From this curve, together with

the constant s^ = l/c?4, values of l/(sf4
-

sJ4) are plotted. They are

* See 375 and 474.
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a linear function of temperature, thus confirming Eq. (527o). Of

special interest in Fig. 141 is the pointing of sf4 toward an infinite value

at the Curie point, according to the prediction in 462. The physical

meaning of this fact is that at the Curie point Rochelle salt is in an

unstable condition, which makes it elastically "soft" with respect to

small stresses, just as it is dielectrically soft, with a dielectric constant

approaching infinity, on the application of a small field. It was pointed
out in 455, in explanation of Fig. 128, that close to the Curie points

the dielectric constant is smaller in large than in small fields; similarly,

as the mechanical stress Yx is increased from a very small value at a

temperature close to either Curie point, the crystal becomes stiffer (see

459 and 462). That is, the phenomenon of saturation is most striking

close to a Curie point. No static elastic observations are at hand indi-

cating abnormally large values of sf4 under small stresses. In agreement
with Mason, Busch87 observed a decrease of 30 per cent in the resonant

frequency of a vibrating Rochelle-salt plate as the temperature passed

through the upper Curie point. The magnitude of the observed effect

depends on how small the field is, as well as on the elastic constants

other than the temperature-sensitive sf4 that enter into the expression

for the frequency.
From Eq. (527) and the general equations of the polarization theory

given above, Mueller380 has derived the following expression for the

relation between Yz and the strain yt that it causes at zero field, valid for

the first 10 above 6U :

Y. = (Y. + cto.)
~ + (7, + (.) (^ + 1

) -^- (528)

where Ai = t
- 6U and o- = C6f, as in Eq. (527). A plot of this theo-

retical curve is shown in Fig. 142 for several temperatures.

There are no experimental data with which a quantitative com-

parison can be made, except at small stresses. The observations of

Iseley
243 on a 45 Z-cut bar yield curves relating y'v to Y'y that have the

form of those in Fig. (142) ;
hence they may be regarded as a qualitative

verification of the saturation effect expressed in Eq. (528), since by

Eqs. (43) the compliance s'22 ""2/i/^i contains s44 = l/c44 .

The values of sf4 calculated from the initial slopes of the curves in Fig.

142 agree closely with the values in Fig. 141 for the same temperatures.

467. For the piezoelectric coefficient (du)o under small stresses, a

Curie-Weiss law is to be expected, owing to the close relationship between

du and T?'. Above 0* we have, from Eq. (4956), d l4
= JW, whence

from Eq. (524) it follows that
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Below 0,t, where r?I
= q'/2f

the corresponding expression is

(468

(529a)

These two equations show clearly the relation between the Voigt piezo-

electric coefficient du, which is highly variable with temperature, and

the piezoelectric constant 614 according to the polarization theory, which

is found experimentally to be almost independent of temperature. The

product of bu by the electric Curie constant C may be called the piezo-

electric Curie constant.

Satisfactory confirmation of Eqs. (529) and (529a) is found in the

experiments of Norgorden, described in 424.

6x10"

1 2 3 4*I07

Dynes per cm2

FIG. 142. Theoretical isagric stress-strain relation for shear in the FZ-plane of Rochelle

salt, above the Curie point, from Mueller.

Mueller378 - 381 also finds linear relations corresponding to the Curie-

Weiss law for the Kerr effect and for the monoclinic strain xx described

in 464.

In the foregoing paragraphs little has been said concerning the Curie-

Weiss laws below the lower Curie point. Inasmuch as the law holds with

respect to the dielectric susceptibility below 0j, it can hardly be doubted

that linear relations like those given above hold for all the physical

quantities involved.

The dependence of the dielectric, elastic, and piezoelectric coefficients

on temperature over the entire range between the Curie points is treated

in 474.

468. Theory of Rochelle Salt between the Curie Points. From

Eqs. (4956), (497), and (522c) it is clear that between the Curie points
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the spontaneous polarization P, the compliance sf4 ,
and the piezoelectric

coefficient (di4), can all be expressed by equations in which the only

quantity that varies with temperature is the initial susceptibility rj'$ .

Hence any theory that accounts for the dependence on temperature of

r/9 ,
or indeed of any one of these four quantities, will at the same time

explain the temperature dependence of the other three. In 445 and
446 we have referred to the early attempts of Kurchatov and of Fowler

to find a relation between susceptibility and temperature. More recent

attacks on this problem have been made by Mueller376 ' 378 ' 380' 881 and by
Busch. 88 Like Busch (485), Mueller in his first paper used a method

closely analogous to that of Weiss in ferromagnetism, in which the con-

cept of the molecular field F was involved. Mueller's explanation of the

Curie points and of the variability of susceptibility with temperature,
which he accomplished by postulating a slight effect of temperature
on the molecular polarizability, will be discussed in Chap. XXVI.

For the present we are concerned with Mueller's later theory, accord-

ing to which Rochelle salt possesses a single anomaly, inherent in the

clamped crystal. The type of constraint is that which in 450 we have

called "rhombic clamping/' by which all strains are prohibited, including

in^ particular, between the Curie points, the spontaneous strain yl.

As may be seen from Eq. (510a), this clamping completely neutralizes

the spontaneous polarization P. The fundamental dielectric properties

of Rochelle salt are regarded as inhering in the rhombically clamped

crystal, in which the prohibition of strains ensures the absence of all

piezoelectric deformations.

The particular property on which the theory depends is expressed

by the Curie-Weiss law for xi in Eq. (525) and is illustrated by the high-

temperature portion of the xi line in Fig. 143. Starting at the highest

temperature, xi slopes downward linearly, threatening to vanish at

about 18C; and if the crystal were not piezoelectric, xi would vanish

at this temperature, rising again at temperatures below 18C, somewhat
as indicated by the dotted lines.*

By Eq. (497) the x' line for the free crystal is at a nearly constant

distance a\Jbu below the xi line, with the consequence that x' = at

about 24C and. also at some temperature below 18C. The presence
of the two Curie points is thus accounted for.

* The infinite susceptibility of the completely clamped crystal, implied in the

vanishing of xi seems at first sight paradoxical, since large susceptibilities are usually
associated only with free crystals. The physical explanation probably lies in the

unstable state of the clamped crystal. The spontaneous polarization P, which the

crystal would possess at 18 if free, is suppressed. Just as the introduction of an

extremely small strain yz would cause a relatively large polarization to develop, so a

weak field may so deform the crystal lattice as to produce the same result. The
same explanation may be offered for the low value of xi at 5C.
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469. It is pertinent at this point to quote from Mueller's paper IV,

on the possible nature of the hypothetical transition in the neighborhood

of 18C and on the reason why the course of the xi line between the

Curie points, as calculated from observations on the free crystal, has the

particular form shown in Fig. 143.

"If the crystal of Rochelle salt were not piezoelectric it would show only a single

transition point. The two Curie points and the large number of dielectric, piezo-

electric, optical, caloric and thermal anomalies of the free crystal can all be explained

0.4r

30 40

FIG. 143. Schematic diagram of the dependence of the reciprocal susceptibilities on

temperature, for small fields, from Mnoller. It is based on measurements of x' outside

the Curie points, from Figs. 120 and 121, and of x'* between these points. From these

values, x' between the Curie points was calculated from Eq. (499) and %i from Eq. (496a) ,

x'i ( sl/rj") is the dielectric stiffness for rhombic clamping; x" is for monoclinic clamping,
calculated from Eq. (505a). The ordinate differences x'i X and x" X are approxi-

mately constant and equal to au&u.

on the basis of laws which are logical extensions of the laws of classical crystal physics.

There remains, therefore, only the problem of understanding the nature of the transi-

tion of the clamped crystal. This transition is characterized by a high maximum
of the [rhombically clamped] dielectric constant, but the available evidence does not

indicate any changes of the internal energy or of the structure. The temperature

gradient of the birefringence is altered but there is no sudden change of the optical

constants. These peculiarities indicate that the transition can involve only a change
of the position or of the dynamics of the protons of either the OH groups or the water

of crystallization. The transition may be similar. to those in HBr, HI, H2S, PH 8.*

It differs, however, from the modifications of these crystals by the fact that the

transition of Rochelle salt produces no change of the specific heat. To account for

this we propose the hypothesis that the transition is suppressed, i.e., with decreasing

temperature the crystal approaches a transition point without actually reaching it,

because in the initial stages of the transition secondary effects are created which

suppress the modification and the crystal remains in its original state because at

lower temperature the protons have not sufficient energy to change their positions."

* For a review of these transitions see A. Eucken, Z. Elektrochem., vol. 45, p. 126,

1939. See also J. A. Hedvall and E. W. Pauly, Z. physik. Chem., vol. 29, Abt. B,

pp. 225-230, 1935.
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In explaining the nature of this suppression of the transition point,

Mueller advances the hypothesis that it is related to the piezoelectric

morphic effects discussed in 464. One may carry this suggestion
somewhat beyond the point where Mueller leaves it, by considering
that in the clamped crystal between the Curie points these morphic effects

(the development of strains xx, yv ,
and zz when a field Ex is applied) try

to assert themselves just as yz does. Although suppressed by the clamp-

ing stresses so far as the external configuration is concerned, they may be

accompanied by changes in the internal structure of such a nature that

the polarization, when a field Ex is applied, is less than it would be if only
the strain yz were concerned. The whole question concerning the

tendency toward a transition point in the clamped crystal at 18C and,

of its suppression cannot be satisfactorily answered until more is known
about the lattice structure of Rochelle salt.

Whatever the mechanism may be, the result is a rounding off of the

Xi line to a minimum at about 5C. It is therefore at this temperature,

according to Mueller's theory, that the maxima in xi and P occur,

together with hysteresis curves of greatest width and greatest energy loss.

If the xi line actually touched the horizontal axis in Fig. 143, the

rhombically clamped Rochelle-salt crystal would have a single Curie

point like that in ferromagnetic materials, with infinite clamped dielectric

constant at this .point. On the other hand, the two Curie points of the

unconstrained heavy-water Rochelle-salt crystal are so far apart that the

Xi line would certainly intersect the horizontal axis twice. * The clamped

crystal would therefore still have two Curie points with a spontaneous

polarization between them.

470. One conclusion that can be drawn from Fig. 143 is that a partial

mechanical constraint would be expected to draw the Curie points of

Rochelle salt closer together. In 204 we have shown that a partial

constraint diminishes the effective piezoelectric contribution to the

susceptibility, yielding a value intermediate between those of a free and

a fully clamped crystal. The effect in the case of Fig. 143 would be a

decrease in the vertical separation of the xi and x' lines: if the xi line

remained constant, the x
7
line would move vertically upward so that its

intersections with the horizontal axis, at 61 and M ,
would be separated

by a smaller interval. No systematic investigation of this effect seems

to have been made, although it was mentioned by Mueller 376 as a possible

explanation of the lack of agreement on the part of different observers

as to the values of BI and 0. From the hysteresis loops in Fig. 129,

* That this is so can be seen from the fact that the elastic and piezoelectric proper-

ties of ordinary and heavy-water Rochelle salt are so nearly the same, as shown in

87 and 143, that the vertical separation of the x' and xi lines for the heavy-water

variety is nearly the same as in Fig. 143.
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however, it is evident that mechanical constraint at least makes the

P:E curve approximate that of a fully clamped crystal. The only

experimental data on the Curie point of a partially constrained crystal

are those of Mason,
338 who finds the maximum susceptibility of a "

longi-

tudinally clamped" vibrating crystal to come at a temperature that,

from his diagrams, appears to be substantially the same as for a free

crystal, about 24C. Mason used an Z-cut 45 bar with full-length

plated electrodes, to which a voltage of twice the fundamental lengthwise-

vibration frequency was applied. The piezoelectric contribution to the

polarization, so far as lengthwise movements are concerned, was thus

neutralized (61), while lateral movements were allowed to develop.

The dielectric constant was indeed found to lie between the values for a

free and a clamped crystal; it is difficult to see why this degree of con-

straint should not have been accompanied by an easily detectable

decrease in the temperature for maximum dielectric constant, unless it

be that the constraint imposed by inertia in the dynamic case differs, in

its effect upon the temperature dependence of the dielectric susceptibility,

from the constraint due to static externally applied clamping stresses.

In this connection it may be recalled that under the constraining effect of

hydrostatic pressure both Curie points are raised (443), whereas a

consideration of Fig. 143 led us to expect that externally applied

mechanical constraint would increase &i but decreasp 6U . The dis-

crepancy becomes resolved if we assume, with Bancroft, that the observed

raising of the Curie points under hydrostatic pressure is due, not to

mechanical constraints in the ordinary sense, but rather to distortion

of the crystal lattice under pressure.

471. What Is a Seignette-ekctric? We conclude this consideration of

the theory of Rochelle salt with a brief retrospect to the essential Seign-

ette-electric phenomena, as described in the foregoing chapters. In spite

of the knowledge acquired through the observations with mixed tartrates

(491) and the phosphates and arsenates (493), conclusions must still be

drawn chiefly from Rochelle salt. The investigations on the mixed

tartrates have contributed to the dipole theory (490) without throwing
new light on Mueller's interaction theory. For lack of piezoelectric

and elastic data on the phosphates and arsenates, it is not yet possible

to say how completely all the details of the interaction theory apply to

them. It can at least be said that no observations hitherto recorded

on crystals other than pure Rochelle salt contradict any of the following
statements:

So far as macroscopic observations are concerned, a Seignette-electric

crystal may be defined as having a critical temperature, on one side of

which the dielectric properties exhibit non-linearity and hysteresis (the

Seignette-electric region), while on the other side there is no hysteresis
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and the relation between polarization and field is nearly or quite linear

(the parelectric region). The possession of such a critical temperature,
or Curie point, is the basic criterion. Rochelle salt has two such points;
some of the isomorphic mixtures as well as the phosphates and arsenates

may have only an upper Curie point. Possibly a crystal with only a

lower Curie point will one day be discovered, or one that is stable only
in the Seignette-electric temperature range, so that no Curie point is

observable.

Among the directly observed concomitant effects, at least in Rochelle

salt, may be mentioned the following:

1. A Curie-Weiss law for dielectric, elastic, and piezoelectric effects

on both sides of the Curie point.

2. The crystal is piezoelectric on both sides of the Curie point.

3. A reversible spontaneous polarization on one side of the Curie

point, falling to zero at that point.

4. The crystal is pyroelectric in the region of spontaneous polariza-

tion (but see 521).

5. In the region of spontaneous polarization, abnormally large values

of the dielectric constant of the free crystal, the piezoelectric constant,

and the isagric elastic constant, as well as large dielectric losses (375),
are observed under certain field strengths and stresses. As the Curie

point is approached, these three quantities tend toward infinite values

under small field strengths and stresses.

6. At all temperatures the dielectric and piezoelectric constants

become diminished by mechanical constraints.

7. Except with occasional very small specimens, the crystal has, in

the region of spontaneous polarization, a multi-domain structure with

opposing polarizations in adjacent domains.

The interaction theory leads to the following conclusion, which is at

least partly corroborated by experiment:
8. The clamped crystal obeys a dielectric Curie-Weiss law. Beyond

this, the anomalous behavior of the clamped crystal with varying field

and temperature is such as to furnish, through the equations of the inter-

action theory, a description of all the other anomalies.

It is too early to say whether all the effects 1 to 8 are essential proper-

ties of all Seignette-electric crystals. It is hardly conceivable that the

ferromagnetic analogy can exist without 3 and 6. It appears possible,

however, that the essential features of the analogy might be present in a

single-domain crystal, so that 7 cannot be regarded as a necessary

characteristic.

According to the interaction theory, a Seignette-electric crystal is

one which, from 453, has rji > 014614 in a certain range of temperature.

The corresponding condition according to the dipole theory, from 485,
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is <XM > 1/7. This correspondence is discussed in 486. The two

expressions are equivalent inasmuch as each postulates the attainment

at a certain temperature of a critical polarizability in excess of a certain

value. It is only when this condition is fulfilled that there can be a

spontaneous polarization and a spontaneous strain, which can be reversed

by an applied field, giving rise to the appearance of abnormally large

values of the dielectric, piezoelectric, and elastic constants.

One may ask why Seignette-electric properties are not observed

in more cases among crystals. The answer is partly that very few

crystals have been investigated over wide ranges of temperature and

partly that these properties are due to a fortuitous combination of

circumstances. lu the first place, the polarizability must be great

enough to satisfy the condition mentioned above. This is a necessary

condition, but it is not sufficient; for although it implies an instability

and a structural modification at a certain temperature, still of itself it

does not give assurance that the crystal, on one side or the other of the

critical temperature, will have a symmetry low enough for spontaneous

polarization to be possible. Furthermore, on both sides of the critical

temperature, the substance must be a solid dielectric with homogeneous

crystalline structure.

472. Owing to the impossibility of experimenting with a completely

clamped crystal, Mueller's theory of Rochelle salt, based, as we have

seen, on the assumption of a suppressed transition in the neighborhood
of 18C, must remain a matter of hypothesis. If, as was pointed out

at the beginning of this section, a theoretical explanation could be

established for the dependence of any one of the quantities P, sf4 ,

(du) 8,
or iyj upon temperature, it would serve as well as xi for the basic

parameter.
For example, a molecular theory of the spontaneous polarization P

that predicted the correct dependence of JP on temperature could be

used as the starting point, and with the aid of the foregoing equations
the various elastic, piezoelectric, and dielectric properties could be

expressed in terms of this theory. To illustrate this fact, we tabulate

below the principal dielectric equations: at the left, the various quantities

are expressed in terms of xij at the right, in terms of P. It is assumed

that ai4, &i4, B, and C are determined experimentally and that Eq. (526)

is established on a molecular-theoretical basis, giving the spontaneous

polarization in agreement with experiment.

FUNDAMENTAL EQUATIONS

X' - Xi - ai4&n (497) x' - -BP* (497)

BP - 014614
-

xi (497) xi = au&u - BP* (497)
~

xi) (499) xi - 2BP* (499)
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473. The existence of a spontaneous polarization on one side of the

Curie point but not on the other suggests a change from a pyroelectric

to a non-pyroelectric class at this

temperature. In terms of crystal

energy, one may regard the crystal

as having a state of minimum en-

ergy U for one of these two con-

figurations, represented by curve

A in Fig. 144 and by curve B for

the other configuration. If B
were lower than A at all tempera-

tures, the state corresponding to

FIG. 144 - Two overlapping states of minimal
energy.

A would not exist at all. If B > A
above some temperature M ,

be-

coming less than A below this temperature, a change will take place in

lattice configuration and crystal classification; and if B corresponds to a

configuration in which there is a spontaneous polarization, there will be

an upper Curie point at tt . If the two curves happen to have a second

intersection at a lower temperature 61, there will be a lower Curie point here.

Similarly, if there were theoretical grounds for treating the tempera-
ture dependence of either sf4 , (du) a, or 17, as the cornerstone of the theory
of Rochelle salt, a table of relationships analogous to the foregoing could

be drawn up, in terms of which all the parameters could be expressed.

With TJ, P, and the experimental values of ai4, &i4, and B given, it can

be seen from Eq. (499) that the minimal value and absence of Curie

points for xi follow necessarily. The behavior of the clamped crystal

would then appear, not as the cause of the anomalies, but as an incidental

circumstance.
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474. Experimental Confirmation of the Theoretical Curves in Fig. 143.

The only complete data available at present are those derived by Muel-

ler378 - 380 from observations by Mason. Following Mueller, we use here

for the dielectric constant of the free crystal and for the spontaneous

polarization the values obtained by Bradford,* which are in substantial

HO

0.20

0.16

0.08

0.04

\

f*\

V

30 40 50 C

Fia. 145. Reciprocal susceptibilities of Hochelle salt for free and clamped crystals as

functions of temperature. Bradford's observations, as reported by Mueller.

agreement with the results of other observers. All values are "initial,"

obtained with small fields.

From Mason's resonance observations with an X-cut plated 45 bar,

values of du and sf4 are derived at each temperature. From these data,

with the aid of Eqs. (497), (499), (505o), and (5226) and with

dynes/cm
2
, Figs. 145 and 146 have been drawn. The saturation coeffi-

cient B is obtained from xi and P by means of Eq. (499).

In Fig. 145 the observed quantities are %' and x> for the free crystal

above and below Bu . xi for rhombic clamping, f x" for monoclinic

clamping, and x' between the Curie points are all derived by means

of the equations mentioned above. The general similarity with Fig. 143,

in which the curves between the Curie points are based on Mueller's

theory, should be especially noted. The only obvious discrepancy lies

in the value of xi, which in Fig. 145 fails to have a minimum close to zero.

Now xi is calculated from the equation

xi = x' + a>iJ>u
- ~ +

* E. B. BRADFORD, B.S. thesis, Massachusetts Institute of Technology, 1934.

t Outside the Curie points xi is identical with l/i?*.
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It may be that #14614, which we have taken from Mueller's calculations,

is too large. At present one can only say that experimental verification

of Mueller's hypothesis concerning the extremely low minimum in xi is

still lacking. At Ou, however, xi in Fig. 145 is in good agreement with

Mason's 378
Fig. 7; and x" agrees weirwith Mason's curve for a (mono-

clinically?) clamped crystal.

-20 -15 -10 -5 5 10 15 20 25 30 35 40 45 50
C

FIG. 146. Electric and elastic constants of Rochelle salt as functions of temperature,
from Mueller, calculated from Mason's observations. Ordinates are to bo multiplied by
the following factors:

Quantity an 614 P B e\\ $44* di\

Factor 104 10~ 7 100 10~8
2(10

8
) 10~ 11 10~*

In both Figs. 145 and 140 the dotted lines indicate gaps in the obser-

vational data that were used in the construction of these curves. The
arrows show the trend to be expected beyond the observed limits. Of

the values in Fig. 146, P and sf4 may be accepted with a fair degree of

confidence as being representative of average well-prepared Rochelle

salt crystals to within a few per cent. From Fig. 142 it is evident that

with larger fields, and hence with larger stresses, considerably smaller

values of sf4 would be observed. The relatively low values of sf4 obtained

by Mandell and by Hinz (Table IV) were probably due to the use of large

stresses.

In calculating dn Mueller employed the gap method described in

310 [Eq. (452)], the essential data being the frequencies /o and /^ at

series resonance, for gaps w = and w = >

, together with the density p,

length I, and the dielectric constant, en is calculated from en = dn/^}
au and b i4 are found from Eq. (4956), and sf4 from/ .

As is shown in 142, Mason, by a different method, found an to be

practically independent of temperature. If his finding is accepted, one

must conclude that the gap method employed in Mueller's calculation is
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incapable of yielding correct results with Rochelle salt. On the other

hand, there may be unsuspected temperature dependencies among the

various quantities appearing in Eq. (495d), which, if introduced, would

confer on au a variation with temperature. All that can confidently be

said at present is that the variability of an and bu with temperature is

at least an order of magnitude lower than that of eu and du.

It will be observed that 614 depends less on temperature than does du>

Instead of approaching infinity at the Curie points, eu has at M the value

014/Xi- I*1 546 reasons are given for considering the piezoelectric stress

1200

800

400

\

-24
c

12 24 36

300

200

100

FIG. 147, Dielectric constant k' at small fields, spontaneous polarization P, and

coercive field E c (in volts per centimeter), for Rochelle salt, from Bradford. Frequency

1,000 cycles per second.

coefficient Chk in general of more fundamental significance than the strain

coefficient dhk-

The observations of Bradford* on which Fig. 145 is based are pre-

sented in another form in Fig. 147, taken from Mueller. 382 The curve

for k' = 1 + 4*V corresponds to x' = W and xi = 1AI in Fig. 145.

P is the same as in Fig. 146. The values of Ec may be compared with

the data recorded in 436.

The dynamic value of du has also been measured by Mikhailov 308

from to 40C, by the use of X45-bars with a small gap and a field of

1 to 2 volts/cm. His curve relating du to temperature is like that in

Fig. 146, but the values over most of the range are only about one-third

as large, owing possibly to the presence of the gap.

It has already been pointed out in 426 that relatively small values of

du are to be expected when weak fields are used at frequencies as high

as those in resonators. Comparison of Fig. 146 with the experimental

results obtained with static and 1-f alternating fields, as recorded in

Chap. XXII, shows that in the h-f dynamic case this expectation is

* See footnote, p. 626.
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fulfilled. According to 480, the discrepancies between the curve for

du in Fig. 146 and Figs. 106, 109, and 115 are explained simply by the

fact that in the resonator experiments the field and stress were so small

that du never exceeded its initial value. As the Curie points were

approached, this initial value became very large; midway between these

points it was very small indeed in comparison with the values that it

attains under larger stresses, and especially in static fields, as illustrated

in Fig. 106.

476. Conclusions Respecting the Polarization Theory. In the fore-

going pages we have given, with certain elaborations, an account of

Mueller's interaction theory of Rochelle salt, in terms of the polarization

theory, which was developed independently by Mueller and the author

from premises first suggested by Mason. While the interaction theory

might have been written in terms of Voigt's field theory, still the con-

cepts of the polarization theory provide a description of the properties of

Rochelle salt (and, without much doubt, of all other Seignette-electrics

as well) that presents a clearer picture of the physical nature of the

phenomena. The chief experimental justification lies in the fact that

the coefficients OH and 6 i4 are found to have values nearly, if not quite,

independent of temperature, and probably also independent of stress.

au and 6 14 are therefore to be regarded as the true piezoelectric constants.

As has been seen, the
"
constants

" du and 614 vary enormously with both

stress and temperature.

On the other hand, if the "true" dielectric constant is defined as that

which would be observed with a clamped crystal, this constant so defined

is not linear in E or independent of temperature, although the dependence
on temperature is small in comparison with that of the free crystal.

Mueller has pointed out 382 that effects that are not directly related to

the electric properties may be expected to vary linearly with temperature
if at all, except for very slight changes at the Curie points and small effects

caused by an electric field. An example of such a property is the elastic

compliance s 4 at constant electric displacement. s 4 is the quantity
derived from measurements of the elastic stiffness of a completely
isolated crystal (463), and it is found to have a very slight dependence on

temperature, with a minute anomaly at the upper Curie point (375).
The compliance sJ4 at constant polarization, which plays an important

part in the polarization theory, is numerically practically identical with

*?4 (211).
In the basic equations (493) to (493c) of the polarization theory no

provision is made for variation of sJ4 with stress. A linear relation is

assumed between stress and strain at constant polarization. The

justification for this assumption lies in the approximate agreement of

theory with observation as far as present experimental data go.



630 PIEZOELECTRICITY [476

476. Comparison of the Polarization Theory with VoigVs Field Theory.

As has been stated, both "theories" are only different ways of describing

the same phenomena. If it were not for the great dependence of the

elastic and piezoelectric constants of Rochelle salt on temperature, the

polarization theory would probably never have arisen. The superiority

of the polarization theory lies entirely in the fact that the elastic coeffi-

cients at constant polarization, and the piezoelectric coefficients when
denned in terms of polarization rather than of field, are practically

independent of temperature. The polarization theory does not reveal

these facts; it only takes advantage of them. In particular, it gives

clearer expression than does the field theory to this very important fact:

To a high degree of approximation the piezoelectric strain, at all tempera-
tures and up to the attainable limits of saturation, is proportional to

the polarization. Mathematically, this statement is equivalent to saying
that aii and bu are approximately constant, whereas e^ and du, which
relate stress and strain with the field, vary greatly with temperature.

In the theoretical treatment of practical applications, whenever the

polarization rather than the field can conveniently be used as the elec-

trical parameter, the polarization theory is to be preferred. Voigt's

formulation, using eu and di4 ,
is to be used when the phenomena can more

conveniently be described in terms of the applied field. For example,
the latter is the case in dealing with the piezoelectric resonator. The

question of the applicability of the polarization theory to piezoelectric

crystals other than Rochelle salt is dealt with in 191.



CHAPTER XXV

THE DOMAIN STRUCTURE OF ROCHELLE SALT

La donna e mobile

Qua! piuma il venio, . . .

"RlGOLETTO."

477. Frequent reference has been made in the preceding chapters
to the hypothesis that between the Curie points Rochelle salt, like iron,

normally consists of an aggregate of distinct domains. The experimental
evidence will now be examined, and the bearing of domain structure on

dielectric and piezoelectric observations will be discussed. An account

is included of JaftVs theory of polymorphism in Rochelle salt, leading
to the conclusion that Rochelle salt is properly to be regarded as mono-
clinic in the Scignette-electric region.

The remark has been made by Debye* that a sample of unmagnetized
iron is analogous to a mixture of microcrystalline tourmaline crystals

with random orientations. The analogy is still closer if Rochelle salt is

substituted for tourmaline.

The first suggestion that the spontaneous polarization in Rochelle

salt might be due to groups of atoms having different orientations of the

same probability in the lattice seems to have been made by Debye in the

discussion of a paper by Dorfman.f This idea, adopted by Kurchatov
and verified by Mueller and others, made the ferromagnetic analogy
even more complete.

The experimental evidence is of several sorts. First, there is the

electrical Barkhausen effect indicating discontinuous jumps in the

process of polarization as the field is gradually increased; it constitutes

an additional item in the long list of magnetic analogies (555). This

effect in Rochelle salt was described by Kluge and Schonfeld261 and also

by Mueller. 376 It is observed only between the Curie points.

Second may be mentioned the pyroelectric tests with Burker's powder
(517), which reveal discrete regions of opposite polarity. The pyro-
electric effect would be zero if the domains were very small and their

polarities were equally divided in opposite directions. One evidence

of the minute size of the domains in iron lies in the fact that iron is not

pyromagnetic.
* "Handbuch der Radiologie," vol. 6, p. 750, 1925.

t J. DORFMAN, in "Magnetisme," Rapports 6*me Conseil phya. (Inst. Solvay), 1930

(pub. 1932), pp. 381-387.
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From the size of the regions observed in his pyroelectric tests (521),
Mueller concludes that the domains in Rochelle salt are of the order of

1 cm in extent, enormously greater than in the case of ferromagnetism.
His small crystals appeared to consist of single domains. That the

domains are much less numerous than in iron is indicated by the rela-

tively small number of Barkhausen "clicks," though it must be admitted

that they are still sufficiently numerous to make one suspect that, if

each domain is of the order of 1 cm 3
,
its polarity does not become reversed

all in one jump. The effects of domain structure axe manifest only

between the Curie points.

To account for the large size of the domains, Mueller offers a hypothe-
sis that may be stated thus: In the process of growth the crystal is

constantly surrounded by a conducting liquid, which makes the surface

equipotential and prevents the development of an opposing field. On
the contrary, the domains in iron, while still very small, find themselves

in the presence of opposing magnetic fields, which prevent further

growth.
A necessary consequence of the presence of fairly large domains is

unipolarity, which has sometimes been found, especially with small

crystals or, as recorded by Kurchatov,
832 - 294 in portions of a large crystal.

In 433 unipolarity is further considered.

The domains in Rochelle salt preserve their individuality to a remark-

able degree. Kurchatov states that after the large crystal, to which

reference has just been made, had been kept for several hours at 40C
and then allowed to cool, the diminution in unipolarity was very slight.

It would appear that the state of thermal disorder at high temperatures
is unable to destroy either the configuration of the domains or the char-

acteristic direction of the polarity in each domain, even though above the

Curie point the spontaneous polarization is gone, only to reappear
as the temperature passes downward through the critical temperature.
This view is confirmed by Mueller's remark that no permanent reversal

of the spontaneous field has ever been observed by him, even when a

crystal was cooled while in a reversing field of 1,000 volts/cm. It is

an interesting question whether the magnetic domains in iron also retain

their individuality after being heated above the Curie point.

The persistence in polarity of individual domains can perhaps be

explained in terms of the large mechanical stresses at the boundaries of

adjacent domains when the crystal is in an electric field. Such stresses

would tend to restore the original configuration and the original polarities .

on removal of the field. But a single-domain specimen might be expected
to have its polarity permanently reversed by a strong reversing field.

Another consequence to be expected from the stresses between

domains is that such stresses will prevent the isagric compliance sf4 for
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very small stresses from being as great with a multi-domain crystal as in a

single domain (462 and Fig. 141).

478. Can Large Single-domain Crystals Be Produced? When a

Rochelle-salt crystal is grown by the method of cooling from a hot

solution, the gradual lowering of temperature must give rise to internal

stresses. Since the solution is usually considerably above the upper
Curie point at the start, the stresses may be expected to be especially

large as the temperature passes through this point. It is conceivable

that such stresses are an important factor in the breaking up of the

crystal into domains. If this is the case, then it seems possible that, by
growing crystals at a constant temperature between the Curie points,

single domains, or at least multi-domain crystals with larger domains,

might result. As has been stated in 412, a few experimenters have used

crystals grown by evaporation at constant temperature. Although it

must be admitted that the properties of such crystals do not appear to be

recognizably different from those in the case of growth by cooling, still

there is not found in the literature a satisfactory answer to the question

whether the domain structure is dependent on the method of growth.

A little light was thrown on this problem by W. S. Stilwell, who com-

pared the pyroelectric patterns formed on crystals grown by evaporation

at a constant temperature between the Curie points with those on crystals

grown by cooling.* Seeds were placed in a 1,500-cm
3 flask containing a

saturated solution at 1.8 0.02C. This flask, together with a large coil

of copper tubing through which ice water was circulated, was immersed

in a large container of water surrounded with good thermal insulation.

In this container were also a heating coil, thermostat, and stirrer. An
exhaust pump in constant operation kept the pressure of the air above the

solution at a few millimeters of mercury. The water evaporated from

the crystallizing flask was condensed in a second flask, which was cooled

by a mixture of dry ice and alcohol.

The best crystal was grown to a size of 18.5 by 18 by 12 mm in 16 days.

It is impossible to say what sort of domain structure this specimen

might have been found to possess if it could have been tested at the

temperature at which it was grown. It may be that in warming up to

room temperature after removal from the solution and then in having its

temperature changed by a few degrees during the pyroelectric test it

took on a multiple-domain structure. At any rate, when it was sprinkled

with a mixture of red lead and sulphur, it showed the presence of many
domains. These appeared to be predominantly in the form of flat slabs

of the order of 1 mm thick, with their planes normal to the F-axis.

Instead of being relatively large, the domains were found to be actually

smaller than those observed by the same method on crystals grown by
* W. S. Stilwell, thesis for distinction, Wesleyan University, 1939.
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cooling [crystals grown by R. W. Moore (412), and from the Brush

Development Company].
While these tests are not fully conclusive, they do not offer a hopeful

prospect for the growth and permanence of single-domain Rochelle-salt

crystals.

479. Effect of Domain Structure on the Hysteresis Loops. In Fig.

139 we have shown idealized curves for a single-domain crystal. It will

be recalled that, if the spontaneous polarization P is represented by
00'

t
then when the field E is impressed the observed polarization is given

by Eq. (500) and illustrated by
curve a, with origin at 0'. Since

the domain is already polarized at

the start, there is no "
virgin

curve."

If a crystal contains a number
of domains whose positive and

negative spontaneous polariza-

tions just balance, it shows no

unipolarity as a whole. Such a

case is represented theoretically in

Fig. 148, in which 00' and 00( are

the average positive and negative

values of P. In the ideal case,

such as has hitherto been treated,

the + and domains make sepa-

rate contributions to the observed

polarization. As E increases from

zero in the positive direction, the contribution of the positive domains

is represented by O'N'C, with 0' as origin; that of the negative domains

is O'iNN'C, with 0{ as origin, the portion NN' representing the

sudden reversal of the negative domains. The total observed polariza-

tion, which can now be depicted with origin at 0, is half the sum of the

two contributions, or OHN'C. The form of the virgin curve thus finds

a theoretical explanation. If now E is put through a cycle from + to

and back, the hysteresis loop CO'MM'C'O'flN'C results, exactly as in

Fig. 139, where only domains of a single sign were considered. If the

average + and spontaneous polarizations do not exactly cancel, the

foregoing discussion need be modified only to the extent of moving
the origin to a position somewhat above or below in Fig. 148.

Even with a single-domain crystal it is probable that local inhomo-

geneities would facilitate the reversal of polarity, so that the virgin

curve would begin to turn upward at some such point as J5, and the

coercive force Ee would be OS = -OS' instead of OR = -OR'. The

FIG. 148. Theoretical hysteresis loop for a

multidoniaiii Rochelle-salt crystal.
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corners of the loop would become rounded, leading to the form indicated

in Fig. 148. The diminution of Ec must be still greater in a multi-

domain crystal, in which the spontaneous deformation of each domain is

hindered by adjacent domains. A field applied in either dirdction finds

it easier to reverse those domains which oppose it, especially if, as in the

case of iron (555), some domains can grow at the expense of others.*

As to the actually observed field values, it will bo recalled from 432

that under static excitation saturation has been recorded with a field

strength as low as 15 volts/cm, while in a-c measurements from 50 to

1,000 cycles/sec the coercive field Ec is found to vary from zero at 6U to

about 200 volts in the neighborhood at 15C, according to Habliitzel.

Mueller, as shown in Fig. 147, finds Ec to have a maximum of about 270

volts/cm at 5G. Such discrepancies are not surprising in view of the

variability in the domain structure. The foregoing values are only
of the order of one-tenth as great as that calculated with the aid of

Eq. (502). This fact docs not invalidate the data in Fig. 147, which are

based on actual measurement. It only goes to show that Eq. (502),

which does not involve the domain structure, is incapable of furnishing

the correct value of the coercive field.

In Fig. 128 it is seen that between the Curie points the dielectric

constant is very much higher with moderately strong than with weak

fields, just as is the case with the permeability of iron. As in the case

of iron, the explanation lies in the shape of the polarization curve

OBB'C in Fig. 148. It is obvious that from point B on, the ratio P\E,
and hence the dielectric constant of the free crystal, increases with

increasing E up to the knee of the curve and remains relatively large

up to very great values of E.

The foregoing account of dielectric hysteresis in Rochelle salt assumes

that the energy loss per cycle, represented by the area of the loop, is

involved in the work done in reversing the domains. This description

is necessarily only qualitative; moreover, it does not take account of those

viscous losses which may be independent of the reversal of domains.

Nevertheless, the view that domain reversal plays an essential part
in the phenomenon of hysteresis is not incompatible with the theory
of hysteresis in Rochelle salt advanced by W. P. Mason, which is dis-

cussed in 375.

In Fig. 148 it will be observed that the initial slope, for E =
0, is

the same at points 0, 0', and 0(. Hence, so far as small fields are con-

cerned, the observed dielectric properties of Rochelle salt are the same
whether the specimen consists of a single domain or not, and all that has

* A painstaking, if not fully convincing, theory of domain structure has been

attempted by David. 119
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been said from 452 on, concerning effects at weak fields and small stresses,

becomes applicable to all specimens.

In a single-domain crystal or in a multi-domain crystal having a

preponderance of spontaneous polarization of one sign, it is theoretically

impossible, owing to the reversal of domains, to find any field strength

whatever that will reduce the net polarization to zero.

480. A word is needed concerning the bearing of domain structure

on the piezoelectric coefficient du- Outside the Curie points Rochelle

salt is always rhombic dextrogyrate, and the sign of du is positive.

In the Seignette-electric region, where the crystal is monoclinic enantio-

morphous, du is still positive, retaining the same sign whether the domain

has a positive or negative spontaneous polarization. The sign of du
would be negative only in a left-crystal. Owing to the close relationship

between the susceptibility of a free crystal and du, it follows that the

interaction between domains will have an effect on du similar to that

on the susceptibility.

When the dielectric constant of Rochelle salt is measured with a

low-voltage a-c bridge while a relatively large static field is impressed
on the crystal, the value is diminished to an extent depending on the

static field. An inspection of Fig. 148 shows this. The phenomenon is

analogous to the effect of a mechanical bias discussed in 459. This

effect has been recorded by Errera134 and also by Mueller. 376

In 453 and 459 it was shown that the quantities auVz and buYz

are equivalent to E in the production of polarization. It follows that

when, as can be the case in Rochelle-salt resonators, there are periodic

changes in strain or stress of sufficient magnitude for non-linear effects

to be appreciable, the polarization : strain or polarization: stress curves

must have the form indicated in Fig. 148. Some evidence of this is

afforded by Figs. 112, 114, and 115. Unfortunately, no data are available

for comparing, with the same crystal, the dependence ofPx on the mechan-
ical stress Yg,

the dependence of the strain yz on the electric stress Ex,

and that ofPx on Ex ,
over wide ranges of these stresses.

We are now in a position to consider the dependence of the over-all

piezoelectric coefficient (du)f, upon stress, in a multi-domain crystal.

According to Eq. (5126), in a single-domain crystal this coefficient has

its largest value at small stresses, when P is small, up to the point where

the stress is great enough to cause a reversal of P. In the usual case

of a multi-domain crystal, when static stresses of varying magnitude are

applied, the P: Y9 relation should be similar to the P:E virgin curve in

Fig. 148, with (du); = -P/F.. Obviously, (du)i is small up to the

point B and has an approximately constant value identical with (^14)5

in Eq. (509a). With increasing Yz it increases rapidly toward a satura-

tion value. This effect is to be expected over the temperature range in
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which hysteresis is present. Such experimental evidence as can be

found is mentioned in 418. In particular, it follows from the depend-
ence of P, and hence of the size of the hysteresis loop, upon temperature
that under large stresses (du)j is greatest midway between the Curie

points, sloping gradually downward through the Curie points; at these

points (du)n fails to show maxima when the stress is large, as is illustrated

in Fig. 106.

Similar results are indicated by theory for the converse effect, in

which case the hysteresis loops are plotted with yz
- and ^-coordinates,

and (di4)J
= y*/E, as in Fig. 114.

Evidence for the existence of domains in Seignette-electric crystals

other than Rochelle salt will be found in 498.

481. Polymorphism in Rochelle Salt. It has been pointed out by
Jaffe246 that whenever a transition takes place from a non-pyroelectric

to a pyroelectric crystal class at a definite temperature an infinite value

of the electric susceptibility is to be expected at this temperature, pro-

vided that the transition does not involve latent heat. In an earlier

paper
246 Jaffe also discusses the question whether the Weiss region in

iron should not be considered as tetragonal paramorphic rather than

cubic, even though a single crystal, with its random orientations of

domains, is externally cubic. It may be added that in 1916 Perrier412

attempted to correlate the high-low inversion in quartz with the ferro-

magnetic Curie point and looked for a sharp maximum in the permittiv-

ity. That the result was negative can now be understood from the fact

that neither high nor low quartz possesses primary pyroelectricity.

The rhombic system has three mutually perpendicular axes of unequal

lengths. Hitherto Rochelle salt has always been assigned to the rhombic

hemihedral (or bisphenoidal) class, No. 6, from goniometric measure-

ments made presumably at room temperature and hence in the Seignette-

electric range. In this class each of the three crystallographic axes is a

twofold symmetry axis, which precludes the possibility of a polar axis.

This means, physically, that it is impossible for any scalar agent, as

temperature or hydrostatic pressure, to give rise to a vectorial phe-

nomenon such as magnetic or electric polarization or for a linear electro-

optic effect to exist in this class. Hence, in accordance with Neumann's

principle as elaborated by Voigt, any pyroelectricity exhibited by this

class must be of the
"
false" type.

Outside the region of spontaneous polarization the physical properties

of Rochelle salt are entirely in accord with its rhombic hemihedral

symmetry. Within this region, on the other hand, as was emphasized

by Jaffe,
245 there are several one-way effects indicating that the X-axis

is physically a polar axis and therefore should be so regarded crystallo-

graphically: spontaneous internal field, pyroelectricity (521), unipolar
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conductivity (410), asymmetry in polarizability (433) and in the

converse piezoelectric effect (422), and a linear electro-optic effect. 376

These effects are all characteristic of the domain, just as the large

internal field in iron is a domain property. If in Rochelle salt as in iron

the domains were very small, with their polarities distributed at random
in space or equally divided along the + and X-directions, none of the

effects associated with a polar axis would be externally observable, and

there would be no doubt about assigning Rochelle salt to the rhombic

hemihedral class. For example, consider the pyroelectric effect, which

Mueller found to be very strong in the range of spontaneous polarization.

In view of what has been said, we must conclude either that this effect

is only
"
apparent

"
as a result of the spontaneous polarization, or that

between the Curie points Rochelle salt belongs properly to a class of

lower symmetry. The latter view seems clearly the logical one, at least

in the case of a crystal consisting of a single domain. The spontaneous

polarization makes the X-axis a polar axis of symmetry in the physical

sense; we shall now show that this is also true in the crystallographic sense.

In assigning Rochelle salt in the region between the Curie points

to the appropriate class we confine the discussion to the single domain.

The only rhombic class other than hemihedral that is piezoelectric is the

hemimorphic, and this is excluded because of the absence of du. The

proposals of Valasek543 and of Taschek and Osterberg
504 in this regard

are therefore of no avail. Now, if the X-axis is recognized as a polar

axis, the F- and Z-axes can no longer be axes of symmetry. With only
one twofold axis of symmetry left the crystal must be monoclinic hemi-

morphic. It will be recalled that, while in both the rhombic and mono-
clinic systems the three axes are unequal, the rhombic system has its axes

mutually perpendicular. On the other hand, in the monoclinic system
one axis is perpendicular to each of the other two, the latter forming an

angle different from 90. Thus the transition from rhombic to mono-
clinic involves crystallographically only a change in the angle between

two axes, in this case the F- and Z-axes. These are the considerations

that lead to the assignment of Rochelle salt to the monoclinic hemi-

morphic class.

According to the usual convention as stated in 5, the monoclinic

polar axis 6 would be called the Z-axis. To avoid confusion we adopt
Jaffe's suggestion that it still be called the X-axis, the rhombic F-axis

remaining unchanged, being now the same as the monoclinic F-axis

with sign reversed. The a-axis of the monoclinic crystal then makes a

small angle ft with the negative direction of the rhombic F-axis. The
rhombic Z-axis coincides with the monoclinic X- (or c-) axis.

This convention requires a revision of the subscripts of the piezo-

electric constants with respect to Voigt's usage. It is brought about by
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exchanging the index 1 with 3, and 4 with 6. The tabulation of constants

then becomes, instead of that given in 131,

dn diz dis du
d2 s Aze

du du

The tabulation includes five new constants in addition to du, du,
and dw No search for them seems to have been made beyond the

experiments described in 464 and 483. The chief difficulty in their

detection and measurement lies in eliminating stray effects due to the

large du.

The angle /? between the c-axis and the orthogonal Z-axis is simply
the angle of shear yz imposed upon the domain by its own spontaneous
field in the absence of an external field. This angle varies with tempera-
ture between the Curie points, having a maximum of the order of 3' at

about 5C. Reversal of the polarity of the domain by application of an

external field reverses the direction of the polar axis and changes the

sign of /3.

It is not surprising that so small a departure from the orthogonal

relation has escaped notice, especially since goniometric measurements

have presumably been made with crystals in which there were complexes
of opposing domains. The point to emphasize is that the structure of

Rochelle salt is essentially that of the domain, for which /3 has a value

different from zero. In JaftVs paper are mentioned other instances of

recognized transitions from one crystal classification to another in which

the changes in parameters are very small.

From these considerations it follows that between the Curie points

an ordinary Rochelle-salt crystal with its complex of positively and

negatively oriented domains is to be regarded as twinned, the twinning

being of the Dauphin6 (orientational) type, like that in low quartz

produced by cooling from uniform high quartz (electrical twinning).

The Curie points are inversion points from monoclinic to rhombic

hemihedral symmetry. For this inversion the piezoelectric effect is

responsible. An isolated unit cell would be rhombic at all temperatures,

but between the Curie points the interaction between the dipoles (or

their equivalent) in neighboring cells is such as to produce an internal field

with attendant deformation, making the domain as a whole monoclinic.

482. In 436 it was pointed out that the coercive field Ec has a value

of about 200 volts/cm at 0C, approaching zero at the two Curie points,

We can now go a step further in the explanation, recognizing E as a

measure of the energy required to reverse the polar axis of the crystal.

That EC is so small at all temperatures is because the transition tempera-
tures are so close together. When the field E reaches the critical value
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Ec ,
the dipoles that are responsible for the spontaneous polarization

become reversed from their stable state in one direction to that in the

opposite direction. As they do so, the angle changes sign. Midway
between the two stable states, then, is the configuration of higher (rhom-

bic) symmetry, for which = 0. As either Curie point is approached
the stable states come nearer and nearer to the higher symmetry; this

explains why the energy necessary to effect the reversal approaches zero.

Now a finite change in strain and polarization caused by an electric

field of vanishing magnitude means that at the Curie points both du and

tjx approach infinity. Experimental evidence (474) tends to confirm

this conclusion.

The angle ft referred to above is the spontaneous strain yl that was

discussed in 403 and 452. To Vigness
566

belongs the credit for the

first experimental work from which its magnitude could be calculated,

while Jaffe first recognized it as a characteristic feature of Rochelle salt

and treated its theoretical significance in the manner outlined above.

From Vigness's data Jaffe calculated yz
= 8(10~

4
) at temperatures from

to 10C, whence ft
= 2.7'. Vigness's crystal showed distinct uni-

polarity; yet it is unlikely that he happened to have a strictly single-

domain specimen. Hence the foregoing value is probably too small

rather than too large.

From the observations of Hinz shown in Fig. 114 an estimate can be

made of yl on the assumption that, by analogy with the spontaneous

polarization P, y\ can be calculated from the remanent strain when
E = 0. In this manner one finds, at 18.5C, yg

= 0.95(10~
4
), a value

smaller than would be expected from Vigness's results, even after making
allowance for the greater nearness to the Curie point; but the reason

may lie in the multi-domain structure.

Mueller380 made a direct measurement of the variation with tempera-
ture of the angle between the 7- and Z-faces of a Rochelle-salt block.

He found no temperature effect above the upper Curie point but observed

an angular change beginning at 6U which amounted to about

3'(y! = 8.7 X 10~4
)

at 11C and to 3'45" (y\
= 10.9 X 10~ 4

) at 0C.
Finally, from Eq. (494), y\ = 6uP, the spontaneous strain can be

computed by taking 6 i4 and P from Fig. 146. At 0C, bu = 6.8(10~
7
),

jP = 740, whence y\ = 5.03(10~
4
). This value agrees as well as can be

expected with the results of Vigness and of Mueller, considering the

differences in domain structure of the specimens employed.

Although observations of spontaneous strain in the neighborhood
of the lower Curie point 81 are still to be made, there is little reason to

doubt that the relation between spontaneous strain and temperature
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can be represented by a curve similar to that for P in Fig. 147, with a

maximum for y\ of the order of 10~" 3
.

From the thermal point of view, the spontaneous strain would be

described as due to an anomaly in the coefficients of thermal deformation

(407). A discussion of thermal expansion in monoclinic crystals will be

found in Voigt* and in Wooster.B66

Induced Monoclinic Properties. In an important sense Rochelle salt

takes on monoclinic properties even outside the Curie points, viz., in an

electric field. The class to which any crystal is normally assigned

depends on goniometric measurements on specimens that are unstressed,

either mechanically or electrically. The change in crystallographic

symmetry in a crystal under stress is mentioned in 531, and more

especially in 464. As an example of an effect theoretically observable

with monoclinic but not with rhombic crystals and that nevertheless has

been found above the upper Curie point in Rochelle salt, we may cite

the linear electro-optic effect discussed in 535.

483. A Search for Monoclinic Coefficients by Hydrostatic Pressure. If,

as is indicated in the footnote on page 613, there is a detectable monoclinic

piezoelectric effect in monoclinic Rochelle salt between the Curie points,

independent of morphic effects, its presence should be revealed by means
of hydrostatic pressure. According to the axial system adopted in 481,

the piezoelectric constants that would play a part in such an effect are

da, du, and di3 . A uniform hydrostatic pressure II would then produce,

through the direct effect, a polarization given by Eq. (193) :

An X-cut plate immersed in insulating oil, with electrodes connected

to a measuring device, should respond to a change in pressure of the oil.

An advantage in this method is that it entirely eliminates disturbing

effects from du, since no shear is caused by hydrostatic pressure.

A preliminary investigation of this sort has been made by A. C.

Grosvenor.f An X-cut Rochelle-salt plate 4.2 mm thick, area 8.3 cm2
,

was connected to a d-c amplifier. Substantially the same results were

obtained with a second crystal. There was no difficulty in obtaining a

deflection of the milliammeter when a pressure of a few kgs/cm2 was

applied to the paraffin oil surrounding the crystal in a metal container.

The difficulty lay in interpreting the results. In the temperature range
under investigation Rochelle salt is pyroelectric. The adiabatic heating
of the oil and of the crystal itself when pressure is applied causes a

pyroelectric contribution to the deflection. Now the pyroelectric effect

is greatest at the Curie points, having opposite signs at these points and

*
Pp. 280-294.

t A. C. GROSVENOB, master's thesis, Wesleyan University, 1940.
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passing through zero in the neighborhood of 0C. It should therefore be

possible to eliminate the pyroelectric disturbance by applying the pressure
at a temperature sufficiently below 0C so that the net pyroelectric

polarization, due to the rise in temperature on application of pressure,

would be zero.

At present only preliminary results have been obtained by this

method, indicating a value of (du + ^12 + dia) of the order of 3(10~
n

).

It was also observed that at 11.3C the deflection was zero. On the

assumption that the pyroelectric and piezoelectric effects at this temper-
ature were equal and opposite, a crude calculation of (du -f- di2 -H dis)

was made by estimating for the pyroelectric coefficient p the value of

about 20 by the method indicated in 521 and calculating the rise in

temperature due to compression. Owing particularly to the fact that

the crystal plate used had presumably a multi-domain structure, for

which the assumed value of p may have been many times too large, the

calculation would be expected to yield too high a value of

The value by this method was, in fact, of the order of a thousand times

greater than that obtained by the first method.

It is possible that a repetition of these experiments with greater

refinement, coupled with a thorough pyroelectric investigation of the

specimen, would prove of value in the attack on the problem of Rochelle

salt. And let the observer not forget to use several different specimens !



CHAPTER XXVI

INTERNAL-FIELD THEORY
OF SEIGNETTE-ELECTRIC CRYSTALS

Dock im Innern scheint ein Geist gewaltig zu ringen . . .

GOETHE.

484. Although doubt has been thrown on the importance of the

orientation of free dipoles in explaining the nature of the Seignette-

electrics, still the dipole theory, which involves the concept of the internal

field, has figured so prominently in the literature and may still continue

to do so in a modified form that it is advisable to survey the subject

briefly, with special reference to the work of Kurchatov,B32>263
Mueller,

376

and Busch. 88 At the end of the chapter an account is given of the

attempts to calculate the dipole moment of Rochelle salt.

The outstanding differences between the internal-field and the inter-

action theories are these: (1) The polarization P is expressed as a cubic

function of the internal field F by the former theory and as a cubic

function of the ordinary field E = V/e by the latter. (2) The two
Curie points and the properties of the crystal in the region between them
are attributed in the former theory to small changes in the molecular

polarizability and in the latter to small changes in the susceptibility

of the clamped crystal. Further comparisons between the two theories

will be found in the following paragraphs.

From Eqs. (171) and (174) it is seen that the polarization may be

expressed as

P = NaeaF + PoL(a) , (530)

where L(a) is the Langevin function, P is the polarization in infinite

field, aea is the polarizability by distortion (electronic plus atomic),

and a = nF/KT. If L(a) is written in the generalized approximate form

of Eq. (562), one finds*

F - f (530a)

* In 552 it is stated that the value of the coeClcicnt p depends on the restrictions

imposed on the degrees of orientational freedom of the dipoles, i.e., on the quantum
number n. For unrestricted orientation n ~ < and the equation becomes the orig-

inal Langevin function, Eq. (556) or (556a), with p \. If the orientation is restricted

to parallel and antiparallel positions with respect to a single direction, n $ and
643
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It was shown in Eq. (168) that

F - E + yP (531)

By means of this equation, (530a) could be converted into a theoretical

expression for polarization in terms of applied field E, which would

include both the non-linearity and the dependence on temperature.

Although a step in this direction was taken by Busch, still the various

parameters and the dependence of N and Po on temperature are so

little known that such an expression could not be put to experimental test.

485. Mueller's Internal-field Theory. This theory, an elaboration of

that of Debye and Kurchatov, assumes the existence of a field F, related

to P by an empirical equation of the same form as (530a),

p = aMF - 0F8
(532)

where au is the polarizability per unit volume in small fields (to avoid

confusion with the molecular polarizability, we write aM in place of

Mueller's a). <XM includes the effects of dipoles, as well as that due to

piezoelectric deformation; the theory is phenomenological to the extent

that the constituents of CXM do not appear in the equations.

Both aM and are dependent on temperature.* The kernel of

Mueller's theory is the assumption that aM may be expressed by

*M - (533)

where 7 is the internal field constant of Eq. (531), T the absolute tempera-

ture, and 0(T) is a function which Mueller calls the "Curie temperature."

Although Q(T) is of the nature of a temperature, equal to Bu or ft at

the Curie points, still it might more properly be called the Mueller

function, in order to avoid confusion with the Curie point, which is often

referred to as the Curie temperature. At present there is no convincing

theoretical expression for d(T) that can be put to quantitative test.f

p 1. Since the dielectric anomalies in Rochelle salt have to do with the JE-direction

alone, one might be led to set p 1 in Eq. (530a). The objection to this form

of the function is that it requires absolute quantization with respect to one direction,

an assumption for which there is no theoretical justification in solid dielectrics. Yet

it may well be that p 1 comes closer to the truth than p J. Too little is known

of the numerical values of N
t A*, F, and y to decide this question. For the present

we must remain content with the assumption that for not too large values of the field

the relation between /Z and a, and correspondingly the relation between polarization

and field, can be represented by a cubic equation like (530a) in which the constants

have to be determined empirically.
* Mueller shows that the saturation coefficient B of his later papers is identical

with 0-x
4
-

t Busch88 derived a theoretical relation between 0(T) and T, but it contains param-

eters whose numerical values are still unknown.
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Since in Rochelle salt the anomalies are present only with fields in

the X-direction, we are concerned with the value of 7 in this direction

only. Rochelle salt may be expected to be anisotropic with respect to

7, which presumably has different values parallel to the three axes.

Unlike Mueller, Busch, whose work is based largely on Mueller's

internal-field theory, makes explicit use of the Langevin function. It

will perhaps aid both in interpreting the theory and in emphasizing the

ferromagnetic analogy if we follow here the method outlined in 550

for ferromagnetism. If P and F in Eq. (532) are plotted as ordinate and

abscissa, respectively, a curve similar to that in Fig. 165 results. That

which corresponds to the "Weiss lines" is obtained by writing Eq. (531)

in the form

P = - - ?
(534)77

At higher temperatures, down to a few degrees above the upper
Curie point, we have the purely parelectric region. In this region, as

has been suggested by Scherrer,
461 the dipole system behaves like a

dipolar gas embedded in a polarizable matrix.

The upper Curie point M is the temperature at which, with small

fields, the slope of the Weiss line is the same as that of the curve:

dP 1 0(T)

aF-^-v- 7*:

Since 6(T) = tt at the Curie point, it follows that at this critical tempera-
ture CLM = 1/7. As the temperature falls below 0, the slope of the Weiss

line diminishes, thus accounting for the spontaneous polarization, as

illustrated, for the magnetic case, by the point P
1
in Fig. 165.

In order to account for the lower Curie point ft, Busch elaborates

upon Kurchatov's theory of the variability of the number of free dipoles

with temperature and deduces a different Langevin curve for each

temperature, ft is then the temperature at which the Weiss line again

becomes tangential to the curve at the origin. Mueller, who does not

make explicit use of the number of free dipoles, simply assumes yctx = 1

at each Curie point.*

The significance of the quantity yccM is shown by writing, from Eqs.

(531) and (532),

E =
(1
- yaJF + 70F3

(535)

* Debye (rcf. B15, p. 89) predicts large values of the dielectric constant of polar

liquids when the quantity (4ir/3)N ( -f ad) approaches unity. Since 47r/3 corre-

sponds to y and N(afa + <*) to CCM, it is evident that Mueller's assumption that

*yjif
- 1 at the Curie points is the analogue for Rochelle salt to Debye's condition

for liquids. Mueller's piezoelectric constituent of ax supplies the amount needed to

make yam =
1, thus yielding an infinite dielectric constant at certain temperatures.
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Outside the Curie points, yoiM < 1, F vanishes when E =
0, and Rochelle

salt behaves like an ordinary dielectric. In the region where yaM > 1,

the inner field has two real values, differing from zero, thus accounting

for the spontaneous polarization. The Seignette-electric region is that

in which ctM is slightly greater than 1/7. According to this theory, a

small and gradual change in au with temperature is responsible for the

anomalies, just as in the later interaction theory (468) the anomalies

are attributed to a small and gradual change in the clamped susceptibility

The cubic equation (535) corresponds to Eq. (496) :JE = x'P + BP*.

For P aMF from Eq. (532), V = 1/x' =-<W(l - 7^) from Eq. (536)

below, while, as has been stated, B =
fly*.

Obviously, the numerical value of OLM depends on that of 7 (Mueller's

/). As we have seen in 113, in all crystals one would expect 7 to be

of the same order of magnitude as the theoretical Lorentz factor 4w/3
At present, a theoretical calculation of 7 for Rochelle salt is impossible;

moreover, as Busch points out, 7 may be expected to have different

values for the lattice and the dipoles. Without making this distinction,

Mueller derives 7 empirically from Eq. (536), as will be seen. The

point to emphasize here is that it is not necessary, as in ferromagnetism

(549), to postulate a very great value of 7 in order to account for the

large internal field in the Seignette-electrics. Moreover, since the X-ray
observations of Warren and Krutter679 indicate no change in the lattice

structure of Rochelle salt over the entire temperature range, it can safely

be assumed that 7 is not appreciably affected by temperature.

486. The Curie-Weiss law for Rochelle salt outside the Curie points

is derived from Eqs. (531) to (533). We thus find, for the free crystal

in small fields, where the second term in Eq. (532) can be omitted,

-
o(T)]

This equation is a special form of the general relation between dielectric

susceptibility and polarizability given in Eq. (173).* 6(T) signifies the
" Curie temperature," which in 434 is denoted by te . The quantity

0(T)/7 is the theoretical equivalent of the experimental C in Eqs. (490)

and (524). For a few degrees above the upper Curie point 6U , 6(T) 6U .

Equation (536) then becomes (written in reciprocal form for comparison
with the earlier equations)

(537)

* When Eq. (536) is written -1/V - *' - y 1/oar, it is analogous to Eq.
(497): x' u&n xi. Mueller880 calls au&u (in his notation /J4/C44) the "appar-
ent Lorentz factor.*' xi is analogous to 1/W. Numerical equality is not to be

expected, since 7 is the factor for the internal field.
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At higher temperatures 0(T) assumes values differing somewhat from

tt,
as is indicated in the discussion of Eq. (490).

By analogy with ferromagnetic theory one may say that the experi-

mental confirmation of the Curie-Weiss law expressed by Eq. (537) by
Mueller and by Habliitzel (465) indicates that, if the effect is due to

dipoles, the latter must be nearly all free at temperatures outside the

Curie points.

Since Mueller found experimentally that for all temperatures above

34C the relation between 1/Y and T was very exactly linear, he was

able to derive from Eq. (536) a value for the internal field constant 7,

namely 7 = 2.19.

It should be observed that the internal-field theory, together with

the basic assumption expressed in Eq. (533), provides a theoretical basis

for the Curie-Weiss law in Eq. (536). In this respect the internal-field

theory is more potent than the interaction theory, which provides no

theoretical relation between susceptibility and temperature, simply

accepting the Curie-Weiss law as an experimental fact (see 465).

In the Seignette-electric region, also, the internal-field theory predicts

a Curie-Weiss law that agrees with observation. For small fields and

for temperatures distant by not over a few degrees from the Curie points,

one finds by the same process that is used in 552 for deriving Eq. (566)

that the initial susceptibility is given by

A.t f o rri o/a
Tjg OJL **"M,

From this expression it follows that the susceptibility between the Curie

points is given theoretically by

m i

(538a)
27(0*

~
T) 7

an equation that is in approximate agreement with experiment.

Comparison of Eq. (538a) with (537) shows that the initial suscepti-

bility varies about twice as rapidly with temperature below the upper
Curie point as above it, as has already been pointed out in 465; for

the ferromagnetic case see Fig. 166. In Eqs. (529) and (529a) we have

seen that the same relation holds for the piezoelectric constant.

The infinite value of the susceptibility of the free crystal at the Curie

points follows from Eq. (536) or (538) on setting yaM = 1.

487. Theoretical expressions for the spontaneous internal field F
and the spontaneous polarization P are found by setting E = in

Eqs. (535) and (531):
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^ 0(T)
- T

70

PO* as L_
- 1 _ B(T)

- T

(539)

(539a)

Mueller's original paper
376 must be consulted for the ingenious manner

in which he combined the results of both dielectric and electro-optic

measurements at different temperatures and different field strengths, in

order to derive the values of the various unknown quantities. It must

suffice here to say that, in addition to the data already mentioned, an

estimate was made of the value of (2.5 X 10~9
), whence, from Eqs.

(539) and (539a), F and P could be calculated for any temperature.

For example, at 0C, F" ~ 2,600 esu = 770,000 volts/cm, andP ~ 1,200

esu. This latter value agrees as well as can be expected with the values

of P from pyroelectric and oscil-

lographic data.

From Mueller's observations

we have plotted values of aM as

a function of T, both for 7 = 2.19

and 7 = 47T/3; the result is shown

in Fig. 149.

In general, it may be said that

Mueller's internal-field theory is

0.5

0.4

0.2

0.1

150 200 250
K

300 350

FIG. 149. Polarizability au per unit

volume as function of temperature, from
Mueller's data.

in good quantitative agreement
with experiment in the parelectric

regions and in qualitative agree-

ment in the Seignette-electric

region. It was only by making explicit use of the piezoelectric effects in

his interaction theory that Mueller was able to obtain quantitative agree-

ment between theory and observation over the entire temperature range.

A unification of the two theories remains as a problem for the future.

488. While the internal-field theory as outlined above deals explicitly

only with dielectric properties, still it can be used to describe the elastic

and piezoelectric properties also. For this purpose one may employ the

method indicated in 189 for treating the problem in terms of the internal

field F, with equations analogous to those in Table XX. Corresponding

to i4 and 14 of the polarization theory, or e i4 and du of Voigt's formula-

tion, are the internal-field piezoelectric constants, which may be called

af4 and 6f4 . The latter are easily shown to be very nearly proportional

to au and 614. bf4 is related to du by the equation du = (1 + vn')M4 ,

where 7 is the internal field constant.

The only application that we find of the internal-field theory to

piezoelectric observations is that of Norgorden,
393 whose experiments
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have been described in 424 and whose work appeared before the advent
of the interaction theory. Norgorden finds 6f4 (his du) practically

independent of temperature from 14 to 33C, with a very slight increase

as the field strength increases. Now from the relation given above
between du and 6f4 , together with du = rj'bu from Eq. (4956), it follows

that feu = (l/i?' + 7)&fi. Since r/' is large, it is evident that the approxi-
mate independence of 6f4 on temperature and field lends support to the

conclusion already reached that &i4 is essentially constant. Norgorden's

experimental data could, of course, be discussed entirely in terms of the

polarization theory, without reference to the internal field, but this seems

hardly necessary.

489. Correlation between the Theories of Mueller, Kurchatov, and
Fowler. In his application of Debye's theory (445), Kurchatov
assumes that the Clausius-Mosotti relation

can be extended to include the case in which the molecular polarizability a
contains a dipole term. k Q is the initial dielectric constant of the free

crystal, and N the number of molecules per cubic centimeter. In order

to express the dependence of Na on temperature, he writes

(540a)

In comparing this equation with Mueller's corresponding Eq. (533),
we recall first that Mueller's a. (which we have denoted by aM) is the

polarizability per unit volume. Equation (533) may be put in the form

B(T) = yaMT (541)

If for the field constant 7 the value 47T/3 is taken, (541) becomes identical

with (540a), and aM = Na.
The excellent agreement between Kurchatov and Mueller in their

measurements of kQ is attested by the close similarity in their diagrams.
Kurchatov plots (k

- l)T/(kQ + 2) as function of T in Fig. 9 of the

French edition of his book,
332 while Mueller calculates otM from Eq. (536),

and then from Eq. (533) plots 0(T) in terms of T (Fig. 25 of his paper
876

).

The latter diagram contains two curves for 0(T), corresponding to

7 = 47T/3 and 7 = 2.19.* It is the one with 7 =
4?r/3 that should be

compared with Kurchatov's curve. Mueller's assumption that yaM > 1

in the Seignette-electric region corresponds to writing 4irNa/3 > 1 in

* As was pointed out in 485, the numerical value of UM (and of a) depends on the
choice of 7. Values of <XM in terms of temperature are shown in Fig. 149.
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Eq. (540a).* Although it is not stated explicitly by Kurchatov, it is

implicit in his equations and diagrams that in the Seignette-electric

region ^wNa/3 > 1.

Kurchatov does not discuss the theoretical significance of the fact

that letting 4^rNa/3 become greater than unity on the right side of

Eq. (540a) leads to negative values of k Q . Mueller's interaction theory

also introduces the concept of a negative dielectric constant, the relation

of which to the actual dielectric constant between the Curie points is

explained in 454. ^

From Kurchatov's data we have calculated the values of Na for

several temperatures. When plotted in Fig. 149 they fall very nicely

on Mueller's curve.

Although Fowler's treatment gives no observational data, still it is

possible to ascertain whether his theory predicts a relation like Mueller's

between B(T) and T. The expression that corresponds to Mueller's

B(T) is Fowler's T%gJ which when plotted with T as abscissa yields a

curve of the same general characteristics as Mueller's.

The chief limitation in the theories of Kurchatov and of Fowler

lies in their neglect of the piezoelectric contribution to the dielectric

constant. By taking this effect into account, together with the non-

linear effects in large fields, Mueller was able, as we have seen, to trace

the dielectric anomalies of Rochelle salt back to their origin in the

clamped crystal.

490. Calculation of the Moment of Rochelle-salt Dipoles. Much of

the theoretical work on Rochelle salt has centered in the hypothesis of

rotatable dipoles, which are most commonly considered to be the mole-

cules of the water of crystallization. It seems desirable, therefore, to

show how the dipole moment can be estimated, even though, as will be

seen in 542, it is likely that the dielectric peculiarities are due to hydro-

gen bonds rather than to rotating dipoles.

In estimating the dipole moment, only the formulas for weak fields

need be used. We begin with Mueller's Eq. (533), in which CLM is the

polarizability per unit volume. CLM may be expressed in terms of Eq.

(177), with the assumption that Ni and Nz are the number of lattice

elements and permanent dipoles, respectively, per unit volume:

(542)

Appropriate values for the molecular field coefficient 7 and the coefficient

* The identity of Kurchatov's Eq. (540a) with Mueller's formulation is quickly
shown by setting -y

-
4ir/3 and fco

- 1 + 4^' in Eq. (536).

t Ref. B18, p. 818.
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p of the generalized Langevin function (114) will be introduced later.

For the present purpose it is not necessary to discriminate between the

different values that should, in view of 485, be assigned to 7 in the two

terms of Eq. (542).

If we agree with Kurchatov and others in regarding the dipole

moments as residing in the H 2O molecules, there may be four such

separate moments for each Rochelle-salt molecule. But if the Rochelle-

salt molecule is a single dipole, the number AT2 will, at least at sufficiently

high temperatures, be the same as the number of molecules per cubic

centimeter, 3.8(10
21

). #2 will then be either 3.8(10
21

) or 15(10
21

)

according to whether n, the number of dipoles associated with the

molecules, is 1 or 4.

At either Curie point Eq. (542) becomes equal to unity. It is

necessary in calculating p to use the upper temperature 6 = 296.7

abs, since only then are we justified in assigning to Nz the values given
above.

A further step that must be taken before ju can be found is to determine

the magnitude of the first term in Eq. (542). This can be done by means

of Kurchatov's data332 on the susceptibilities of crystals grown from a

mixture of Rochelle salt with its isomorphic relative sodium-ammonium
tartrate (491). This latter is not of itself Seignette-electric. In the

mixed crystals Kurchatov found that, if the Rochelle-salt component
did not amount to more that 41 per cent of the whole, the quantity

(k l)/(k + 2) in Eq. (540a) was independent of temperature, indi-

cating that only the lattice polarization, represented by the first term in

Eq. (542), is then effective. From the experimental data, and on the

assumption that the lattice polarizability is the same for all isomorphic

mixtures, including pure Rochelle salt itself, it is found that Niyaae 0.6

at the upper Curie point. This value is deduced directly from the

susceptibility [for example by means of Eq. (536)] and does not require

any knowledge of Ni, 7, or aae separately.

Recalling that, by 485, yaM = 1 at the Curie point M ,
and setting

T = 8U in Eq. (542), one finds Nwpv?/K0u = 1 0.6 = 0.4, whence

In Table XXXV are given values of n calculated from Eq. (543)

for n = 1 or 4 dipoles per Rochelle salt molecule, for 7 =
47T/3 or 2.19

(Mueller's value), and for p = or 1 (484). In order to show what

the dipole moment would be if the polarizability were due to the dipoles

alone, the column designated as M' = M/\/0^4 has been added, obtained

by omitting the factor 0.4 in Eq. (543).
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All the values of ju below are of the order of magnitude commonly
accepted for polar molecules. All things considered, for Rochelle salt

the value printed in boldface type is perhaps the most acceptable.

TABLE XXXV. CALCULATED VALUES OF DIPOLE MOMENTS
(In csu)

Still another estimate of /* can be made by making use of Mueller's

value of ft
= 2.5(10-*) [see 487 and Eq. (532)]. We assume that (532)

can be represented by a Langevin function of the type given in Eq. (176).

When the latter equation is solved for P and compared with (532), it is

found that at the Curie point aM = Npi^/KT, ft
= Nqn*/K*T*, whence

v? = ppK?Ql/qaM . The value of /* depends on the choice of p and q.

If the original Langevin function given by Eq. (175) is accepted, q/p = &.
Or, using Eq. (176), q/p = (see 552, 484). With ft

= 2.5(10~
9
),

OLM = 0.257, K = 1.37(10-"), there results /z
= 12(10~

18
) or 5.2(10~

18
),

respectively. These values indicate at least the right order of magni-

tude, with the odds in favor of the second formula.

From the observed spontaneous polarization an estimate can be made
of p,

= P/Nz, the average component of dipole moment in the direction

of the field (548). This quantity is a function of both field and temper-

ature, but only the value at 0C and E = need be considered. P is

then the spontaneous polarization P at 0C, at which temperature it has

its greatest experimental value of 740 esu. Using the values of #2
given above, one finds f,

= 0.20(10~
18

) or 0.049(10~
18

) according to

whether the number of dipoles per molecule is 1 or 4. Values about

twice as large as this are obtained if for P one uses the theoretical value

derived from Eq. (539a).

In any case, it appears that the maximum spontaneous polarization
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is but a small fraction, PQ
/Pm** = //*, of foe absolute maximum

which would be present if all the dipoles lay in the same direction parallel

to the field. -The reciprocal of this fraction is given in the last column of

Table XXXV. It follows that on the Langevin diagram (Fig. 165) the

operating point is never far from the origin, so that even with the strong-

est electric fields that Rochelle salt can withstand the first two terms

in the development of the Langevin function should suffice. This is in

marked contrast to the spontaneous polarization in iron, which, as

stated in 553, has at room temperature a value not very far below the

theoretical maximum at abs. The reason for this difference between

Rochelle salt and iron is that Rochelle salt has a lower Curie point that

lies near enough to the upper Curie point so that there is no temperature
in the region of spontaneous polarization at which we are not fairly

close to one or other of these points.



CHAPTER XXVII

OTHER SEIGNETTE-ELECTRIC CRYSTALS

Ich werde dies Projekt niemals vollendet sehen, aber die Nachwelt kann es erleben,

wenn sie denPlan welter verfolgt und sich der geeigneten Mittelfur die Ausfuhrung bedient.

FREDERICK THE GREAT.

Except Rochelle salt, the only substances known at present that have

dielectric properties analogous to ferromagnetism are certain mixed

crystals isomorphic with Rochelle salt, and a few tetragonal phosphates
and arsenates. These two groups of crystals will now be considered.

491. Crystals Isomorphic with Rochelle Salt, and Mixed Tartrates.

The substances thus far investigated are those in which the K of Rochelle

salt is replaced by NH 4 , Rb, or Tl. The crystals have molecular radii

and axial ratios sufficiently alike so that mixed crystals can be grown in

any proportion.

Pure crystals ofNH 4NaC 4H4O 6-4H2O, RbNaC4H4O6-4H2O, or TlNaC 4
-

H 4O 6-4H 2O have quite normal dielectric behavior. From the point of

view of the ferromagnetic analogy they are, down to the lowest temper-
atures investigated, parelectric rather than Seignette-electric. If they
have Curie points, they must come at extremely low temperatures.
For example, the dielectric constant kx of the ammonium salt is about

10B32 and independent of temperature. As we have seen in 144, the

piezoelectric constants of this crystal, though large, show no anomalies

at least down to 17C, and from the constancy in kx down to very low

temperatures one can feel fairly confident that a like constancy obtains

with the piezoelectric coefficients.

Peculiar effects are observed with crystals that have been grown
from solutions containing mixtures with the KNa salt of any one of the

three isomorphic salts named above. The first papers on the subject

were those of B. Kurchatov and M. Eremeev133 '292 in 1932. The present

account is based on their work, together with the following: B. and

I. Kurchatov,
293

Bloomenthal,
65

Evans,
140 and especially the book by

I. Kurchatov.332 Investigations have been chiefly with Rochelle salt

containing the NH 4Na admixture, as described below. Results with

the rubidium and thallium salts, as far as they go, are at least quali-

tatively similar.

Some of the principal results with crystals containing various pro-

portions of NH4NaC4H4O0-4H2O are shown in Fig. 150, from ref. B32.
654
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Since the field strength is not given, the values of tne dielectric constant

must be regarded as only of relative significance. The addition to the

pure Rochelle salt of only 1 per cent of the NH* salt (molar ratio) reduces

the temperature range of the Seignette-electric region by about one-half.

An addition of 3 per cent (curve marked 97 per cent) completely elim-

inates the Seignette-electric properties, leaving only a maximum in the

curve. Further increase in NHU makes this maximum lower and flatter,

rising again slightly at 83 per cent of Rochelle salt.

ZO

FIG. 150. Dielectric constant of mixed crystals of potassium and ammonium Rochelle

salt, from I. Kurchatov. The percentages indicate the relative numbers of molecules of

the potassium salt in the mixture.

Further reduction in the Rochelle-salt content to 79 per cent ushers

in a second Seignette-electric region at low temperature, which persists

down to 25 per cent. Kurchatov's explanation of this curious behavior

may be somewhat freely summarized as follows: It is assumed that the

rotatable dipoles are chiefly those of the Rochelle salt. Small admixtures

of the NH 4Na salt raise the lower Curie point only slightly, but larger

admixtures loosen the forces that bind the dipoles in the local groups

that characterize the lower Curie point, releasing a number of dipoles

sufficient to allow the product 4&Na/3 to become greater than unity.

One may also predict that the large values of the dielectric constant in

this region are attended by correspondingly large values of du.
*

* Bloomenthal in his theoretical treatment of mixed crystals takes account of the

piezoelectric effect on the susceptibility by an equation like (516) and'(516o), but his

experimental data are insufficient to help in the present case.
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In a more general manner it may be suggested that for a certain

range of percentages of the NH4Na salt there are certain temperatures
at which the settling of the system into a state of minimum energy

(473) is attended by a change in crystal structure to a configuration of

lower symmetry, with a spontaneous polarization, as the temperature
falls below a critical value.

Further Measurements of the Dielectric Constant in the X-direction.

Evans140 measured the dielectric constant for various molecular per-

centages of the ammonium salt mixed with Rochelle salt, at temperatures
between 16 and 17C and frequencies chiefly from 406 to 2,000 kc/sec.

At these frequencies there was no disturbance from resonant vibrations.

The maximum voltage was 45, but the maximum field strength, crystal

dimensions, and range of variation of field strength are not stated. The
results were as follows:

From Evans ;

s remarks concerning the precision of his observations it

is apparent that the uncertainty in his data may amount to at least

10 per cent. The value 114 for pure Rochelle salt has already been

recorded in Table XXXIV. The small magnitude of the dielectric

c6nstant from Evans's observations, in comparison with the values

shown in Fig. 150, is of course due to the high frequency.

The temperature at which Evans obtained his data lay in the Seign-

ette-electric range for the pure Rochelle salt, but with this exception

the ammonium content was such that the material was parelectric.

The only correlation that can be made between the work of Evans and

that of the Russian investigators is in the value of kx for the pure ammo-
nium salt: here Evans's value of 8.2 at high frequency agrees well enough
with Kurchatov's 1-f value of 10 mentioned above.

In the Russian edition of his book,
B32 Kurchatov gives some values

of the dielectric constant of mixed KNa and TINa salts, for various

molecular percentages, measured at 500 volts/cm. At 0C the results

were as follows:

The results at -10C and +10G are not essentially different.

Dielectric hysteresis in the NH 4Na + KNa mixture has been investi-

gated by Eremeev and B. Kurchatov. 138> * As with Rochelle salt, there
* See also ref . B32.
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is no hysteresis, fatigue, or lag above the Curie point, and theP:l relation

becomes linear at a Lemperature not far above this point.

In the low-temperature Seignette-electric regions the width of the

hysteresis loop and the magnitude of the coercive field Ee increase as the

temperature diminishes below the Curie point, and many seconds may
be required for the attainment of equilibrium. That there is no evidence

of a lower Curie point is shown by the

fact that the saturation polarization

("knee" of the polarization curve) in-

creases with decreasing temperature
down to the lowest recorded tempera-

ture, 190C, while at the same time

the field strength necessary for satura-

tion increases also. For example, in

a crystal containing 45 molecular per
cent of KNa salt, the saturation field

was 10,000 volts/cm (for Rochclle salt

it is less than 200!), while the satura-

tion polarization was 3,000 esu, several

times greater than in pure Rochelle

salt.

Kurchatov used the vanishing of

Ec to determine the Curie point, ob-

taining a value in agreement with that

from the Curie-Weiss law. At any

temperature in this region there is an

initial value of kx such that over a

certain range of field strengths there

is no hysteresis; this range is greater

the lower the temperature and the

higher the percentage of the ammoni-

um salt. Hysteresis is observed as

soon as the peak value of the field ex-

ceeds this critical value (point B in

Fig. 148), the critical field being greater as the content of NH^Na is

increased.

492. Piezoelectric Properties. Not even qualitative tests seem to

have been made of the piezoelectric properties of the pure RbNa and
TINa tartrates. MandelFs measurements on the NH 4Na tartrate have

been mentioned above. As for mixed crystals, Eremeev and Kurcha-

tov133 obtained a piezoelectric hysteresis loop below the Curie point

by the direct effect, by applying to a 45 X-cut crystal containing 26.7

molecules of the NH4Na tartrate to 100 molecules of the KNa tartrate

-40
400-400 -200 200

Volts per cm.

FIQ. 151. Converse effect in
Rochclle salt containing 0.37 per cent
of TINa tartrato, at temperatures be-

low and above the Curie point, from
Bloomenthal. The strain y, is calcu-

lated from the observed change in

length of a 45 X-cut bar.
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a succession of stresses up to 18 kg/cm2
, decreasing again to zero. Above

the Curie point the polarization: stress relation was linear, with no

hysteresis, obeying a Curie-Weiss law.

The converse effect in mixed crystals has been investigated by Bloom-

enthal,
65 by the method described in 422, at temperatures from 10 to

35C. The plates were 45 Z-cut, of the order of 30 by 8 by 1 mm,
coated with thin tin foil. The hysteresis loop obtained at 14C with a

crystal containing 0.37 per cent of the TINa tartrate is shown in Fig. 151.

The form of the loop is very similar to that for pure Rochelle salt at

18.5 in Fig. 114, and at the same field strengths the strains are nearly

^5

60

40

80

60

20

(1)

(4)

10 14 18 22 26 30 34 10 14 18 22 26 30 34 C
FIG. 152. d\\ for Rochelle salt and isomorphic mixtures, by the converse effect,

from Bloomcnthal. Curve (1) pure Rochelle salt; (2) Rochelle salt with 0.37 per cent

C4H4O 6TlNa - 4H 2O; (3) with 1.0 per cent C4H4O 6NH4Na 4H 2O; (4) with 3.7 per cent

C4H4 8TlNa 4II 2O.

as large. The curve for 35C, in the parelectric region, shows practically

a linear relation between yz and E, with no hysteresis.

Bloomenthal secured similar data at other temperatures, for pure
Rochelle salt and for the mixtures shown in Fig. 152. In this figure

du = dyz/dE, which is the same as y/E at those temperatures where

the relation is linear. In the non-linear Seignette-electric region

du =
--JP

= slope of the straight portion of the loop

The figure makes evident the decrease in du of Rochelle salt on adding
a small amount of the TINa salt, as well as the lowering of the upper
Curie point with increasing amounts of TINa salt. The thallium salt
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does not appear to have as profound an effect as the ammonium salt.

For example, 1 per cent of TINa tartrate reduces the upper Curie point
to about 21C, while from Fig. 150 it is seen that the same percentage
of the NH4Na tartrate reduces it to 10C.

493. Seignette-electric Properties of Phosphates and Arsenates.

Hitherto we have considered the dielectric analogy to ferromagnetism
in the case of Rochelle salt and crystals isomorphic with it.

Attention will now be given to another group of crystals that have

been found to possess similar properties. They are the primary phos-

phates and arsenates of potassium and ammonium, isomorphic members
of the tetragonal sphenoidal Class 11, symmetry Vd- The piezoelectric

constants are the same as for Rochelle salt, viz., du, df2 s, and dse, only
now du = dz&. The unique axis, parallel to the field direction for

which the Seignette-electric anomalies exist, is the crystallographic

c- (or Z-) axis: thus the anomalous piezoelectric constant is du, and the

anomalous susceptibility is rjz . Quantitative data on the piezoelectric

properties of KH 2P04 arc given in 146. Qualitatively, piezoelectric

properties were detected in NHJHjJPO* by Giebe and Schcibe,
164 and in

KH2PO 4 ,
KH2AsO 4 ,

and NH4H 2AsO 4 by Elings and Terpstra (see foot-

note, page 232). In all cases measurements over wide ranges of stress

and temperature are greatly to be desired.

Quantitative observations have been published on the dielectric

constants and specific heats kx and kz of all four salts, the spontaneous

polarization P and the spontaneous Kerr effect in the potassium salts,

and some of the elastic properties of KH 2PO 4 . Dielectric observations

have been made both above and below the Curie points of the potassium

salts, but with the ammonium salts only observations above the upper
Curie point were possible. In all cases the anomalies occur at liquid-air

temperatures.
TABLE XXXVI

* Decomposes with evolution of ammonia and water.

Studies in this field began with a paper on "a new Seignette-electric

substance" (KH2P0 4)* by Busch and Scherrer in 1935. 90 This paper
* It is of historical interest that isomorphism in crystals was first discovered by

Mitscherlich in 1819 between the phosphate and arsenate of potassium.
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was followed in 1938 by Busch's more complete investigation
88 and in

the succeeding years by a series of papers by Busch and his colleagues at

Zurich, to which reference will be made below.* Busch's theoretical

treatment has been considered in 485. The data summarized in

Fio.154. Dielectric constants k, no} kx of KII 2AsO4, from Busch. E = 200 volts/cm,

frequency 800 cycles.

Table XXXVI are assembled from these papers and from the
" Handbook

of Chemistry and Physics."

The method of growing these crystals is described by Busch88 and

by Bantle. 22

494. The results of Busch's measurements of the dielectric constants

kx and kz for the potassium salts are shown in Figs 153 and 154. A capac-

ity bridge was used. The maxima in kg at the Curie points are the

distinguishing feature of Seignette-electrics. The maxima in kx are

unexpected: in Rochelle salt, ky and k have normal values with no

anomaly in the neighborhood of the Curie point. Busch's explanation
* In Busch's first paper is the erroneous statement that d<u d3 .
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is that the number of free dipoles increases rapidly as the Curie point is

approached from the low-temperature side.*

Busch finds that the potassium salts, like Rochelle salt, obey a

Curie-Weiss law.

In a later paper
89 Busch and Ganz discuss the theory and measure-

ment of the complex dielectric constants of KH2P04 and KHUAsOi

parallel to Z, which they call e* . The measurements, made with a

50-cycle capacity bridge, differ from the curves in Figs. 153 and 154

in that e*
,
which is practically the same as kx outside the Curie points

where the losses are negligible, remains at a high level over a wide range'

of temperature below 6U . The value for KH2P04 is not far from 3(10
4
)

from the upper Curie point down to about 80K, where it begins to fall

rapidly to a value around 40 at 50K, with still further decrease at lower

temperatures. The curve for KH 2AsO4 has a similar course, the largest

valuef being 1.95(10
4
).

As a measure of the spontaneous polarization PJ, Busch took the

saturation value at the peak of the hysteresis loop, instead of the more

commonly adopted remanent value. In the case of KH2P04 the differ-

ence is small except close to the Curie point ;t but with KH 2AsC>4, which

has a much narrower loop, the remanent value is a small fraction of the

peak value. If the remanent value were used, PJ for KH2As04 would

be considerably smaller than for KH 2PO 4 . In any event, the spon-

taneous polarization in these salts is far greater than in Rochelle salt, the

ratio, from Table XXXVI, being of the order of 20:1 in the case of

KH 2P04 .

The dielectric constants of the ammonium salts were measured by
Busch. 88 Observations could be made only down to 53 C with the

arsenate and 118C with the phosphate. At these temperatures the

crystals became converted to an inhomogeneous microcrystalline mass.

Busch records the following dependence on temperature:

* From Prof. Hans Mueller the author learns that he finds a sufficient explanation

of the large value of kx at the Curie point in the large internal field, without any

hypothesis concerning dipoles. The absence of such an effect to a perceptible extent

in kv and kz for Rochelle salt is attributable to the fact that in Rochelle salt the

internal field is very much smaller than in the phosphates.

t It will be noted that the largest values of e* for both salts are much lower than

the peak values shown in Figs. 153 and 154. The reason is doubtless that Busch

and Ganz used a much higher voltage (2,400 volts/cm for KH 2PO<, 3,300 volts/cm

for KE^AsCM than did Busch in his earlier measurements. At high voltages the

polarization is brought nearer to the saturation value. Moreover, considerations

mentioned in 480 make it evident that the observed persistence of a relatively large

dielectric constant over a wide range of temperature below tt is what one would

expect when the applied voltage is large.

J The value of P for KH 2PO 4 in Table XXXVI is taken from a later paper by
Arx and Bantle. 10
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(1) NH4H2PO4 kx increases from 55 at room temperature to 90 at

118C; k, increases from 14.5 at room temperature to 20 at -118C.

(2) NHJiUAsOr-fc* increases from 126 at room temperature to 145 at

-53; kz
= 12 from +27 to -53C.

496. Spontaneous Polarization P, Coercive Field E
CJ
and Lower Curie

Point 0i. It will be recalled that with Rochelle salt P and Ec vanish

outside the Curie points, rising to maxima at about 5C, and that the

free dielectric constant rises to a sharp maximum at 0| just as at M . The

Seignette-electric phosphates and arsenates have critical temperatures

\vith the same properties as at the upper Curie point in Rochelle salt.

Insofar as they can be said to have a lower Curie point at all, this point

differs in important particulars from that in Rochelle salt.

The evidence is based mostly on observations on KH2PC>4. With

this crystal, P rises very rapidly from its zero value at 9U to a value

of the order of 14000 esu, without appreciable diminution down to

95K, the lowest temperature recorded (Arx and Bantle 10
). The dielec-

tric constant decreases continuously as the temperature goes below

M ,
without again having a maximum anywhere. The coercive field

increases enormously with decreasing temperature, approaching zero only

at W (Bantle, Busch, Lauterburg, and Scherrer 25
). The only thing

resembling a lower Curie point is the disappearance of hysteresis, which

Busch and Ganz89 found to take place at about 58K. With a 50 ~ field

having a peak value of 3,000 volts/cm they found hysteresis to be present

from 58 to 123.5K, the loops having maximum area at about 62K.
In Rochelle salt the disappearance of hysteresis at temperatures

below 0z is associated with the vanishing of the coercive force at 0j. On
the other hand, in KH 2PO4 the coercive force was still very large at the

temperature at which the hysteresis ceased to be measurable in the experi-

ments mentioned above. As long as the temperature was above this

value, Arx and Bantle's peak voltage was sufficient for a hysteresis loop

with appreciable area to be traced. From this temperature on down-

ward, the coercive force was so great that their apparatus recorded

only a small portion of a complete loop: what was recorded was the

reversible permittivity kr (430). The hysteresis loop had degenerated

to a straight line through the origin. If they had used a higher voltage,

they would pretty certainly have observed hysteresis at temperatures

below 58K.

Evidently the disappearance of hysteresis cannot be taken as a

criterion for the presence of a lower Curie point. Arx and Bantle very

properly refrain from making any such claim in the discussion of their

results.

All the evidence supports the view first advanced by Bantle, Busch,

Lauterburg, and Scherrer, that the spontaneous polarization does not
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vanish at any temperature below the "upper Curie point," but that

there is nevertheless a certain (or perhaps uncertain, since the Zurich

investigators seem nowhere to specify it clearly) temperature at which

the elementary domains refuse to be reversed by an applied field. Herein

lies the contrast with Rochelle salt. The spontaneous polarization

becomes perhaps somewhat gradually frozen. The decrease in &.,

the increase in Ec ,
and the absence of a sudden anomaly either in the

specific heat or in the Kerr effect* all support this view. As far as the

evidence goes, the same is true also of KH2AsO4 and KD 2PO4 (see below).

In terms of the interaction theory* the persistence of P indicates

that the susceptibility iff of the clamped crystal remains greater than

the product a36&36 at all temperatures below 8U (see 453). According
to the internal-field theory (485) one would say that the product yotv

remained greater than unity.

The temperature at which P becomes "frozen" does not seem to be

sharply definable in terms of any observed physical effect. To call

such a temperature the
"
lower Curie point

" seems arbitrary and

misleading, f

The spontaneous polarization P and coercive field Ec are not very
different in KD 2PO4 and KH2PO4 . The spontaneous Kerr effect has

been investigated by Zwicker and Scherrer,
602 whose results agree with

those of Bantle, Busch, Lauterburg, and Scherrer on KH2PO4 and

KH2AsO4 in that there is an anomalous change in double refraction at

Bu but not at any lower temperature.

496. Deuterium Potassium Phosphate, KD2PO4. We saw in 444

that the replacing of H by D in Rochelle salt raises the upper Curie

point by about llC. An even greater isotopic effect is exhibited by
KD2PO4 .

The present treatment is based on the work of Bantle22 and of Zwicker

and Scherrer. 602 Bantle measured kz with a 1,000-cycle per sec bridge,

the field strength being 40 volts/cm. The upper Curie point is indicated

by a sharp maximum in kg at 213K ( 60C). From this maximum,
kz diminishes to about 82 at 300K and 46 at 100K. The curve has a

slight bend at 158K, which Bantle takes as the lower Curie point.

Except for the shift in the Curie point, the dielectric behavior of KD2PO4

runs parallel to that of KH2PO4. The hysteresis loops have an appreci-

able area only between 105 and 213K. The value 213 for tt seems well

* See also Zwicker and Scherrer. 602

t As instances of the use of this term by the Zurich investigators may be mentioned

the paper by Bantle, Busch, Lauterburg, and Scherrer, in which 70K is given as the

lower Curie point of KH 2AsO 4 ,
with no statement as to the basis for this value; and

Bantlc's paper,
22 discussed in 496, in which he mentions the lower Curie point of

KD 2P0 4.
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established; with regard to the lower temperature the same comment

may be made as for KH2P04 in the preceding section.

497. Specific Heats and Internal Field Constants. In 409 it was

shown that in Rochelle salt the anomaly in specific heat is extremely

small at both Curie points. From the relatively large values of P
for the phosphates discussed above and the marked dependence of P on

temperature, one might expect a more pronounced anomaly for them.

This expectation has been fulfilled by Bantle22 for all three phosphates
and by Stephenson and Hooley

481 and J. and K. Mendelssohn364 for

KH 2P04 . Very recently, the 'specific heats of KH2PO4,
KH2AsO4,

NH 4H 2P0 4,
and NH4H2AsO 4 were measured over a very wide range

of temperatures by Stephenson and his associates. 480"483 They found

no anomaly except at the upper Curie point. From their results, which

are probably the most precise, we find the following values for the normal

specific heat Cn at (derived from the course of the curve above and

below 0u), the peak value C9 at Ou ,
and the difference AC = C9 Cn ,

all

in cal mole" 1

deg"
1

,
and also the heat of transition AH in cal mole" 1

:

* Data for KDjPOi are from Bantle.

As has been shown in 409, the internal field constant y can be calcu-

lated when AC and the temperature variation of P are known. Bantle

thus finds the following values of 7: for KH2AsO4 , 0.5; for KH2PO4 ,
0.37

(in contrast with Stephenson and Hooley's value of 0.7); for KD 2P(>4,

0.68.

Although the phosphates here considered have only small internal

field constants, the large values of P make it certain that the internal

fields themselves must be much greater than in Rochelle salt. For

example, the product -yP for KD 2P04 yields a value of the internal field

of about 3,000,000 volts/cm.
498. Domain Structure. It was stated in 494 that, on cooling below

certain definite temperatures, NH 4H2PO 4 (at 118C) and NH4H2AsO 4

(at 53C) broke down to a microcrystalline mass. When this fact is

compared with Busch's remark that the potassium salts tended to

become cracked when heated through the upper Curie point, there

appears some probability that the temperatures recorded above are

close to the Curie points for the ammonium salts. If this assumption is
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made, the shattering of the crystals can be attributed to the stresses

attending the commencement of a domain structure as the Seignette

region is approached. The temperatures recorded as "Curie points"
of the ammonium salts in Table XXXVI are those for the maximum
values of the specific heat, as measured by Stephenson and Adams480 and

by Stephenson and Zettlemoyer.
488 These temperatures are a few

degrees lower than those at which Busch's crystal plates broke down..

It seems just possible that, if this breakdown could have been avoided,
the dielectric constants (values of which are given in 494) might have

risen to high values at the Curie points.

Further evidence of domain structure, at least in KH2PC>4 and
KD2P04, is afforded by the experiments of Zwicker and Scherrer,

602 in

which the change in double refraction under an electric field, at tempera-
tures below Ou ,

takes place in steps, in a manner analogous to the Bark-

hausen effect in iron. In a discussion of this paper, Quervain and
Zwicker432 reach the conclusion that the domains themselves are micro-

scopic but that they fall into groups some millimeters in extent. They
find that sudden cooling through 8U causes minute cracks perpendicular
to the Z-axis, which disappear on warming.

499. Technical Applications. The potassium and ammonium salts

mentioned in the preceding paragraphs seem to offer considerable promise
of useful applications. The only member of the group for which definite

mention of applications has hitherto appeared in the literature is KH 2P04.

In both its elastic and piezoelectric properties this crystal, like the others

in the group, stands between quartz and Rochelle salt. Its piezoelectric

effect at room temperature (146) is about seven times as great as in

quartz, while it is much more stable than Rochelle salt and has no water

of crystallization. At ordinary temperatures it is so far above its Curie

point as to be free from such fantastic behavior as that shown by Rochelle

salt in the neighborhood of 24C. It is practically devoid of hysteresis.

Some of its elastic temperature coefficients, however, are considerably

greater than those of quartz.

Experiments with KH2PO4 resonators are described by Bantle and

Ltidy,
27
by Ludy,

328 and by Bantle. 23
Ltidy measured the values of the

elastic constants Sn and $33, as recorded in 89. Bantle and Ludy
studied lengthwise vibrations in thin rods, using frequency modulation

to sweep rapidly and repeatedly through the resonant frequency. From
the curves recorded by means of a cathode-ray oscillograph they found

the resonant frequency, effective elastic constant, and damping, at

different temperatures down to the Curie point, where certain of the

elastic constants had very large temperature coefficients. The only

numerical data published thus far are in Bantle's paper. Using Z-cuts

he finds, for different modes, temperature coefficients of frequency from
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205(10~
6
) to 290(10~

6
) and considers the possibility of securing cuts

with zero temperature coefficient.

Since the matrices of the elastic and piezoelectric constants have the

same form as for Rochelle salt, the rules for exciting various vibrational

modes are exactly the same as for that crystal.

Matthias and Scherrer354 have called attention to the advantages of

KH2PO4 for band-pass filters.



CHAPTER XXVIII

MISCELLANEOUS APPLICATIONS OF PIEZOELECTRICITY

Was man an der Natur GeheimnisvoUes pries,

Das wagen urir verstdndig zu probieren,
Und was sie sonst organisieren Hess,

Das lassen wir kristallisieren.

GOETHE.

In dealing with technical applications the discussion will be confined

mainly to the types of crystal commonly used, their cuts, electrodes, and

general performance. Space forbids detailed descriptions of circuits and
of mechanical features.

The application of piezoelectric crystals in electric filters of various

types will first be considered. In filter circuits the crystal operates
as a resonator; the conversion of electrical into mechanical energy and

back, though essential to its performance, is only incidental from the

point of view of the filtering action.

The remainder of the chapter will be devoted to the large and impor-
tant group of applications in which the crystal functions as a transducer,

converting mechanical movements into electrical energy or the converse.

The first subdivision in this group comprises the non-resonant applica-

tions, in which the crystal is in a state of forced vibration at a frequency
which is usually far below that of any of its normal modes. In the

second subdivision the crystal usually vibrates at or near a resonant

frequency and is used for emitting or receiving h-f acoustic radiation.

The practical applications include submarine signal and echo work, the

acoustic interferometer, and intense ultrasonic beams for physical,

chemical, biological, and industrial uses.

One of the most interesting effects of ultrasonic waves is their ability

to diffract a beam of light. Some of the applications of this effect,

especially in the measurement of elastic constants, light relays, and

television, will be described.

500. The Crystal Filter. The use of piezoelectric crystals as couplers
and sharply tuned circuit elements was first proposed in 1921.* For use

as a piezoelectric coupler the crystal is provided with two pairs of elec-

trodes, connecting the output of one circuit with the input of another.

The crystal then operates as a filter element, transmitting energy only

*Ref. 91; also W. G. Cady, U.S. patent 1,450.246 (1923) and reissue 17,355 (1929).

667
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at a resonant frequency. The theory of the coupler has been investigated

by Watanabe. 581 Its use as a tuned coupling between tubes is described

by Rohde and Handrek. 438 Of greater importance is its use in electric

filters, to which we now turn. Filters employing crystals were first

described by L. Espenschied.
* The evolution of the filter is described

by Buckley in the reference at the end of this chapter.

All electric filters depend for their operation on the change in reactance

within a certain band of frequencies. Filters constructed from coils and

condensers are limited in usefulness partly by their variability with

temperature and partly by the fact that the band width cannot be made

sufficiently narrow to meet modern requirements in communication

circuits, owing to the unavoidable resistances of the coils. Properly

designed crystal filters avoid both these difficulties. In fact, the selectiv-

ity of crystals is so great that for many purposes the band width is too

narrow, requiring the use of coils associated with the crystals.

In a band-pass filter the width of the band is approximately the

frequency interval (fp /) illustrated in Fig. 62. From Eq. (401) this

interval is approximately equal to faC/2Ci. The ratio Ci/C is therefore

a measure of the excellence of the filter. From Eq. (450a), it can be

seen that either a capacitance 2 in series with the resonator RLCCi or a

capacitance Cs in parallel with it has the effect of reducing the value of

(fp /,). Use is made of this fact in the design of filters of very narrow

band width.

Most crystal filters in use today in filter circuits are of quartz, with

zero gap, the thin metallic electrodes being deposited directly on the

quartz. The quartz plates may be supported by the lead wires, which

are soldered to the electrodes at nodal points. Some filter circuits

require the use of pairs of matched crystal units of identical frequency.
In such cases a single crystal plate with two pairs of electrodes can be

used. Much ingenuity has been shown in the placing and interconnect-

ing of the electrodes and in the provision of a narrow metallic strip

plated to the crystal to serve as a screen between the electrode pairs.

Such arrangements are described by Mason and Sykes,
842 - 343 Mason,

B35

and Rohde. 436 ' 437

For the higher frequencies, thickness vibrations must be used. From
50 to 500 kc/sec compressional vibrations in the direction of length or

breadth of the plate are ordinarily employed. For lower frequencies,

use is made of flexural vibrations; the NT-cui described in 359 can be

used from 50 down to 4 kc/sec, while Rohde and Handrek438 describe

flexural filter crystals for frequencies as low as 1,000 cycles/sec.

As an example of the band width obtainable without the use of

auxiliary condensers may be mentioned the 18.5 cut, for which, from
* U.S. patent 1,795,204, filed 1927 and issued in 1931.
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Table XXX, Ci/C = 138. From this one finds (fp
-

/.)//.
= 0.36 per

cent. For this cut, as well as the 5 cut, see 357.

In some lattice filters two crystals of slightly different frequency are

used, the resonant value f, of one coinciding with the antiresonant value

fp of the other. In such cases the band width is twice that of one crystal

alone.

Filter elements have also been made from Rochelle salt. For a time,

composite resonators consisting of metallic bars with Rochelle-salt

crystals attached were tried, but this method has been abandoned. For

the lower frequencies 45 bars may be used; to avoid the anomalies that

beset the X-cut, the cuts may be made normal to the Y- or Z-axis.

Filters of higher frequency employ thickness shear vibrations of oblique

plates,* some formulas for which are given in 77.

Whichever type of crystal is chosen, an all-important requirement
is the absence, over as wide a range as possible, of all disturbing resonant

frequencies.

An attempt by Guerbilskyf to broaden the band by using a wedge-

shaped crystal was based on an erroneous concept of the nature of vibra-

tions in solids. The experiments of Zacek and Petrzilka597
showed, as

would be expected, that such a resonator has a large number of closely

adjacent frequencies; the subject is also discussed by Wagner. 678

Crystals can be connected to serve as elements in high-pass, low-pass,

or band filters. They are used commercially in pilot channel filters for

carrier systems and for separating carrier from side-band frequencies in

radio. They have also found application in acoustics, for analyzing the

components of complex sounds. Finally may be mentioned their use

in radio receiving sets, in which they are commonly placed in a bridge

in the i-f amplifier.

A fully equipped section of coaxial cable for carrier communication,
with 400 circuits, requires 12,800 crystals for channel filters, in addition

to those for channel supply filters, t

501. Crystals as Mechanical and Acoustic Transducers. For the

measurement of pressures, plates or blocks of quartz or Rochelle salt are

chiefly used, and to a small extent tourtnaline. There is a great variety

of devices, ranging from quartz or tourmaline plates, used singly or in

stacks, for measuring violent explosion pressures, down to delicate

apparatus for recording blood pressures. Among the references at the

end of the chapter will be found descriptions of piezoelectric methods for

* W. P. MASON, U.S. patent 2,303,375. See also Z. Kamayachi, T. Ishikawa, and

E. Kamizeki, Nippon Elec. Comm. Eng., January 1941, p. 195, and M. Monji and

I. Kuwayama, Electrotech. Jour. Japan, vol. 4, p. 235, 1940.

t A. GUEBBILSKY, Jour. phys. rad.j vol. 8, pp. 165-168, 1937.

t A. J. Gill, in discussion of paper by Booth. 69
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measuring pressures in internal-combustion engines and in various types
of firearms and artillery; pressures produced by cutting tools; transient

pressures resulting from impact; piezoelectric oscillographs; and applica-

tions of piezoelectric manometric devices in biology. Many of the

articles cited contain further references to the literature. Applications

of optical phenomena produced by vibrating crystals are considered later.

Piezoelectric devices have come into extensive use for the measurement

of vibrations, especially in machinery, and for analyzing the degree of

smoothness of finished surfaces. Owing to its large piezoelectric effect,

Rochelle salt is well suited to these purposes. Some references are given
at the end of the chapter.

Space forbids an account of the various crystal cuts and mountings
that are used for the measurement of stresses and vibrations. It must

suffice to say that, in devices employing quartz, Jf-cuts are commonly
used, with either the longitudinal or the transverse effect. Rochelle-salt

devices are described in 503. With few exceptions resonance in the

crystal or in the assemblage of crystals is avoided. This is usually not

difficult, since in most cases the crystal frequency is much higher than

any frequency associated with the effect being investigated. Moreover,
the mounting can be made in such a way as to tend to damp out any
crystal vibrations.

Some of the papers cited at the end of the chapter contain a theoretical

treatment of the devices for measurement of pressures and vibrations,

for example, those by Gohlke, Kluge and Linckh, Webster, and Zeller.

502. Rochelle-salt Non-resonant Transducers. Rochelle salt is used

at the present time more than any other crystal in electroacoustic and

electromechanical devices. The operating frequencies are usually well

removed from the resonant frequencies of the crystal units, and in any
case the construction is such as to tend to damp out all resonances.

The outstanding advantage of Rochelle salt, at least in the X-cut com-

monly employed, is of course the large piezoelectric constant. This

advantage carries with it a train of difficulties, due to the great sensitive-

ness of the piezoelectric property to mechanical constraint, the variability

with temperature, the presence'of hysteresis, and the large dielectric

constant. It is a fortunate circumstance that the constraints imposed
on the crystal units by cement, electrodes, clamping, and waterproofing
not only suppress resonant frequencies, but at the same time greatly

reduce the effects of temperature and hysteresis and lower the dielectric

constant to a value approximately that of a completely clamped crystal.

The price that has to be paid is a great diminution in the effective values

of du and eu.

Some Rochelle-salt transducers operate as motors, others as gen-
erators. The motor devices are most sensitive in the neighborhood
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of the Curie point, 24C. By suitable mounting it is possible, however,
to restrict the response within a few decibels over the allowable tempera-
ture range from -40 to +54C (-40 to +130F). It is of the utmost

importance never, to let the temperature rise above this upper limit,

owing to the disintegration of Rochelle salt at 55.6C. The upper limit

of useful operation is 45C, since above this temperature leakage becomes

objectionable.

The dielectric constant of a clamped Rochelle-salt crystal in the

X-direction is of the order of 100. The high parallel capacitance thus

conferred on a thin plate would be a serious handicap if the purpose
were to convert as much mechanical into electrical energy as possible.

In most applications, however, in which the crystal acts as a generator to

produce electrical energy, the crystal is connected to a very high imped-
ance. It is then almost on open circuit; and since stress and temperature
affect the dielectric constant in approximately the same manner as they
affect the piezoelectric constant, it follows that the potential difference

that a given stress on the crystal impresses on the outer circuit is not far

from proportional to the stress under all circumstances. Moreover, less

trouble is experienced from the capacitance of long lead wires than if the

dielectric constant of the crystal were low. The open-circuit output of

these generator devices is practically independent of temperature.

The fact that with a high external electrical impedance the crystal

is practically on open circuit has a bearing on the theoretical treatment

of this form of transducer. When the crystal is on open circuit and

well below resonance, its electrical state under mechanical stress is

substantially the same as that of a bare crystal with an infinite gap.

The polarization remains nearly zero at all strains. Since, as shown in

375, the stiffness at infinite gap is very nearly independent of tempera-
ture and stress, it follows that the crystal when connected to a high

external impedance is comparatively free from the effects of the usual

anomalies of the X-cut. This is especially true when the crystal is also

in a state of partial constraint.

In the theoretical treatment of the Rochelle-salt transducer it is

convenient to use the equations of the polarization theory, with the

coefficients a 14 and 614, which vary comparatively little with temperature,

in place of eu and du . This is virtually the method followed by Mason885

in his treatment of the problem, although he employs the
"
charge

"

theory; as explained in 191, the charge and polarization theories lead

to almost identical results.

603. Leaving out of account certain experiments on acoustic effects

with crystals in 1917 and 1918, it appears that the first published work

was that of Nicolson391 in 1919. He used entire crystals, 2 in. or more

in extent, with variously disposed electrodes. Although the crystal
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structure and the electric field were far from uniform, Nicolson was
able to make use of the relative displacements of the faces normal to the

-axis in such a way as to make the crystals serve as microphones and

reproducers. Unpublished experiments in Scott laboratory following

Nicolson's work soon showed that equally sensitive units could be made
in the form of thin X-cut bars, cut after the manner of Pockels with lengths

bisecting the angle between the Y- and 2-axes. These plates were from

1 to 2 cm long, 0.4 to 1 cm wide, and 0.1 to 0.2 cm thick. When the

ends were cemented between diaphragms and rigid backings they acted

as microphones and reproducers; such plates were also tested successfully

as phonograph pickups.*

Much more effective are the Rochelle-salt "bimorphs"t of Sawyer.
448

These devices generally consist of two -XT-cut Rochelle-salt plates

cemented face to face, usually with a thin metallic electrode interposed.

In the "bender" type, plates are rectangular, square, or trapezoidal,

the major axes of the plates making angles of 45 with the F- and

Z-axes. The Jf-axes of the two plates are so oriented that as one plate

dilates in either direction the other contracts. This type of element is

therefore somewhat similar to the "Curie strip
" described in 354. There

is, however, this important difference, that while in the quartz Curie strip

with length parallel to Y the only strain (the small change in thickness of

the component plates being ignored) is in the direction of length, with none

at all in the direction of breadth, the piezoelectric effect in Rochelle salt

is such that both length and breadth are affected (if the element is square
either dimension of the major surfaces may be called the "length").
If an applied electric field tends to make one plate longer and narrower,

the other plate tends to become shorter and wider. As a result, the

element as a whole does not become bent to a cylindrical form but tends

to become saddle-shaped; when one surface is convex in the length

direction it is concavfe in the breadth direction.

The foregoing remarks apply to the unconstrained element. If one

end of the rectangle is clamped and an alternating field is applied, the

other end moves to and fro (single clamping). If both ends are clamped,
the curvature in the breadth direction is largely suppressed and the

central portion vibrates like a diaphragm (double clamping). Either of

these methods of mounting may be used to make the element act as a

transducer for transforming electrical into mechanical energy or the

converse.

A second type of bimorph is called the "twister." The two com-

ponent X-cut plates are square or rectangular, with edges parallel to

* See also Schwartz. 464

t The information concerning bimorphs and their applications was kindly fur-

nished by the Brush Development Company .
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Y and Z, or trapezoidal (tapered element), with the two parallel edges
AB and CD (Fig. 155) in the direction of Y or Z. When a voltage is

applied to the combination, the two plates tend to become sheared in

opposite directions, according to the formula y = duEx . If the ele-

ment is clamped at one end, as at AB, then since the plates are cemented

together the small end face CD rotates in its own plane. The end P of a

pointer attached to CD moves in a circular arc in the plane of this end

face. Twister elements are often mounted and used in this manner.

Another common method of mounting the twister element is to clamp
it at three corners, the fourth being left free to move.

The principle of the twister is illustrated in Fig. 156, which shows a

Rochelle-salt motor that has been found useful for demonstration. By
proper design of the ratchet and pawl the de-

vice could be made to serve as a synchronous

low-speed motor.

Bender and twister elements are made com-

mercially under the trade name "Bimorph" in

sizes from A by^ by 0.015 in. to 2 by 2 by
J- in., depending on the uses to which they are

put. Among the applications for such ele-

ments are pickups and recorders for phono-

graphs, microphones, earphones, vibration

meters, oscilloscopes, direct inking oscillo- FIQ. 155. A bimorph "twist-

graphs, light valves, stethoscopes, and pickups
er *

to be placed on musical instruments. Rochellc salt has also been used in

loud-speakers but is now superseded by the more rugged electrodynamic

drive. An instrument known as the "surface analyzer
"

consists of a

combination of crystal pickup, amplifier, and crystal oscillograph that

makes a direct record in ink of the surface contour of the test specimen.

Crystal microphones and earphones usually employ either a twister

element with three-corner mounting or a long narrow bender element

with double end clamping. The free corner of the twister or the center

of the bender is coupled to a small acoustic diaphragm.
Another type of microphone is known as the "sound-cell" micro-

phone. The sound cell employs two approximately square bender

bimorphs placed close together so as to form a flat airtight cell, with a

small gap between them. The elements are supported at the centers

of two opposite edges so that they are free to partake of the saddle-shaped

curvature. The two elements are so oriented and electrically connected

in parallel that their voltages are in phase when sound waves strike

the cell, while the device is insensitive to mechanical shock or vibration.

Two or more sound cells can be combined in a single microphone; in

one type the number is 24. A typical sound cell has elements & by
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s by 0.02 in. with a flat response from 30 to 10,000 cycles/sec. A
laboratory type has elements only^ by & by 0.015 in. with a resonant

Frequency of 45,000 and a flat response to 17,000 cycles/sec.

Vibration meters of the displacement type employ bender or twister

elements mounted to a convenient support and arranged for the active

portion of the element to be driven by the vibrating object. Both

FIG. 156. Rochelle-aalt motor. A is & bimorph "twister" consisting of two X-cut
dates, each 4.5 mm thick, cemented together with a tin-foil electrode between, which is

connected to one terminal of the 60-cycle 115-volt supply. The length, parallel to Z,
s 25 cm, and the breadth, parallel to F, is 7.5 cm. The two outer tin-foil electrodes are
connected together and to the other terminal of the supply, through a high resistance
or safety. The lower end of the twister is fixed. When the field is applied, the upper end
twists about the vertical axis, rotating the arm B and the light spring C, which acts as a pawl
>n the knurled circumference of the wheel D. The alternating field causes D to rotate

lowly.

>ender and twister elements are used also in the acceleration type, the

iccelerating force being applied to the holder and the deformation of the

dement taking place through inertia. This type of pickup is especially
iseful for measuring mechanical vibrations of relatively high frequency.
The voltage generated by the crystal element is proportional to the

icceleration; for the same amplitude it increases with the square of the

requency. The frequencies investigated must lie well below the resonant

requency of the element in its mounting.
The voltages involved in the operation of bimorph crystal elements
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vary over a large range depending on the uses to which the elements are

put. The voltage developed by a laboratory sound-cell microphone

may be far less than 1 mv, while the output of a typical phonograph

pickup may be as high as 10 volts. One or two volts is sufficient to

produce comfortable volume in crystal earphones, while about 700 volts

is required to drive a crystal-actuated direct-inking oscillograph at full

amplitude.
604. A Rochelle salt transducer of quite a different type is the L-cut. 108

This is a plate making equal angles with all three crystallographic axes,

as described in 140. A field normal to the plate causes a change in

thickness, while through the direct piezoelectric effect a normal compres-
sion produces polarization charges. Plates of this type have been used

experimentally as emitters and receivers of sound waves and also as

generators of ultrasonic waves. They have recently found application

by Groth and Liebermann 190 as microphones in the measurement of the

velocity of sound.

606. Ultrasonics. The study of acoustic waves of frequencies above

the range of human audibility began late in the nineteenth century.

Koenig's longitudinally vibrating steel rods appeared in 1874, and his

ultra-audible tuning forks in 1899. Other early sources of very short

acoustic waves were the Galton whistle (1883) and in 1907 Altberg's

application of the oscillatory spark discharge, by means of which he

recorded acoustic frequencies of over 300,000 vibrations per second.

Wavelengths were usually measured by means of the Kundt dust figures.

Although some of these sources were fairly intense, they could emit

only decaying wave trains, and they were practically point-sources,

radiating in all directions.

Leaving aside certain attempts in the First World War to produce
h-f sounds electrostatically from vibrating condenser plates, it may be

said that the modern science of ultrasonics* began with the introduction

of an entirely new source of h-f sound waves by Langevin a device that

also serves for detecting these waves. Langevin conceived the brilliant

idea of making use of the piezoelectric property of quartz crystals to

cause them to emit a continuous flow of undamped acoustic waves

when connected to a h-f electric generator. Moreover, by the use of a

mosaic of crystal plates of large area, he was able to produce a system of

approximately plane waves, resulting in an ultrasonic beam of great

intensity, concentrated within a small angle of divergence.

The immediate purpose of Langevin's invention was the detecting

and locating of distant objects under water by means of echoes. A
* The word "supersonics" is in wide use as a synonym for "ultrasonics." The

author's reason for the use of the latter term is twofold: the word "ultrasonic" is

analogous to "ultraviolet" in optics, and it conforms to the usage in other languages.
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principle so novel and so suggestive could not fail to excite the interest

of many physicists. Numerous researches were begun, leading to

several applications of considerable importance in both pure and applied

science. *

A second source of continuous ultrasonic waves is the magnetostric-

tion oscillator, introduced by Pierce in 1928,* and developed further

by him and by many others. It can generate more intense radiation

than the vibrating crystal; but its practicable upper limit of frequency
comes at about 60 kc/sec, and it is not so well adapted to the production
of some of the effects described below. Descriptions of the magnetostric-

tion oscillator and its uses will be found in the books listed at the end

of the chapter.

506. Langevin's Quartz-Steel Oscillator. It has been shown in

earlier chapters that an X-cut quartz plate dilates or contracts in the

direction of its thickness when an electric field in the -XT-direction is

applied by means of electrodes covering its major surfaces, and that by
application of an alternating voltage of suitable frequency it can be set

into resonant compressional thickness vibration. Quartz plates of

reasonable thickness have resonant frequencies too high to be suitable

for submarine signaling and echo production. To surmount this diffi-

culty Langevin cemented a quartz plate a few millimeters thick between

two massive slabs of steel. The thickness of these slabs was so chosen

that the over-all frequency of the entire "sandwich" was of the desired

value. The slabs served also as electrodes. When the unit was vibrating
in thickness resonance in air, a system of stationary waves was set up
in it, the thickness of the entire unit corresponding to a half wavelength
of the compressional wave. When mounted for immersion in water, one

steel slab was in direct contact with the water and emitted ultrasonic

radiation, while the other slab, in contact with air, reflected the wave

energy without appreciable loss.

In his first experiments Langevin used a Poulsen arc generator for

his h-f source. This type of generator was soon superseded by the

vacuum-tube oscillator.

In order to radiate more energy and at the same time to concentrate

the energy in a narrow beam, Langevin increased the lateral dimensions

of the steel slabs to 20 cm or more and cemented between them a mosaic

of quartz -X"-cut plates, all carefully ground to the same thickness. In

this manner small pieces of crystal could be used for building an ultra-

sonic emitter of any desired area.

Although the vibrations are heavily damped by radiation into the

water, it is none the less important to excite the oscillator at or near its

* G. W. PIERCE, Proc. Am. Acad. Arts Sci., vol. 63, pp. 1-47, 1928.
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resonating frequency. For example, if 50,000 volts were required to

produce a desired amplitude by forced vibrations far from resonance,

2,500 volts would suffice at the frequency of resonance. Moreover, since

the oscillator usually serves also as a detector for waves reflected from

distant objects, it is of enormous advantage to have it tuned to the

emitted frequency.

The best size and frequency for an underwater source of concentrated

radiation is determined by the following considerations: Like all other

media, water absorbs sound energy to an extent depending on the

distance traversed and also on the frequency. The rate of absorption
increases with the square of the frequency. Waves in the audible range
suffer very little absorption. Langevin points out that at a frequency
of 40,000 the energy is reduced to one-third of its original value in about

30 km, while at 100,000 cycles/sec the same reduction takes place in

about 5 km. If the radiation took place in air instead of water, two-

thirds of the energy at this higher frequency would be absorbed in a few

meters.

The second consideration has to do with the fact that a plane source

of sound comes closer to emitting plane waves, and hence a highly
concentrated beam, the greater its lateral dimensions in comparison
with the wavelength of the sound. An oscillator designed for 100,000

cycles/sec, with a diameter of 20 cm, producing a wavelength in water

of about 1.5 cm, would emit a beam with very sharply directional prop-
erties. For the observation of echoes from distant objects such a beam
would be inconveniently narrow, and moreover at this frequency the

relatively great absorption of energy by the water would be objectionable.

For echo detection it is desirable to have most of the energy confined

to a cone with total aperture of about 20. This requirement is met
when the diameter of the radiating surface is around six times the wave-

length in the medium.

A compromise must be sought between the greater penetrating abil-

ity of 1-f waves and the requirement of relatively large area to make the

beam sufficiently directive. Very fortunately such a compromise is

found at frequencies around 40,000. The wavelength is then about

3.5 cm, and a suitable diameter of the radiating surface is about 20 cm.

Langevin's calculations showed that for emission of radiation at the

rate of 1 watt/cm
2 the amplitude of vibration must be about 5(10~

5
) cm.

The returning echo may have an amplitude as low as 10~ 10
cm, only

TDTT of the diameter of a molecule. Even this minute motion is enough
for detection when the wave frequency is the same as the resonating

frequency of the oscillator. Various devices have been developed for

observing or automatically recording both tfce direction of a submerged

object and, from the time interval between the emission and return of a
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short signal, its distance. The maximum range in echo work is of course

limited by the inverse fourth-power law.

In his experiments Langevin transmitted signals over distances as

great as 9 km and received echoes from submerged objects 2,000 meters

from the oscillator. He described the use of a small quartz crystal as a
"
probe

"
to explore the sound field in the neighborhood of the oscillator.

The radiated power was as high as 10 watts/cm
2

.

By turning the submerged oscillator so that it radiated vertically

downward, he received echoes from the ocean bottom. * Even in shallow

water, at depths as small as 1 m, records could still be made. This device

is of great value in depth sounding, since it enables a survey of the

bottom to be made, revealing the location of reefs and sunken wrecks;
moreover it can be operated on a vessel in motion.

A more complete account of the quartz-steel oscillator, its theory, and

its uses in echo detection and depth sounding is given in the sources

listed at the end of the chapter.

607. Piezoelectric Emitters of Ultrasonic Waves. As in the Langevin
oscillator just described, flat crystal plates vibrating in a compres-
sional thickness mode are most commonly used. For most of the work

described below, the desired frequencies are so high that one can employ
a fairly thin plate vibrating at its own fundamental resonant frequency
or at one of its odd overtones. For the highest frequencies the plates are

excited at very high overtones. In place of Langevin's massive metallic

slabs, various types of electrodes are used, as described below. Fre-

quencies have been used up to 50,000 kc/sec. For frequencies below

200 kc/sec, however, single plates or stacks of plates in lengthwise
vibration are employed.

If Nature had paid more attention to the production of large and

perfect tourmaline crystals, instead of giving birth to so many quartz

twins, all who are concerned in the applications of piezoelectricity would

be deeply appreciative. Especially in ultrasonics is this true, for large

Z-cut tourmaline plates would make almost ideal emitters.

With the world as it is, tourmaline has been used but little in ultra-

sonics. Rochelle salt as a possible emitter has been discussed by Hilt-

scher228 and Cady.
108 For mechanical and thermal reasons Rochelle

salt is unsuited to the production of very intense radiation. For

demonstration of the optical diffraction effects described below, as

well as for other purposes where low power is sufficient, the author108 has

had good success with the Rochelle salt L-cut described in 140 and 504.

Like quartz, this cut can vibrate in a compressiorial thickness mode,
which recommends it where a large area is desired, whether for emitting

or receiving. Its application in the detection of acoustic waves is

mentioned in 504.
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Almost all the work in ultrasonics described in the literature has

been done with X-cut quartz plates, except some of that which lies

within the range of the magnetostriction oscillator. The plate is usually

circular, though in a few cases the Straubel contour (360) has been used,

since the radiation is then somewhat more uniformly distributed over the

surface and higher voltages can be applied without danger of fracture.*

For experiments in non-conducting liquids, such as xylol, transformer

oil, or paraffin oil, the simplest arrangement consists in laying the quartz

plate on a sheet or block of lead at the bottom of the vessel, the lead

serving as one electrode. A lead support is less likely to cause fracture

of the quartz than a harder metal. The other electrode is a thin sheet

of metal resting on the quartz, through which the radiation passes with*

little loss. This is the arrangement used by Wood and Loomis in their

experiments.
356 Wire gauze has been used as an upper electrode by

Lindberg. The front surface of the crystal can also be plated, con-

tact being made by a narrow brass ring resting on the crystal at its

circumference.

A more efficient use is made of the vibrational energy of the crystal

by having one of its sides in contact with a layer of air. The compres-
sional waves in the crystal are practically totally reflected at the bound-

ary between crystal and air, all loss by radiation from the rear of the

oscillator being thus eliminated. Several arrangements are possible,

some of which are very simple and convenient for demonstration and

for approximate measurements of ultrasonic velocities and wavelengths.

608. In Fig. 157a is shown a crystal bar C for lengthwise vibrations

at the lower ultrasonic frequencies. The bar has tin-foil or plated

electrodes and is cemented to a metal plate a few tenths of a millimeter

thick. This plate closes the end of a glass or metal tube T. R is a

movable piston for reflecting the radiation and producing stationary

waves. The effective impedance of the crystal varies with the position

of the piston, passing from one maximum to another as the piston moves

through a half wavelength. This periodic change in impedance is

observed as a series of changes in the anode current of the tube by which

the crystal is driven. This experiment illustrates the principle of the

ultrasonic interferometer. It can also be performed in free air without

the enclosing tube. An advantage of the tube, however, is that if it

contains a fine powder the particles of powder collect at the nodal regions,

as in the well-known Kundt experiment, giving visible evidence of the

shortness of the wavelengths.

Figure 1576 shows a similar device, but with the crystal C in the

form of a plate for thickness vibrations, to cover the higher range of

frequencies. The rear electrode can be of tin foil or a plated film. At a
* Ref. B5, p. 39.
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frequency of 10 cycles/sec, the wavelength in air is of the order of

0.03 cm, so that for high frequencies a micrometer control is needed

for the piston R.

If the medium is a liquid instead of a gas, the tube T may be vertical

with the crystal at the bottom. This method is convenient for demon-

strating the optical diffraction effects described below. If a piston is to

be used, it should be an air cell, in the form of a pillbox with thin metal

front, in order to prevent the transmission of radiation.

Experiments with liquids can also be carried out with an open trough

or tank in place of the tube. The crystal may be cemented to the inside

of a small flat-sided can of thin

metal, as shown in Fig. 157c,

which may be moved about at will

in the liquid. Since the beam
from such an oscillator diverges

considerably, reflections from the

side walls take place, so that the

container is filled with a three-

dimensional array of maxima and

minima of intensity. This acous-

tic field can be explored by means
of a -second crystal in a small open
can. Or, better, the exploring

crystal, which serves as a micro-

are phone, can be a small X-cui 45

for use with air as the medium. The con- block or bar of Rochelle salt, of
'

, in c and d are for immersion ^ ^^ ^ Q g bylbyl cm^
tin-foil electrodes, immersed in oil

inside of a tube of rubber or thin metal closed at the bottom by a cork, as

in Fig. 157dL This crystal is connected between grid and filament of

the tube in a low-power oscillating circuit of frequency sufficientlyremoved

from that of the ultrasonic emitter to produce an audible beat note in a

telephone receiver or loud-speaker.

Even with a low-power oscillator, "dust patterns" can be produced
in a tube or trough of liquid. In the course of experiments in 1918 the

author had occasion to let a small oscillator radiate continuously for

several hours at a frequency around 25,000, at one end of a trough of

somewhat turbid water several meters in length. The particles sus-

pended in the water settled in nodal bands crossing the bottom of the

trough. A similar effect has been recorded by Ardenne (reference at

end of chapter) and by Boyle.
74

In Fig. 1576 and c, direct radiation from the crystal plate into the

liquid can be. brought about by having in the metal sheet tQ which the
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crystal is cemented an opening nearly as large as the crystal. The front

face of the crystal is then plated and electrically connected to the metal

sheet.

A great advantage in having one side of the crystal plate insulated

from the surrounding liquid is that the liquid itself need not be an

insulator.

Some experimenters have taken pains to support the crystal at

points halfway between the two major surfaces, as is sometimes done

with quartz resonators (see 344). Unless the plate radiates to the

same extent in both directions as is rarely the case this is largely

wasted effort, because when the impedances of the media in contact with

the two surfaces are different the median plane of the plate is no longer

a nodal plane.

The radiation from the surface of the quartz is usually far from

uniform in intensity and direction. The complication that this fact

introduces in quantitative work is somewhat reduced by the use of the

Straubel contour mentioned above. A considerable amount of research

has been devoted to the study of the acoustic radiation field in the

neighborhood of the oscillator.

Theoretically, a piezoelectric plate can be excited to any desired

amplitude of vibration at any frequency, however far from resonance,

provided that a sufficiently high voltage is applied. Apart from the

danger of puncturing the dielectric when in a strong field, it may be

said that the danger of mechanical fracture is no greater with forced

vibrations at high voltage than with resonant vibrations at low voltage.

Still, even if it were economical to drive the crystal by a strong field at a

non-resonant frequency, the crystal would almost certainly be fractured,

even when damped by radiation into a liquid, if the frequency by any
mischance happened to pass through resonance. In practice, resonant

frequencies are commonly employed. The experimenter should remem-

ber that a resonant voltage that is safe when the crystal is in contact

with a liquid can easily shatter the crystal in air.

For concentrating a large amount of ultrasonic energy in a small

region, Gruetzmacher's concave quartz oscillator192 ' 193 may be used

(see also the references at the end of the chapter to J. G. Lynn, Zwemer,
and Chick, and to Tumanski). The radiating surface of a large circular

X-cut plate is made slightly concave, thus emitting a convergent beam.

By this means, with frequencies from 638 to 1,000 kc/sec, Tumanski has

produced jets of oil 70 cm high, projected upward from the free surface

of the liquid.

For ultrasonic effects in air the crystal may be connected in a Pierce

circuit, but in liquids the crystal is too heavily damped to operate in this

way. A suitable and much used source for all purposes is the Hartley



682 PIEZOELECTRICITY [509

tube generator; in some cases two tubes in push-pull connection have

been used. To the output of the generator is coupled a coil connected

to the crystal. By proper choice of inductance the circuit can be made
to operate as a Tesla transformer, supplying a high voltage to the crystal.

An interesting demonstration of interference between the waves

from two ultrasonic sources has been described by Miiller and Kraefft. 383

Two quartz plates of slightly different dimensions are excited in com-

pressional vibration from independent sources. The plates are a few

centimeters apart, with radiating surfaces opposed, and the frequency
difference lies in the audible range. Under these conditions a beat note

can be heard. When the distance between the plates is varied, the

pitch of this note changes by an amount proportional to the relative

velocity, thus demonstrating the Doppler effect.

The extreme range of frequencies hitherto attained with ultrasonic

waves is from 20 to 500,000 kc/sec. This is a range of about 15 octaves

in frequency. The corresponding range of wavelengths in air is from

1.6 cm to 6(10~
5
) cm. The maximum power that can be radiated with-

out breaking the crystal depends on mounting, frequency, and medium.

Wood and Loomis recorded a value as high as 35 watts/cm
2

. This is

an extreme case; usually 10 watts/cm
2

is considered the upper limit,

and even here there is danger of fracture. Ten watts per square centi-

meter is 10 9 times greater than the output from an average loud-speaker

(80 db). At this power, with a frequency of 3(10
8
) cycles/sec, the

amplitude of pressure in the medium is 5 atm, maximal acceleration

10 6 times gravity, maximal velocity 40 cm/sec, and radiation pressure

1,300 dynes/cm
2 = 0.0013 atm.

509. Effects Produced by Intense Ultrasonic Radiation. Although a

few of the effects mentioned below had already been observed with

oscillators of the Langevin type, it remained for Wood and Loomis to

explore the possibilities of the new tool that had been placed at the dis-

posal of science. The spectacular success of their experiments was due

to the combination of great intensity with high frequency.

One of the most important consequences of this combination is

the generation of large stresses in the irradiated medium, as the fol-

lowing considerations will show: As we saw in the preceding paragraph,

extremely high accelerations are produced, with correspondingly large

forces on the particles of the medium or on small objects immersed in it.

These forces cause compressions and rarefactions in the medium, and

since the wavelength is very small it is evident that the stresses are large.

An important result of the large stresses in the liquid is cavitation.

Its presence in liquids traversed by ultrasonic waves was first investi-

gated by Boyle and his associates. The term "cavitation" is applied
both to the liberation from the liquid of bubbles of air or other absorbed
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gases and to the tearing apart of the liquid itself with the production
of hollow spaces filled with vapor. These hollow spaces, in the form of

layers a wavelength apart, collapse with great violence, owing to the

external pressure, as do also to some extent the bubbles of absorbed

gas. Cavitation is accompanied by the generation of intense local

electric fields, a process that is thought to account for the accelerating

effect of intense ultrasonic fields on certain chemical reactions and also

for the luminescence sometimes observed.

At pressure zero, and also under high hydrostatic pressure, there is

no cavitation. The optimal pressure for pronounced cavitation effects

is about 2 atm. At atmospheric pressure the effect sets in at a power
of the order of 0.03 watt/cm

2
.

Examples of the applications of intense ultrasonic waves are the

production of finely dispersed emulsions; the destruction of bacteria

and other biological effects; the acceleration of chemical reactions; the

degassing of liquids; metallurgical applications; and the dissipation of

fogs. Emulsification is feeble, and in some cases impossible, unless

absorbed gas is present in the liquid medium.
610. The Ultrasonic Interferometer. The formation of stationary

waves in air between a vibrating quartz plate and a reflecting surface

was first observed by G. W. Pierce424 in 1925, who measured wave-

lengths in air and C0 2 and made the first observation of the high absorp-
tion of C0 2 for ultrasonic waves. Pierce's method has been developed

by J. C. Hubbard, W. H. Pielemeier, and others,
1*5 '324 into an instrument

of high precision for the measurement of the velocity and absorption of

sound in gases and liquids.

511. Optical Effects of Ultrasonic Vibrations and Waves. The first

optical method to be applied in the study of vibrating crystals was the

piezo-optic effect, according to which the amount of light transmitted

through an optical system containing a vibrating crystal between a

polarizer and an analyzer varies with the strain in the crystal. By this

means Tawil505 in 1926 investigated the strains in a quartz bar, as already
stated in 368. In the same paper he also foresaw the applications of

optical effects in piezoelectric crystals to light relays and television.

The piezo-optic method has been applied by Tawil616 to the measurement

or registration of very short time intervals; by R. A. Houstoun to the

measurement of the velocity of light, following a suggestion originated

by Grant; and by D. W. R. McKinley to the measurement of small

optical activities; see also the paper by C. 0. Browne.*

In TawiPs second method of observation611 he used a vibrating quartz
with frequency sufficiently high to produce in the surrounding air a

* The papers by the foregoing authors are listed at the end of the chapter.
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system of very short waves. It has long been known that sound waves

can be observed and photographed by taking advantage of the difference

in refractive index between compressed and rarefied regions. This

method, originated by Toepler and known as the "schlieren method,"
was applied to these ultrasonic waves by Tawil. For the lower fre-

quencies he used a quartz-steel composite resonator. The schlieren

method has been further developed and refined by Tawil and others,

especially for investigating the sound field in the neighborhood of the

emitter.

The idea that the closely spaced regions of condensation and rarefac-

tion would make the medium serve as an optical diffraction grating

occurred independently and almost simultaneously to Debye and Sears 122

and to Lucas and Biquard.
821 The simplest case is that of a transparent

liquid in which a system of plane waves, either progressive or stationary,

is generated. A collimated beam of light from a slit parallel to the wave
fronts is passed through the liquid in a direction normal to the direction

of propagation of the waves and becomes diffracted according to a law

similar to that for the ordinary plane diffraction grating. When the

emergent light is focused on a screen, a system of parallel lines is observed,

consisting of a central image and on each side the spectra or, in the case

of monochromatic light, the diffraction lines of various orders. The
effect is easily demonstrated, with xylol as liquid, using thickness vibra-

tions of an X-cui quartz plate or of an L-cut Rochelle-salt plate. A
simple mounting for the crystal is that shown in Fig. 1576. From the

frequency, the geometry of the system, and the spacing of the lines, the

velocity of sound in the liquid and the adiabatic compressibility can be

calculated.

512. The diffraction method has been extended and modified in

many ways for special purposes and has become an important research

tool. For its numerous applications and the literature to which it has

given rise the references at the end of the chapter must be consulted.

One great advantage of the method as compared with the interferometer

is that results almost as accurate are obtained with very small samples
of material in a very short time. By the use of high frequencies the

wavelengths are so short that even in a specimen of volume no greater

than a cubic centimeter the waves behave as if in an infinite medium, so

that boundary conditions can be ignored.

Schaefer and Bergmann have applied the diffraction method with

great success to the measurement of the elastic constants of transparent

solids, both amorphous and crystalline. When the ultrasonic waves

pass through a crystal, a diffraction pattern can be photographed that

reveals the elastic symmetry of the crystal and also the presence of the

three types of elastic waves that the crystal can trarismit. From photo-
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graphs made with the sound beam and the light in suitable orientations,

all the elastic constants can be calculated. A cube of the material to be

investigated is excited by a quartz plate cemented to one side or simply

pressed against it with a layer of oil between. A frequency close to a

resonant frequency of the quartz is selected, for which stationary waves

are set up in the cube. Through the combined action of thickness and

lengthwise motions of the quartz, all possible vibrational modes are

excited in the cube.

Even in the case of opaque solids the elastic constants can be deter-

mined optically, as was proved by experiments by Schaefer and Bergmann
after the theory of the method had been given by LudlofL Advantage
is taken of the fact that the surface of a solid subjected to ultrasonic

radiation is set into a state of vibration, producing a characteristic

diffraction pattern when a beam of light is reflected from it.

513. Piezoelectric Light Relays. The earliest use of a vibrating

quartz crystal for controlling the intensity of a beam of light was made

by Tawil, by both of the methods described in 511. The second method

has been used in the design of a stroboscope for the observation of

progressive waves.*

A more effective form of relay, first described independently by

Biquard and by Karolus,f makes use of the diffraction effect described

in 511. The light beam is passed through a liquid subjected to ultra-

sonic radiation, as in the Debye-Sears experiment. At zero amplitude
all the light energy is in the central image (spectrum of zero order).

With increasing amplitude the spectra of the first and higher orders

grow in intensity at the expense of the central image. In the light relay

the central image is cut out by a narrow opaque diaphragm, so that the

amount of light transmitted depends on the total intensity in the portion

that is diffracted. Thus the transmitted light is very nearly propor-

tional to the amplitude of vibration of the crystal, and its intensity

can be modulated by modulating the current that drives the crystal.

For rapid modulation the vibrations of the crystal must be highly damped
by the liquid. A liquid that combines good characteristics for this

purpose with high transparency is carbon tetrachloride.

Piezoelectric relays have marked advantages over Kerr cells for

controlling light beams. They respond well at higher frequencies; they

can be used with ultraviolet light; and they require much less power, with

lower voltages. Their chief limitation is that if the voltage on the

crystal is to remain reasonably low the frequency must remain near

resonance. /

* Ref. B24, p. 210.

t P. BIQUARD, French patent 752,910 (1932); A, KAROLUS, U.S. patent 2,084,201

(1932).
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Still another type of light relay, making use of the electro-optical

effect in quartz, was described by Ardenne in 1939 (reference at end of

chapter).

614. Ultrasonics in Television Reception. Television images formed

on fluorescent screens by means of cathode rays are very limited in both

size and brightness. All the light has to be produced by the rapidly

moving cathode-ray beam, and the light from any one element of the

picture is of very short duration. By using a powerful electric lamp
as the light source and modulating the light beam in accordance with the

television signals corresponding to the brightness of tne various picture

elements, the size and brightness of the television images can be vastly

increased. One method of such light modulation, which makes use

of an ultrasonic light modulator, is known as the Scophony Supersonic

Television System and was originated by Jeffree.* A progressive train

of waves is propagated along a column of liquid from a quartz plate at

one end, as in the Debye-Sears experiment. At the other end of the

column the waves are absorbed in order to prevent reflection and the

formation of stationary waves. The quartz plate serving as emitter is

driven approximately at its resonant frequency by a voltage that is

modulated by the received signals. In the liquid there is then an ultra-

sonic carrier wave similarly modulated. To a given element of the

picture there corresponds a short train of waves of a certain amplitude,
which progresses with little attenuation along the column.

The light from the lamp, made parallel as it passes across the liquid

cell in a direction parallel to the wave fronts, is diffracted. The central

image is stopped out by a small barrier, so that only the diffracted light

is transmitted; this light is approximately proportional to the amplitude
of the quartz and therefore to the brightness of the picture element in

question. At any instant different amounts of light are transmitted by
different regions in the cell, corresponding to a series of successive picture

elements. By means of a lens system an enlarged image of the cell is

formed in a certain image plane on a viewing screen. As the wave train

for a given element traverses the cell, the image that it produces sweeps
across the viewing screen.

In order to fix the position of the individual picture elements on the

viewing screen a small drum with a series of mirror faces around its

periphery, rotated at high speed, is placed in the path of the light; the

mirrors, by their rotation, reflect the light in such a way as to counteract

the motion of the image and to hold each picture element at the right

location on the line that is being projected onto the screen.

From the foregoing description it is seen that the image corresponding
to a single picture element, instead of being projected onto the screen

*
J. H. JEFFREE, ref. 20 at end of chapter.
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only for the extremely short time during which the element is being

received, continues to be projected during the entire time for the train

of waves to run the length of the cell (of the order of one-fifth of a micro-

second for a picture of 525 lines) . During this time the image is "stored
"

in the cell and continues to contribute to the brightness of the picture.

At any instant a large number of picture elements are thus stored simul-

taneously, corresponding to as much as an entire line across the screen.

In order to resolve the successive lines into the actual picture, a

second mirror drum is used, revolving at relatively low speed.

The ultrasonic cells may have liquid columns from 2.5 to 10 cm in

length. At an ultrasonic frequency of 18 megacycles/sec, the wave-

length, when water is used as the liquid, is about 0.08 mm [velocity of

sound in water about 1.5(10
5
) cm/sec]. Several hundred picture ele-

ments may be stored simultaneously. For the high-speed mirror system
a 30-sided p'olygon of stainless steel about 5 cm in diameter is used,

rotated at 31,500 rpm for a picture of 525 lines. The 30 faces of the

polygon are polished mirror surfaces, each about 5 by 3 mm. Glass

polygons have also been used. Pictures up to 18 ft in width have been

projected on screens in motion-picture theaters, using a high-intensity

motion-picture arc lamp as light source. For further details and modifi-

cations the references at the end of the chapter may be consulted.
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, CHAPTER XXIX
PYROELECTRICITY

Un phtnomkne a au moins la symetrie de ses causes, mois il pent tire plus symitrique.

PERKIER and DE MANDROT.

515. The early history of pyroelectricity has already been sketched

in Chap. I. Among later investigators, both experimental and theo-

retical, may be mentioned Friedel and J. Curie (who in 1883 first recog-

nized the distinction between the effects of uniform and non-uniform

heating), Ackermann, Boguslawski, Gaugain, Hankel, Hayashi, Traube,

Kundt, Riecke, Rontgen, and Voigt. References to some of these, as

well as to other authors mentioned in the text, are at the end of the

chapter.

Pyroelectricity can mean any one of several things. First one must

distinguish between vectorial and tensorial pyroelectricity. Vectorial

pyroelectricity is the type usually encountered, and it forms the chief

subject matter of this chapter. Mathematically, it is a relation between

a scalar (temperature) and a vector (polarization). Physically, it is

the change with temperature of positive and negative polarization charges

on certain portions of crystals belonging to certain classes. This phe-
nomenon is the direct pyroelectric effect, represented by the arrow

# P in Fig. 10. The converse, or electrocaloric, effect, described in

523, is represented by the arrow E > 6Q.

The practically negligible tensorial effect is described in 525.

The vectorial effect is complicated by the fact that every pyroelectric

crystal is also piezoelectric : a change in temperature of an unconstrained

crystal causes a deformation, and this in turn produces a secondary

polarization of piezoelectric origin superposed on the primary pyro-
electric polarization. The terms primary and secondary are preferable

to the commonly employed
"
true

" and "
false." Primary pyroelectricity

is that which would be observed in a completely clamped crystal.

The secondary pyroelectric effect must be subdivided according to

whether the heating is uniform or not. For non-uniform heating the

term "false pyroelectricity of the first kind" has sometimes been used,

while the secondary effect of uniform heating has been called "false

pyroelectricity of the second kind." We shall restrict the term secondary

to the effect of the "second kind," and for the case of non-uniform heating
we suggest the term tertiary pyroelectricity, although it 'is only a special

manifestation of the secondary type.
699
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The distinction is by no means trivial. All the 10 classes listed

below that possess primary pyroelectricity are of course subject also to

secondary and tertiary effects. On the other hand, those crystals, like

quartz, which are not included in any of these 10 classes can show only the

tertiary effect. They become polarized by heating or cooling only in

those regions where there is a temperature gradient The reason follows

from the fact that such crystals do not, like those in the 10 classes of

"true" pyroelectricity, have a single unique polar axis (the direction

of the spontaneous polarization). For example, quartz has three

equivalent polar axes, but no one of them is unique. Although the

application of a scalar agent, like uniform heating, cannot give rise to a

polarization in a unique direction, still the gradient of temperature is a

vector quantity, which can produce a polarization dependent on the

direction of the gradient.

In interpreting the extensive literature on pyroelectric observations

it is important to keep these distinctions in mind. Only rarely does

uniform heating seem to have been employed in qualitative observations.

The observed results have therefore in most cases been due largely, if not

chiefly, to the tertiary effect, proving merely that the crystals were

piezoelectric. Too often has there been reason to suspect that spurious

effects of frictional electricity or of a layer of ions deposited from the

flame or other heating agent may have been mistaken for pyroelectricity.

Even when all spurious effects have been eliminated, one cannot expect
more than crude qualitative results unless the specimen is of a definite

geometrical form (parallelepiped or sphere), free from defects, cracks, and

twinning, and cut in a known orientation with respect to the crystal axes.

It is not even certain that the primary effect is strong enough to be

observed in any crystal. Its separation from the secondary effect is

extremely difficult, requiring a precise knowledge of the elastic and

piezoelectric constants (520).
516. Theory of the Vectorial Pyroelectric Effect. In its broadest

sense the vectorial effect includes primary, secondary, and tertiary

pyroelectricity and the converse, or electrocaloric, effect. The theory
as presented here does not include the tertiary type. The primary and

secondary effects may theoretically be present in the following 10 classes,

designated by P in Table I: Classes 1, 3, 4, 7, 9, 10, 16, 19, 23, and 26,

with symmetries Ci, C2 , CIA, C2 ,
/S4,

C4,
C3,

C9v ,
C 6,

and C 6v . In these

classes the symmetry is such that there is a single polar, or "electric,"

axis, with the possibility of a permanent (spontaneous) polarization

along this axis. *

* In Voigt's "Lehrbuch," p. 252, the number of pyroelectric classes is erroneously
stated as eleven instead of ten.
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In the present treatment we shall follow the method initiated by
Lord Kelvin and adopted by Voigt, according to which a pyroelectric

crystal behaves as if it had a spontaneous polarization, the variation of

which with temperature constituted the primary pyroelectric effect.

That this is not the only possible hypothesis will be seen in 545.

Following the same procedure as with elastic and piezoelectric

phenomena, we take as starting point for the formulation of the direct

and converse pyroelectric effects Eq, (1). It is found experimentally, at

least within small ranges of temperature, that the polarization charges

on a pycoelectric crystal are proportional to the change in temperature
AT s= #. The crystal is assumed to be uniformly heated so that there

is no temperature gradient at either the initial or the final temperature.

At the initial temperature the polarization charges are assumed to have

been neutralized by slow leakage or by artificial means, so that the

entire surface is at zero potential. The charges are due to a change with

temperature of the polarization, the constant of proportionality being pm .

The derivative of the energy f per unit volume, given in Eq. (1),

is to be taken with respect to E and T. The latter derivative leads

to the electrocaloric effect (523). Considering E first, we have (see

105)

~ dmhXh + *p
'

m (544)

where p'm is the primary pyroelectric constant.

In the dielectric term, Em is a component of any stray field, including

the depolarizing field due to the polarization charges.

In Eq. (544), Xh is a component of the stress due to change in temper-
6

ature. According to Eqs. (6) we write Xh = ]? c?*zt-. Since xt is a
t

component of the thermal expansion, we have Xi = #a,-. Then from
6

Eq. (191) the piezoelectric term in Eq. (544) becomes #

When the pyroelectric constant is determined experimentally, the

field Em can be eliminated by suitable compensation. Hence in the

following the first term in Eq. (544) is omitted. Pm is then due to

the combined effects of stress and temperature change. Equation (544)

now becomes, on writing AT
7

for #,

APm = Ar fa e^a, + p'm m &T(pZ + p'J (545)
'

m\
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6

where Pm s 2) em*ai *s a component of the pyroelectric constant due to

strain. This piezoelectric contribution to the total pyroelectric polar-

ization is the secondary pyroelectric effect, illustrated in Fig. 10 by the

path & > x P. The primary pyroelectric effect, independent of the

effects of strain, is illustrated by the path & > P.

We shall call pm ss p'm + p% the total pyroelectric constant, where

p'm and p'n are the primary and secondary constants for the m-direction

and m is the direction of one of the crystallographic* axes X, Y, Z. pm
does not include the tertiary effect, since uniform heating is assumed.

In the most general case the values for m =
1, 2, and 3 all differ from

zero, and the direction of the "pyroelectric axis/' as well as the magnitude
of pm ,

varies with temperature. Those crystals for which pm has been

measured, including tourmaline and Rochelle salt, have, at least for the

primary effect, only a single value of m.

The pyroelectric coefficient pm has the dimensions (electric moment

per unit volume) per degree change in temperature. pm is positive

when an increase in temperature causes a pyroelectric polarization in

that direction which is adopted as positive for the crystal in question.

The equation for pm follows from Eq. (545) :

pm = p'm + ft =
^~? (546)

In experimental work if the counterpolarization due to the field

created by the polarization charges [first term in Eq. (544)] is not com-

pensated, the observed pm will be too small. A calculation of the correc-

tion for Em would be difficult, as it depends in a complicated manner on

boundary conditions.

617. Tourmaline. Tourmaline has been the object of more study
than any other pyroelectric crystal. Considering the variable composi-

tion of this crystal (13) it is surprising that the quantitative results by
different investigators and with different specimens show so little varia-

tion. It is commonly found that the pyroelectric constant is lower

for dark than for light varieties and that the conductivity of black

tourmaline is so great that no pyroelectric observations can be made with

it. The largest values are observed with pin^k varieties (Ackermann,

Hayashi).
At ordinary temperatures the analogous end (13) becomes positive

on heating. The direction of the spontaneous polarization is from the

analogous to the antilogous end, so that heating decreases the spontaneous

polarization.,

The pyroelectric property can be demonstrated in several ways. In all such tests

the surface of the crystal should be clean and dry.
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1. Kundt's method, by sprinkling over the heated crystal a mixture of powdered
sulphur and red lead,

* or Burker's powder, f Positive regions become yellow ; nega-
tive regions, red. These charged regions are at the ends of the crystal, but they are

also detected wherever there are cracks along the sides, owing to local strains.

2. An "electric compass" can be made by suspending an elongated specimen

horizontally from a fine thread or fiber, subjecting it to a change in temperature, and

holding it near a charged body or between the plates of a condenser connected to an

electrostatic machine.

Fio. 158. Dust patterns from tourmaline crystals. The photograph shows a portion
of a white painted shelf in a mineralogical cabinet at Wesleyan University after the tour-
malines had been removed. The crystals had lain undisturbed for many years, except
that on one occasion they were rearranged, thus accounting for the overlapping effects.

A long cyrstal near the border of the picture had been broken into several segments, to

the ends of which the dust particles were attracted.

3. When a crystal has been cooled in liquid air, ice filaments from the moisture

of the air in the room form at the two ends, like iron filings at the ends of a magnet.
Small particles of ice sometimes shoot from one end to the other4

Even the small fluctuation in temperature of the air in a room will in time cause

dust figures at the ends of tourmaline crystals. An instance of this effect is shown in

Fig. 158. Particles of dust tend to move into regions where the electric field is strong-

est. On touching a crystal, they are repelled, like pith balls from a rubbed rod, and

lodge on the adjacent portion of the shelf.

If a tourmaline crystal is laid on a white card in a location in the room where

the air is comparatively stagnant but subject to ordinary variations in temperature,
a faint smudge on the card begins to be visible at the ends of the crystal in a few

months.

Numerical data on tourmaline are considered below.

* For details see the "Lehrbuch," p. 230.

t K. BUKKER, Ann. Physik., vol. 1, p. 474, 1900. 1 part carmine and 5 parts

sulphur are rubbed together and then mixed with 3 parts lycopodium (by volume).

See "Lehrbuch," p. 232.

JL. BLEEKRODE, Ann. Phyaik., vol. 12, pp. 21&-223, 1903; M. E. MAURICE,
Proc. Cambridge Phil. Soc., vol. 26, pp. 491-495, 1930; C. M. FOCKEN, Nature, vol. 129,

p. 168, 1932. Miss Maurice also found that a tourmaline heated to 140C, discharged

by passing it through a flame, and then allowed to cool in a smoke of NHC1 showed
the formation of similar filaments.
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518. Pyroelectric Constants of Various Crystals. Quantitative

measurements have been made by a number of observers, notably

Ackermann,
1

Hayashi,
210

Riecke,
B2

Rontgen,
489 and Veen. 568 Refer-

ences to their work and that of others, including qualitative results, are

given in the
"
International Critical Tables.

" 29-* Only a few outstand-

ing results need be discussed here.

The most complete investigation is that of Ackermann. Over a

range of temperature extending in some instances from 250 to +375C
he measured pm (primary plus secondary effects; care was taken to have

the temperature always uniform) for tourmaline, lithium sulphate,

lithium selenate, potassium tartrate, lithium trisodium selenate, potas-

sium lithium sulphate, ammonium tartrate, lithium sodium sulphate,

and strontium acid tartrate. In all cases pm appeared to approach

zero at the absolute zero of temperature. With increasing temperature

pm increased slowly at first, then more rapidly, and in some cases it

approached a saturation value at the highest temperatures. The theory

of Ackermann's results has been treated by Boguslawski,
60 ' 61 who dis-

cusses the similarity of the pm : T curves to the curves relating temperature

to specific heat and coefficient of thermal expansion. The work of

both Ackermann and Boguslawski was discussed later by Born.f

All numerical values given below are in cgs electrostatic units.

619. Tourmaline. The pyroelectric axis is in the ^-direction; hence

the symbol p signifies p3 .

The following values of p are from Ackermann:

Hayashi's results, at 18C, are in good agreement with Ackermann's.

He finds for a yellow-green crystal p = 1.275; pink, 1.324; blue-green,

* The section on Electroelastic and Pyroelectric Phenomena in the "International

Critical Tables" was published also in Proc. I.R.E., vol. 18, pp. 1247-1262, 1930.

In the references at the end of these publications the following errors occur: ref. (43.5)

should be the same as (43), in which the year should be 1882, not 1884. In the

"International Critical Tables" are also these further errors, which were corrected

in th* Proc. I.R.E. : ref. (18), the pages should read "444, 471 "; Rcf. (39) should read

"vol. 46, p. 607, 1928." The Proc. I.R.E. version has an error in ref. (80), in which

the journal reference should be to 188 (Nachr. Gottingen Math.-physik. Klasse) instead

of 88.

f M, BORN, Physik. Z., vol. 23, pp. 125-128, 1922,
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1.057. Both Hayashi and Ackermann, whose work was done under

Voigt, used Brazilian tourmalines.

Rontgen observed from -252.5 to +40.5C with a light-green

Brazilian crystal. His results, obtained from crystals of various colors,

are in general somewhat lower than Ackermann's. At room temperature
the light-green specimen gave p = 1.03.

RieckeB2 measured p and its temperature coefficient in the neighbor-
hood of room temperature, for several Brazilian crystals. From, the

average of his results Voigt derived the equation

p = 1.13 + 0.0104(*
- 18C).

In Voigt's "Lehrbuch,"* is the statement, based on the data then

available, that p changes sign at the temperature of liquid air. This

statement is evidently not confirmed by the measurements of Ackermann
and of Rontgen, which were made a few years after the appearance of

the "Lehrbuch."

The spontaneous polarization of tourmaline. When a tourmaline

crystal is broken across the Z-axis, a little time must always elapse

before the charges are compensated by conduction effects. The main

experimental support of the hypothesis of a permanent spontaneous

polarization P is the fact that the charges thus observed are proportional

to the area exposed and independent of the length of the segment.

Voigt estimated the value of P at 24 C by quickly immersing the

two parts, into which a crystal had just been broken, in mercury cups
connected to an electrometer. In cgs electrostatic units the value was

found to be about 33. According to Voigt
7

s view, this value is only a

lower limit, especially since tourmaline does not show distinct cleavage,

so that on different portions of a surface of fracture there may be ultimate

charges of opposite signs. In contrast with this view is I/armor's theory
of pyroelectricity, treated in 545.

520. Does Tourmaline Possess Measurable Primary Pyroelectricity?

With any crystal that theoretically possesses primary pyroelectricity,

the answer to the question concerning the relative magnitudes of the

primary p
f

m and the secondary p( requires the evaluation of the piezo-

electric term in Eq. (545). It is therefore necessary to know the piezo-

electric, elastic, and thermal-expansion constants, as well as the total

pm ,
and these should be measured on the same specimen, or at least on

specimens from the same mother crystal.

In general, the principal uncertainty may be expected to lie in the

observation of the total pyroelectric constant pm . If the primary p'm is

small, a slightly too low value of pm may be sufficient to lead to the

conclusion that p'm is altogether negligible.
* P. 245.
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Voigt's measurements in 1898870 with tourmaline indicated that the

primary effect contributed about one-fifth of the total pyroelectric

constant.* In 1914, Rontgen, on the basis of his observations quoted

above, in which pm was found to be relatively low, came to the conclusion

that all the observable pyroelectriciby in tourmaline is secondary. This

conclusion was promptly contested by Voigt,
572 who still defended his

former observations. The matter was later discussed by Lindman,t
whose measurements of the coefficients of expansion, when substituted

for those used by Voigt, led to the conclusion that ,bout 12 per cent of

the total effect is primary. On the whole, the best evidence at present

favors the view that the part played by the primary effect in tourmaline,

though small, is not negligible.

521. Rochelle Salt. As we have said in Chap. I, the pyroelectric

effect in Rochelle salt was discovered by Brewster.J Qualitative

tests have also been reported by Hankel and Lindenberg, Valasek, and

K6rner. The only quantitative experiments are those of H. Mueller

and his pupils. A general account of the subject is given by Mueller,
882

on which most of the following statements are based.

It is only between the Curie points, where Rochelle salt is monoclinic,

that there can be primary pyroelectricity, and even here the recorded

effects are chiefly due to secondary pyroelectricity, influenced possibly

also by the tertiary type.

Pyroelectric tests offer the most convincing proof of the existence of

domains of opposite sign in Rochelle salt, as well as a means for estimating
their size and distribution and the magnitude of the spontaneous polar-

ization PJ.

Qualitative tests have been made by Dr. Jaffe and the author, both

on complete crystals a few centimeters in size, of the form shown in

Fig. 2, and on X-cut plates. Best results are obtained on heating rather

than on cooling, probably owing to the avoidance of the condensation of

moisture that takes place on cooling. After the crystal has been kept
for 2 hr or more at a cool temperature (15 to 20C), it is heated approxi-

mately to the Curie point and then dusted with the mixture of sulphur
and red lead.

In the case of an entire crystal, the Z-axis should be vertical. The
c-face may or may not show a pattern. That which is characteristic

is the alternate stripes of red and yellow along the prismatic faces,

* For details see the "Lehrbuch," p. 924.

t K. F. LINDMAN, Ann. Physik, vol. 62, pp. 107-112, 1920. See also Geiger and

Scheel, ref. B19, vol. 13, p. 315.

t D. BREWSTER, Edinburgh Jour. Science, 1824.

W. G. HANKEL and H. LINDENBERG, Sachs. Abh., vol. 18, pp. 359-406, 1892; J.

VALASEK;
B H. KORNER, Z. Physik, vol. 103, pp. 170-190, 1936.
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parallel to the Z-axis. Corresponding stripes, with colors interchanged,
can often be identified at opposite ends of the X-axis. The indication

is that the domains tend to be in the form of laminae from 1 to 8 mm
thick in the F-direction and 1 cm or more in extent parallel to X and Z.

Different tests on the same specimen give essentially the same pattern.

A small X-cut plate 1 cm or so in size may well consist of a single

domain. Larger plates may show a checkerboard pattern, each element

of which on one side has its counterpart, with opposite sign, on the other

side.

The dust patterns offer convincing evidence of a permanent polariza-

tion in the ^-direction, present only between the Curie points. The sense

of the polarization, for each domain, cannot be permanently reversed even

after the crystal has been cooled from a high temperature while in a

strong opposing electric field or heated almost to the disintegration

point between successive tests.

The total pyroelectric constant p and its dependence on temperature
have been measured by L. Tarnopol and by H. 0. Saunders in Prof.

Mueller's laboratory, using a modification of Ackermann's method.

Small crystals gave results agreeing within 20 per cent. The constant

has upper limits of opposite sign at the Curie points, decreasing to zero

and changing sign at about 5C.

By means of Eq. (54G), using the value of p observed for a series of

small values of AT between the Curie points, one can construct a curve

relating P to T. It is here assumed that P = at each Curie point.

By this process Mueller 376 - 382 found good agreement with the P: T curve

in Fig. 147.

The maximum value of P in Rochelle salt, about 640, is more than

ten times that which Voigt estimated for tourmaline. To produce such a

polarization by an external field in an ordinary insulator of low dielectric

constant would require a field of the order of 1,000,000 volts/cm.

The primary pyroelectric effect in Rochelle salt. Data are not available for a precise

determination of the relative values of px and p" (Eq. (545)) such as Voigt attempted
in the case of tourmaline. Nevertheless, a rough estimate can be made, which is

perhaps worth while even if not yet conclusive. When applied to Rochelle salt,

p]q. (545) becomes

*?l . ,

'

- ei 4oi4 + p,

For small AT7

, APJ/AT can be found from the slope of the curve for PJ in Fig. 147.

en is taken from Fig. 146. a 4 is the thermal coefficient of the shear yg. It can be

calculated from the rate of change of the spontaneous strain j/J with temperature.

We take Mueller's value yl = 10.9(10~
4
) at 0C from 482 and assume that the curve

relating yl to temperature is similar to that for P.
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In this manner we find, for small AT* in the neighborhood of 18C,

px APJ/AT 50; a. 4.5(10-
fi

); eu 9.1(10
6
); eua 4

-
pi' 41;

and finally pi PX P" 9.

While this calculation is necessarily crude and the fact that the ratio p'x/p* is

nearly the same as that which Voigt found for tourmaline is obviously only a coin-

cidence, still it is an indication that the greater part of the pyroelectricity of Rochelle

salt is secondary.

522. Other Crystals. Zinc Sulphide. This subtance is mentioned

partly to correct an error in the " International Critical Tables/'* where

it is indicated that sphalerite is both piezoelectric and pyroelectric.

Zinc sulphide exists in two modifications. Wurtzite, or a-ZnS, crystal-

lizes in the hexagonal hemimorphic Class 26, symmetry C 6v It is stable

above 1020C and metastable below. Sphalerite, or 0-ZnS, also called

zinc blende, crystallizes in the cubic hemimorphic Class 31, symmetry
Td . It is the more common form, stable at ordinary temperature, f

Thus, while both forms are piezoelectric, only wurtzite is pyroelectric.

If Veen's value of p = 0.13, cited in the "International Critical Tables,"
was obtained with sphalerite, he must have used non-uniform heating.

Quartz does not belong to a pyroelectric class; hence it possesses only

tertiary pyroelectricity, which is observed on non-uniform hSating.

The direction of the temperature gradient must always be considered in

interpreting the pyroelectric patterns on quartz shown in some books.

Any results observed on uniform heating must be attributed to causes

other than pyroelectricity, as when Rontgen439 traced his results to

expansion of the silver coating on his crystal. The precautions that

should be observed in pyroelectric tests of quartz have been described by
Van Dyke.

658

Topaz is usually classified as rhombic holohedral, symmetry FA ,
and

as such it should posses neither piezo- nor pyroelectricity. Nevertheless,
various authors have reported pyroelectric properties, with such qualifica-

tions as that the properties are
" confused and uncertain" and that

different specimens have polar axes in different directions, f The last

statement suggests that if topaz is pyroelectric at all the effect is tertiary,

dependent on the direction of the temperature gradient, and that Neu-
mann's principle may be invoked for placing topaz in Class 6, symmetry
F, like Rochelle salt outside the Curie points. One may also raise the

"Vol. 6, p. 210.

t On the two types of ZnS see Geiger and Scheel, ref. B19, vol. 24, part 2, p. 269,
1933.

t See, for example, N. A. Alston and J. West, Proc. Roy. Soc. (London) (A), vol.

121, pp. 35g-367, 1928.
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question whether the irregular pyroelectric results, together with the

externally holohedral form, may not be the result of twinning.
*

It is well recognized that the discordant results with certain crystals,,

for example picric acid, are due to varying degrees of twinning, f The
same is true of axinite. t

Among the papers of recent years should be mentioned those by
Martin and by Orelkin and Lonsdale, which describe the experimental

technique as well as the results with various crystals.

A practical application of pyroelectricity in the detection of feeble

radiation, especially in the infrared, has been proposed by Yeou Ta.||

From his experiments with tourmaline and with tartaric acid, If which is

several times as strongly pyroelectric as tourmaline, Ta finds that he

can detect an increase in the temperature of the radiated face of the

crystal as small as (10~
6)C.

523. The Electrocaloric Effect. When Lord Kelvin applied the

principles of thermodynamics to the pyroelectric effect in 1877, he was

led, on the assumption of reversibility, to predict the converse effect.

This is the electrocaloric effect, or the change in temperature of a pyro-

electric crystal caused by a change in the electric field. Like the mag-
netocaloric effect (556) it is very minute and is mentioned here chiefly

because of its relation to the properties of Rochelle salt.

We seek an expression for dT/dE in terms of the pyroelectric coeffi-

cient p = dP/dT. The change in energy per unit volume accompanying
small variations in the electric and thermal conditions is the exact

differential dU = E dP + T dS where S is the entropy. From this

expression one finds, in terms of density p, mechanical equivalent

J - 4.18(10
7
)

and specific heat C in joule gm~ x
deg""

1
,
the following equation for the

electrocaloric coefficient q:

q = =
~?j deg statvolt- 1 cm-1

(47)

* W. A. WOOSTER, ref. B56, p. 230.

t L. BRUGNATELLI, Z. Krist, vol. 24, pp. 274-280, 1894-1895; G. GREENWOOD, Z\

Krist, vol. 96, pp. 81-84, 1937; WOOD and McCALE. 691

J W. A. WOOSTER, rcf . B56, p. 230.

A. J. P. MARTIN, A New Method for the Detection of Pyroelectricity, Mineral.

Mag.j vol. 22, pp. 519-523, 1931; B. ORELKIN and K. LONSDALE, The Structure of

Symm. (1-3-5; Triphenylbenzene, Proc. Roy. Soc. (London), vol. 144, pp. 630-642,

1934.

||
YEOU TA, Compt. rend, vol. 207, pp. 1042-1044, 1938.

IT For tartaric acid see "International Critical Tables"829 or F, Hayashi.*
10
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This equation can also be derived by taking the derivative of Eq. (1)

with respect to temperature [c/. Eq. (544)]. Equation (547) states

that, when p is positive, q is negative, so that a positive increment A#
in field strength leads to a decrease in temperature. This is the case,

for example, with tourmaline, the spontaneous polarization of which

is in the + ^-direction (from antilogous to analogous pole) and increases

with rising temperature. The density of tourmaline is approximately

3, C =
0.2, p = 1.2 (519), whence at 300K the theoretical value of q

is roughly 1.4(10~~
5
) per esu of field strength. Thjs value has been

verified within a few per cent by Lange.* The electrocaloric coefficient

of Rochelle salt near the Curie points is many times greater than this,

as is shown in the next section.

624. The Electrocaloric Effect in Rochelle Salt. The earliest observa-

tions of a linear effect were those of Kobeko and Kurchatov,
263 who also

were the first to predict the effect in Rochelle salt from theoretical

grounds. As was stated in 515, this is the converse of the pyroelectric

effect, and its presence in Rochelle salt always assuming reversibility

is a necessary consequence of the dependence of the spontaneous polar-

ization of Rochelle salt upon temperature. Since q in Eq. (547) is

proportional to p, it is evident that the electrocaloric coefficient, like the

pyroelectric coefficient (521), has its greatest values, with opposite

signs, just within the two Curie points, passing through zero in the

neighborhood of 0C.
With a field strength of various values' up to 1,200 volts/cm Kobeko

and Kurchatov observed, at the upper Curie point, a proportional

increase in temperature (a few hundredths of a degree for the strongest

fields, independent of the direction of the field) and a decrease in tempera-
ture of the same order of magnitude at the lower Curie point, all in

conformity with theory.

There is also theoretically in Rochelle salt, as in all dielectrics, a

quadratic electrocaloric effect due to electrostriction, which according to

Debye and SackB16 has been detected experimentally. It is of a lower

order of magnitude than the linear effect except in fields at least as

large as 30,000 volts/cm.

525. Tensorial Pyroelectricity. This is an excessively minute effect, theoretically

observable with all crystal classes except the cubic. It manifests itself in the produc-
tion of small charges of like sign at edges occurring at the ends of certain axes, when
the crystal is heated uniformly. In the case of crystals that have vectorial (ordinary)

pyroelectricity, the two effects are superposed, making the detection of tensorial

pyroelectricity especially difficult.

* F. LANGS, dissertation, Jena, 1905. Further details are given in Vbigt's "Lchr-

buch," p. 259.
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In a crystal with a polar axis, the polarization produced by changes in tempera-
ture or mechanical stress is a vector. In general, crystals possess also quadrupole

moments, which under the influence of temperature or stress give rise to a polarization
that is tensorial rather than vectorial and is characterized by central symmetry. Uni-
form heating causes changes in the field in the immediate neighborhood of the quad-

rupoles, with the result that double layers of electricity appear at the surface. The

accompanying expansion produces a tensorial piezoelectric effect, which by analogy
with vectorial pyroelectricity might be called a secondary tensorial pyroelectric effect.

The total observed tensorial pyroelectricity is therefore the sum of the primary
effect due to heating alone and this secondary effect.

Voigt* looked for the effect by experiments with the following crystals, all non-

piezoelectric in order to exclude disturbing effects: calcite, dolomite', beryl, topaz,

barite, and celestite. His conclusion was that the real existence of the effect was

"very probable."
In the "Lehrbuch,"f Voigt discusses briefly the tensorial piezoelectric effect, which,

though necessarily minute, is theoretically possible with all crystals and even with

isotropic dielectrics. Like tensorial pyroelectricity and elasticity, it involves the

relations between two tensors, in this case the tensorial electric field and the elastic

stress. Voigt claims to have demonstrated experimentally the probable existence

of the effect. %

626. Actino-electricity. This term was introduced by Hankel, to designate an

electrification observed by him along the prismatic edges of a quartz crystal exposed
to radiant heat. It was soon shown convincingly by Friedel and Curie

||
that the

effect could be fully explained as due to piezoelectric deformation (tertiary pyro-

electricity, 515).

Recently the term has been revived, in connection with the production of an

emf in certain crystals under the influence of light. Tf Such effects have to do probably
with internal photoelectricity rather than piezoelectricity.
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CHAPTER XXX

PIEZO-OPTIC, ELECTRO-OPTIC, AND OTHER OPTICAL EFFECTS

Lass dir von den Spiegeleien

Unsrer Physiker erzahlen,

Die am Phdnomen sich frcuen,
Mehr sich mit Gedanken qualen.

Spiegel huben, Spiegel drubent

Doppclstellung, auserlesen;

Und dazwischen ruht im Trtiben

Als Krystall das Erdewesen.

GOETHE.

627. Introduction. Although it is assumed that the reader is

acquainted with the principles of physical optics, still it may be helpful,

in order to point the way to the special properties of crystals that are

now to be treated, to summarize briefly certain features of the subject.

Detailed proofs must be sought elsewhere. We shall have to do chiefly

with the laws of double refraction for the various crystal systems, as

represented by the optical ellipsoids. A discussion of wave surfaces in

crystals is omitted, although it is an important feature in crystal optics,

since it is not essential for the present purpose.

We deal first with transparent crystals in the normal state, free from

mechanical and electric stresses. It is recalled that the electric field

vector E is perpendicular to the ray and to the magnetic vector H, while

the electric displacement D is perpendicular to the wave normal and to //.

The vibration direction is that of D. It is customary to describe the

optical properties of crystals in terms either of the Fresnel ellipsoid or of

the index ellipsoid (Fletcher ellipsoid). The representation of physical

properties of crystals by an ellipsoidal surface is a device that we have

already encountered in the discussion of dielectric properties (112) and

of elasticity (28). Indeed, the analogies of these properties with optical

phenomena are far-reaching. The equations for the optical ellipsoids are

given below.

The Fresnel Ellipsoid. To any given crystal there corresponds, for a

given wavelength and temperature, a certain ellipsoidal surface with

axes definitely oriented with respect to the crystal lattice, such that the

major and minor semiaxes of the ellipse forming the intersection of the

surface by any plarie through the center are proportional to the velocities

713
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of the two polarized rays that can be propagated in the direction normal

to the plane. The phenomenon is that of double refraction. The electric

vectors of the two rays are parallel to the major and minor axes of the

ellipse. This ellipsoid is the Fresnel ellipsoid. In the most general

case it is triaxial; its principal semiaxes a, 6, c are called the principal veloc-

ities* of light in the crystal, the symbols being so chosen that a > b > c.

It is customary to take as unit vector the velocity of light in vacuum,
whence a, 6, and c are to be regarded as relative velocities and therefore

dimensionless.

The equation of the Fresnel ellipsoid is

Jj

+
$f
+ " 1 (548)

The axes of reference for the ellipsoid are parallel, respectively, to the

principal velocities a, 6, and c. In an unstrained crystal, except in the

Fio. 159. Fresnel ellipsoid. The c-axis is perpendicular to the paper. The ray Or is

normal to an elliptical section, the principal axes of which are represented by Od and Oe.

triclinic and monoclinic systems, these axes are identical with the crystal-

lographic a-, b-, c- (or X-, F-, Z-) axes, but not necessarily in the same

order; nor is there any fixed relation between the relative lengths of the

principal axes of the ellipsoid and the crystallographic axial ratios.

628. The principal refractive indices, denoted by ni, n^ n s or by
a, 0, 7 are the reciprocals of a, 6, and c, respectively. Of these, y has

the maximum value for the crystal and a the minimum. Since for

transparent crystals the magnetic permeability \i
=

1, the Fresnel

ellipsoid is identical with the ellipsoid of the reciprocal square roots of the

dielectric constants at optical frequencies (112).

Figure 159 represents a Fresnel ellipsoid in which Or is a ray in any

arbitrary direction. The plane through normal to Or intersects the

ellipsoid in an ellipse. According to the statements made above, the

* In this chapter the symbols a, b, c represent in general the principal, velocities^

got* as heretofore, the crystallographic
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principal axes Od and Oe of this ellipse are proportional to the velocities

of the two polarized rays that can be propagated along Or, while the

directions of Od and Oe are those of the electric vectors of the two rays.

Figure 159 may be used also to illustrate another property of the

Fresnel ellipsoid, viz., that all rays lying in a given plane, such as that

perpendicular to the vector Or, fall into two categories: those polarized

so as to have the electric vector in the plane, and those having the electric

vector perpendicular to the plane, parallel to Or. For all rays in the

latter group, whatever their direction in the plane, there is a common

velocity, given by the length of Or. This property explains why, in

tables of principal refractive indices of crystals, the symbols na,
nb,

n

stand for the indices for all rays having vibration directions parallel to

a, b
t
or c. In the general case, for example, rays parallel to c may have

either of the two indices na or ?i&. If, as is the case with unstrained

crystals of Rochelle salt, the a-, 6-, c-axes of the ellipsoid coincide with the

X-, Y-, -axes of the crystal, (though not necessarily in the same order),

the principal indices may be denoted by nx ,
ny ,

and nz . (na n&)/\

is a measure of the double refraction in the c-direction for wavelength A.

In unstrained cubic crystals the axes of the Fresnel ellipsoid are equal,

the ellipsoid becomes a sphere, and all directions are optically, as well as

elastically, equivalent, as in isotropic solids.

It is sometimes convenient to express the optical properties of crystals

in terms of the index ellipsoid, which is the "reciprocal" of the Fresnel

ellipsoid, having as principal axes I/a, 1/6, and 1/c; that is, its axes are

the three principal refractive indixes. For waves whose normals are

in the direction of any radius vector, the two refractive indices are the

principal axes of the ellipse in which the ellipsoid is intersected by a

plane perpendicular to this radius vector. The directions of these

principal axes are those of the electric displacement, i.e., the vibration

directions.

The equation of the index ellipsoid is

oW + ftV + cW = 1 (549)

All symbols have here the same meaning as for the Fresnel ellipsoid.

The number of parameters needed to fix the lengths and orientations

of the axes of the Fresnel and index ellipsoids decreases as the crystalline

symmetry increases. These parameters are the polarization constants

discussed below. With triclinic crystals the number is six three for

the axial lengths, and three for the orientation. Monoclinic crystals

require four parameters; rhombic crystals, three. These three systems

comprise the biaxial crystals, for which the velocities a, 6, and c are all

different.
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529. Confining ourselves for the moment to the three systems of

lowest symmetry, we distinguish between the primary and secondary

optic axes. The two primary optic axes are those directions for which

the two wave velocities are equal; there are also two secondary optic axes,

usually very close to the primary, for which the ray velocities are equal.

The primary axes are the normals to the two circular sections that can be

drawn through the center of the index ellipsoid, while the secondary
axes are normal to the two circular sections of the Fresnel ellipsoid.

The line bisecting the acute angle (the axial angle o the mine'ralogist)

between the primary (or secondary) optic axes is the acute bisectrix.

It is necessarily parallel to either the a- or the 7-axis of the index ellipsoid.

A crystal is called positive or negative according to whether the acute

bisectrix is parallel to 7 or to a, respectively.

We pass to the consideration of uniaxial crystals, which include quartz.

Like biaxial crystals they are doubly refracting except along one direction

called the optic axis; we are here ignoring circular double refraction,

which is treated below. All crystals in the tetragonal, trigonal, and

hexagonal systems are uniaxial; two of the axes of the ellipsoid are

equal, and the two optic axes merge into one. The Fresnel and index

ellipsoids are now ellipsoids of revolution, the rays corresponding to the

two axes becoming the single ordinary ray, the remaining ray being the

extraordinary.

630. The Optical Polarization Constants. In describing the effects

of external influences on the optical properties of crystals it is desirable

to use an orthogonal axial system. For all classes except triclinic and

monoclinic Eq. (549) can be used as it stands; with these two classes a

transformation is necessary, leading to an equation for the index ellipsoid

in terms of six parameters. For the sake of completeness the expressions

for these parameters will be given in full, although they are not all needed

in the treatment of those classes with which we are concerned here.

The X-j Y-, Z-orthogonal axes are chosen to coincide with the crystal-

lographic axes of all classes from rhombic symmetry upward. In general

form, in the notation of Pockels, Eq. (549) becomes

The superscript designates the unstrained state of the crystal. ajt . . .

a}2 are the six polarization constants^ defined in terms of a, 6, c and the

direction cosines ai ... 73 by Eqs. (550) below.

X'
Y'

Z'

X Y Z

oti at at

01 02 08

7i 78 7s
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The direction cosines are given in the adjoining matrix. In the general

case, as has already been pointed out, six parameters are needed for

the complete specification of the ellipsoid.

a22

aV8 + & 2
/31 + c2

7l

+ 6 2
/3 2j3 3 +

+ & 2
/3 3/3i + C27s7i

(550)

The quantities aj n are the components of a symmetrical tensor,

analogous to the elastic strain or stress tensor and to the dielectric

susceptibility tensor.

The statement in 527, that in all systems except the triclinic and
monoclinic the directions of the principal velocities a, b, c coincide

with the three rectangular crystallographic axes, is valid as long as

the crystals are unstrained. The last three equations in (550) then

vanish, while each of the first three is reduced to a single term, which

represents the reciprocal of the square of the principal refractive index

in the corresponding direction, since a^ = a 2
,
a22

= 6 2
,
a 3

= c2 . As
will be seen, under certain elastic or electric stresses the optical ellipsoid

of a crystal may suffer both a deformation and a rotation, which can

cause all the polarization coefficients to assume values different from

zero. Then a23 ,
a3 i, and ai2 do not vanish but become parameters

of the new ellipsoid.

Leaving aside the monoclinic and triclinic systems (even these may
be included by arbitrarily letting the X, F, Z axial system coincide in

direction with a, 6, c), we may write for the surviving terms in Eqs. (550),

for an unstrained crystal, ajx
s= a2

,, aJ2
=

b%, a 8
= c

2
,. a

, 60, and c are

the principal axes of the Fresnel ellipsoid, parallel (though not necessarily

respectively) to the orthogonal crystal axes.

For the uniaxial systems (tetragonal, hexagonal, and trigonal),

#o, &o, Co coincide in direction with the X, F, Z crystal axes, respectively,

and a = 60. We then have, calling o = l/n and e = l/ne the velocities

of the ordinary and extraordinary rays, n and ne being the corresponding
refractive indices, ajx

= o?2 = o 2 = 1/n
2 and a 3

= c
2 = 1/n

2
.

The parameters of the optical ellipsoids are in general functions of

wavelength and temperature.

531. The Piezo-optic Effect. This effect consists in a change in the

refractive indices of materials under mechanical strain. Singly refract-

ing substances become doubly refracting, while in doubly refracting

substances the optical constants are altered by the strain. It was

discovered in both crystalline and amorphous substances by Brewster
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about 1815, and under the name of photoelasticity it has come to be of

great importance in engineering. The special phenomena in crystals

are commonly termed elasto-optic or piezo-optic effects. They are present

in all crystals. Their theory, together with observations on several

cubic and uniaxial crystals, was given by Pockels in 1889 and 1890. A
summary of this work is in his textbook on crystal optics.

341 The

assumption is made that the optical effects are linear functions of the

strain.

,

' A full discussion of piezo-optics would be very complicated and quite

beyond the scope of this work. We can only summarize and interpret

the main points, in order that the nature of the electro-optic effect

may be better understood.

In general, a mechanical stress both deforms and rotates the index

ellipsoid, with consequent changes in birefringence and in the directions

of the optic axes. An electric field, as shown below, has a like effect;

but whereas piezo-optic effects are universal, the linear electro-optic

effect is possible only in piezoelectric crystals.

The fundamental equations arc relations between the components
of two tensors, viz., the polarization constants amn and either the com-

ponents Xh of elastic strain or those of elastic stress Xh- The piezo-optic

strain and stress coefficients are designated by Pockels as pmn and irmn,

respectively. Their matrices for the various classes are the same as for

the elastic constants, except that it is not in general true that pmn = pnm .

The latter relation in elasticity is derived from thermodynamic consider-

ations that are not applicable to the piezo-optic phenomena. The
maximum number of independent constants (triclinic) is thus raised from

21 to 36, the 15 additional values appearing below the diagonal of the

elastic matrix in 26 or 29, with reversed subscripts. For all systems

except triclinic, monoclime, and rhombic, however, Pockels stated that

P2i = Pi2, hence 7r2 i
= Ti2,

and in addition, for the cubic system, that

Pn =
PIS, hence TTSI = 7Ti8 . This statement of Pockels rests on the tacit

assumption that the symmetry of the crystal is not perceptibly altered

by pressure.

From more recent observations on cubic crystals* it has become

apparent that this assumption of Pockels is not justified. The explana-

tion, as pointed out by Mueller, is that deformation lowers the sym-
metry, thus increasing the number of non-vanishing coefficients phk and

Thk] the magnitude of these deformation-induced coefficients is not

constant but is proportional to the stress. For effects of this nature

Mueller suggests the term '"morphic" (464). It follows that the

*
H.' B. MARIS, Jour. Optical Soc. Am., vol. 15, pp. 19^-200, 1927, and Y. KIDANI,

Proc. Phys.-Math. Soc. Japan, vol. 21, pp. 457/., 1939. See also the discussion by
Ii. Mueller. 3"
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piezo-optic effect; which according to Eqs. (551) and (551a) should be

strictly linear, requires (at least for systems of higher symmetry) correc-

tion terms involving the square of the stress. The present treatment

omits this second-order effect.

The piezo-optic equations in terms of strain are

022 - 22
=

p46xv
(551)

where a^n is the value of amn for the unstrained crystal, i.e., the value as

defined in Eq. (550).

In terms of stress the equations are:

(an
-

GII)
=

+

(551a)

The coefficients pmn are dimensionless, while the irmn have the dimensions

of an elastic compliance.

The first three equations in (551) and (55la) express a change in the

principal velocities, which can be measured by observations on rays

parallel to the three axes, respectively, by the usual methods for measur-

ing small changes in the refractive index. For example, if the only

applied stress is Yz and if TTH ** 0, then the product iruYz may be inter-

preted as expressing the change in the refractive index n\ caused by
Yz,

in accordance with the relation (an ajj)
= (1/nf 1/nJ

2

)
= TuYz,

where n\ and n\ are the values of this particular principal refractive

index with and without the application of stress. The last three equa^
tions in (551a) represent a rotation of the optical ellipsoid around its

axes. This rotation is determined by measuring the change in refractive

index under stress with light perpendicular to any one axis and bisecting

the angle between the other two. From the change in length of the

corresponding radius vector of the ellipsoid the amount of rotation is

calculated, from which the coefficients can be determined.*

* Ref. B41, p. 468.
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The piezo-optic coefficients are related to the elastic coefficients c and

s by the equations

6 6

vhk = 2) PMSM (552)

The parameters of the optical ellipsoids are in general functions of

wavelength and temperature.
532. Cubic crystals become uniaxial for pressures normal to cube or

octahedron faces and biaxial for all other types of stress.* Crystals of

the trigonal system become biaxial under any pressure not parallel to the

optic axis. If the pressure is normal to the original optic axis, one of

the principal axes of the index ellipsoid is parallel to the pressure, while a

second remains very near the original optic axis. The two optic axes

lie in the plane of these two principal axes if the difference ww TTH

of the piezo-optic constants has the same sign as the velocity difference

o e. With a pressure of 1 kg/mm 2 the axial angle was found by Pockels

to be 554' for quartz.

Following are the piezo-optic constants of quartz and Rochelle salt,

from Pockels,
841 ' 428 who used sodium light. Pockels' values in mm 2/gm

are here converted into cm2
/dyne:

Quartz (for optical constants see 534).

Til 7T12 Tl3 TTU 7T31 TTaj TT44 TT^l

1.11 2.50 1.97 -0,097 2.77 0.183 -1.015 -0.320, all X ICT"

Rochelle salt (for optical constants see 535). The experimental
difficulties were so great that the following results indicate only the

order of magnitude. Pockels' values for 7rnn ,
converted to square

centimeters per dyne, are

7T44 = -9 7T55 = +19 7T66
= -17 (all X 10~ 14

)

From Hinz's values of the elastic constants in Table IV, we find by the

use of Eqs. (552)

p44 = -0.009 p 5 5
= +0.006 p6 6

= -0.015

Piezo-optic observations on quartz have also been made by Gtinther. 194 His

pbservations were restricted to the determination of the phase retardation for polarized

light in the K-direction, under a mechanical stress Xx up to 30 kg/cm 2
,
and yielded a

value which in Pockels' notation would be represented by njT3i/2 n'rn/2. The
numerical value of this quantity, about 10(10~

13
) cm*/dyne, is in excellent agreement

with Giinther's theory, f but it is about three times as great as that calculated from
Pockels' experimentally determined coefficients.

* The piezo-optic properties of cubic crystals have been treated hi a theoretical

paper by H. Mueller (reference at end of chapter).

t Giinther develops a theory of the piezo-optic and electro-optic effects, based on
various properties of quartz, including characteristic frequencies in the infrared and
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The piezo-optic effect in quartz can be demonstrated by mounting a polished
Z-cut plate in convergent light between a polarizer and analyzer so that the usual

concentric circular rings are seen. When the plate is compressed in any direction

normal to the optic axis, the circles become ellipses, the orientations of whose axes

depend on the direction of the pressure. If in place of compression an electric field

normal to the optic axis is applied, a similar result is observed, thus demonstrating
the electro-optic effect.

633. Electro-optic Effects. These effects deserve a brief treatment

here because of a certain parallelism with piezoelectricity and electro-

striction. We first investigate the question as to the manner in which

a static electric field may be expected to influence the optic behavior

of a transparent crystal. The phenomenon is described in terms of the

effect of the electric vector on the symmetrical tensor of the optical

polarization constants (530).
The most general assumption is that the field will change both the

magnitudes and the directions of the principal axes of this tensor. A
uniaxial crystal becomes biaxial. The difference between the original

and the deformed tensors is again a symmetrical tensor. The electro-

optic effect is a symmetrical-tensiorial effect of the electric field. Theory
shows that one may expect a linear electro-optic effect with exactly

the same symmetry conditions as the converse piezoelectric effect, and a

quadratic electro-optic effect (Kerr effect, 536) corresponding to quad-
ratic electrostriction.

The Linear Electro-optic Effect. This effect is possible with all piezo-

electric crystals, and with them only. The relationship between the

linear electro-optic effect and piezoelectricity is so close that Kundt and

Rontgen, who in 1883 were the first to make a careful study of the former

phenomenon, believed that it was only a secondary result of the piezo-

electric deformation; the effect of a deformation on the refractive indices

is the piezo-optic effect discussed above.

The question was decided by Pockels in his classical investigation of

1894, which is still the principal source of our knowledge of the linear

electro-optic effect. Pockels found a direct influence of the electric field

on the optical constants; i.e., the refractive indices of a crystal deformed

by an electric field are different from those of a crystal deformed to the

same extent by mechanical forces.

Pockels computed the
"
direct" effect by subtracting from the

observed total effect the secondary, or "indirect," effect due to deforma-

tion, making use of the known piezoelectric and piezo-optic constants.

ultraviolet. His theory predicts the magnitudes of both effects. Since his observa-

tions were made with a single plate, his results cannot yet be regarded as a confirmation

of his theory, especially since for the electro-optic effect (534) his theoretical value

of the constant rlt is 60 per cent higher than that which he found experimentally.
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The relation of this indirect to the direct effect is quite analogous to that

between "false" and "true" pyroelectricity discussed in 520.

Pockels' theory relates the change in the optical polarization con-

stants to the electric polarization P by means of 18 coefficients. In

accordance with 530 it is assumed that the axes of reference are parallel

to the principal axes of the normal ellipsoid. The equations for the

change in optical polarization constants caused by the electric field

may then be written with a\ in plate of &, etc., in accordance with 530.

From Pockels' theory these equations are

(553)

These expressions are strictly analogous to Eq. (190) or to Eq. (vii)

in Table XX for the converse piezoelectric effect.* The quantities on

the left side of the equations can be determined from observations

of the refractive indices by standard methods with polarized light.

From them and the known electric field strength the coefficients rmn

may be calculated.

The matrices for these coefficients are exactly the same as those

for the piezoelectric coefficients, in 131. In the most general case

there are 18 electro-optic constants.

In the following paragraphs we shall use the symbol r for the observed,
or over-all, electro-optic effect. The indirect effect will be designated by
r'

y
and the direct effect by r" = r r'\ r" is the true electro-optic

coefficient.

634. Experimental Results in Electro-optics. Data are available

only for quartz, tourmaline, sodium chlorate, and Rochelle salt. Until

the recent work by Ny Tsi-Ze and Giinther on quartz and of Mueller on

Rochelle salt, the only observations beyond the earlier work of Rontgen,

Kundt, and Czermak were those of Pockels in 1890. In all cases the

observations of the dependence of double refraction upon field yield

the over-all values of the electro-optic coefficients rnm , including the effect

of piezoelectric deformation (indirect effect). The latter contribution,

*
Following the convention adopted by Mueller,

381 we write rmn in place of Pock-

els' emn in order to avoid confusion with the piezoelectric constants. The order of

subscripts is the same as with Pockels: the second digit in the subscript indicates the

direction of the polarization. In his experiments Pockels observed the field E =
ij'P;

hence in Eqs. (553) P requires a knowledge of the dielectric susceptibility t\' of the

free crystal. In all experiments hitherto, P has been parallel to E.
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which we shall call r
f

mn ,
is calculated from the piezoelectric, elastic, and

piezo-optic constants, just as in the case of pyroelectricity. The direct

electro-optic coefficients may then be expressed as r'Jin
= rmn r'mn. It

is easily proved from Eqs. (551), (551a), (189), and (190) that

6 6

I'm*!**
=

2) Pn4mi = 5) 7rn'*e'< (554)

-l t*-l

Quartz. The electro-optic constants are rn = r2 i
= r62 and

y4l == rs2.

Principal refractive indices for the ordinary and extraordinary rays

(Na, 18C):n = 1.54425; w = 1.55336. On the optical activity of

quartz see 538.

Only the component of field perpendicular to the optic axis is effec-

tive. The crystal becomes biaxial, the angle between the two optic

axes and the magnitude of the effect being given by rn. The coefficient

r4 i has an influence only on rays oblique to all three axes. In accord-

ance with 5, for the crystal class to which quartz belongs, Eqs. (550)

reduce to an oz = rnPx;a22
- o 2 = -ruPx;a33

= e2 = 0;a23 = r4iP*;

&3i = r4 iPj,; ai2 = rnPy. As in 530 the symbols o and e represent

the principal light velocities, ordinary and extraordinary.

The equation for ru becomes

dan d I 1 An
,
(555)

where n is the refractive index for the ordinary ray and An is the

observed change in n for a change AP* in polarization.

For the total effect, using Na light, Pockels found rniyj
= 1.40(10~

8
),

T^X = 0.59 (10~
8
). The effect of quadratic electrostriction upon the

results was ruled out, as being small in comparison with the errors of

observation. The direct effect was found by subtracting from these

values the calculated effect due to deformation alone. The direct

coefficients thus obtained are r&ji = 0.73(10~
8
) and r^ = 0.14(10~

8
).

For the over-all effect the change in n per esu of field (300 volts/cm)

parallel to the X-axis is only An /AJB
r

, = 3.3(10-
8
); for the direct effect

the calculated value is 1.74(10~
8
).

The only other observations that have been made on the electro-

optic effect in quartz are those of Tsi-Ze and of Giinther.* The obser-

* L. M. Myers (Marconi Rev., no. 52, pp. 16-25, February, 1935; no. 53, pp. 9-18,

April, 1935) has also described experiments on the optical effects in electrically

stressed quartz. Apparently unaware of the work of Pockels, Myers thinks his

results to be of purely mechanical origin, i.e., due to piezoelectric deformations. He
comes to the practical conclusion that electrically stressed quartz is inferior to an

ordinary Kerr cell for controlling light intensity. On this point see 513 concerning
the ultrasonic light relay.
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vations of Giinther, reduced to the foregoing units, yield for the total

effect ruifx = 1.45(10~"
8
), in good agreement with Pockels. From

Tsi-Ze's paper one finds, by a somewhat roundabout calculation,

If we ignore the discrepancy in sign, which may be due to a difference in

polarity of field or to enantiomorphism, it appears that Tsi-Ze's result

is at least of the order of magnitude of the other observers.* Although
the calculations of the indirect effect by both Giinther and Tsi-Ze are

open to question on theoretical grounds, they at least confirm Pockels'

conclusion as to the reality of the direct effect.

It may be added that Tsi-Ze also recorded the observation of an

electro-optic effect for the extraordinary ray in quartz, which is quite

contrary to Pockels' theory, since this effect involves the coefficients

rsi, r32 , rss, all of which vanish for quartz.

535. Rochelle Salt. Principal refractive indices f nx = 7 = 1.4954;

ny
=

ft
= 1.4920; nz

= a = 1.4900. Valasek's observations643 indicate

no great change in these values from 70 to +40C, but his observa-

tions were not sufficiently precise to record the small anomalies reported

by Mueller. 376 The crystal is optically active: rotation of plane of

polarization, for Na light, 1.35/mm for each axis.J The a-, b-, c-axes

of the Fresnel ellipsoid are parallel, respectively, to the Z
t Y, X crystal

axes. The plane of the optic axes is the ZZ-plane (010), the X-axis

being the acute bisectrix. The angle between the optic axes is 6940;

(Groth, for "yellow" light).

The electro-optic coefficients for crystals of this class (Class 6,

symmetryF) are an = a\ = 1/V, a22
= 6 =

1//8
2
,

a38 = eg
= I/a

2
,

Just as the three piezoelectric coefficients for Rochelle salt have to do

with shears with respect to the crystal axes, so in the linear electro-optic

effect a field parallel to any one of the axes rotates the Fresnel ellipsoid

slightly around this axis without affecting its shape. Since the principal

axes of the ellipsoid coincide with the crystal axes, it follows that the

refractive indices, for light parallel to any one of the axes, should remain

unchanged.
For electric fields parallel to the Y- and Z-axes, and Na light, Pockels

found nwi = -5.1(10~
8
) and r63^ = +0.95(10-

8
). From 408 we may

* Gunther's selection of data from Tsi-Ze's Table XI to compare with his own

(and thereby to show that Tsi-Ze was in error) seems to be based on a misconception.
The proper data to use are those in Table VII of Tsi-Ze; the discrepancy between the

results of the two investigators is then greatly reduced. Gtinther also made a slight

numerical error in the reduction of Pockels' observations.

t LANDOLT-BO'RNSTEIN, "Tabellen," 5th ed. At 20, Na light.

$ H. DUPET, Jour. phys. rod., vol. 3, pp. 757-765, 1904.
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call
17^
= 0.70, it = 0.65. The two electro-optic constants are then

r52 -7.3(10~
8
) and r63 = + 1.5(10~

8
); they include both the direct

and the indirect effects. To calculate the indirect coefficient rJ2 we
must find a3 i from Eqs. (551) for the piezoelectric strain zx, remembering
that for rhombic crystals a^ = 0. Calling this value a^, we have

r'B2Py
=

aji
= ps&x =

pibd2f>Ey, whence r'B2
=

psAs/rtf- Similarly,

, __ P66C?36
68

""
iy~
Viz

The values of 7)55 and p 6e are given in 532, while for d& and dw we use

the values from Eq. (207); we thus obtain r'52
= -1.4(10~

8
),

rJ 3
= -0.8(10-*)

On subtracting these values from those of r^ and r6 s above, there results

for the direct effect r'5
= -5.9(10~

8
), r'6

'

3
= +2.3(10~

8
).

The fact that the electro-optic constant involves both the dielectric

susceptibility and the piezoelectric constant makes the determination of

r4 i for Rochelle salt very inexact. The only recorded measurements are

those of Pockels, who found ^r 4 i
= 6(10~

8
), a value of the same order

of magnitude as n-2 and r63 . An accurate determination of m and rjx

would demand the same careful attention to temperature control, suit-

able electrodes, and freedom from mechanical constraint as are needed

for dielectric and piezoelectric investigations with this crystal. Without

a knowledge of the exact conditions in Pockels' experiments, one can

only guess that du was of the order of 500(10~
R
), in which case i\' should

be around 10. Using these values, one finds r4 i
~ 0.5G(10~

8
) and

rii
~ 0.42(10~

8
). With considerable reservation the coefficient of the

true electro-optic effect in Rochelle salt may be taken as

r4\
= r -

fit
= -0.14(10-

8
).

The indirect effect, expressed by r^, is apparently very large. This

conclusion agrees with Mueller's results, discussed in 530; qualitatively

at least it agrees also with Mandell's findings.
326

636. The Quadratic Electro-optic Effect. This is the well-known

Kerr effect, which can occur in all substances. Among all crystals

hitherto investigated Rochelle salt is the only one in which it amounts to

more than a second-order effect. In this crystal the Kerr effect is about

a million times greater than the electric double refraction in most liquids.

A pronounced effect has recently been found with other Seignette-

electrics (see
!

495).

This effect in Rochelle salt was first detected by Pockels. In his

study of the linear effect, with the electric field in the X-direction and the

light beam at 45 to the 7- and Z-axes, he found the magnitude of the
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electro-optic effect to be considerably different for opposite signs of

field. In order to separate this apparently non-linear effect from the

linear, he prepared an X-cut plate with two pairs of faces normal to the

F- and Z-axes of the crystal. He found that a field in the X-direction

had a marked effect on the phase difference for light in the F- and

^-directions. This effect did not reverse its sign with reversal of the

field and was therefore interpreted as a quadratic, or Kerr, effect. The

symmetry conditions for the Kerr effect are identical with those for

the piezo-optic effect (relation of tensor to tensor) and permit a change
in the refractive index along all three axes with the field parallel to one

axis.

The Kerr effect in Rochello salt has been very thoroughly studied by
H. Mueller,

376 ' 381 who found a close correlation between the optical

and the dielectric properties, including the presence of hysteresis. His

observations were made with the field in the X-direction. He observed

the differences between refractive indices, na n^ n^ nc,
or nc na ,

for light parallel to Z, X, or F, as a function of field and temperature.

The outstanding experimental results are as follows: (1) The order of

magnitude with a field of 5,000 volts/cm is 0.1X phase difference per
centimeter path. (2) The effect does not change sign with the field.

(3) It is quadratic in the field at temperatures well above the upper
Curie point; complicated near the Curie points; roughtly linear between

the Curie points, except when the field is less than the coercive fieldEc .

It has been pointed out by Jaffe246 that this linear effect between the

Curie points is to be regarded as a true linear electro-optic effect if Rochelle

salt is accepted as being monoclinic in this range of temperature

(481). From this point of view the failure of the effect to reverse

its sign with the field is due to a reversal of the crystallographic a-axis

when the field changes sign, owing to the reversal of the domains.

In the earlier of his two papers Mueller's theoretical treatment was in

terms of his internal-field theory. In the later paper
381 Mueller replaces

his internal-field theory by the polarization theory (change in double

refraction dependent on Px rather than on Fx). He adopts in principle

JaftVs view that Rochelle salt is to be regarded as monoclinic in the

Seignette-electric range, and by introducing the second power of

the polarization he obtains expressions that satisfactorily describe the

peculiarities in the dependence of the electro-optic effect upon tempera-
ture and electric field. Even in the absence of an external field he found,

between the Curie points, a spontaneous Kerr effect due to the internal

spontaneous polarization.
*

* The experimental evidence of this effect is a bend, at each Curie point, in the

curve relating birefringence to temperature.
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Mueller gives evidence that the Kerr effect in unconstrained crystals

of Roehelle salt is due in part, at least, to deformation (the piezo-optic

effect). The only measurements of the photoelastic constants of Roehelle

salt are those of Pockels, on the assumption that the crystal is rhombic
;

they do not suffice for computing the piezo-optic contribution to the Kerr

effect when the crystal is in the monoclinic form.

637. Extinction and Optical Activity. Determination ofAxial Directions

by Means of Optical Extinction. This method is useful for making a

preliminary examination of irregular pieces of doubly refracting crystal

and, within limits, for identifying axial directions. It is applicable to

all crystals except those of the cubic system.

In general, when a doubly refracting transparent crystal is viewed

between crossed polarizer and analyzer, the field of view is more or less

illuminated. Except under certain special circumstances it is found,

however, that when the specimen is rotated about the beam as an axis a

minimum of illumination is encountered for every 90 of rotation, with

maxima between. In most practical cases, even with white light, the

minima are regions of complete darkness; these are the extinction posi-

tions. As we shall see, when white light is used, the emergent light

for the intermediate positions may be colored.
x

It was shown in 527 that along any direction in the crystal two waves

of different velocities may be propagated, the vibration directions being

parallel to the major and minor axes of the ellipse in which the plane
normal to the wave direction cuts the index ellipsoid at its center, and

the two refractive indices being proportional to these axes. It is when
these vibration directions are parallel to those of the polarizer and

analyzer that extinction occurs. If the two indices happen to be equal,

as is the case for light parallel to an optic axis in any crystal that is not

optically active (538), the field remains dark for all angular positions

of the crystal.

If plane-polarized light of wavelength X cm and intensity / is incident

normally on a plane-parallel plate of any orientation, whose thickness is

e cm, the indices of refraction for light in the given direction being n\ and

n2 ,
then if polarizer and analyzer are crossed the emergent light has the

intensity*

/ = 7o sin2 2a sin2
TT - (n* n

L ^

where a is the angle between the vibration direction of the polarizer

and that corresponding to n\. An inspection of this equation verifies

the general statements made above, and in addition it shows that for

*Ref. B41,p. 213.
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any a the illumination varies periodically as e is gradually increased. The
variation of I with X gives rise to the color effects mentioned above when
white light is used. Very thin plates the thickness depending on

(wg n\) fail to show color, because the phase difference between the

two waves is too small. If the plate is sufficiently thick, the colors of

different orders overlap to such an extent that the emergent light, except

in positions of extinction, is sensibly white. With quartz plates parallel

to the optic axis, colors are seen only for thicknesses less than a milli-

meter; with X-cut Rochelle-salt plates, the limiting yalues of thickness

are about 0.2 mm and 3 mm.
Both quartz and Rochelle salt have parallel extinction: when the optic

axis of quartz or any one of the three crystallographic axes of Rochelle

salt is at right angles to the beam, extinction occurs when this 'axis is

parallel to the vibration direction of either the polarizer or the (crossed)

analyzer.

Extinction can be observed with entire crystals or irregular fragments ;

it can be used for' finding approximately the directions (though not the

sense) of the crystal axes. Its application to quartz is considered in

333. If a plate of Rochelle salt is known to be cut perpendicular to

one of the crystal axes, extinction tests quickly give the approximate
directions of the other two axes, since the field remains dark when either

of the two is parallel or at right angles to the vibration direction of the

polarizer. In general, one cannot by this test discriminate between

the two axes without the use of auxiliary.devices.

In one special case, at least, it is possible to make this discrimination.

The author has observed that when a Rochelle-salt Z-cut plate whose

thickness is such as to show colors in white light between polaroids is

rotated about the F-axis away from the position in which the Z-axis is

parallel to the beam, the colors persist until the angle of rotation is almost

90, whereas they disappear after about 20 when the rotation is about

the Z-axis.

638. Optical Activity. This phenomenon, known also as "circular

double refraction
" and "rotatory polarization," is a special property of

certain crystals, not derivable from the Fresnel ellipsoid. It is observed

by means of an analyzer when plane-polarized light traverses the crystal

parallel to the optic axis (or parallel to either of the two optic axes in

biaxial crystals). If the velocities of the two oppositely circularly

polarized rays into which the incident light can be resolved are appreci-

ably different, the plane of polarization of the emergent light is found

to be rotated by an amount depending on the rotatory power (angle in

degrees per millimeter of path for some specified wavelength) and on the

thickness of the specimen. If the incident light is white, the emergent

light shows the well-known characteristic tints (rotatory dispersion, i.e.,
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variation of rotatory power with wavelength). The emergent light is not

affected by rotation of the crystal about its optic axis.

Crystals belonging to 15 classes may be optically active.* They are

all devoid of a center of symmetry; they are also all piezoelectric except
one (cubic enantiomorphous hemihedral, symmetry 0). Many crystals

in these 15 classes, however, have an activity too small to be detected.

All enantiomorphous crystals are optically active, the right and left

forms rotating the plane of polarization in opposite directions.

From the molecular point of view there are two types of optically

active crystals. One consists of individual molecules having no center of

symmetry. If such a crystal is melted or dissolved, the liquid also

shows circular double refraction; the sense of rotation depends on the

solvent. Conversely, a compound whose melt or solution rotates the

plane of polarization must crystallize in an enantiomorphous class

(Pasteur's law). This first type is exemplified by Rochelle salt. The
second type has molecules or ions of high individual symmetry, the low

symmetry of the crystal being due to the lattice arrangement, a-quartz

and NaClOa are examples of this type. From a solution of a left-crystal

of NaClOs, left- and right-crystals grow with equal probability.

In a right-crystal, the direction of rotation of the plane of polarization

appears clockwise to an observer looking into the analyzer [against the

beam (326)]; this is also the direction in which the analyzer would have

to be turned to keep the field dark if the thickness of the crystal were

increased progressively, assuming the polarizer and analyzer to have been

crossed initially.

Observations of the optical activity of quartz are useful for determin-

ing the direction of the optic axis in a plate and for detecting Brazilian

twinning, as well as for distinguishing between right- and left-crystals.

As stated in 15, optical tests can reveal only Brazilian (optical) twinning.

Tests are best made in monochromatic light, for which a color screen is

sufficient. Tests of quartz crystals by this method, and also in conver-

gent light, are described in 333.

The true rotatory power of uniaxial crystals is found to be unaffected

by mechanical strain. Nevertheless, under certain types of strain the

apparent rotatory power is changed, but this effect is due to the fact

that the crystal becomes biaxial under stress, so that there is double

refraction in the direction of the original optic axis, in accordance with

the laws of piezo-optics discussed above. The same effects would take

place in inactive crystals. Herein lies the explanation of the optical

effects recorded by Tawil (368) for polarized light parallel to the optic

axis in vibrating quartz plates. The operation of the author's "optically

* Ref. B41, p. 316.
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controlled piezo oscillator" (398) is also based on the double refraction

induced by strain.
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CHAPTER XXXI
PIEZOELECTRICITY IN THE LIGHT OF ATOMIC THEORY

Wenn nach der Entdeckung der Gebr&der Curie Deformationen von Kristallen elek-

trische Erregungen derselben bewirken, und wenn fiir dieselben, wie ich dargetan habe, je

nach der Gruppe, welcher der KristaU angehort, hochst mannigfaltige Gezetze gelten, so

ist damit fur jede Thcorie der Konstitution der Molekule ein klares und fundamentals
Problem aufgestellt. VOIGT.

In spite of the fact that molecular or atomic theories of piezoelectric-

ity began to appear very soon after the Curies' discovery, a satisfactory

theoretical treatment of the phenomenon can hardly be said to have

passed the initial stage. The resources of modern lattice dynamics
are still unequal to the task of predicting anything better than a rough

approach to the order of magnitude of the piezoelectric effect, even for

the simplest structures. Incomplete though the story is, however, it

offers much of interest on both the theoretical and the experimental side.

The piezoelectric effect is, of course, intimately related to the general

subject of crystal structure. We shall (therefore consider first the atomic

structures of some of the more important piezoelectric crystals, as

revealed by X-rays, and then summarize such progress as has been made
in accounting for the piezoelectric properties. References are given at the

end of the chapter.

539. The Binding Forces in Crystals. For the present purpose, the chief types

of chemical bond may be listed as follows:

1. Ionic bonds, also called polar or heteropolar. The substance is held together

by the electrostatic Coulomb attraction between ions of opposite sign. Each positive

ion is surrounded by negatives, and there are no individual molecules. If the sub-

stance is a crystalline solid, the entire crystal is to be regarded as a single molecule.

An example is NaCl, in which the binding is entirely ionic. Many of the simpler

minerals are of this type.

2. Valence bonds, also called covalent or electron-pair. The pair of electrons is

shared between two electropositive or two electronegative atoms. With the former

case, viz., the metals, we are not concerned. Valence bonding between two electro-

negative atoms is called homopolar (or non-polar) bonding. These bonds have the

property of saturation and tend to form discrete and stable molecules. For example,

in organic compounds the carbon uses its four available valence electrons to hold

four other atoms. Such compounds may take the form of chains, sheets, or three-

dimensional structures of indefinitely large extent, as do also various minerals, silicates,

and refractory materials.

3. Van der Waals bonds. Comparatively weak forces act between molecules, due

to the mutual polarization of the molecules. If only forces of this type are present,

the result is a gas, a liquid, or a mechanically weak solid of low melting point.

Crystals thus bonded are called molecular crystals.

731



732 PIEZOELECTRICITY l540

4. Hydrogen bonds. In recent years it has become recognized that two electro-

negative atoms may be bound by a single intervening hydrogen nucleus. The bond
between the H+ and each of the negative atoms is often ionic in character and is

stronger the more electronegative the atoms are. This type of bond is present in

many compounds, and it plays a part in the theory of such physical properties as

melting and boiling points and the dielectric constant. Sometimes, as in ice, it is

the only bonding agent.

Two or more different types of bond are very commonly present in the same sub-

stance. Both ionic and valence types are thought to be present in -quartz (Wei,

Pauling), while /3-quartz is a purely ionic crystal. The part played by hydrogen
bonds in the Scignette-electric phosphates is discussed below, *as well as the problem
of Rochelle salt.

Relations between Crystal Structure and Piezoelectric Properties. If the

molecule is asymmetric, the crystal is likely to have the asymmetry
necessary to make it piezoelectric. For example, if, as in tartaric acid

or Rochelle salt, there are asymmetric C atoms in the molecule, the

crystal must lack a center of symmetry. The only exception to this rule

would be with such crystals as meso- or racemic tartaric acid, where

the asymmetric atoms or molecules compensate one another.

Simple ionic salts cannot be expected to be piezoelectric, unless the

radii of the constituent atoms are decidedly unlike.

Simple semipolar compounds (containing both ionic and valence

bonds) tend to be piezoelectric. Crystals of the zinc blende type fall

under this rule. Decidedly homopolar compounds (little or no ionic

binding) often have highly symmetrical structures, for example the

pyrite type. This subject is further discussed by Wooster.B56

We turn next to those features of the structure of quartz and of

Rochelle salt that are related to the purpose of this book. For the

X-ray methods used in determining the structures the reader may consult

the references at the end of this chapter.

540. The Structure of Quartz. In 1914 W. H. Bragg published the

first X-ray analysis of quartz and offered the hypothesis of the three inter-

penetrating lattices mentioned below. The first investigation of the

relative positions of the atoms in a- and j3-quartz by X-rays was that of

Bragg and Gibbs (1925). This work was extended by Gibbs (1926)

and especially by Wyckoff (1926), who completely determined the

structural parameters of ]3-quartz. One such parameter is needed for

jS-quartz and four for a-quartz. References to the later determinations

of the parameters are given at the end of the chapter.*
The space-groups for the two enantiomorphous forms of 0-quartz are

D\ and Z)J. For a-quartz they are D\ and D\.

* An excellent account of the work of Bragg and Gibbs, with diagrams, is given by
Sosman.B47
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The crystallization of Si02 in three principal forms, as quartz (includ-

ing the a- and ^-modifications), tridymite, and cristobalite, has been

mentioned in 10. All three forms have the same basic structure, viz.,

a tetrahedral group of four oxygen atoms with a silicon atom in the

center. The arrangement of the groups is what distinguishes one form

from another. Our interest is in a-quartz and

#-quartz. In each of these modifications the

structure is based on three interpenetrating

hexagonal lattices.

In order to visualize this type of crystal

architecture we start with the unit cell of

one of the three component lattices, as illus-

trated in Fig. 160. The unit cell has the form

of a right prism of height Co, having as its base

a 60 rhombus. The vertical edges are paral-

lel to the principal (Z-) axis, while the sides of

the base are parallel to two X-&xes. It con-

tains one Si and two O atoms. We have

arbitrarily placed the Si atom at a distance Co/3 above the center of the

base, in order to make it fit into the final scheme. The positions of the

oxygens will be considered later.

Suppose cells of this type to be packed regularly in all three dimen-

sions, forming a lattice. A projection on the basal plane, viewed from

Fio. 160. The unit cell of

a- and (S-quartz, with one of

the three silicon atoms.

\

FIQ. 161. Projection, on a plane perpendicular to the optic axis, of the three inter-

penetrating hexagonal simple lattices, showing the silicon atoms in the configuration for

0-quartz.

above, will look like Fig. 161, in which the projection of each unit cell

has at its center a silicon atom, indicated by a small dot Si, corresponding

to Si in Fig. 160. The entire array of Si dots has hexagonal symmetry,

forming a hexagonal lattice. Now imagine two other lattices identical

with the first, but rotated about one of the prismatic edges, say DD' in

Fig. 160, by 120 and -120, respectively. In Fig. 161, the axis of

rotation may be taken as perpendicular to the paper. In the pro-
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jection, the Si atoms will appear in the positions shown by the large

dots S{ and the open circles Si'. Then let these two lattices be displaced

vertically, the first downward by c /3 and the other upward by the same

distance (we anticipate by remarking that the result will be right- or

left-quartz according to which of the two lattices is displaced upward).
The projection of each unit cell now has, in addition to a Si at its center,

four others at the edges, located at two different levels. Of the five

silicons, any three at different levels may be selected as belonging properly

to the unit cell. We choose arbi-

trarily the three* marked Si, $2, and

Ss for the cell indicated by heavy
lines

;
the other two silicons then be-

long to adjacent cells, although bond-

ed to certain oxygens in the indicated

cell.

The final structure is the inter-

penetrating hexagonal lattice system
characteristic of /3-quartz. The unit

cell of the complete structure still

has the form and dimensions shown
in Fig. 160, but it now cpntains three

Si and six O atoms, as indicated in

Fig. 162.

The positions of the atoms

have been a matter of uncertainty.

From the work of Wei and of Mac-
hatschki their most probable loca-

tion is as follows: For both a- and

/3-quartz their projections on the

basal plane are at distances a /4 on

either side of the Si, in the a -direc-

tion. In j8-quartz, which has hexag-
onal symmetry, all the O's are at multiples of Co/6 above the basal plane,

as shown in Fig. 162.

Bragg and Gibbs showed that the structural change at the a -ft

point, to which the crystallographic and physical differences between

0- and a-quartz are due, involves only small displacements of the atoms.

The movement of the Si atoms is about 0.3 A. The corresponding
modification of Fig. 162 to make it represent the unit cell of a-quartz

requires rotating adjacent triangles of Si atoms, as seen in the basal

projection in Fig. 162, in opposite directions by about 8 in the plane
of the paper. In the upper portion of Fig. 162 the oxygens at the left

of the center are raised by c /18; those at the right of the center are

FIG. 162. The unit cell of j8-quartz,
in elevation and plan. Large black
circles are silicons belonging to this cell,

the basal outline of which is the outer

rhombus. Large open circles are silicons

from some of the adjacent cells. Small
black circles are oxygens belonging to

this cell; small open circles are oxygens
from adjacent cells.
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lowered by c /18. The hexagonal symmetry of /3-quartz thus becomes

changed to the trigonal symmetry of a-quartz. The dimensions of

the unit cell also undergo a slight alteration. For a-quartz there have

been two recent determinations. According to Bradley and Jay,
a = 4.90288 A, c = 5.39328 A; Miller and Du Mond* found

a = 4.91267 0.00009 1

and Co = 5.40459 0.00011 i, at 25C. For /3-quartz, Wyckoff found

a = 5.01 A, Co = 5.47 A.

a b
FIG. 163. Projection, on a plane perpendicular to the optic axis, of the lattices of /3-quartas

(a) and a-quartz (6), adapted from Bragg and Gibbs.

The complete lattice for /3-quartz is shown in projection in Fig. 163a,

in which the outline of the unit cell is indicated by dotted lines. Con-

sidering three layers of silicon atoms in planes parallel to the paper, we

represent the atoms in the first, or lowest, layer (farthest from the

observer) by large open circles and those in the third, or uppermost,

layer by large black circles. The intermediate layer is indicated by
shaded circles. The oxygen atoms are in layers between the silicon

atoms. Each oxygen is bonded to the two nearest silicons. Each

Si is bonded to four oxygens, two above and two below it. These latter

are the four oxygen atoms that form the tetrahedral group referred to

above. This interconnecting of all the tetrahedra produces a three-

dimensional framework of great rigidity.

In Fig. 1636 is the corresponding projection for a-quartz, in which

only the Si atoms are represented. The structure is now symmetrical

about the X-axis, but no longer about the F-axis. The JT-axis has

become a polar axis, and the crystal h!as acquired the piezoelectric

constants du, dw, and d^.

If the layers of atoms are considered as continued indefinitely in the
* P. H. MILLER, JE., and J. W. M. Du MOND, Phys. Rev., vol. 57, pp. 198-206,

1940.



736 PIEZOELECTRICITY [542

direction perpendicular to the paper, it becomes evident from Fig. 162

that all the silicons appearing in the projection at the vertices of any one

of the small triangles in Fig. 163 form a helix with axis parallel to the

principal axis of the crystal. The crystal is of the left or right form

according to whether or not the helix advances in the direction of a

right-handed screw. The structure shown in Fig. 162 is that for right-

quartz, since to an observer looking down at the paper the helix appears
to wind in a clockwise direction. This statement corresponds to the

fact Tihat in a left-quartz the rotation of a beam of polarized light parallel

to the principal axis is counterclockwise, as seen when looking through
the analyzer toward the source of light.

It has been pointed out by Machatschki that the helical structure is

revealed in a more fundamentally significant manner by taking as the

axis of the helix a line through the center of a hexagon in Fig. 163. About
this axis there is a continuous helix of tetrahedra, winding in a direction

opposite to the silicon helix.

641. Theory of the Piezoelectric Effect in Quartz. The first attempt
at an atomic theory was that of Lord Kelvin,

266 who in 1893 proposed a

model in which the silicon atoms were clustered in groups of three. His

guess as to the geometrical arrangement and the effect of mechanical

pressure on internal structure came remarkably close to the facts as

revealed by X-rays thirty years later. The probable seat of the piezo-

electric effect was considered by Bragg and Gibbs (1925) and by Gibbs

(1926) on the basis of their X-ray investigations. They express the view

that mechanical pressure in the X- or F-direction distorts the triangles

shown in Fig. 1636, resulting in a polarization parallel to X. Gibbs

attempted an estimate of the magnitude of the effect, assuming quartz

to be an ionic crystal containing effective dipoles. Such an estimate is

necessarily defective, since quartz is no longer considered to be purely

ionic. Nevertheless, Gibbs arrived at the right order of magnitude.
His analysis of the pyroelectric effect in quartz suffers from the failure to

discriminate between secondary and tertiary pyroelectricity.

542. The Structure of Rochelle Salt. The complete crystal structure

has been determined by Beevers and Hughes, by applying Fourier and

Patterson methods to their X-ray observations. The original paper
should be consulted for details and for the diagram showing a projection

of the structure on the (001) plane. The unit cell contains four mole-

cules. The structure does not change perceptibly on passing through
the Curie points, since at these points it is only hydrogen nuclei that

change their positions. Of present interest is the conjecture of Beevers

and Hughes concerning the origin of the anomalies, which they attribute

to repeated zigzag chains containing (or OH) and H2 groups, running
in the X-direction,
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From their discussion one may draw the following conclusions: The

peculiar dielectric properties are attributed to the effect of the impressed
electric field on the chains; in particular, the normal direction of the

bonds can be reversed by a field in the proper direction. The disappear-
ance of the anomalies outside the Curie points is thought to be due to a

breaking of some of the contacts in the chains.

These authors do not mention the spontaneous polarization. Indeed,
their diagram pictures adjacent chains in the unit cell as polarized in

opposite directions. One can extend their reasoning by following

JaftVs suggestion
246 that the unit cell is orthorhombic outside the

Curie points and, if isolated, would remain orthorhombic between

these points. Between the Curie points each unit cell in a domain
tends to become polarized and slightly deformed under the influence of

neighboring cells. In the Seignette-electric region a majority of the

chains in a given domain become polarized the same way, just as in

the Kurchatov and Fowler theories dipoles were supposed to become
rotated into parallelism. The existence of a spontaneous polarization

and its dependence on temperature could thus be accounted for.

If these views are accepted, it is possible still to apply in substance

Mueller's internal-field theory given in Chap. XXVI. A function

corresponding to the Langevin function can still be used, with the dipoles

quantized in the Z-direction.

The space-group of Rochelle salt is V 3
. The unit cell is orthorhombic,

containing four molecules. The unit cell has the following dimen-

sions according to Beevers and Hughes: a = 11.93 A, 6 = 14.30 A,

Co = 6.17 A. These values may be compared with those of Warren
and Krutter, who found a = 11.85 A, & = 14.25 A, c = 6.21 A.

From these data the axial ratio is a:b:c = 0.8343:1:0.4315 according
to Beevers and Hughes and 0.8316:1:0.4358 according to Warren and

Krutter. From Staub's X-ray measurements* we find

a:b:c = 0.8317:1:0.4330

The mean value of the axial ratio, from the three sources just men-

tioned, is

a:b:c = 0.8326:1:0.4334

The value given in GrothB22 is 0.8317:1:0.4296.

Further X-ray Investigations on Rochelle Salt. Kirkpatrick and Rossf

conclude that Rochelle-salt crystals have a very uniform structure, since

the rocking curve widths are as narrow as those of high-grade calcite.

Staub and N6met have studied the effects of an electric field on X-ray

* H. STAUB, Helv. Phys. Ada, vol. 7, pp. 3-45, 1934.

t P. KIBKPATRICK and P. A. Ross, Phys. Rev., vol. 43, pp. 59&-600, 1933.
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intensities by the Bragg method, and Staub also measured intensities at

different temperatures.* Staub found that, between the Curie points,

the reflections from the (111) plane (parallel to any one of the faces

marked o in Fig. 2) were increased by about 10 per cent when a field

of the order of 500 volts/cm was applied. In stronger fields the effect

was absent, owing, as Staub thought, to the destruction of the lattice

by the field. The change in intensity was not altered when the crystal

was vibrated in resonance (see 261).

Ne*met's observations were made with reflections from faces normal

to the X-, F-, and Z-axes. In each case fields up to 700 ^volts/cm parallel

to all three axes were applied. All observations were at room tempera-
ture. In all cases the curves relating intensity to field strength showed

saturation and, at the strongest fields, a tendency for the intensity to

decrease with increasing field, in agreement with Staub. The effect

was most pronounced at the (100) faces, where the maximum increase

in intensity amounted to as much as 40 per cent. Endwise pressure

on an X-cut 45 plate did not affect the intensity of the reflections.

The great sensitiveness of Rochelle salt to an electric field stands in sharp
contrast to quartz, which N&net found to give negative results, and

ice, which showed an increase in intensity of 2 or 3 per cent in a field of

1,300 volts/cm.

Staub investigated the change in intensity of reflection from the

(111) plane over a wide range of temperatures in the absence of an

external field, f Between the Curie points the intensity increased by
about 10 per cent. Staub regarded this effect as evidence for the exist-

ence of a large internal field, which stabilized the lattice against the

effect of thermal agitation. For his theoretical treatment, based on

Debye's theory, the original papers should be consulted.

543. A complete discussion of the dielectric and piezoelectric properties of Rochelle

salt in terms of the Beevers-Hughes model would require accounting for all three of

the piezoelectric constants du,
d2C,

and d3 e. In this connection it is of interest to

consider a model of the arrangement of dipoles in the unit cell as conceived by Staub,
479

at a time when Rochelle salt was thought to contain free dipoles. t This model is

shown in Fig. 164; it is applicable to all rhombic crystals of the digonal holoaxial

class and has the simplest distribution of charges compatible with this type of sym-
metry. While it offers a simple qualitative interpretation of the piezoelectric and

dielectric effects in Rochelle salt, it is only a model, and as such must be taken cum

* H. STAUB, Physik. Z., vol. 34, pp. 292-296, 1933, vol. 35, pp. 720-725, 1934;

Helv. Phys. Ada, vol. 7, pp. 3-45, 480-482, 1934. A. N^MBT, Helv. Phys. Ada, vol. 8,

pp. 97-116, 117-151, 1935.

t See also S. Miyake, Proc. Phys.-Math. Soc. Japan, vol. 23, pp. 378-395, 1941.

J For earlier treatment of the "electric axes" of Rochelle salt see Riecke, in

Graetz, vol. 1, also W. G. Hankel and H. Lindenberg, Z. Krist., vol. 27, pp. 515-517,

1897.
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grano salis (tartari natronati). Four dipoles in the directions of the diagonals are

assumed, the positive direction of each being indicated by an arrow. Upon applica-
tion of mechanical stress or of an electric field the dipoles become rotated.

Outside the Curie points the effects of the dipoles, subject to thermal agitation,
neutralize one another so that there is no permanent resultant polarization of the

cell. Compression along any one of the axes produces no polarization at any tem-

perature. But a compression applied diagonally in a plane perpendicular to any axis

causes a polarization parallel to that axis. For example, let the compression be such

as to bring the edges Efl and BC closer together. This causes a shearing strain, and
the deformation is the same as if the face EFGH were slid parallel to itself in the

direction EF. The originally rectangular faces ABFE and OCGH become parallelo-

grams, and the dipoles become rotated in such a way as to polarize the cell in the

Fia. 164. Staub's model of the unit cell of Rochelle salt.

drection OA, the face ABFE having a positive polarization charge. This describes

the direct piezoelectric effect for which the equation is Px = d^Y, (du is positive,

and the stress Yt is negative when the strain, as assumed above, is positive). Accord-

ing to the converse effect, it is evident from the figure that a field applied in the direction

from to A will rotate the dipoles so as to cause a positive shearing strain in the

yZ-plane. The freer the dipoles are to rotate, the greater will be the dielectric

constant.

In reality, the relation between strain and positions of the dipoles cannot be as

simple as this. For example, the symmetry in Fig. 164 is such that tho three coeffici-

ents dl4,
d2 6, and d3fl all ought to have the same sign. Pockels found that di 4 and rf3 6 are

both positive but that d^ is negative. This can be "
explained

"
only by assuming the

configuration of atoms in the cell, and the forces between them, to be such that a

positive shearing strain in the ZX-plane is associated with a negative polarization

along the F-axis, or else by attributing the effect to interactions between adjacent cells.

In order to reconcile the model with the properties of Rochelle salt between the

Curie points one may postulate that the configurations of the cells and their mutual

interactions are such that there is a tendency for the dipoles to become aligned more or

less closely along the X-axis instead of along the diagonals. Then, when the tempera-

ture is sufficiently low, spontaneous polarization sets in, accompanied by a spontaneous

strain. This takes the form of a shear yg and is the ground for the view advanced in

481 that in the region of spontaneous polarization Rochelle salt should properly be

classified as monoclinic rather than orthorhombic. The spontaneous strain, however,

is so small that the structure as revealed by X-rays appears orthorhombic at all

temperatures.

The same model can be used to illustrate the longitudinal effect when the field is
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oblique to all three axes (140). For example, if a compression is applied along OF,
the strain will rotate the dipoles so as to produce a polarization in the FO-direction.

544. The Structure of Primary Potassium Phosphate, KH2PO 4. An
X-ray analysis of this crystal was made in 1930 by West,* who found

phosphate groups consisting of a phosphorus atom tetrahedrally sur-

rounded by four oxygens. Each group is surrounded tetrahedrally by
four other groups. Neighboring P0 4 groups are connected by hydrogen
bonds.

Recently, this analysis has been further treated by Slater, by the

use of statistical methods. He considers the possible arrangements of

the H atoms, finding that each phosphate group is likely to have two

of its neighboring hydrogens close to it, forming (H 2P04)~ dipoles. At
low temperatures, in the state of* lowest energy the dipoles tend to

become oriented one way or the other along the c- (Z-) axis, thus account-

ing for the spontaneous polarization. Above the Curie point (c/. 445),

the dipoles assume random orientations. Slater derives an expression

for the dielectric susceptibility at small fields, indicating a Curie-Weiss

law.

Slater's theory predicts that the transition at the Curie point is a

phase change of the first kind, with latent heat and a discontinuous jump
from the polarized state at low temperatures to the unpolarized state at

higher temperatures. On the other hand, the experiments recorded in

497 indicate that the transition, while confined to a narrow temperature

range, is not abrupt. Slater considers that the discrepancy between

theory and experiment is due to the fact that the theory like the

fundamental theory of Rochelle salt treated in Chaps. XXIII and

XXJV applies only to the individual domain. As the temperature falls

below the Curie point, the crystal breaks up into many domains, with

opposing polarizations and opposing spontaneous shearing stresses in

adjacent domains. The result is the appearance of stresses of varying

magnitude at the boundaries between domains, which tend to lower the

transition point by varying amounts, thus giving a continuous transition

process instead of an abrupt change. In explaining that the transition

is trying to be one of the first kind, Slater points to the fact that the

analogous transitions in potassium arsenate and in ammonium phosphate
are much sharper than in potassium phosphate.

From his observations on the specific heats of KH2As0 4 ,
KH2PO 4,

and KD 2PO 4 ,
Bantle22 finds changes in entropy at the upper Curie

points of the order of magnitude predicted by Slater's theory. Accept-

ing the H O combination as the dipole responsible for the Seignette-

*
J. WEST, Z. Krist., vol. 74, pp. 300-332, 1930. See also M. Avrami, Phys. Rev.,

vol. 54, pp. 300-303, 1938.
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electric properties and assuming two dipoles per molecule, Bantle

calculates for the molecular electric moment /* the value 0.74(10~
18

).

645. Atomic Theories of Piezoelectricity. The theory of the piezo-

electric effect is a part of the theory of the solid state. This subject is

much too large for treatment here. We can only point out some of the

historical milestones in the journey, which is still far from complete.

Prior to the discovery of piezoelectricity, the molecular theory of

pyroelectricity had been the object of much speculation (see references

at the end of Chap. XXIX). One contribution was made by J. and

P. Curie themselves,
*
following Lord Kelvin's suggestion of permanently

polarized molecules.

Lord Kelvin's theory of piezoelectricity (1893) has already been

referred to in 541. He made a rough quantitative estimate of the

piezoelectric effect, based on the assumption that the potential differences

between molecules are of the same order as the macroscopic contact

potentials between different metals. He thus calculated a value of d\\

for quartz of the right order of magnitude.
At about the same time Riecke (in 1892) published a somewhat elabo-

rate molecular theory of piezoelectricity for crystals of all symmetries

(see Graetzf). He assumed the piezoelectric effect to be due to a change
in electric Coulomb interaction between molecules, brought about by a

mechanical deformation of the crystal lattice. In the light of the later

investigations described below, this theory must now be regarded as

obsolete. It was an ingenious theory, involving five types of "pole

systems" to account for the piezoelectric constants of all classes of

crystals. His pole system for crystals of symmetry V led to a model

like that of Staub shown in Fig. 164.

An advance more in step with the progress of modern physics was

made by Schrodingcr in 1912. He extended Debye's kinetic theory of

dielectrics to anisotropic solids. While his paper has to do mainly with

melting points, it discusses piezo- and pyroelectricity as well, with

particular reference to quartz and tourmaline, and at some points it has a

bearing on the theory of Seignette-electrics. His estimate of dn for

quartz is of the right order of magnitude. By the use of an approximate

Langevin function he reaches the right order of magnitude for the

pyroelectric constant of tourmaline. The chief weakness in his theory
lies in his assumption of freely rotating dipoles in all crystals.

The theory of piezo- and pyroelectricity was also discussed in 1921

by Larmor. The chief importance of this paper for us lies in the emphasis
on the correct treatment of the surface layer for the piezo- and pyroelectric

*
J. and I* CTJBIE, Compt. rend., vol. 92, p. 350, 1881; Jour. phys. (2), vol. 1, p.

245, 1882.

f Ref. B20, vol. 1, 1918.
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effects. Born (see below) deals only with the infinite lattice, ignoring

the conditions at the surface. Larmor's theory indicates that it is not

necessary to postulate a spontaneous polarization in order to account

for the pyroelectric effect. He points out that, if the positive and

negative ionic charges in the crystal are not uniformly spaced, a change
in temperature will alter their relative spacing. Although this alteration

is very minute, it is sufficient to account for the observed surface charges,

without the existence of a permanent internal polarization. The charge

observed on a freshly fractured surface depends on whether more positive

or more negative ions are exposed.
*

Larmor goes so far as to doubt the existence of a spontaneous polar-

ization in any crystal. Without accepting this thesis, one may at least

grant that if there are crystals possessing a spontaneous polarization, as

seems well established, for example, in the case of Rochelle salt, still

the amount of charge observed on a freshly fractured surface may be

modified to a considerable extent by the precise position of the fractured

surface with respect to the crystal lattice. This possibility has been

pointed out in 519 in the case of tourmaline.

The same consideration also suggests an explanation of the author's

failure to detect a charge on the freshly fractured surfaces of a bar of

Rochelle salt, the length of which was in the Jf-direction.

646. The Piezoelectric Effect According to Lattice Dynamics. Modern
atomic dynamics had its beginning at the hands of Madclung in 1909.

In 1912 the first work of M. Born appeared, in collaboration with Th. v.

Kdrma'n, on vibrations in space-lattices. Bern's first treatment of the

piezoelectric and pyroelectric effects was in his "Dynamik der Kristall-

gitter" in 1915. Eight years later came the "Atomtheorie des festen

Zustandes," in which the treatment was extended and simplified. The

chapter on the dynamic lattice theory of crystals by Born and Goeppert-

Mayer in the second edition of the "Handbuch der Physik"
B19 is prac-

tically a new edition of the "Atomtheorie."

Born's theory assumes pure central forces between the atom centers.

Considering the advances that have been made in atomic dynamics in

more recent years, it is remarkable that his piezoelectric computations
could lead even to an approach to the right order of magnitude.

Only for very simple lattices did Born find it possible to make a

quantitative estimate of the relation between strain and electric field.

He applied his theory to crystals of the cubic system having a diagonal

lattice, in which all the particles lie on diagonals of the unit cube. An
example of this structure is zinc blende, ZnS, symmetry Td (see 170).

Crystals of this symmetry have only one independent* piezoelectric

constant, en = e^ = e^. For such a structure Born found the following

relation between eu, the dielectric constant k at low frequency, fc at
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optical frequencies (kQ
= n2

), and the elastic constants 012 and c44 :

K n/o / ^ \ 044

For ZnS, Born thus calculated en ^ 23 (10
4
) esu, about five times

greater than the observed value of 4.2(10
4
) recorded in 170. At

Bern's suggestion, Heckmann in 1925 attempted to improve the theory

by considering the polarizability of the ions, but the numerical value of

CH for ZnS was not improved thereby. Further advances in atomic

dynamics must be awaited before agreement can be expected between
the theoretical and experimental values of the piezoelectric constant.

In general the piezoelectric stress constant ehk may be considered

as of more fundamental* significance than the strain constant dhk- Not

only is it the constant given by the atomic theory, but it relates mechan-
ical to electric stress in the equation Xk = ehkEh and mechanical to

electric strain in the equation PH = ChkXk* Moreover, as has been shown
in 474, in Rochelle salt e\\ remains finite at all temperatures, instead of

becoming infinite at the Curie points, as is the case with the piezoelectric

strain constant.
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APPENDIX

FERROMAGNETISM

647. In the discussion of the properties of Rochelle salt and of the other Seignette
electrics in Chaps. XX to XXVII, there is frequent reference to the analogies that

exist between these dielectric phenomena and the magnetic properties of such sub-

stances as iron. As a background for this discussion the pertinent features of the

theory of paramagnetism and ferromagnetism are here summarized.* Emphasis
will be laid especially on the dependence of magnetic properties upon temperature,
with particular reference to the Curie point, and upon the nature of those minute

regions of spontaneous magnetization known as domains. Some of the effects of

mechanical strain upon magnetism will be considered, as well as magnetic hysteresis.

For more complete details of ferromagnetic theory the references cited in the footnote

may be consulted.

Following the early theory of Weber, and Ewing's successful attempt at a quali-

tative explanation of residual magnetism and hysteresis by means of his model of

small elementary magnets, the basis for the mathematical formulation was laid by
H. A. Lorentz's equations for the internal field (113), which are applicable equally
to dielectric and magnetic substances. In the meantime P. Curie had experimentally
established the law relating the susceptibility of paramagnetics to temperature (now
known as Curie's law) and had made his famous study of the temperature of transition

from the ferromagnetic to the paramagnetic state (the Curie point), which for iron is

around 770C.
The Curie law in its original form expressed the relation between mass susceptibil-

ity km and absolute temperature T by the equation km =* C/T, C being a constant, f

With many substances it has been found that the relation is given more precisely by
km = C/(T 0), where for paramagnetic materials the constant has a small positive
or negative value. A positive 6 implies the possibility of a ferromagnetic state; in

the ferromagnetic metals has relatively large positive values.

548. Paramagnetism. The modern theory of paramagnetism is due chiefly to

Langevin. By his method the degree of magnetization of a paramagnetic substance

is expressed in terms of the ratio //*, where M is the magnetic moment of the

elementary dipole and p. the average component of /* in the direction of the applied
field. | From classical statistical mechanics Langevin found an expression for /I//*

* For the theory of ferromagnetism see, for example, F. Bitter, "Introduction to

Ferromagnetism," New York, 1937; R. M. Bozorth, Bell System Tech. Jour., vol. 15,

pp. 63-91, 1936; F. Bloch, in "Handbuch der Radiologie," 2d ed., vol. 6, part 2,

Leipzig, 1934; E. C. Stoner, "Magnetism and Matter," London, 1934, or "Magne-
tism," London, 1936; R. Becker, "Theorie der Elektrizitat," vol. 2, Leipzig, 1933.

f Custom sanctions the use of the symbol k for volume susceptibility, defined as

(magnetic moment per unit volume) /(field strength). The Curie law is usually

expressed in terms of mass susceptibility, designated as x k/p. Since in this book
the symbol x is employed for the reciprocal of the dielectric susceptibility, we shall

designate the magnetic mass susceptibility by km .

% The symbol n must not be confused with magnetic permeability, a quantity
for which no symbol will be needed in this discussion.

745
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as a function of the quantity pF/KT. The numerator of this quantity is ameasure

of the directive effect of the molecular field F acting on the dipole, while the denom-
inator (K 1.37 X 10-1 erg deg~

l Boltzmann constant; T = absolute tempera-

ture) measures the tendency of the dipoles to be kept in a state of disorder by thermal

agitation. With paramagnetic substances under all ordinary conditions, F is prac-

tically identical with the impressed field H.

Writing a for pF/KT, we have Langevin 's equation for paramagnetism, in which

the symbol L is used to denote the Langevin function :

L L(a) - coth a - i
(556)

*

where /o Af|* is the saturation value of the intensity of magnetization 7 Nfi

(magnetic moment per unit volume) ;
N is the number of dipoles per cubic centimeter.

Equation (556) is valid for both para- and ferromagnetic substances and also for

dielectrics. It is represented graphically in Fig. 165.

If a 1, as is usually the case with paramagnetic substances, (556) may be

written in the approximate form

JL . B $a _ ^a3
(556o)

jfo /*

The small magnitude of a means that in paramagnetic phenomena, at least at

ordinary fields and temperatures, the effect of thermal agitation is large in comparison
with the magnetic directive force. Under extremely large fields Eq. (556) and Fig.

165 indicate an approach to saturation. This effect has been detected in gadolinium

sulphate.

It is important to point out that the form of the Langevin function in Eqs. (556)

and (556a) is based on the assumption that in the absence of an external field all

orientations of dipoles are equally probable. When the spatial quantization of

dipolc directions is considered, this assumption is no longer valid and the function

has to be modified. We shall revert to this in 552. So far as the general outline of

ferromagnetic theory is concerned, it suffices to consider the Langevin function in its

original form.

649. Ferromagnetism. Langevin 's paramagnetic theory was applied by Debye
in his treatment of electric dipoles. We come now to the contributions of Weiss,
whose theory of ferromagnetism, combined with Debye's dipole theory, has become
the basis of the theory of Rochelle salt.

Langevin's original theory has to do only with feebly magnetizable substances, in

which it is assumed that the magnetic dipoles do not interact, but, like the molecules

of a gas, are free to rotate in the field H, while subject also to thermal agitation.

The theory requires that the magnetic susceptibility increase indefinitely with decreas-

ing temperature a requirement that is met experimentally, at least until very low

temperatures are reached. The chief problems that confronted Weiss were to account

for the high magnetizability of ferromagnetic materials and for the existence of the

high Curie temperature, at which the material passes from the ferromagnetic to the

paramagnetic state. He made the radical assumption that the effective magnetic field

strength F acting upon the elementary magnetic particle is given by the equation

F - H + yl (557)

in which % the Weiss molecular field constant, instead of being of the order of 4ir/3,

as in dielectrics (113) or in diamagnetic substances, has a value of several thousand,
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In ferromagnetic theory 7 is sometimes considered as having different values in

different directions in the crystal. It is shown in 485 that the same is true of Rochelle

salt. For the present purpose we may disregard the possible anisotropy of 7.

The value of F under ordinary conditions is determined chiefly by the second term,
which is proportional to the intensity of magnetization 7 already present.* The
coefficient 7 has the same value in both the para- and ferromagnetic ranges.

The requirement that 7 must be large follows from the high polarization produced
in ferromagnetic materials by applied fields of ordinary magnitude. It is evident

that such fields must be able to align the magnetic dipoles to a very considerable

degree. This is possible only if, in the Langevin parameter a, the quantity pF is

not too small in comparison with KT. Taking iron as an example, we may assign
to /* the order of magnitude 2 (10~20

). Since at room temperature KT - 4 (10"u)

ergs, it follows that F must be of the order of magnitude of 2 (10
6
) oersteds. On

substituting this value in Eq. (557), together with the representative value 2,000
for 7 (H being relatively small), we see that 7 must be at least of the order of 1,000.

This abnormally large value of 7 remained without theoretical justification until

in 1928 Heisenberg explained it as due to exchange forces analogous to those which

occur in the theory of molecular binding. The ultimate magnetic particle is assumed

to be the spinning electron, which has as its magnetic moment one Bohr magneton, f

According to quantum mechanics the spins in adjacent atoms must be either parallel

or antiparallel. In ferromagnetic materials, the relative distances and grouping of

electrons in the atom and the distances between atoms are such that the electron spins

and charges can influence one another so as to bring about the parallel orientation.

The spinning electrons responsible for electromagnetism are always those in incom-

plete shells.

Heisenberg finds that these exchange forces ("forces of interaction") provide a

molecular field F of the right magnitude to overcome thermal agitation and thus to

account for the phenomena of fcrromagnetism. F may thus be thought of as equiv-

alent to a magnetic field due to parallel spins, the forces that make the spins parallel

being more nearly of electrostatic than of magnetic origin. In paramagnetic materials

the electrons, of course, also have spins, but the exchange forces are negligible, and

the polarization is due entirely to the alignment of magnetic dipoles by the impressed
field. The pure magnetic force between dipoles is very feeble

;
on the other hand, as is

shown in Chap. XXVI, in the Seignette analogy the electric dipole forces suffice to

account completely for the strong internal field.

660. Following the procedure of Weiss, we substitute for I in Eq. (557) its equiva-

lent frN, where N is the number of elementary magnets (dipoles) per unit volume.

If then both sides of (557) are divided by ypN and F is replaced by KTa/n, there

results the equation

A KT H ^- "*
\r a a

--
AT" (558)*

Analytically, by the use of Eq. (557) and the expression 7 jiN, a may be elimi-

nated between Eqs. (556) and (558), whence /A* or 7 may be expressed directly in

terms of H, p, T, and 7. A procedure analogous to this in the Seignette-electric case

is mentioned in 484. It is simpler and more illuminating to use the customary

graphical method of Fig. 165. In this figure the curve represents the Langevin

* We shall also refer to 7 as the magnetic polarization or simply the polarization.

f A discussion of the Heisenberg theory may be found in the references given hi

547 and also in ref. B49.
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function, while the straight lines Wp and Wf from Eq. (558) are drawn for tempera-

tures corresponding to the paramagnetic and ferromagnetic cases, respectively.

For brevity, we shall call the lines determined by Eq. (558) the Weiss lines. Line

Wf is drawn through the origin in order to represent the state of affairs when H = 0.

Equation (556a) shows that at the origin, where a vFJKT vanishes, the slope

of the curve is 1/3.

The value of A/M, and therefore of the intensity of magnetization 7, under any

given conditions, is determined by the intersection of the straight line with the curve.

1.0

h"

Fia. 165. The Langevin function. The curve represents Eq. (556). Lines Wp and

Wf are from Eq. (558) ; their slopes depend on T
t
while the ordinute intercepts are propor-

tianal to If.

The higher the temperature, the greater the slope KT/yNp* of the straight line, from

Eq. (558).

For slopes greater than 1/3 the substance is paramagnetic (lineWp) The intercept

Oh H/yNn represents the applied field, and the value of is that corresponding to

the point P. If // were equal to zero, the line would touch the curve only at the

origin, at which A 0, showing that paramagnetic materials are unpolarized in the

absence of an external polarizing field.

As the temperature is decreased' from a high value, for which the substance is

paramagnetic, the slope of the Weiss lines diminishes until, from a certain critical

temperature on, the lines for H begin to intersect the Langevin curve at points

beyond the origin. Below this critical temperature the material has ferromagnetic

properties and is characterized by a spontaneous magnetization^ A no longer vanishing

when there is no applied field. For example, the spontaneous magnetization for the

temperature corresponding to the line W/ is determined by the point Pf
.

The critical temperature, called the Curie temperature and designated by 0, is



551] APPENDIX 749

found by equating the coefficient of a in Eq. (558) to 1/3, the slope of the Langevin
curve at the origin. We thus find

e = lp (559)

For iron, the value of 6 is around 770C, while 7 3,500.

According to Eq. (559) the high values of the Curie points for ferromagnetic
substances are due to the large values of 7. For paramagnetic materials, for which 7
is of the order of 47T/3, the Curie point, if it exists at all, must be sought extremely
close to the absolute zero of temperature.

That such materials should become ferromagnetic at very low temperatures wag

predicted by Debye. Recently the transition has been found by Kxirti, Lain6, and
Simon* in the case of iron alum. This substance shows hysteresis and the character-

istic anomaly in the specific heat (556) at temperatures below 0.034K, which is

regarded as the Curie point.

551. The Curie-Weiss Law. We consider next the characteristic equation for

the paramagnetic region, which also plays a part in the theory of Rochelle salt. At

temperatures sufficiently above the Curie point the second term on the right side of

(556a) may, for all ordinarily attainable fields, be ignored, and from (556a), (558), and

(559) there results

A, 3K(T -
0)

and for the mass susceptibility we have the Curie-Weiss law

k -Km "" _
It 3K(T -

0) y(T -
0)

The linear relation expressed in Eq. (561) is illustrated by the straight line in Fig. 166.

This law is commonly written in the form mentioned in 547, km = C/(T 0).

The value of 6 that satisfies this equation for observed values of km with ferromagnetic
materials above the Curie point often differs by several degrees from the actual

transition point at which ferromagnetism disappears. Equation (560) shows that

at these high temperatures the polarization varies linearly with //. On the other

hand, at temperatures only slightly above the Curie point the dependence of polar-

ization upon field strength is not linear. The equation corresponding to (561) for

temperatures below the Curie point is (566).

Most significant is the fact that Eq. (561) predicts infinite susceptibility at the"

Curie point, where T = 0. Sharp and very high maxima have indeed been observed

at this point. Above the Curie point thermal agitation prevails over the exchange

forces, and the quantity a pF/KT in Eqs. (556) and (556a) is relatively small.

This state of disorder becomes one of comparative order below the Curie point, where

the internal field F gains the upper hand. Close to the critical temperature is a

narrow region of instability, where a very small applied field strength can effect a

large amount of rotation of dipoles. Herein lies the physical explanation of the

rapid increase in susceptibility at the Curie point. At this critical temperature the

word "susceptibility" in the ordinary sense loses its meaning. There is no abrupt

change in observed magnetic phenomena at any temperature. Indeed, the Curie

"point" is usually determined by extrapolation from observations of susceptibility

or of the magnetocaloric effect at temperatures considerably removed from this

* N. KtiRTi, P. LAIN, and F. SIMON, Compt. rend, vol. 204, pp. 675-677, 754-756,

1937.
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critical temperature and is therefore somewhat dependent on the temperature at

which observations are made.

In general, it may be said that the outstanding property of ferromagnetic materials

is a spontaneous polarization which disappears above a certain critical temperature.

From this premise the other features follow in logical sequence. Herein lies also the

essence of the analogy with Rochelle salt.

552. Generalization of the Langevin Function. The term "Langevin function" has

come to be applied generically to any function relating the quantity a in Eq. (556)

with A//*- A number of variations of the original function have been derived to meet

certain conditions of directional quantization. In fact, Eq. (556) is that member
of the family for which the quantum number is infinity, the orientation of dipoles

being unrestricted.

In its most general form the function may be written

V 1 (./)
r *-* n

Ln(a)
- - ~ - ^-~-

(
- -n), -n + 1, -n + 2, n)

where a t*F/KT and 7 =
-AT/*; n, the quantum number, may be any integral

multiple of . For n the expression above reduces to Eq. (556), while, for

n = j f
it corresponds to parallel or antiparallel orientation in a single direction.

Whatever the form of a polarization function may be, when it is developed in a

power series the first two terms can always be written pa qa
3
,
where p and q are

constants. It is easily proved that the coefficient p }
which is the initial slope of the

curve, is related to n by the equation p f + l/3n. For example, when n =

(484), p -
1, and q - i

For a 1 we may therefore write the following approximate equation, of

which Eq. (556a), the original Langevin function, is a special case:

* . _ z,n (a) pa - ga (562)
IQ M

The coefficients p and q become and ^, respectively, in Eq. (556a). We shall

consider only the general expression for the Curie-Weiss law with small fields, at

temperatures in the neighborhood of the Curie point. The discussion has a bearing
on Signette-electric phenomena as well as on magnetism.

o. Above the Curie point, over the range for which Eq. (562) is valid, it is easily

proved that

/KRQ\
(563)

This equation is the generalized form of Eq. (560). It shows that the association

of Weiss's Eq. (557) with any form of the Langevin function [i.e., with any values of

p and q in the cubic equation (562) relating the intensity of magnetization / with the

molecular field F] leads to a Curie-Weiss law above the Curie point. From Eq. (563)

the reciprocal susceptibility is found to be

\ m <i

(564)
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The last part follows from Eq. (565). This relation, as well as Eq. (561), is illus-

trated by the straight line in Fig. 166.

b. At the Curie point, the generalized form of Eq. (559) is

\r

(565)

For any given Langevin function it follows that the value assigned to M (or to 7)

must depend on p.

c. Below the Curie point there is a Curie-Weiss law, valid for small values of //

(this condition is imposed by the fact that below the Curie point the phenomenon of

saturation at large // makes the susceptibility a function of H) and for temperatures
not far below the Curie point. We seek an expression for the initial susceptibility km .

This is dl/dll for // -> and is found by taking the derivative of Eq. (562). Then
from Eqs. (557), (558), and (565), one finds

km

~ T
- 20

(566)

J_

In contrast to the relation for T > 0, this equation is not linear in T but is repre-
sented by the curve in Fig. 166. Like Eq. (561) it is independent of the special form
of the Langevin function. It must be em-

phasized that Eq. (566) is valid only for

temperatures slightly below 6 and further-

more that it is characteristic of the single

domain and fails to agree accurately with

observed values.

Of chief interest from the point of view

of the Seignette analogy is the similarity

of Fig. 166 to Fig. 120, especially as regards
the relative slopes of the lines above and just

below the Curie point. From Eq. (566) the

initial slope at T = B for the curve at the left

in Fig. 166 is 27/0, numerically just twice

^x
I 2

r
a

FIG. 166. Reciprocal initial magnetic
susceptibility near the Curie point.

as great as for T > 0, and independent of the special form of the Langevin function.

The manner in which the domain theory explains the high observed magnetic

susceptibilities of ferromagnetic materials will be considered below.

563. Domains. Neither the Weiss theory as outlined above nor Heisenberg's

theory predicts the existence of discrete "domains." It was to account for the great

magnetizability of iron and for the fact that unmagnetized iron shows no external

polarity that Weiss made the additional assumption that iron is composed of small

regions, each magnetized to a saturation value dependent only upon the temperature,
the polarities of the various regions having random orientations in the absence of a

magnetizing field. Today there is convincing evidence of their reality. Their

origin has been the object of much speculation, especially in relation to the problem of

secondary crystal structure and the configuration for minimum energy.

So far as iron is concerned, the evidence at present indicates that each of the

minute crystals of which ordinary iron is composed consists of still smaller domains,
each having a volume of the order of 10~8 cm3 and containing 10 14 to 10 lfi atoms. *

The three cubic axes of iron are "directions of easy magnetization," and in each

domain the spins associated with the atoms tend to become aligned parallel to one
* R. M. BOZORTH, Bell System Tech. Jour., vol. 19, pp. 1-39, 1940.
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of these directions, in accordance with Heisenberg's theory. The result is the spon-

taneous polarization. In polycrystalline material the separate crystals themselves

have random orientation.

The spontaneous polarization within each domain, which is zero at the Curie

temperature, increases at first rapidly with decreasing temperature and gradually

approaches a saturation value at 0K, when all the atoms are similarly oriented.
* The Langevin function [Eq. (556)1 applies only to the individual domain. For

iron at room temperature the polarization of the domain is not far from complete

saturation. This state is represented by point P' in Fig. 165. If now a magnetizing

field H is applied, represented by Oh" in Fig. 165, the polarization is increased from

P' to P". This increment is small, owing to the high polarization already present

and also to the fact that on the scale to which such diagrams age drawn the distance

Oh", even for large applied fields, is very small. From these considerations it follows

that, except near the Curie point, the susceptibility of the individual domain is very

low. The observed high permeability of ferromagnetic substances is therefore not a

property of the domain but is due, as will be explained in 555, to alterations in the

directions of polarization in the domains.

As is seen in 521, the domain structure of Rochelle salt can be superficially

explored by dusting powdered sulphur and red lead over a freshly heated crystal.

There is a certain degree of analogy between this and the recent technique, employed

by Bitter and others, in which a finely divided ferromagnetic powder in the colloidal

state is allowed to settle on the surface of a ferromagnetic substance. This method

brings to light great complexities in the crystalline structure, the finest details of

which have a magnitude in agreement with that which on other grounds is attributed

to the magnetic domains. A typical magnetic domain appears to be of the form of

either a rod or a flat plate. The fact that a change in temperature (the pyroelectric

effect) must be used in the experiments with Rochelle salt, while it is unnecessary

in the magnetic case, is of course due to electric conduction in the salt crystal, which,

when the temperature is left unchanged, soon causes compensating charges which mask

those due' to the spontaneous polarization. Nothing like this exists in magnetism.

When we pass from consideration of the single domain to that of aggregates of

many domains, as is necessary in order to explain the form of the magnetization and

hysteresis curves, we can no longer make use of the Langevin function alone. Its

importance in ferromagnetism, as also in the theory of Rochelle salt, lies chiefly in

helping to interpret the nature of the Curie point, which is definitely a property of

the domain.

564. Magnetism and Strain. Just as in piezoelectric crystals, and especially in

Rochelle salt, the dielectric properties are affected by the state of strain, so in ferro-

magnetic materials the magnetism is closely related to strain. The magnetostrictive

effect, discovered by Joule, is now believed to consist in a deformation of the domain

by an applied magnetic field. The converse effect, a change in magnetic properties

when the material is stressed, has become of great importance in understanding

the nature of magnetization. At first sight these phenomena might appear to be the

counterparts of the converse and direct piezoelectric effects, respectively. The

effects are somewhat analogous, it is true; but the relations between strain and

polarization, both in magnitude and direction, are very much more complicated in the

case of magnetism.
The analogue of piezoelectricity is the piezomagnetism discussed in 557. This

linear effect is theoretically absent in crystals of the class to which iron belongs.

656. The Hysteresis Loop. We now consider briefly the form of the curves of

magnetization and of hysteresis. It was the observation of strikingly similar curves
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for the electric polarization of Rochelle salt that first led to the idea of the "ferro-

magnetic analogy." The simplest possible case would be that of an ideal crystal

consisting of a single domain with a single axis of easy magnetization, the susceptibility

along the other axes being very small. In conformity with the Weiss theory, such a

crystal has a permanent spontaneous intensity of magnetization /i, the magnitude
of which is a function of temperature, but independent of the impressed H, while the

direction may be either + or . Starting with /i negative, there is a critical HI at

which the magnetic polarity is abruptly reversed, as indicated in Fig. 167. Under

an alternating impressed field, a rectangular hysteresis loop is produced,. Loops

approximating to this form have been observed with certain pyrrhotite crystals and

also with permalloy. Various degrees of magnetic anisotropy have been found in a

number of substances.

H

FIG. 168. Typical magnetization curve and
hysteresis loop.

FIG. 167. The three stages of mag-
netization in an ideal ferromagnetic

crystal.

In most ferromagnetic materials there are many domains, whose polarities neutral-

ize one another when the specimen is in the demagnetized state.

As is well known, a typical virgin curve has three stages, shown in Fig. 168. The

form of the portion OA, corresponding to the "initial permeability," is dependent

on the magnctoatrictive effect between adjacent domains, which, when a small

external field is applied, leads to the growth of those domains which happen to be

magnetized the right way at the expense of their neighbors. This process is called

"translational magnetization." Along the portion AB, the directions of spontaneous

magnetization of groups of domains are being changed abruptly from one stable

position to another, as is made evident by the Barkhausen effect. At the approach to

saturation we have the third stage #C, in which, under the influence of the large H,
the direction of polarization of each domain is turned away from the direction of easy

magnetization and becomes more and more nearly parallel to the direction of H.

By way of analogy it may be added that with Rochelle salt the direction of spon-

taneous magnetization is actually reversed by strong fields, although in the case of

Rochelle salt there is evidence that this reversal is only temporary. In contrast with

iron, Rochelle salt has only one axis of easy polarization, and its domains are enor-

mously large in comparison with those of ordinary ferromagnetic substances.

The form of the hysteresis loop obtained with an alternating magnetic field, like
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that of the virgin curve, varies greatly with composition, heat treatment, external and

internal stress, and other factors. In the case of single crystals the direction of the

field relative to the crystal axes also plays a part. Along the steep portions of the

curve the Barkhausen discontinuities find a simple explanation in terms of the domain

theory. It is also in agreement with theory that changes in magnetization with

temperature proceed smoothly. A useful index to the magnetic properties is the

coercive force, represented by OD or OD' in Fig. 168, which is thought to depend on

inhomogeneous strains. Permalloy with composition FeNia, for example, has a

coercive force of the order of only 0.05 oersted, while for its permeability, owing to the

absence of internal strains, values of over 1,000,000 have been observed. Although
the effects of mechanical strain on the magnetic state are very complicated, involving

considerations not present in dielectric phenomena, still they offer a striking cor-

respondence between ferromagnetic and Seignette-electric substances.

656. There are two closely related thermal effects which play an important part

in ferromagnetic theory and to which Rochelle salt offers at least slight analogies.

The first of these is the anomaly in the specific heat of iron, which is related by theory

to the variation of spontaneous polarization with temperature and which Weiss and

his associates found to rise to a sharp maximum at the Curie point. The second is the

magnetocaloric effect, also discovered by Weiss. This consists in a small rise in temper-

ature upon the application of a magnetizing field and is the converse of the change in

magnetic moment with temperature. The latter is the analogue of the pyroelectric

effect, while the former corresponds to the elcctrocaloric effect discussed in 523.

One may take as the magnetic analogue of any pyroelectric crystal either a single

domain or a permanent magnet.
A change in temperature upon application of a magnetizing field is characteristic

of both ferro- and paramagnetic substances. Indeed, it is the fall in temperature of

certain paramagnetic substances upon removal of the magnetizing field that is now
used for the attainment of temperatures near the absolute zero. The agreement
between the theory of the magnetocaloric effect and the experimental results affords

convincing proof of the essential correctness of Weiss's concept of the internal field.

From the experimental results have been derived the most reliable values of the

internal field constant y and of the Curie temperature.

567. Piezomagnetism. For its theoretical interest and its analogy to piezoelec-

tricity we mention this subject briefly. It involves a relation between //, an axial

vector, and the symmetrical elastic tensor. By the method of the thermodynamic

potential Voigt* derives the fundamental equations for the piezomagnetic "constants "

n and "moduli" m. These are analogous to the piezoelectric e and d. The matrices

for the various crystal classes, however, are not the same as for piezoelectricity but

are related to those for the elastic groups; they comprise all classes except Nos. 29,

31, and 32. Voigt's theory, couched in the language of 1901, assumes that a small

magnetic polarization accompanies the change in molecular orientation caused by
strain.

Voigt made experimental tests of his theory with quartz and pyritc; the looked-

for effect was smaller than the observational errors, so that only an upper limit

could be set to the size of the coefficients.

*
"Lehrbuch," p. 938.
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Actino-electricity, 1, 711

Activity of resonator, 298

Adiabatic heating, 42, 641

Air blast (see Quartz wind)
Air gap (see Gap)
Alternating current notation, 288

Ammonium arsenate (see Arsenates)

Ammonium chloride, 230

Ammonium phosphate (see Phosphates)
Ammonium tartrate (see Tartrates)

Analogous end, 30

Antilogous end, 30

Antiresonance (see Resonance)

Applications, technical, 665-698

Arsenates, 208, 65^-666, 740

Asparagine, 483

Atomic theory, 731-744

(See also Unit cell)

Attenuation constant, 89

Axial ratio, 13

quartz, 27

Hochelle salt, 21, 737

tourmaline, 30

Axinite, 709

Axis, Bravais, 16

crystal, 13, 16, 27

Millerian, 16

orthogonal, 15-17

piezoelectric, 194

I.R.E. system, 217, 407-410, 458

polar, 15, 30

quartz, 406HL10, 415-427

B

Bar, composite, 391

(See also Constants, piezoelectric;

Resonator; Vibrations, lengthwise)

Barium antimonyl tartrate (see Tar-

trates)

Beet sugar, 483

Bender, 672

Benzil, 225

Bimorph, 239, 672

Body forces, 46, 185, 312

Bonds, chemical, 731

Boracite, 230

Boundary conditions, 262, 265

Bravais-Miller system, 16

Bravais symbols, 28

system, 16

Brushite, 201

C

Camphor, 232

patchouli, 225

Capacitance, parallel, of resonator, 333-

336, 34J&-346, 353, 354, 357, 370, 392,

397, 461, 478

Clamped crystal, 161, 254, 262, 264, 270,

276, 279, 311, 328, 397

Hochelle salt, 512, 513, 593, 598-602,

606, 620-625, 646

Classes, crystal, 13, 17, 19, 53

piezoelectric, 190-192

pyroelectric, 700

Cleavage, 27, 410, 525, 705

Click method, 231, 385

Ciinohedrite, 233

Constants, dielectric, 44, 160-176

clamped, 311, 414, 585

complex, 325-329, 661

cross-constants, 162

definitions of, 550, 551, 586, 587

effective, 329, 437, 473-475

lengthwise vibrations, 291, 304, 473-
475

mixed tartrates, 655-657

phosphates and arsenates, 659-662

piezoelectric contribution, 267

quartz, 413-415

resonator, 304

thickness vibrations, 311

elastic, 43, 49, 53

adiabatic, 63, 120-146, 157, 158,

437, 460, 477

797
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Constants, elastic, constant displace-

ment, 263, 264, 269

constant field, 41, 263, 272, 316

constant normal displacement, 270,

313, 318, 478

constant polarization, 269, 272, 273

cross-constants, 58

isagric, 41, 263, 272, 316

lengthwise vibrations, 316

measurement of, 116-119, 317-320

piezoelectric contribution, 269-275

quartz, 134-156

best values, 137

Rochelle salt, 119-133, 627-629

best values, 123

sodium-ammonium tartrate, 125

sodium chlorate, 159

thickness vibrations, 316

tourmaline, 156, 157

transformation equations, 68-79, 272

zinc blende, 159

equivalent electric, 296, 304, 305, 333-

383

Rochelle salt, 474, 475, 478

mechanical, of resonator, 98, 475

piezoelectric, 44, 178-193, 200-233

cross-constants, 193

measurement of, 241-243, 387-392,
531

quartz, 144, 145, 217-223, 409, 736

Rochelle salt, 204-207, 546, 604,

627-636

tourmaline, 227, 228

zinc blende, 742, 743

(See also Measurement; Piezoelectric-

ity; Pyroelectricity; Quartz; Ro-
chelle salt; Stiffness; Tourmaline)

Contour, Straubel, 458

(See also Vibrations, contour)

Conversion factors, 188, 189, 253

Coupler, piezoelectric, 668

Coupling effects, 438, 454, 456, 466, 467,

482

Crevasse, 393, 401

Cronstedtite, 233

Cross section, effect of, 102, 439

Crystallography, 9-38

Cubic crystals, 16, 20

elastic properties of, 158, 159

optical properties of, 715, 718, 720

piezoelectric properties of, 229-231

Curie-Weiss law, 749

mixed tartrates, 657

phosphates and arsenates, 661

Rochelle salt, 557, 559, 614-618, 623,

646, 647

(See also Ferromagnetism)

Cuts, crystal, 80

(See also Quartz, Rochelle salt)

Cycles, elastic, 281-283

D

Damping constant, 89-100, 372

Decrement, logarithmic, 89, 90, 92

(See also Damping constant)

Demonstrations, 231, 243, 385-387, 416-

422, 424-426, 440-442, 462-465, 485,

486, 490, 495, 499, 674, 678-683, 703,

706, 721, 727-730

Deuterium phosphate (see Phosphates)

Dextrogyrate, 21

Dielectric properties of crystals, 160-176

comparison with elastic properties, 260

effect, 34

energy, 166, 174-176

impermeability, 163

losses, 174, 479

stiffness, 163

(See ako Constants)

Dimensions, 89, 702, 719

piezoelectric, 184, 188, 253

Dipole, 171-174, 580-582, 645, 650-653,
739

Direction cosines, 65, 69, 83, 194

Dispersion, 107

anomalous, 176, 325

Displacement, electric, 160-164, 167,

168, 247, 250

mechanical, 88, 106

Dissonance, 92

Distance, electrical, 277

Double refraction, elastic, 107

Double strip, 181, 500, 672

E

Edingtonite, 233

Effect, converse, 4, 178, 187

direct, 4, 178, 187

electrocaloric, 709

longitudinal, 180, 193
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Effect, primary, 40, 183, 699, 701, 707

quadratic, 586, 612-614

secondary, 40

piezoelectric, 260-283

tertiary, 699, 708

thermal expansion, 34

thermoclastic, 40, 44

transverse, 180, 193

(See also Pyroelectricity)

Elasticity, 34, 39-64

compliance, 48, 49

compressibility, 63, 126

correlation with dielectrics, 260

geometrical representation, 79

susceptibility, 49

(See also Constants; Groups; Shear;

Strain; Stress)

Electret, 233-235

Electrocaloric effect, 40, 709, 710

Electrodes, location of, on crystal, 236-

240

optimum length, 305

short, 237, 301-305

(See also Rochelle salt)

Electromechanical relations, 247, 265

(See also Ratip)

Electro-optic effect, 721-727

(See also Optical effects)

Electrostriction, 4, 198, 199, 014

Ellipsoids, 52, 107, 169, 170

Enantiomorphism, 20, 26, 31, 217, 406-

409, 510, 516, 729

Energy in dielectrics, 174-176, 283, 625

Energy equations, 44, 184, 249, 252,

589, 701

Epistilbite, 233

Epsomite, 233

Equivalent, electrical, 333-383, 491

(See also Network)
Etch figures, 33

quartz, 420-424

Rochelle salt, 516

Etching tests, 37

quartz, 419-426

reflection method, 424

refraction method, 424

Ferromagnetism, 745-754

Curie law, 745
,

Curie point, 748-754

Curie-Weiss law, 749-751

domains, 751-753

hysteresis, 752-754

magnetocaloric effect, 754

magnetostriction, 752

paramagnetism, 745, 746, 748

piezomagnetism, 754

spontaneous magnetization, 748-753

susceptibility, 745, 749

Fiducial circle, 339, 368

Filter, 394, 667-669, 687-690

Flexure, 59, 60, 239

(See also Vibrations, flexural)

Frequency, 87

critical, 94, 347, 354, 355

fundamental, 92

harmonic, 92, 106, 302, 303, 308, 372

natural, 87

resonant, 398

response, 336, 366

temperature coefficient, 452 (see also

Quartz; Rochelle salt; Tourma-

line)

Frequency calibration, 339, 346

Frequency modulation, 509

Friction, internal, 34, 306

Frictional factor, 88, 89, 97, 99, 108

G

Gadolinium sulphate, 746

Gap, effect of, on equivalent constants,

357-361, 368, 387

on frequency, 301, 322, 324, 439, 445

on polarization, 167

on stiffness, 277, 278, 279, 299, 300,

316, 445

when large, 369

network with, 335

resonance diagram with, 362, 398-405

Rochelle salt, 480

Graphical methods, 336-383, 398

Groups, 33, 34

elastic, 53, 54, 119, 134, 157, 158

Fatigue, (see Rochelle salt)

Ferromagnetic analogy, 511, 753
Hexagonal crystals, 16, 20

optical properties of, 716, 717
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Hexagonal crystals, piezoelectric proper-

ties of, 228

beta-quartz, 228

(See also Quartz, beta)

Hydrostatic pressure, piezoelectric effects

of, 194, 227

RocheUe salt, 573-575, 641

Hysteresis, 283

mixed tartrates, 656, 657

phosphates and arsenates, 662/663
RocheUe salt, 479, 511, 513, 541,

559-571, 577, 579, 597, 598, 634,

635

(See also Ferromagnetism)

Impurities on surfaces, 168, 169, 526,

527

Indices, rational, 13

Bravais, 16, 17

Miller, 14-17

quartz, 28

Inertia, lateral, 102

Internal field constant, 170, 582

magnetic, 746, 754

phosphates and arsenates, 664

Inversion, a-0, 139

geometrical, 339, 344, 347, 363

lodyrite, 232, 233

Iron, 749, 754

Isomorphism, 33, 654

Isothermal process, 41, 182, 246, 267

Isotropic solid, 45, 55, 57, 103

Kerr effect, 725-727

Key-tapping method, 385, 386

Lag (see Rochelle salt)

Langbeinite, 233

Langevin function, 172, 173, 643, 645,

652, 653, 746-752

Lattice, 10, 733, 734

dynamics, 742, 743

Lenz's law, 280

Leucophanite, 239

Levogyrate, 21, 23

Lithium selenate, 704

Lithium sodium sulphate, 704

Lithium sulphate, 201, 704

Lithium trisodium molybdate, 228

Lithium trisodium selenate, 704

M

Magnetism, 42, 745-754

Mass, equivalent, 98

Measurement, dynamic, 120, 127, 132,

384-405

equivalent network, 392-405

elastic, 116

piezoelectric, 210, 218, 241-244, 384-

392, 531

static, 120

pyroelectric, 712

(See also Transducer; Constants)

Meliphanite, 233

Mixtures, isomorphic, 33, 654-659

Model, quartz, piezoelectric, 215

Rochelle salt, elastic, 127

Rochelle salt, unit cell, 738-740

Modes, normal, 86

(See aho Vibrations)

Molecular field theory, (see Theory,

internal field)

Momentum, angular, 108

Monitor, crystal, 504, 505

Monoclinic crystals, 16, 19

optical properties of, 715-718, 726

piezoelectric properties of, 201

Rochelle salt, 585, 638, 641

Morphic effects, 613, 614, 621, 718

Motional admittance, 381

N

Network, equivalent, 298, 392, 490, 491

(See also Constants; Equivalent, elec-

trical)

Neumann's principle, 11

Nickel sulphate, 209

Optical effects, 71&-730

activity, 728-730

biaxial, 715, 720, 723

electro-optic, linear, 34, 721-727
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Optical effects, electro-optic, quadratic,

725-727

ellipsoids, 713-715, 717-720, 722, 724,

727

extinction, 727, 728

optic axes, 716, 720, 724

piezo-optic, 34, 717-721, 726

polarization constants, 716, 717^ 722

quartz, 720, 722-724, 728, 729

refractive index, 714, 723, 724, 726

Rochelle salt, 720, 722, 724, 725, 728,

729

sodium chlorate, 722, 729

tourmaline, 722

uniaxial, 716, 717, 720

Oscillator, piezo, 286, 489-509

bridge-stabilized, 503

early types of, 493

high frequency, 501

light-controlled, 502

low frequency, 500

modifications, 498

performance of, 507

Pierce circuit, 494-500

Fierce-Miller circuit, 494-500

push-pull, 499

theory of, 506, 507

tourmaline, 501, 506, 509

Rochelle salt, 505

sound-controlled, 502

standard-frequency, 503-505, 508

Oscillograph, 559, 560

Parelectric, 511, 558, 591, 596

Pentaerythritol, 232

Permalloy, 754

Permittivity, 160, 550

complex, 176, 548

(See also Constant, dielectric; Dielec-

tric properties)

Phosphates, 208, 659-666, 740

structure of KH 2P0 4, 740

Picric acid, 709

Piezoelectricity classes, 34, 190-194

converse effect, 4

discovery of, 2

equations, fundamental, 44, 183-188,
246-252

excitation, 236-241

Piezoelectricity, miscellaneous crystals,

231 .
noncrystalline materials, 234

principles, 177-199

qualitative tests, 243

strain coefficients, 183, 184, 217, 219,

220

stress coefficients, 183, 184, 310

surfaces, 196-198, 215

susceptibility, 183, 184

tensorial, 711

Voigt's theory, 182-189, 249, 257

alternative formulations, 245-259

(See also Constants; Effect)

Piezomagnetism, 34, 754

Piezo-optic effect, (see Optical effects)

Point-groups, 12

Poisson's ratio, 58, 156, 438, 439

Polarizability, 170, 171, 644, 649

Polarization, 160-167

longitudinal, 197

molecular theory of, 170-174

spontaneous, 174, 189, 252, 254, 471

transverse, 197

by uniform field, 216

by uniform pressure, 214

Polarized light, use of, with quartz, 416-

419, 465, 468, 713-730

Potassium arsenate (see Arsenates)

Potassium iodate, 232

Potassium lithium sulphate, 704

Potassium phosphate (see Phosphates)
Potassium tartrate (see Tartrates)

Potential, thermodynamic, 39-43, 246,
252

(See also Energy equations)
Powder method, 231

Projection, stereographic, 29, 34, 36

Pyrite, 754

Pyroelectricity, 1, 44, 699-711

axis, 702, 704

constant, 39

primary, 699, 701, 705, 707

secondary, 699, 702

tertiary, 699, 702

effect, 34, 625, 700-709

electrocaloric effect, 709, 710

miscellaneous crystals, 708, 709

quartz, 708, 712

Rochelle salt, 637, 70&-708, 710

tensorial, 710, 711
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Pyroelectricity, theory of, 700-71 1

tourmaline, 702-706,^12
Pyrrhotite crystals, 753

Q

Quality factor Q, 89, 90

quartz, 462

Quartz, 22, 23, 37, 134-157

artificial, 25

axes, 406-410, 415-427, 434

clock, 503, 508

conductivity, electrical, 413

thermal, 411

crushing strength, 410

cutting and finishing, 427, 434

density, 411

dielectric constant, 413-415

elasticity, 134-156

secondary effects, 274, 281

temperature coefficients, 136-145

electric strength, 413

etching, 419-426

expansion, thermal, 412

fracture, 410

frequency temperature coefficient, 444,
451-459

geology, 434

hardness, 410

high Q, 462

imperfections, 434

inspection, 434

luminescence, 411

mountings and holders, 428-434

optical tests, 416-427, 434

piezoelectric constants, 217-223

effect, of stress, 220

of temperature, 221

properties of, 406-427, 434

radiation, effect of, 434

resonator, 434-468

aging, 433

luminous, 463, 467

numerical data, 460, 461

reduced friction of, 442, 462

ring-shaped, 452, 467, 504

rotational effects, 441

special cuts, 451-461

wave patterns, 463-466

right and left, 26-28, 406-410

shear, 444, 452-455

Quartz, specific heat, 411

sphere, 422-424, 441, 458

structure, 732-736

technique, 427-433

vibrations, flexural, 446-449, 460, 467

toraional, 44&-451, 467

wind, 440, 441

(See f
also Atomic theory; Constants;
Vibrations)

Quartz, alpha (see Quartz)

Quartz, beta, 24, 30, 140, 157, 412, 734,
735

(See also Resonator)

Quartz cuts, oblique, 451-461, 466

AC-cut, 454

AT-cut, 453-459, 461, 466, 502, 505

BC-cut, 454

BT-cut, 453-459, 461, 466, 502

CT-cut, 453, 455, 456, 458, 459, 466

DT-cut, 453, 455, 456, 458, 459, 466

ET-cut, 457

FT-cut, 457

GT-cut, 452, 453, 456, 458, 459, 466,
504

MT-cut, 453, 456-459

NT-cut, 453, 456-459, 668

V-cut, 457, 467

X-cut, 443, 444, 461, 505, 669, 670

Y-cut, 444, 452, 454, 461

YT-cut, 457

-5-cut, 453, 458, 459, 669

18.5-cut, 453, 458, 459, 668

R

Radium, effect of, on quartz, 223

Ratio, capacitance, 298, 305, 324, 353,

354, 370, 392, 453, 460, 478, 668

electromechanical, 297, 322, 324, 354

Reactance, equivalent parallel, 346

equivalent series, 345

mechanical, 99

(See also Resonator)

Reciprocity theorem, 247

Relaxation time (see Rochelle salt)

Resistance, effect of, on resonator, 377

equivalent parallel, 346

equivalent series, 345

mechanical, 99

(See also Resonator)
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Resonance, 94, 96, 97

antiresonance, 348, 355, 389, 395, 493,

496

circle, 336-382, 401, 402

impedance circle, 346, 348, 404

quadrantal points, 350

curve, 374

parallel, 336, 348-352, 366, 367

series, 336, 348, 349, 350, 366, 367

Resonator, 284-329

admittance, 351, 352, 368, 369, 379

beta-quartz, 228, 466

composite, 484-488

crystals, various, 483

current, 292-298, 321, 324

energy, 357

flexural, 239, 397, 482

history, 287

impedances, 346, 378, 380

lengthwise vibrations, 290-306

forces applied locally, 100

mountings and holders, 428-433

parallel capacitance, 365

phase relations, 356

polarization in, 292-298, 313

potential, distribution, 372

quartz-liquid, 487

Rochelle salt, 469-483, 487

wave patterns, 482

sources of error, 241

theories, comparison of, 382

torsional, 483

tourmaline, 484

(See also Constants; Resonance; Res-

onance circle; Vibrations)

Rhamnose, 483

Rhombic crystals, 16, 19, 73-76

elastic properties of, 119-134

optical properties of, 718

piezoelectric properties of, 201

(See also Rochelle salt)

Rigidity, modulus, 155

Rochelle salt, anomalies, 470, 510, 584

coercive force, 562, 578, 597, 628, 635,

639

converse effect, 511, 538-546

crystallography, 21, 36, 37

Curie point, 511, 558, 585, 594, 639,

644,645

cutting, 524

Rochelle salt, dielectric constant, 473-

475, 518, 556-559, 571-573, 576, 597,

614, 635, 671

dielectric observations, 549-579

dielectric properties, 512

direct effect, 511, 531-538, 544-546

domains, 470, 513, 553, 583, 631-642,

706, 737

elastic theory, 609-614, 616, 617

electrodes, 528-530

etch figures, 516

flaws, 525

grinding and finishing, 526-528

growth, 522, 523, 633

heavy water, 133, 207, 575-579

high frequency, 476

historical, 3, 6, 7, 513

interaction theory, 580-602

L-cut, 204, 481, 675

lag and fatigue, 546-548, 552-554

monoclinic clamping, 587, 599

normal method, 587, 588, 601, 602

orientation, 204

piezoelectric constants, 204r-207, 646,

604, 627-636

observations, 531-548

theory, 603-630

polarization theory, 256, 585, 589, 608,

629, 630, 671

polymorphism, 637

properties of, general, 515-521

quadratic effect, 612-614

relaxation times, 175, 522, 540, 547, 548

reversibility, 545

rhombic clamping, 586, 587, 590-594,
619

rhombic method, 587, 588, 592

saturation coefficient, 588 ff.

secondary effects, 274, 281
*

specific heat, 519

spontaneous polarization, 513, 566,

578, 594r-599, 601, 616, 627, 628,

634, 638, 646, 647, 648, 652, 706,

707, 737, 739

spontaneous strain, 252, 540, 586, 589,

619, 640

stereographic projection, 36

structure, 736-740

surface impurities, 555

temperature effects, 129, 477, 532-

536, 561-579, 592-600
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Rochelle salt, expansion, 517, 641

unipolarity, 537, 540, 555, 556, 632

(See also Atomic theory; Clamped
crystal; Constants; Curie-Weiss

law; Hydrostatic pressure; Hys-

teresis; Optical effects; Pyro-

electricity; Resonator; Suscepti-

bility; Transducer; Vibrations)

Bod (see Vibrations, lengthwise; Bar)

Hodometer, 426

Rodoscope, 425

Rotation of axes, 65-83

piezoelectric constants, 194-226

positive sense defined, 67, 409

quartz, 141-155, 164, 409

dielectric equations, 164, 166

Rubidium tartrate (see Tartrates)

8

Scale value, admittance, 338, 363

frequency, 341, 379, 399

impedance, 344

Schonflies symbols, 18

Scolecite, 233

Seignette-electrics, 7, 510-666

origin of term, 581

theory between Curie points, 618-625

Shear, 50-53

piezoelectric excitation, 238

rule for signs, 51

(See also Vibrations; Quartz)

Shortite, 233

Sodium-ammonium tartrate (see Tar-

trates) .

Sodium chlorate, 229, 722, 729

Sodium tartrate (see Tartrates)

Space charge, 314

Space-groups, 12

Space-lattices, 12

Specific heat, phosphates and arsenates,

664

(See also Rochelle salt)

Sphalerite, 229, 708

Stabilizer, 286, 489-492

Stibiotantalite, 233

Stiffness, 63, 105, 113, 114

coefficients, 49

effective, 293, 312-317, 361

(See also Constants, elastic)

Strain, 47-53

rules for signs, 48, 51

Stress, 45-47, 50-53, 65

driving, 90, 290, 320

effect of, on elastic constants, 129

rules for signs, 47, 51

(See also Resonator)
Strontium tartrate (see Tartrates)

Struvite, 233

Sugar, 201

Susceptibility, 160-164, 268

definitions of, 550, 551

Rochelle salt, 473-475, 558, 559, 573-

575, 577, 597, 615, 626

(See also Piezoelectricity; Ferromag-
netism)

Symmetry, crystal, 17, 18

Systems, crystallographic, 15, 16, 19,

162

Tartaric acid, 201

Tartrate, ammonium 201, 704

ammonium-sodium, 208, 483, 654-659

barium antimonyl, 208

mixed, 651, 654-659

dielectric constants, 655-657

piezoelectric properties of, 657-659

potassium, 201, 704

rubidium, 225

sodium, 201

strontium, 704

thallium-sodium, 654-659

Temperature coefficients, 129-133, 136-

140, 452

(See also Quartz; Rochelle salt; Tour-

maline)

Tetragonal crystals, 16, 19, 208, 209

optical properties, 716, 717

Thallium-sodium tartrate (see Tartrates)

Theory, charge, 249, 250, 253

displacement, 248-253

internal fields, 247-251, 643-653

polarization, 206, 220, 247-259, 274,

473

(See also Rochelle salt)

Thickness, effective, 315, 316

Tiemannite, 233

Topaz, 232, 708
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Torsion, 61, 240

compliance, 61

stiffness, dynamic, 113

static, 114

(See also Vibrations, torsional)

Tourmaline, 3, 30, 38, 225, 227, 228, 464,

484, 710, 722

density of, 484

dielectric constant, 484

oscillator, 506

resonator, 484

temperature coefficient, 506

wave patterns of, 464, 484

(See also Optical effects; Resonator)

Transducer, 285, 669-698

acoustic, 671-675, 690, 691

measurement of pressures, accelera-

tions, and vibrations, 669, 670,

691-695

miscellaneous applications, 694-698

quartz-steel oscillator, 676-678, 695

Rochelle salt, 670-675

(See also Ultrasonics)

Transformation (see Constants; Rotation

of axes)

Triclinic crystals, 16, 19, 179

optical properties, 715-718

Trigonal crystals, 716

optical properties, 716, 717, 720

piezoelectric properties, 209-228

(See also Quartz; Tourmaline)

Tuning fork, 486

Twinning, 27, 31, 32

quprtz, 417, 421, 422, 434

Rochelle salt, 639

Twister, 240, 672

U

Ultrasonics, 5, 675-685, 695-698

crystal generator, 678-686, 695

effects of intense radiation, 682

interferometer, 679, 683, 695

light relays, 685, 695

optical effects, 683-687, 695

television, 686, 687, 695

(See also Transducer)

Unit cell, 10, 12, 733-735, 737, 739

Unit face, 13

Urotropine, 483

Velocity, 94
t

at end of bar, 298

of waves, 87, 89, 110

Vibrations, 84-115

compressional, 86, 115, 238

contour, 108, 286, 455, 467, 500

Rochelle salt, 481

damped free, 94

face shear, 455

flexural, 86, 111-113, 115, 239, 500

(See also Quartz; Resonator)

forced, 90-92

free, 356

harmonic, 92-106, 114, 158, 295-

324, 353-359, 371, 372, 438, 463,

502

lengthwise, 8&-103, 115, 238, 286,

290-306, 359, 387, 435-442, 466,

476

damping, 295

Rochelle salt, 626-629

unsymmetrical effects, 439

normal modes, 86

overtone, 92, 110, 112, 446-449

shear, 86, 106, 108, 444, 452-455

thickness, 103-108, 115, 238, 286, 306-

324, 358, 359, 371, 389, 397

damped, 107

electrical constants, 320-324

quartz, 141, 442-446, 451-455, 466

Rochelle salt, 127, 480

torsional, 86, 113-115, 240, 500, 501

(See also Quartz; Resonator)

W
Wave constant, 460

Wavelength, 87, 89, 95, 96

constant, 89

Waves, compressional, 154

equation, 88, 108

shear, 106, 108

(See also Quartz; Resonator; Rochelle

salt; Vibration)

Wurtzite, 229, 233, 708

X-rays, effect of vibrations on, 329-331

orientation by, 426, 434

Rochelle salt structure, 646, 737, 738
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Z

Zinc blende, 229, 708, 742, 743
Young's modulus, 72, 88, 111, 124-126, structure, 742

133, 134, 140, 147, 150, 155, 409, Zinc sulphide, 708
437, 440, 458, 485 Zone, 15

(See also Constants) Zunyite, 233














