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Abstract 

ABSTRACT 

There are many proven benefits in applying high power ultrasonics to manufacturing 

processes and research demonstrating significant cost savings and process 

improvements has been underway for around 50 years. Despite this effort, there are 

still a large number of high power ultrasonic technologies that are not in widespread 

use and many applications that have never been successfully exploited. Often the 

reason for this is the lack of knowledge of the fundamental mechanics of the 

ultrasonic systems and, consequently, the difficulties in designing reliable systems. 

The research presented in this thesis has attempted to gain some fundamental insights 

into the nature of the dynamics of high power ultrasonic systems and, consequently, 

to address the system design issues that have hampered progress in this technology, 

particularly for systems with multiple components and complex geometries. The 

research is enabled by the available modelling and experimental facilities, which are 

now sufficient to characterise these complex systems. This study uses the results of 

the fundamental understanding of the dynamic responses, and the measurement and 

modelling techniques offered by 3D laser Doppler vibrometer (LDV) measurements 

and finite element analysis, to design tuned multiple-component ultrasonic cutting 

tools capable of delivering the required energy to the work surface in an efficient and 

controlled manner. 

The current work begins by considering a range of common high power ultrasonic 

components in order to establish a standardised approach to tool design for optimum 

performance. The vibration behaviour of tuned components resonating longitudinally 

at ultrasonic frequencies around 35 kE[z is modelled via finite element analysis and 

measured by experimental modal analysis. Significant improvements in experimental 

validation of the models are achieved by the use of a 3D IJ)V, which allows modal 

analysis from both in-plane and out-of-plane measurements, which is critical in 

proposing alternative designs. 

The vibration characteristics of complex multiple-component systems used in 

ultrasonic cutting of food products are also investigated. Commonly, the design 

approach for ultrasonic systems neglects to account for the mutual effects of 
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physically-coupled components in the system vibration. The design of systems also 

neglects the nonlinear dynamics effects, which are inherent in high power systems due 

to the nonlinearities of piezoelectric transducers. The first issue is tackled by 

considering the vibration behaviour of the whole system and the influence of 
individual components and, particularly, offers design improvements via modification 

of block horns and cutting blade components, which are modelled and validated. The 

issue of nonlinearity is addresses by identifying the mechanisms of energy leakage 

into audible frequencies and characterising the common multimodal responses. For 

this study, design modifications focused on reducing the number of system modes 

occurring at frequencies below the tuned system frequency. As a consequence of these 

approaches, insights for the design of multiple-component systems in general are 

provided. 
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Chapterl: Introduction 

CHAPTER1 

INTRODUCTION 

1.1 Background 

The definition of ultrasound is energy generated by sound waves travelling through 000 
fluids or solids at 20,000 or more cycles per second. The lowest ultrasonic frequency 

(20 kHz) is chosen so that the vibrations are not audible to humans, whereas the 

highest frequency (in order of Gigahertz) is limited only by the ability to generate the 

signals. 

Ultrasound at frequencies above 100 kHz is exploited for operations where the 

propagation of waves does not have any significant effects on the subject of the scan, 

and these include medical imaging and non-destructive testing. The power at which Cý tý 
these sound waves are generated is relatively low with intensities in the range of 0.1 

to 0.5 W/cm 2 (low power applications). 

Ultrasound in the frequency range between 20 kHz and 100 kHz is utilised in those 0 
processes requiring large amounts of energy such as manufacturing operations (high 4! ý 

power applications). The intensities normally used in high power ultrasound are above 
10 W/cm 2. In these applications the required energy is transmitted to the materials to 

be worked through one or more tuned components screwed into a piezoelectric Z: ' 

transducer, converting an electrical signal into mechanical vibrations. The tuned 

ultrasonic components are designed to respond in a particular mode of vibration, 

usually longitudinal but sometimes radial or torsional, at the required excitation 

frequency. Component profiles depend on the specific application, but common 

shapes are stepped, conical and catenoidal horns for longitudinal-mode systems, 

cylindrical dies for radial-mode systems and circular bars for torsional-mode systems. 

Typical amplitude ranges for high power processes are from about 5 to 100 microns. 0 
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Since the 1960s, applications of hi0rh power ultrasonics have created many novel Cý 
technologies, such as plastic and metal welding, surface cleaning and cutting, and rD r) 00 
have demonstrated performance improvements in a range of existing manufacturing 41: 1 tD 0 
processes such as cutting, wire drawing and die forming. Although many of these C' 00 

benefits are well known (e. g. reduced process forces, friction reduction, localised 

heatina, increased process speed) the technolog is still under-utilised and slow in C. oy 

being adapted to manufacturing processes. This has often been due to the mainly r) C) 
empirical approach to ultrasonic tool design and the lack of a mechanistic 

understanding of the linear and nonlinear behaviour of ultrasonically vibrating 

systems. 

In particular, the adverse effects of nonlinear vibrations on ultrasonic devices for high V 
power industrial applications are well known in the ultrasonics community, but these 

effects have not been characterised previously or researched to pursue possible design 

solutions. Therefore, advancing high power ultrasonic technolog any further is 0 C'y 
reliant on research that addresses this problem. 

1.2 Ultrasonic systems 
In general, ultrasonic systems for high power applications comprise the key 

components shown in Figure 1.1. The common constitutive units are the power supply 

(or generator), the converter/booster/hom stack, the part fixture, and a means of 

providing hom contact with the part (usually an actuator). A 50/60 Hz current is 

converted to 20 kHz to 100 kHz electrical energy in a solid-state power supply. This 

high frequency electrical energy is supplied to a transducer (or converter) that 

transforms it to mechanical motion at ultrasonic frequencies. The mechanical motion 
is then transmitted through an amplitude-modifying booster to the horn. The hom (or 

sonotrode) transfers this vibratory energy directly to the parts or materials to be 

ultrasonically treated. 

The main purpose of the present work is to propose strategies for the design of C) 
ultrasonic tools through an understanding of the dynamics of high power ultrasonic 
devices. This is achieved by concentrating the research on dynamically complex C. 

devices used for cutting food products, which are designed to operate in a longitudinal 

mode of vibration. The majority of ultrasonically aided manufacturing processes Cý 
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incorporate longitudinal mode tuned systems, and therefore this research has a wider Z-- 
scope in providing design insights that can be applied to a ranoc of high power 

ultrasonic applications. In order to emphasise some of the common t'Catures- of such 

applications, the basic principles of three ultrasonic operations exploiting the 

mechanical energy produced by longitudinally vibrating horns, are now described. 
I ýnl 

vm IU (-) I VVVVV 
20 kHz Power Supply OLMDU MZ 

Transducer Booster Hom 

vm 
mN 

Figure I. I. Schematic of ultrasonic system [Branson Ultrasonics Corp., Danbury, CT 
(USA)] 

1.2.1 Ultrasonic plastic welding 

Ultrasonic plastic welding is the process of joining or reforming thermoplastics Cl -1 Z-1 

through the use of heat generated from high-frequency mechanical motion. As with 

other ultrasonic operations, it is accomplished by converting high-frequency electrical 

energy into high-frequency mechanical motion. The mechanical motion of the horn, 
Cý 

tuned in a longitudinal mode, along with the applied force, creates frictional heat at 

the plastic components' mating surfaces so the plastic material will melt and form a L_ 

molecular bond between the parts. The use of ultrasonic vibrations allows plastic 

welding to be a fast, clean, efficient. and repeatable process that consumes very little 

energy. In addition, no solvents, adhesives, mechanical fasteners or other Cl 
consurnables are required, and finished assemblies are strong and clean. 

The basic principles of ultrasonic plastic welding are illustrated in Figure 1.2. :nC, 

tnitially, the two thermoplastic parts to be welded are placed one on top of the other, 

in a supportive nest called a fixture as shown in Figure 1.2 (a). A titanium or 

aluminum tuned horn is brought into contact with the upper plastic part (Figure 1.2 

(b)), and a controlled pressure is applied to the parts, clamping them together against Zý Z: ' zn 

the fixture as illustrated in Figure 1.2 (c). Subsequently, the horn is excited in its 
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tuned (longitudinal) mode, usually at a frequency in the range 20 kHz to 40 kHz 

depending on the thermoplastics, at amplitudes in the order of microns, for a 

predetermined weld time. 

Figure 1.2. Procedure for ultrasonic plastic welding [Dukane Corp., St. Charles, 
IL (USA)] 

Transducer 

Block Horn 

Figure 1.3. Model of an ultrasonic workbench welder [Sonic Italia S. R. L. Milan 
(ITA)] 

Through careful part design. the vibratory mechanical energy is directed to limited 0 
L- 

points of contact between the two thermoplastic materials. The mechanical vibrations 

are transmitted through the thermoplastics to the joint interface to create frictional Z-1 
heat. When the temperature at the joint interface reaches the melting point, plastic 
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melts and flows, and the vibration is stopped in order to allow the melted plastic to 

cool (Figure 1.2 (d)). The clampino, force maintained for a programmed amount of 

time (hold time) to allow the parts to fuse as the melted plastic cools and solidifies 
(Figure 1.2 (e)). Finally, once the melted plastic has solidified, the clamping force is 

removed and the horn is retracted as shown in Figure 1.2 (f). The two plastic parts are 

now joined and can be removed from the fixture. Figure 1.3 shows an ultrasonic 

workbench welder. Horns of different shapes, depending of the size and shape of the 

parts to be welded, are screwed on the transducer. 

1.2.2. Ultrasonic metal welding 

Ultrasonic metal welding is also called "cold welding" because it works without 

melting the metals. In fact the process welds at temperatures lower than the melting 

point of the metals. Ultrasonic metal welding most commonly joins nonferrous 

metals, but can also be used with other materials. such as aluminum to ceramics. As in 

ultrasonic plastic welding, ultrasonic metal welding also uses high-frequency 4: 1 L_ Z7 

vibrations in a tuned horn excited in resonance. Figure 1.4 shows the main steps of an 

ultrasonic metal welding process. C, 

PPE SZ, (c) 

p 

Figure 1.4. Procedure for ultrasonic metal welding [Dukane Corp., St. Charles, 
IL (USA)] 

Initially, the parts to be welded are both placed on the anvil as illustrated in Figure 1.4 

(a). Next, a clamping force is applied to the parts (Figure 1.4 (b)). Then the upper part Cý 
is vibrated by the ultrasonic horn. This causes the parts to rub together. The ultrasonic 

energy cleans the surface dispersing oxide film layers, and results in the mixinOr of 

metal atoms without melting the metals. The activated metal atoms join each other, 

causing a true metallurgical bond (Figure 1.4 (c)). Figure 1.5 shows a support system 

where a one-wavelength horn held between two solid boosters vibrates longitudinally 
Z__ Cý 
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(second longitudinal mode) assuring weld stability and consistency. Vibration is not 

transferred to the support as the boosters are held at the Ion-Itudinal nodes. Two 

boosters are used instead of one so that horizontal horn deflection is eliminated. A 

picture of a metal welder is shown in Figure 1.6. 

FLýnq, ýXN, NIE PW: 

, \ 
-- 4ý- -- -X-- -- --o . * -- -- 0- --. x -1 -4ý .......... X- 0- --- 

.. ....... .. -L I!: 
------------------ H-Dldlro P04 Mý -- HAAII, ý; R(Ifl)t 

q 

I ----------- ------- 

Figure 1.5. Dual Support System [Dukane Corp., St. Charles, IL (USA)] 

Figure 1.6. Model of a metal 
Charles, IL (USA)] 

welder [Dukane Corp., St. 

1.2.3 Ultrasonic cutting offood products 

Ultrasonic cutting of food products relies on the longitudinal vibrations of tuned Cý Z__ 
knifes providing frictionless surfaces to which food products do not stick or deform. 

Ultrasonic cuttina has demonstrated siornificant benefits in catering effectively for 
Z__ t_ Z:, 

materials which are traditionally difficult to cut in a controlled manner and which 

would otherwise aenerate larae amounts of non-recoverable waste usin- conventional Zý Z:, Z7, 

cutting techniques. Some food products which can be cut with ultrasound are: 

0 bakery and snack foods 

* candy and confectionery bars 

0 cheese 
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0 fish 

" prepared meats 

" frozen flaked foods 

" vegetable I 
" health bars. 

Ultrasonic knives vibrating longitudinally at a frequency between 20 kHz and 60 kHz. C, Z-1 I 

depending on the process, are used to slice food products as they come out ofan oven 

or down a conveyor belt, or to slit them into bar-shaped portions in a continuous 

operation. 

Figure 1.7. Model of an ultrasonic cutting systern [Branson Ultrasonics Corp., 
Danbury, CT (USA)] 

Ultrasonic cutting offers numerous advantages, reported in the following list: rý Z-- I Z1- 

" cleaner, repeatable and more consistent slits and cuts 

" greatly reduced normal down time for clean up C 
" does not smear the cut surface 

" wider cutting temperature range 4: 1 Z- 

cuts cleanly through various densities and consistencies of products with filler 

materials 

cuts edges cleanly without pinching or feathering for higher yield in packaging r-I -- : _I Cý C Zý 
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cuttin., speeds can be increased substantially 

* ease of use - uncomplicated and user friendly. 

Finally, the procedures necessary with conventional cutting, such as pre-cooling or 00 
heating the product before the cutting operations, or realigning the product after C, 00 

cutting prior to the packaging operation, can be totally eliminated. An example of an Cý C) 0 
automated cutting system is illustrated in Figure 1.7. The three block horns tapered in 

C) C) 
the form of sharp knifes are mounted side by side to slice the cake. 

1.3 Scope of the work 

The successful application of high power ultrasonics relies largely on design of tools r) 0 
for very specific vibration performance parameters, such as frequency, spectral 

response, amplitude, mode shape, and operating deflection mode. Hence, finding a C. 

general design strategy which meets all the requirements for optimum ultrasonic 

performance is not straightforward. 

Recent research has progressed the understanding of ultrasonics applied to cutting of 
food products [1]. An area of this work has developed a fundamental understanding of 

the mechanisms of ultrasonic cutting by examining the interaction of the blade and the 

material through a combination of vibration analysis and fracture analysis [2]. 

Identification of the dynamic loading requirements for enhanced cutting performance, 

through the controlled propagation of material fracture, allowed cutting edge modal 
data to be fed back into the design of the cutting tool. 

Although the use of high power ultrasonics has achieved success in cutting of food 

products, there still exist various unsolved reliability issues which hinder the 

development of the technology. In particular, the performance of cost effective 

multiple component tuned systems, driven by a single ultrasonic generator and C) 4D 
transducer set, is often plagued by uncontrolled energy transmission through the Z' 0 
components. In this research alternative ways forward in the design of cutting 0 
systems, based on a fundamental understanding of the vibration characteristics of 

tuned components and assemblies, are proposed. 
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Successful performance of ultrasonic cutting systems depends on the excitation of a 

single mode of vibration (usually longitudinal) at a frequency and amplitude suitable C) 
for the operation. In systems consisting of multiple components, the avoidance of C. 

modal participation by non-tuned modes occurring at frequencies close to the tuned 

mode frequency (linear modal coupling) is not easy to achieve. Previous researchers 0 
have provided useful design criteria to avoid modal coupling in various single- 

component ultrasonic systems [3-7], however there exists a lack of published work on 

this issue applied to complex ultrasonic systems. It is one of the aims of this research 

to deliver design insights to meet this need. 00 

Recent developments in measurement instrumentation have also enabled 

measurements to illustrate how transmission of vibration to the cutting blades is 

adversely affected by nonlinearities [8,9]. It has been shown that such nonlinear 
behaviour is responsible of at least two detrimental effects, which can be interrelated. 

The first one is associated with saturation of the vibration amplitude, occurring when 

ultrasonic systems are driven at voltage levels above 50 V. The nonlinear relationship 
between driving frequency and vibration amplitude of piezoelectric stack transducers 0 
has been discussed in the published literature [10]. Although transducer models, based 0 

on nonlinear piezoelectric constitutive equations, have led to an interpretation of the 

amplitude saturation phenomenon, the effects of the interfaces and geometry of the 

attached horns on such a behaviour is not understood and needs further investigation 

[9]. 

The second nonlinear phenomenon is also characteristic of systems driven at high 

power and is exhibited by the simultaneous excitation of one or more modes of 

vibration distinct from the driven tuned mode (nonlinear modal coupling). This 

energy leakage mechanism can be observed in single-component ultrasonic systems, 

but it appears almost systematically in ultrasonic assemblies composed of component 

stacks. The issue of energy leaks is now posing considerable problems in the use of 

multiple-blade cutting systems, as the manifestations of this unsolved problem are 

unacceptable audible frequency noise levels, low efficiency and poor reliability during 

operation. The consequences of this behaviour on the performance of high power 

ultrasonic components have not been reported and the findings have not previously t) 
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been linked to reliability problems in ultrasonic tooling devices. It is therefore an aim 0 
of this work to discuss and address this problematic vibration behaviour. 

Therefore this research investigates the vibration characteristics of ultrasonic cutting Zý C) 

devices whose performance is hampered by inefficient transmission of vibration 

energy via linear and nonlinear mechanisms. Since most ultrasonic processes are 

affected by common reliability problems, advances in the design of cutting systems 

can be applied to many alternative manufacturing applications. 0 

1.4 Summary of research findings 

Initially, the design principles of customised resonators, including bar homs, block 

homs and cuttin- blades resonatina in the first longitudinal mode at frequencies near 

35 kHz, are studied. The vibration behaviour of these tuned units is modelled via 

finite element analysis and validated via experimental modal analysis using ID and 

3D laser Doppler vibrometers (LDVs). Redesign strategies to enhance system 

performance by reducing the effects of modal coupling and controlling stress levels, 

are investigated through component modifications. Since frequent fatigue failures 

have limited the exploitation of high gain cutting blades, alternative blade shapes 

providing the required amplitude gain under reduced stress condition have been 
C, t) 

designed. A design criterion to achieve isolation of the tuned mode and uniformity of 0 
amplitude of block horns with slotted profiles is also presented. 

Further, the vibration characteristics of a category of multi-component cutting 

devices, where a single transducer drives three tuned blades via a tuned block hom, 

are studied. These assemblies operate in the second longitudinal mode at 35 kHz and 

are designed for cutting food products. A combination of numerical simulations and 

LDV measurements has revealed that coupling of untuned modes with the operating 

mode, high stresses and bending vibration responses of the blades, are factors 

responsible for poor performance of these systems. Hence, the issues of modal 

coupling and responses of the cutting blades are improved through alterations of the 

intermediate block horns. In particular, the introduction of geometric modifications 

such as castellations in the block horn has proved to eliminate participation of 

bendin- motion in lonaitudinal-mode tuned cuttin- blades. Frequency separation at CP r> 0 
the driving frequency is achieved through opportune selection of block hom 
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dimensions via a sensitivity analysis. Finally, stress reductions in the cutting blades 0 
are achieved by detuning of the longitudinal-mode frequency of the components 0 
(block hom and blades) of the system while maintaining the system tuned frequency. C, 

Evidence suggests that multiple-component ultrasonic systems often leak enero, into I'y 
untuned modes, whose frequencies can be well separated from the operating 

frequency, with the result that the tuned Idingitudinal-mode response includes 

detrimental bending and torsional coniributions. Hence, experimental 

characterisations of the vibration behaviour of several multi-blade ultrasonic cutting 

systems are carried out. Experiments demonstrate that unwanted responses are 

particularly difficult to control in systems exhibiting a large number of modal 0 
frequencies. In addition, measurements performed over large frequency ranges 0 
highlight, for the first time, that ultrasonic devices can exhibit dynamic responses that 0 Z: - 
are qualitatively similar to theoretical models of simple autoparametric systems. The 

understanding of this type of nonlinearity has sua(Yested that intermodal exchanges are 
highly favoured in systems with numerous modes at frequencies below the tuned 

frequency. Consequently, alternative design ýtrategies focused on reducing the r) 
number of modes of complex assemblies are discussed and proposed. The 

introduction of intermediate block horns with a reduced number of slots or solid 

geometries are proved to help in the control of nonlinear responses. Furthermore, a 

novel configuration based on tuning multiple-component cutting systems to the first Z' Zý 

longitudinal mode, instead of the second, has proved to decrease the risk of nonlinear 

modal coupling. 

Finally, the nonlinear relationship between amplitude and power level in ultrasonic 

systems, previously attributed to piezoelectric transducers [10] and recently associated 

with the effect of the attached components [91, is further discussed. An empirical 

strategy for influencing the nonlinear behaviour of the transducer, by attaching tuned 

components of different geometry and interface configurations, is proposed. It is ZP 4D 
shown that specifically profiled components connected to the transducer can reduce 

the saturation effect of the vibration amplitude, which also depends on joint 

configurations. 
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CHAPTER2 

REVIEW OF LITERATURE 

2.1 Historical aspects of ultrasound 

The history of ultrasound is a part of the history of acoustics. The first testimony is 

attributed to Pythagoras, who in the 6 th century discovered the diversities of sound 

emitted from different lengths of ropes of musical instruments. In 1638 Galileo 

contributed with his own studies of the science of acoustics. He elevated the study of 

vibrations, and the correlation between pitch and frequency of the sound source, to 

scientific standards. Contributions from many physicists and mathematicians during, 

the 17 th and 18 th century formed the first bases for the development of diverse fields 

of acoustics. Durinc., I 9th ..; the century there were two significant developments in the 

methods for the generation of ultrasounds. The first one was discovered by Joule and 

called the magnetostrictive effect, which is the phenomenon a means by which it is 

possible to convert magnetic energy into mechanical vibrations. Length variations in a 
bar of ferromagnetic material can be obtained by immersing it in a variable magnetic 
field. The second was discovered by Pierre and Jacques Curie in 1880 and is called 

the piezoelectric effect, a means by which it is possible to convert electric power into 

mechanical energy, through exploitation of the property of certain crystals 
(piezoelectric crystals) of exhibiting dimensional variations when electrically charged. 

These two important discoveries lifted remarkable interests in researchers who, with 

the development of electronics and more and more refined piezo-ceramic materials, 
have designed through the years more and more sophisticated ultrasonic systems for 

domestic, medical, industrial and military use. 

It can be asserted that the era of modem ultrasonics started about 1917, with 

Langevin's invention of the quartz sandwiched transducer for underwater sound Z, 
transmission in submarine detection (sonar). The requirement for the development of 

systems of underwater detection took place after the Titanic tragedy, which collided 0 
with an iceberg, in 1912, and submarine navigation during World War I. In the late Z> Cý 
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1920s, as a result of the discoveries of Langevin, many French ocean liners were 

equipped with systems of underwater echo-sonorous devices. The World War II saw 

further developments such as naval and military radars that enormously contributed to 

the design of sonar and systems for propagation of ultrasonic waves. An application in 
tl CD 

the field of ultrasound, developed in late 1920s and during the 1930s, was the 

development of analyzers of metal defects using pulsed ultrasounds. The basic 

concept of such devices, which were mainly used in inspection of the hulls of ships 

and tanks, had been elaborated from the Soviet scientist Sergei Y. Sokolov in 1928 at 

the Electrotechnicýl Institute of Lenin. In the reflection technique, a pulsed sound 

wave is transmitted from one side of the sample, reflected at the far side, and returned 

to a receiver located at the source. As a consequence of impinging on a flaw or crack rý 0 
in the material, the signal is reflected and its traveling time altered. The delay 

0 r> 

becomes a measure of the flaw's location. 

The destructive ability of high power ultrasound had been recognised since the 1920s Z; ý tp 

from the time of Langevin when he noted the destruction of fish in the sea and pain 
induced in the hand when placed in a water tank insonated with high intensity 

ultrasound [11). The spectacular effects of high-power ultrasonics on various 

processes were first described in New York by Robert Wood and Alfred Loomis in 

1927. Loomis was a Wall Street tycoon, a famous scientist, a lawyer and a true legend 

in the history of the United States. Loomis renewed his wartime acquaintance with 
Professor Wood and offered to collaborate and underwrite several joint research 

activities. In 1926, Wood told Loomis of Lan-evin's experiments and suggested the 

subject offered a wide field for research in physics, chemistry, and biology. It was 

their group that had allegedly introduced ultrasound to chemistry. When a liquid is 

exposed to ultrasonic waves, bubble growth is created which is known as cavitation. 
Sound waves stress these bubbles, causing them to grow, contract and eventually to 

implode. With implosion, immense heat and pressure are produced that speed 

reactions. Every imploding bubble is a micro reactor in itself. This is due to the 

extreme heat released upon implosion that creates a local hot spot. Temperatures can 

reach 5000'C with pressures of several hundred atmospheres. These effects promoted 

the advent of sonochernistry which has in recent times become a useful tool for the 

synthesis of chemicals, pharmaceuticals and the production of new materials with 

unusual properties. 
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In the 1950s the development of efficient transducers and the design of tapered half- 

wavelength homs for the amplification of vibrations [ 12-14] lead to a burst of activity 

in high power ultrasonics in solids. Industrial processes such as, metal forming 0 C)q 
cleaning and welding, and destructive testing were now performed using tl 00 
ultrasonicall resonating components. A review paper covering the numerous y0 

applications of high power ultrasonics from this period was presented by Neppiras Cý 

[15] in 1960. In his work Neppiras advised on the choice of the transducer and 

velocity transformer to be used depending on the power use. He also described the 

nonlinear effects of materials investigated in destructive testing. 

Despite the many proven benefits of applying high power ultrasonics to 

manufacturing processes, a low interest in ultrasonics is perceptible after the 1960s'. 

This was due to a lack of knowledge of the fundamental mechanics of ultrasonic 

systems and the difficulties in designing reliable systems. However in the 1970s and 

1980s, with the advent of finite element techniques capable of simulating the 

vibration behaviour of fluids and solids, research in ultrasonics found new impetus. A 

comparison between theoretical and finite element predictions of the vibration 

performance of lar( ge resonators used for ultrasonic welding was given in 1984 by 

Derks [ 16]. In the same work the need for a more basic understanding of the processes 

of ultrasonic equipment in order to fulfil the enormous potential of high power 

ultrasonics, is discussed. The 1980s and 1990s have been characterised by numerous 

contributions to the design of ultrasonic tools for manufacturing processes, due to 

significant advances in the experimental capabilities. With the advent of non-contact 

measurement devices, the identification of the vibration characteristics of ultrasonic 

devices, which previously could only be predicted, has been achieved. Hence, the 

development of new applications, not only in industrial processes but also in other 

fields such as chemical and medical, have flourished [17,18]. 

Another factor which has hampered the development of ultrasonic applications, is 

related to the nonlinear nature of the media (fluids and solids) which ultrasonic waves 

travel through. Leif Bjorno [19], editor of the journal Ultrasonics, has published in 

2002 a paper reviewing the progress of research in nonlinear ultrasound in the last 00 
four decades. He asserts that while the theoretical and numerical tools giving 4D 
descriptions of nonlinear ultrasound are available after more than 40 years of intense 
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research, the exploitation of the theoretical/numerical achievements in practical 

methods and devices are lagging somewhat behind. Hence, important challenges in Cýzp C) 0 
nonlinear ultrasonic processes still exist. 

2.2 High power ultrasonic applications 
The main applications of high power ultrasonic in manufacturing include machining 

and weldina. The advent of these technolo-ies commenced in the 1950s and 1960s 

with advances in the desion of transducers and resonators [15,20,21]. Neppiras [22- 

28] covered the main aspects of ultrasonic machining through a series of papers 

released in 1956. In these publications, operating variables such as vibration 

amplitude, operating frequency, tool area, static load and resistive amplitude are 

discussed in detail together with their impact on tool design and choice of transducer. 

The main prerequisites for high operating accuracy and surface finish were achieved 

through analysis of extensive experimental data. It resulted that ultrasonic machining 

offered the possibility of cutting slots and holes of any shape with a high degree of 

accuracy in materials such as ruby, tungsten carbide and glass. However, the thickness 

of the materials was very small. 

A new machining method was published in 1964, which used diamond impregnated 

probes to cut deep holes through rotating workpieces [29]. This work derived from the 

experiments carried out at the Atomic Ener, (,, y Research Estabilishment of Harwell 

(UK) in the early 1960s. In conventional ultrasonic machining technologies the 

cutting edge of the working tool vibrated lengthwise onto the material being bored 

and, since neither tool nor workpiece were rotating, the tool could be oval or 

triangular, or any shape, in cross-section. Abrasive slurry flowed through the hollow 
tý 4: 1 

centre of the tool into the workpiece facilitating the cutting operation. A necessary 41ý CP 

condition was that the amplitude of the longitudinal movement of the tool had to be 

large enough to allow the abrasive particles to flow underneath it, but of course not so 

large as to subject the tool to accelerations which would break it. However, after a 

certain cut depth the abrasive slurry could not escape quickly enough from the tool 

face, hence the slurry damped the tool motion causing the operation to stall. To 

overcome these limitations, engineers at the A. E. R. E. used diamond-impregnated 

probes on a workpiece held in a 4-jaw chuck. The chuck rotated while the hole was 

machined with the result that the complicated shapes which could be machined with a 
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non-rotating workpiece were impossible. However, deep holes without any fall in the Cý 
rate of penetration without use of abrasive slurry and with very high accuracy, were r) 

achieved through this method. rý 

In the same year an article was published [30] giving an idea of the developments in 0 
ultrasonic machining taking place in the USSR. In this work three ultrasonic machines Z:, C) 
used for ultrasonic cutting were described. Through embodiment of new principals C, rý 

they were able to remove material at a rate almost three times as fast as their 

predecessors and cut impressively large holes with remarkable accuracy. The 

achievement of such precise and fast operations stemmed from the control systems of 

these machines which automatically took account of the tool wear. 

Another important contribution to ultrasonic machining was provided by Kazantsev 

and Rosenberg, who published a paper in 1965 describing the mechanism of 

ultrasonic cutting [31]. This work contained the theoretical and experimental 
investigations of ultrasonic cutting which were carried out in the Acoustics Institute of 

the USSR Academy of Science. The interactions between working tool, workpiece 

and slurry, were studied meticulously in order to provide a fundamental understanding 

of ultrasonic machining. 

.; c) , one of the A. E. R-E In 1966 Legge - researchers who conducted experiments on 

ultrasonic cutting with diamond impregnated probes, published a work where the 

advantages of ultrasonic machining without the use of abrasive slurry were presented 41P C. 
[32]. In particular, he showed the dramatic benefits for cutting holes in standard rý 
materials such as glass and ceramics by means of rotating transducers. With this Z' C) 

technological innovation only the length of the cutting tool limited the possibility of 0 ZP 

drilling deep holes. Of course, rotating transducers sacrificed some of the special 
features of ultrasonic machinino- such as the ability to drill star-shaped holes, but the 

limitations were slight. 

Until the late 1960s the use of ultrasonics for machining was limited to small-scale 0 
production or development work with precious stones, semiconductors and g glass. 

In 

order to prove a more universal applicability of the method, in 1971 Smith [33] 

carried out an investigation, the main objective being the determination of a standard Cý 
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procedure for assessing the machinability of any new material. It resulted that for all C) 
materials, without exception, the amplitude at the resonant frequency was to two three 

times more influential than other variables considered, such as static force and grain 

size. 

In 1979 Devine [34] published a paper describing a range of metal working processes 0 

which used ultrasonic energy, the object of intensive study in industrial laboratories. 

This work focused on the technical and operational problems relating to all metal 0 
removal processes such as turning, boring, twist drilling, trepanning and tapping. As a 000 C) 0 

result of the investigation, several ultrasonic devices readily and economically Z5 

adapted to shop machines were presented. Ten years later Moreland and Moore [35] 

published a similar work where several ultrasonic machining processes were 
described paying particular attention to the ultrasonic apparatus and the design C) 
requirements for the transducer and tool holder. 

In recent years Astashev and Babitsky identified an influential factor which hampers 

the performance of ultrasonic machining systems [36,37]. They showed that the 

difficulties in maintaining the required amplitude during the cutting of material, C, 
largely stem from the Inherent nonlinearity of these processes. Therefore, the 

nonlinear amplitude response of the vibrating tool was obtained theoretically and 

experimentally. Hence, a novel method of stabilization of the resonant ultrasonic 

excitation was described. 

The exploitation of high power ultrasound for welding operations began in the late VD C) 

1960s, but the main contributions to this technolog were published in the 1970s. C'y 
Shoh [38], published a review paper in 1976 focused on the industrial applications of 

power ultrasound to thermoplastics. He described the process of heat generation in 

plastic materials caused by high frequency oscillations. The advantages of using 4: 1 C) 0 
ultrasound derived from the local melting effect at the interface of the materials being 

welded. Hence a range of industrial applications such as ultrasonic staking, insertion, C' 

packaging, spot welding and seaming of films, which could benefit from the 0 tý 
technolog , were listed. In addition, he illustrated the extent to which different IV 
materials could be welded and provided a detailed description of the welding 

equipment. 
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Until the 1980s, research in high power ultrasonics was mainly focused on the 

exploitation of the vibrational energy delivered by tuned components resonating in a 

single mode (longitudinal, radial or torsional). In the last two decades, particular Cý 0 
attention has been paid to ultrasonic applications such as ultrasonic motors, ultrasonic 

plastic soldering, ultrasonic welding ana ultrasonic fatigue testing. In these processes Cý 4: 1 0 
complex modes consisting of a transverse (torsional or bending) mode and 
longitudinal mode tuned at the same frequency, have also been used and sometimes 

preferred to the traditional longitudinal mode. For instance, in conventional ultrasonic 

welding systems linear vibrations normal to the welding surface are traditionally used, 

and therefore the vibration stress induced in the welding specimen is one-dimensional. 

Using complex vibrations, two-dimensional vibration stress can be induced in the 

welding specimen, and as a result an improvement in the welding characteristics 

derives from the temperature rise due to two-dimensional complex vibration stress. 

The idea of exploiting complex vibrations in industrial applications is actually quite 

an old one. Rozenberg [39] in 1969 studied a Iongitudinal-torsional composite mode 

transducer based on the vibrational mode conversion of a longitudinal mode into a 

torsional mode. However, the construction of such a transducer proved rather 

complicated. 

Tsujino has contributed to the development of ultrasonic welding technologies. He 
0 

has designed numerous complex mode ultrasonic devices operating at resonating In Cý 
frequencies in the range of 15 kHz to I MHz according to the application Cý t; - 

requirements [40-47]. Systems resonant at frequencies up to 100 kHz for metal and 

plastic welding are presented, where vibration amplitudes up to 30 pm peak are cp 
required [40-43]. Conversely, high frequency vibration systems resonant at 0 
frequencies above 100 kHz are designed for ultrasonic wire-bonding where vibration 

velocities below I m/s are necessary [44-47]. 

In the plenary lecture given at the Ultrasonic International Conference 2003 Ueha [48] 

has presented two newly developed ultrasonic actuators (or motors) used for object 

transportation. The operation principles of both system configurations rely on 

exploitation of complex vibrations. The first motor type is based on a friction drive 
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achieved by careful design of tuned resonators excited in a complex mode. Ueha 

proposed that this category of complex mode actuators will find applications in C) 
manufacturing processes where miniaturisation, high efficiency and high speed are 

required. The second category reproduce a phenomenon called near-field acoustic 
levitation (NFAL). NFAL is a technique which has been successfully applied to non- 

contact transportation in air where planar objects of several kilograms are levitated 

and transported. Ueha presented a way to achieve NFAL both for a piston-like sound 

source and a flexural vibration source. These actuators are expected to be used in 

manufacturing of electronic devices where high speed and non-contact transportation 

are required. 

2.3 The design of ultrasonic components 
The design of half-wavelength resonating tools with lateral dimensions small r) Cý CP 
compared to the tuned length can be well understood from the literature. Merkulov 

[12] was the first researcher to derive the equations for computing the resonant 4: 0 
dimensions of longitudinally vibrating rods with variable cross-sections for amplitude Cý 

magnifications. He compared the particle velocity gains of half-wavelength homs 

with conical, exponential, and catenoidal profiles and showed that catenoidal homs 

provide the highest gains for the same input/output radii ratio. Two years later, 

Ensminger [ 14] presented a paper where formulas for the design of conical resonators 

were determined in a simpler and more useful form. In addition to the work of 

Merkulov, Ensminger calculated formula for the distribution of stress generated in 

conical horns. In a paper published in the same year, Merkulov and Kharitonov [13] 

investigated theoretically and experimentally the design of more complex 

concentrators formed by rods of variable and cross section. These tuned units called 

sectional concentrators were used to obtain larger amplifications in comparison with 

the resonators of simpler forms. Additionally, Merkulov provided a criterion for the 

horns' evaluation based on the characteristics of the input impedance near resonance. 

The design rules for another class of velocity transformers, capable of delivering 

vibration amplitudes under contained stress conditions, were discussed by Eisner and 

Seager [21] in 1965. Until then, the conventional method of horn design started with ZIP t) 
defining some possible shapes from which the axial amplitude could be calculated 

from the strain distribution, and then calculating the strain distribution. However, 0 
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since only resonators of basic shapes could be solved analytically with this approach, 

a requirement for another design criterion arose. Hence, Eisner and Seager introduced 

a design method in which a suitable wave function of the vibration amplitude was 

chosen and the corresponding profile obtained by integration. From this approach it is 

shown that the best hom desian exhibited a peak strain equal to the maximum 

permissible strain in the material for as great a part of the length as practicable. 0 r) 

In 1972 Jakubowski [491 published a paper where the importance of including the 

boundary conditions in the mathematical model for the horn design was demonstrated. 

After introducing the concept of mechanical impedance as it applied to the 

fon-milation of horn boundary conditions, two practical design applications, in which 

the attachments of a cylindrical bar and an exponential hom were treated as 

concentrated masses, were described. The results showed that estimation and 

inclusion of the loading conditions in the calculations enabled a more efficient design 
C. 

of transducer-horn systems. In 1976 Amza and Drimer [50] verified that the measured 

resonant frequency of transducer-horn assemblies was always lower than that 

calculated from the horn equations. This resonant frequency variation implied a 

modification of the vibration distribution and of the position of the nodal points in the 

horn. Using the deviations of the resonant frequency in systems incorporating conical, 

exponential, and catenoidal horns, Arnza and Drimer introduced an expression for 

computing the effective lengths which could be adapted to a range of horns. 0 

From the late 1960s, another class of ultrasonic horns became popular in ultrasonic 

welding and machining operations. These are characterised by having at least one of Cý C. 0 
the lateral dimensions (more specifically the dimensions of the output surface) of the 

same order as the tuned length. However, before the 1980s the desian requisites of 0 
longitudinally vibrating horns with wide output cross-sections, in contrast to those 

with small lateral dimensions, was hardly described in the literature. 

Although large resonators were widely used in plastic welding applications, few 

papers were published discussing their design parameters. In a 1976 review on the C) 0 
joining of thermoplastics Shoh published [38] pictures of wide slotted horns used for 

0 
plastic welding of large areas of material. However, no specific design guidelines C, r) 

were discussed apart from the requirement of the incorporation of slots to improve 
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uniformity of amplitude of the horn output face. In his PhD thesis (1984) Derks [6] 

justified the low academic interest in high power ultrasonics, saying that, at the time, Cl 0 

industry was surviving well with the technological status. The contribution of Derks 

in tool design and in the elaboration of the design principles for the development of 

ultrasonic processes has been significant. He calculated the resonance conditions for 

the fundamental longitudinal mode of a variety of differently shaped resonators 
havinc, at least one lateral dimension exceedino, one third of the wave-lenath. All the 

calculations were carried out for free boundary conditions of the vibrating resonators, 

as no realistic model describing the complex situation under load was available. 

Comparison of finite element models and experiments, validated his theoretical 

predictions for horn design. 

A subsequent contribution to the design of tools with rectangular output faces for 

plastic welding was provided by Adachi et al. [511 in 1986. In this work modal 

vibration analysis of several resonators with a different number of slots was carried 

out using finite element models. The effect of slot dimensions on achieving a flat 

distribution of longitudinal amplitude at the radiating surface was discussed. Hence, a 

combination of slot spacing, width and height was predicted to provide an adequate 

uniformity of amplitude at the radiating face of the modelled horns. However, despite 

the satisfactory results obtained through the finite element method, the author pointed 

out the requirement for the identification of a more universal strategy to achieve the 

flattest amplitude distribution in ultrasonic horns. In 1990, Adachi [3] proposed a 

novel design approach for improving amplitude uniformity of horns with large output 

surface called the method of wave-trapped horns. This technique consisted of adding 

small elastic components to the horn to modify its vibration mode. The added elastic 

components were two wave-trapped rods attached at the input face of the slotted horn 

at either side of the driving transducer. By means of adjusting the length of the 

attached rods the reactive mechanical impedance at the attachment points varied until 

the amplitude distribution of the radiating surface of the slotted horn became highly 

uniform. This method produced good results for horns with small radiating surfaces. 

However, in larger resonators where lateral vibration at the attachment points was not 

negligible, bending vibration diminished the effectiveness of the method. 0 
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In 1991, O'Shea [41] published a paper on the design of ultrasonic block horns using 

finite element analysis. As in Adachi's publications, the effects of slot number, 

positioning and size on the uniformity of amplitude of the output face of horns were 

discussed. In addition, the influence of the same desian variables on the frequency 

isolation of the operating mode from close modes, was considered. Hence, an 

optimum configuration was achieved based on finite element predictions and 

experimental validations via amplitude probe measurements. From the O'Shea 

contribution, it became clear that reliable design of tuned components could only be 

accomplished through the identification of modal parameters (natural frequencies and 

mode shapes) in a frequency range of several kHz around the operating frequency. Cý C, 
Measurement of vibration response in the ultrasonic range was often not feasible 

using conventional sensors as high surface accelerations made attachment of 

accelerometers very difficult and only few non-contacting probes retained linearity at Z21 

ultrasonic frequencies. However, with developments in laser technolog in the 1980s 

and 1990s, devices for vibration measurement and validation of theoretical and 

numerical models became available. In particular, ID LDVs, for measurement of 

normal to surface velocities, and electronic speckle pattern interferometry (ESPI), for 

detection of in-plane and out-of-plane motions of surfaces, provided the opportunity 
for vibration measurements of ultrasonic components. 

Shellabear and Tyrer [52] successfully used ESPI to measure wholefield vibration 
displacement of structures in the low ultrasonic frequency range. Lucas and Chapman 0 
[53,54], who, a few years prior to O'Shea, had recognized the identification of the 0 
modal parameters in the tuned frequency region as being critical for ultrasonic design, C) Cý C) 

employed ESPI for experimental modal analysis of ultrasonic horns. Hence, redesign 

strategies based on structural modifications achieved through a combination of ESPI, C) tP 
as a technique complementary to 1D LDV measurements, and finite element models, 

were proposed for a variety of ultrasonic components [55,1,6]. In these studies, the 

redesign solutions for ultrasonic components resonating in a longitudinal mode (bar 0 
and block horns) proved useful for enhancing ultrasonic cutting operations [2,5,7,56]. Z) 0 

Furthermore, Lucas [57,58] presented a design procedure for improved vibration tý 
control of ultrasonic dies tuned in a radial mode for metal forming processes. The 0 
possibility of exploiting radial vibrations for cold metal working applications was C) Z; - 
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originally identified by Young and al. in 1970 [59]. The detection and characterisation C, r) 
of the nonlinear vibration behaviour of single- and multi-component ultrasonic tools 

usina ESPI and LDV were also investioated by Lucas and Graham [8,9]. In these 00 
publications the importance of identifying in-plane responses via ESPI was C) 

demonstrated by the measurement of jump phenomena, frequency shifts, and 
hysteresis cycles, typical features of nonlinear systems. With the advent of 3D LDVs, 

further advances in ultrasonic toolina design and nonlinear behaviour characterisation Z; C) 

are possible. 

The opportunity of exciting two modes (complex vibrations) at the same frequency in 0 
order to enhance operation of industrial applications such as ultrasonic welding and 

machining has been researched since the late 1960s [60]. However, only 0 
developments in the desio, P of sandwiched piezoelectric torsional [61] and 
longitudinal-torsional transducers [62] of the last decade have allowed exploitation of 

this idea. In 1996 Lin (63] published a paper where the design of an exponential horn 0 
for welding applications tuned in a longitudinal-torsional composite modes was r) C) 
achieved by equating the resonant frequency expressions of the two modes. Following 0 
Lin's approach Zhou et al. [64] studied theoretically and experimentally the 

longitudinal-bending and torsional-bending complex modes for an ultrasonic system 0 4! ) Z:, 
consistina of a sandwiched transducer and an attached horn. 0 

In the last thirty years, a large number of publications on ultrasonic metal and plastic 

welding and wire bonding have been published. Tsujino and al. [65-67] have designed 

systems whose uniqueness stems from the means by which complex vibrations are 

obtained. A specific component (converter) is introduced, consisting of a 
longitudinally tuned bar horn with transverse slits originally incorporated at the 

longitudinal node [65] and subsequently near the antinodes [66,67]. In these slits the 

longitudinal vibration is partially converted to torsional motion, thus forming 

elliptical loci which enhance the welding operation. Generating longitudinal-torsional 

complex modes within the converter element, it is possible to drive the ultrasonic 

devices using a traditional longitudinal transducer instead of a torsional-longitudinal 

transducer. The results show improvement in welding and wire-drawing; however, 

concern remains on the large number of modes and the consequent difficulty of tuning C' 

these systems. 
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CHAPTER 3 

METHODOLOGY FOR VIBRATION CHARACTERSATION OF 

ULTRASONIC DEVICES 

3.1 Introduction 

The use of high power ultrasonics has demonstrated significant benefits in many 
industrial applications requiring large amounts of energy to be transmitted in a 

controlled and precise manner to the working surface. In fact, the exploitation of the 
harmonic motions produced by resonating tools, which are specifically designed rp 0 

according to the operation requirements, constitutes an efficient approach to providing C) 0 
substantial power at relatively low excitations. 

Ultrasonic components are designed to resonate in a certain mode of vibration, 

depending on the type of application, at a frequency above the upper limit of human Cý 
hearing (16-20 kHz). It is a common belief that the success of the technolog relies on Cly 
careful desian of the ultrasonically excited tools and transmission components. t) 

The design of ultrasonic components based on cut-and-try approaches often results in 

a waste of time and material. In fact, if prototype components do not satisfy the 

operation requisites and they cannot be modified to achieve adequate performance, 

then alternative components have to be machined. Design strategies exclusively based 

on experience are sometimes suitable for manufacturing simple ultrasonic systems but :n 
are inadequate for the fabrication of complex devices. 

In recent years, finite element (FE) modelling, with extraction of modal parameters 0 
from the FE model, has increasingly been used in order to characterise the dynamic 

behaviour of vibratina structures. These modelling procedures have led to significant 0 Cý CI 
progress in ultrasonic system design [4]. In particular, the opportunity to predict the 41ý Cý 

component performance prior to machining, has enabled the development of 
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increasingly sophisticated ultrasonic devices. However, in order to assess the accuracy Cý 
of the FE models, an experimental validation of the predicted data is required. 

One of the most popular techniques for measuring the vibration behaviour of vibrating 

structures is known as experimental modal analysis (EMA). The first experimental 

modal analyses were performed in the 1940s in order to inspect the vibration 

characteristics of aircrafts. From the 1960s, with the advent of digital computers and 

the Fast Fourier Transform (FFT), this measurement technique became standard in 

numerous engineering fields. 
C) 

EMA relies on the application of a modal parameter estimation method (curve- Itting) 

to a set of measurements carried out on the structure under investigation [68-71]. 

Design of ultrasonic components and assemblies can be achieved through a r) 
combination of EMA and finite element analysis (FEA). FigUre 3.1 shows the 0 
different ways in which modal parameters of a vibrating structure can be obtained 

both analytically, by FEA, and experimentally, by EMA. 

FEA 

Differential Equations 
nzX(t) + ci(t) + kx(t) f (t) 

System Matrix Eigensolutýo odal Eims 2+ 
cs + k]X(w) = F(w) - te P ete]rs 

EMA 

FRF Matrix Curve fitting Modal 
X(w)=[H(co)]F(o)) method Parameters 

t 
Fp-ulse 

responses Curve fitti Modal 
11(0] method Parameters 

Figure 3.1. Sources of modal parameter extraction 
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Initially, this chapter deals with an analysis of the basic foundations of vibration 

theory, as these form the basis of the FEA and EMA estimations. Subsequently, the 

procedures for conducting EMA are described. Finally, for illustrative purposes of 0 
relevance to this study, an investigation of the vibration characteristics of an ZD 
ultrasonic bar horn is carried out using a combination of FEA and EMA. Cý 

3.2 Theoretical basis 

A brief introduction to the theory of mechanical vibrations from a simple 

mathematical perspective is required to understand the process of determining modal rp 
parameters. Although real structures are continuous systems, a mathematical 

description of their modal behaviour can be expressed with the description of the 

well-known mass, spring and damper elements with one degree-of-freedom. C, 
Considering the structure as an assemblage of many of these single degree-of-freedom 000 

(SDOF) systems, the mathematical description starts from the differential equation of 

motion of the damped mass-spring-damper system, illustrated in Figure 3.2. 00 

Stiff ness,. k Displacement, x 

Force, f(t) 

Damping, c Mass, m 

Figure 3.2. Mass-spring-damper system 0 

nd(t) + ci(t) + kx(t) =f (t) 

where m is the mass of the structure, c the viscous damping and k the stiffness of the 0 
spring. For the calculation of the modal model, the properties of the system with no rý 

external forcing are considered (i. e. f (t) = Fei" = 0). For this case the governing Cý 

equation of motion is 

nCi(t) + d(t) + kx(t) =0 (3.2) 

26 



Chapter 3: Methodology for Vibration Characterisation of Ultrasonic Devices 0 

A solution of the followinc, form is assumed: Z, 

X(t) = Xe' (where s= jo) is complex) 

from which the subsequent condition is obtained: 

(ms' + cs + k) =0 

This leads to: 

(3.3) 

c -4km S1.2 =- 2m 2m = -Cooý ± icoo v (3.4) 

). This implies a modal solution of the form: where co, r m) 
Yc, 

( 
(Y2N 

km 

x(t) = eX ej`ý-C)t = Xe-atejo)ot 

which is a single mode of vibration with a complex natural frequency having two t;. 0 
parts: 

9 the imaginary part or oscillatory part: a frequency of wo , where 

O)o = 0) 

the real or decay part; a damping rate of a, where a= wo 

Lastly the forced vibration case is considered (i. e. f (t) = Fe j" #0), and the assumed 

solution is: 

x(t) = Xe' 

this yields: 
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(-(02m+ jcoc + k) Xe i" = Fe i" (3.5) 

In order to obtain an entity that is independent of the exciting force, the compliance is 0 
introduced, which is the displacement per unit harmonic force, a. In terms of the 

previous equation, the compliance for a SDOF system can be written in the form: 

a(co) =H (co) 
x 

(3.6) 
F (k - o)'m) + j(coc) 

which is complex, containing both magnitude and phase information. C) Cý 

Note that: 

I IF 
J(k 

- Wýl M) 2+ (CIOC) 2 

Za(w) = ZX - ZF = tan -'(- cocl(k _ 0)2M)) = _0 a. 

Close inspection of the behaviour of real structures suggests that viscous damping is 

not very representative when applied to multiple-degree-of-freedom (MDOF) 

systems. There appears to be a frequency-dependence exhibited by real structures, 

which is not described by standard viscous dashpots. An alternative damping model is 
C) 

provided by hysteretic or structural damping which accounts for the frequency- 

dependence (c = d1o)), and also facilitates calculations. The compliance for a SDOF 

system with structural damping becomes: Cý 

a(o)) =H (o)) =1 (3.7) 
(k - o)'m) + j(d) 

which can also be written in the form: 

a(0» =H (0» =0 
ýlk 

(3.8) 
+j77) 

ü)o 
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where 77 is the structural damping factor. The same equation applied for a MDOF 

system, with the excitation force at point k and the response at point i, becomes: 

Vir Vfkr 

(3.9) (m) = hiL. (o» =ý 
r=I (0), - M' +i 17,0), 

where k. (w) is an element of the compliance matrix of the MDOF system, H (0)). 

hij. (o)) is the summation of the SDOF system for each mode with a multiplication 

factor of VIj,. VIk, in the numerator. The yfiVk,. terms give the mode shape information. 

The numerator (as well as the denominator) is complex as a result of the complexity 

of the mode shapes. 

The compliance definition leads to the more general definition of a frequency 

response function (FRF). An FRF is a function expressing, the ratio between a 

response (output), and a reference (input). An FRF thus always depends on 2 DOFs, 

the response DOF (numerator) and the reference DOF (denominator). Since both the 

force and response are vector quantities, they have directions associated with them. 

Depending on whether the response motion is measured as displacement, velocity, or 

acceleration, the FRF and its inverse are named as follows: 

" Compliance (displacement/force) 

" Mobility (velocity/force) 

" Inertance (acceleration/force) 

" Dynamic stiffness (1/compliance) 

" Impedance (1/mobility) 

" Dynamic mass (1/inertance) 

F(t) X(ti 
ei System 

F(o) x[ H(W) 1- X(cü) 

Figure 3.3. Block diagram of an FRF 
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Alternatively, an FRF can be defined as the Fourier transform of an output response, 

X(co), divided by the Fourier transform of the input force, F(o)), as indicated in Figure Cý 

3.3. 

3.3 Experimental modal Analysis 

EMA is the process of determining the modal parameters (natural frequencies, 

damping factors, modal vectors and modal scaling) of a vibrating component or 

structure by means of an experimental approach. The understanding and visualisation 

of modal parameters is crucial in the design stage of structures. The procedure for 

extracting the modal parameters is set out in Figure 3.4. 0 

Geometry Definition, 
Determination of measurement 

points 

Vibration- 
Measurement 

Data analysis 
modal parameter extraction 

Figure 3.4. EMA procedure 

Initially, the number and locations of the measurement points for the structure under 

test are determined. The structure is excited and responses are measured at the chosen 
locations in the form of time domain signals. These are transformed into the 

frequency domain using a fast Fourier transform (FFT) algorithm in the signal Cý ID 
processing analyzer. Finally, a curve-fitting routine fits a theoretical expression to the 00 
measured FRFs, using a modal analysis software package, from which the modal 0 
parameters of natural frequencies, damping and mode shapes can be estimated. 0 

There are four basic assumptions concerning the tested structure [69]. The first 0 
assumption is that the studied structure is linear, and therefore its response to any 

applied force is the sum of the responses to each force acting alone. As a 

consequence, its behaviour can be characterised by means of a convenient form of 

excitation, not necessarily similar to the forces that are applied to the structure in its 

30 



Chapter 3: Methodology for Vibration Characterisation of Ultrasonic Devices 1.1) 

operating conditions. In practice, real structures are seldom completely linear. In these rý 

cases it is hoped that the linear model provides an acceptable approximation of the 

structure's behaviour. In characterising, high power ultrasonic devices, EMA is 

performed at a low excitation level of the transducer so that the driven tuned 

components respond in a linear regime. However, the extracted modal parameters do 

not give a complete picture of the vibration characteristics of a system when it 

operates under working conditions. In fact, ultrasonic devices at the nominal 

amplitudes required for industrial processes, exhibit typical signs of nonlinearity, 

which are undetected at low amplitudes. 

The second basic assumption is that the structure's vibration behaviour does not 
depend on time; therefore modal parameters are constants. For instance, some 

components are dependent on temperature, which is viewed as a time varying signal, 

and hence the component has time varying characteristics. If the structure that is Zý 

investigated changes with time, then measurements made at the end of the test period 

would determine a different set of modal parameters than measurements made at the 

beginning of the test period. Ultrasonic systems tend to heat up when they operate 

and as a consequence their modal parameters vary with time. Consequently, the only 

means of attaining information from EMA is by performing the tests at low excitation, 

so that the temperature remains constant during measurements and the extracted 

modal parameters are constant. Although natural frequencies detected at low C, 
excitations are slightly at variance with those typical at operating excitation levels, 

clear information about the mode shapes is achieved. 

The third basic assumption is that the structure obeys Maxwell's reciprocity, such that 

a force applied at degree-of-freedom p causes a response at degree-of-freedom q that 

is the same as the response at degree-of-freedorn. p caused by the same force applied r) 
at degree-of-freedom q. With respect to frequency response function measurements, 

Hpq = Hqp. 

The fourth basic assumption is that the structure is observable. The input-output 

measurements that are made contain enough information to generate an adequate 0 
behavioural model of the structure. This assumption is particularly related to the fact 

that the data normally describe an incomplete model of the structure. This occurs in at 
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least two different ways. First, the data is normally limited to a minimum and 

maximum frequency as well as a limited frequency resolution. Secondly, no 

information relative to the all DOF at the selected points is measurable with the 

available measurement devices. Other assumptions can be made regarding the system 0 C. 
being analysed. Commonly, the modal parameters are assumed to be global. For 

00 
example, this assumption means that, for a given modal frequency, the frequency and 

damping information are the same in every measurement. 0 

3.3.1 Geometyy definition 

Real continuous structures have an infinite number of DOFs, and an infinite number 

of modes. From a testing point of view, a real structure can be sampled spatially at as 

many DOFs as wanted. However, because of time constraints, only a limited number 

FRFs are measured. The selected points must be sufficient in quantity and situated at 

convenient locations so that the extrapolated modal data can give a full picture of the 

structure's vibration behaviour. 

Xi Oco) hlk 00)) Ico) 

X2 OCO) h2k 00)) 

X3 OW) h3k Oct)) 

x 

ýk 

X') (0-ý X2 00)) 

X, 111L 

x 
x 

x 

Fk (t)--> Fi, (ico) 

Figure 3.5. Measurement points on a slab [681 

Unquestionably, the more the surface of the structure is spatially sampled by taking 0 
more measurements, the more definite are its mode shape results. Figure 3.5 depicts 

the measurement points selected on a slab. 
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3.3.2 Vibration measurement 

The experimental set-up adopted for FRF measurements is shown in Figure 3.6. The rý 

main components are: 

The source of the excitation signal. This will depend on the type of test being 

undertaken. 

The power amplifier. This item is required to drive the actual device used to 

vibrate the structure under investigation. 

9 The exciter. The device used to vibrate the structure. The most commonly 

used are an attached shaker or a hammer. 

* The measurement devices. There are many different types of these devices. 

Piezoelectric accelerometers, or optical devices (such as laser vibrometers 

which are used for high power ultrasonics measurements) are used for 

response measurements. Load cells are used for excitation force 

measurements. 

The conditioning, amplifiers. The choice of amplifiers depends on the used t) 
measurement devices. Their function is to strengthen the small signals 

generated by the measurement devices. 

The analyser. The function of this item is to measure the signals developed 0 
from the measurement devices in order to ascertain the magnitudes of the 

excitation force(s) and responses. 

The controller. This is a common feature in modem measurement chains and 

can be provided by a computer. As FRF measurements are repetitive a form of 

automation is highly desirable. The computer also processes the measured data 

as required for the extraction of modal parameters. 

In EMA, FRF measurements are performed either using an impact hammer 

(impact testing) or a shaker driven by a broadband signal. Multi-channel analysers; 0 
are used to acquire FRF measurements from input and output DOF pairs on the 

test structure. 
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Figure 3.6. Diagram for the measurement system [701 

Strain gauge 

3.3.2.1 EFT analyser 
Although the FRF was previously defined as a ratio of the Fourier transforms of an 

output and input signal, is it actually computed differently in FFT analysers. This is to 

remove random noise and distortion from the FRF estimates. The measurement 

capability of all multi-channel FFF analysers is built around a tri-spectrum averaging 

loop, as shown in FiUre 3.7. 

START 

Sample Exetation fý) 
wd Response x(rj 

ApplyWinclmt 
(if necessary) 

I 
Yes 

FFT both signals More No Calculate 
fýt)-->F(O[o)) Averages? FRF & Coherence 

Calculate ANis & XPS 
G "(0)), Gff (0. Gxf 

G (W) 

Update Average Spectra 

dcD). G ff, (OD). G 
xf (W) 

Figure 3.7. Tri-spectrum averaging loop [68] C) 0 
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This loop assumes that two or more time domain signals are sampled simultaneously. 0 
Three spectral estimates, an Auto Power Spectrum (APS) for each channel, and the 

Cross Power Spectrum (XPS) between the two channels, are calculated in the tri- 

spectrum averaging loop. After the loop is completed, a variety of other cross channel Zý Cý 

measurements (including the FRF), are calculated from these three basic spectral 

estimates. In a multi-channel analyser, tri-spectrurn averaging can be applied to as C) 0 
many signal pairs as desired. This removes random noise and randomly excited 

nonlinearities from the XPS of each signal pair. This low noise measurement of the r) 
effective linear vibration of a structure is particularly useful for EMA. 

FRFs can be calculated in several different ways. One possible FRF estimate is 

calculated through the assumption that random noise and distortion are summing into 

the output, but not the input of the structure and measurement system. In this case, the 

FRF is calculated as: 

H, 
XPS 

Input(APS) 

where XPS denotes the cross power spectrum estimate between the input and output 

signals, and Input APS denotes the auto power spectrum of the input signal. It can be 

shown that H, is a least-squared error estimate of the FRF when extraneous noise and 

randomly excited nonlinearities are modelled as Gaussian noise added to the output. 

An alternative FRF estimate assumes that random noise and distortion are summing 
into the input, but not the output of the structure and measurement system. For this 

model, the FRF is calculated as: 

H2 
- 

Input(APS) 
XPS 

As for H, 9 it can be shown that H2 is a least-squared error estimate for the FRF when 

extraneous noise and randomly excited nonlinearities are modelled as Gaussian noise 

added to the input. 
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Finally an FRF estimate can assume that random noise and distortion are summina 10 
into both the input and output of Ihe system. 

3.3.2.2 The FRF matrix model 
Structural dynamics measurement involves measuring elements of an FRF matrix 0 
model for the structure, as shown in Figure 3.5. This model represents the dynamics 

of the structure between all pairs of input and output DOFs. The FRF matrix model is 

a frequency domain representation of a structure's linear dynamics, where linear 

spectra (FFTs) of multiple inpuls are multiplied by elements of the FRF matrix to 

yield linear spectra (FFTs) of multiple outputs. FRF matrix columns correspond to 

inputs, and rows correspond to outputs. Each input and output corresponds to a 

measurement DOF of the test structure. Modal testing requires that FRFs be measured 

from at least one row or colump of the FRF matrix. When the output is fixed and 

FRFs are measured for multiple hiputs, this corresponds to measuring elements from a 

single row of the FRIF matrix (impact testing). Conversely, when the input is fixed and 

FRFs are measured for multiple outputs, this corresponds to measuring elements from 01 
a single column of the matrix (shaker testing). 

3.3.2.3 Excitation of the structure 
A structure can be excited into vibration in different ways. The two most commonly 

used are by a hammer blow (impact testing) or by an attached shaker. 

With the ability to compute FRF measurements in an FFr analyser, impact testing has 

become a very popular modal testing method. Impact testing is a fast, convenient, and 0 C' 
low cost way of finding the modes of machines and structures. A wide variety of 

structures and machines can be impact tested. Of course, different sized hammers are 

required to provide the appropriate impact force, depending on the size of the 0 
structure. (Small hammers for small structures, large hammers for large structures). 

Not all structures can be impact tested as impacting forces, because of their limited 

frequency range or low energy density over a wide spectrum, are not sufficient to 0 
excite the modes of interest of certain structures such as ultrasonic components. 

Hence, when impact testing cannot be used, FRF measurements are made by 
C) 
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providing excitation with one or more shakers, attached to the structure. Common Cl 

types of shakers are electro-dynamic and hydraulic shakers. 

In modal testing of ultrasonic systems, the piezoelectric transducer works as a shaker. C' 

3.3.2.4 Excitation signals 
A variety of broadband excitation signals have been developed for making shaker 

measurements with FFT analysers. 

These signals include: 

" Transient 

" True Random 

" Pseudo Random 

" Burst Random 

" Fast Sine Sweep (Chirp) 

" Burst Chirp 

Random and fast sine sweep signals are typically used for determining modal 

frequencies of ultrasonic systems. 

True random signal is used in combination with spectrum averaging, random, which t; ' 00 
removes the nonlinearities randomly excited in the structure. Obtaining a set of noise 

free FRF estimates with no distortion in them is very important for obtaining accurate r) 
modal parameters. The main disadvantage of a true random signal is that it is always C> 0 
non-periodic in the sampling window. Therefore, a special time domain window (a 

0 
Hanning window or similar), is used with true random testing to minimize leakage. 

4: 1 4: 1 C> 

In modal testing performed using a swept sine excitation signal, the sine waves must tý' C) 
sweep from the lowest to the highest frequency in the spectrum, over the relatively 0 
short samplina window time period, this fast sine sweep often makes the test 4D 
equipment sound like a bird chirping, hence the name chirp signal. C) 0 
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3.3.3 Modal parameters extraction from curve-fitting 
The process of matching a mathematical expression to a set of empirical data points is 

C) 
achieved by minimising the squared error between the analytical function and the 0 
measured data. The knowledge of the modal quantities allows a description of the 

dynamic behaviour. 

The majority of the curve-fitting methods operate on the response characteristics in 
Cý 

the frequency domain. All curve-fitting methods fall into one of the following 

categories: 

Local SDOF (or single mode) method 

Local MDOF (or multiple mode) method 

Global method 

Multi-Reference method 

In general, the methods are listed in order of increasing complexity. SDOF methods 

estimate modal parameters one mode at a time. MDOF, Global, and Multi-Reference 

methods can simultaneously estimate modal parameters for two or more modes at a 

time. Local methods are applied to one FRF at a time. Global and Multi-Reference 

methods are applied to an entire set of FRFs at once. Local SDOF methods are the 

easiest to use, and can be applied to most FRF data sets with light modal density, 

whereas MDOF methods must be used in cases of high modal density (Figure 3.8). 

Global methods work better than MDOF methods for cases with local modes. Multi- 

Reference methods can find repeated roots (very closely coupled modes) where the 

other methods cannot. 

3.3.3.1 Local SDOF methods 

A number of local SDOF modal analysis procedures exist. The methods vary as to 

whether they assume that all response is attributed to a single mode, or whether other Z. 

modes' contributions are represented by a simple approximation. Using a combination 0 
of the simplest local SDOF curve-fitting methods, three procedures to determine the C) 

modal parameters of a test structure, are now described. All used methods are based 

on applying an analytical expression for the FRF to measured data. 
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Figure 3.8. (a) Light, (b) high modal density C, 

A simple way to obtain a natural frequency is by using the "Modal Frequency as Peak 

Frequency" algorithm. Hence, the frequency of a resonance peak in the FRF is used as 

the modal frequency. This peak frequency, which is also dependent on the frequency 

resolution of the measurements, is not exactly equal to the modal frequency but is a 

close approximation, especially for lightly damped structures. If the measurements 
have been performed correctly, the resonance peak appears at the same frequency in 

every FRF measurement. Of course, it will not appear in those measurements 

corresponding to nodal lines (zero magnitude) of the mode shape. 

The modal damping information can be easily achieved by looking at the width of the C) C) 
resonance peak. The resonance peak width should also be the same for all FRF 

measurements, meaning that modal damping is the same in every FRF measurements. 0 
The width is measured at the so-called "half power point", and is approximately equal 

to twice the modal damping (in Hz). ZD 
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Finally, the mode shape information can be obtained using the "Quadrature method" 0 

of curve-fittin-. From (displacement/force) or (acceleration/force) FRFs, the peak 0 
values of the imaginary part of the FRFs are taken as components of the mode shape. 0 
From (velocity/force) FRFs, the peak values of the real part are used as mode shape 

components. 

3.3.3.2 Local MDOF methods 

A brief description of two MDOF methods is given. The Complex Exponential (CE) 
0 

and the Rational Fraction Polynomial (RFP) methods are two of the most popular 

local MDOF curve-fitting techniques. 0 

Complex Exponential Method 

Modes 
P 

IX 
1] kt Pt) (R e+ R*e vt-ý 
k 7/ 

kk 

residue component of frequency and 
mode shape damping 

0 

Mal 

E Leakaw 

Time (s) 

Figure 3.9. CE curve-fitting method [68] Cý 

CE algorithm curve-fits an analytical expression for a structural impulse response to Cý 
experimental impulse response data. As the method uses the time-domain version of 
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system response data, in form of the Impulse Response Function, its application is 

limited to models incorporating viscous damping only. This is because hysteretic 0 CP 
damping model presents difficulties for a time-domain analysis. A set of impulse 0 
response data is normally obtained by applying the Inverse FFT to a set of FRF Z. 

measurements, as shown in (Figure 3.1). 

Figure 3.9 shows the analytical expression used by CE curve-fitting. Also pointed out I 
in Figure 3.9 is the leakage (wrap around error) caused by the inverse FFT, which rý 0 
distorts the impulse response data. This portion of the data cannot be used because of 

this error. 

RFP method applies the rational fraction polynomial expression shown in Figure 3.10 

directly to an FRF measurement. Its advantage is that it can be applied over any C, 
frequency range of data, and particularly in the vicinity of a resonance peak. 

Rational Fraction Polynomial Method 

Rational Fraction Form 
m 

Partial Fraction Form 
v/2 

+ I, 

xgw h-I 

Pk=e pole 

rk. =residue for e pole 

Figure 3.10. Alternate curve-fitting forms of the FRF [71] Cý 

Most other MDOF methods require that additional computational modes are used in 

order to compensate for the residual effects of out-of-band modes in the curve fitting 0 
frequency band. With some methods, these computational modes can often cause the 
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parameter estimates of the modes of interest to be in large error if the right number of 

computational modes is not used. Choosing the right number of computational modes 

can be a trial and error process. The RFP method, on the other hand, allows the use of 

additional numerator polynomial terms as a means of compensating for the effects of 

out-of-band modes. The use of these extra terms still permits the accurate estimation 

of the modal parameters of interest, and is, in general, a more fail-safe means of 

compensation than the use of computational modes [7 1 ]. 

3.3.3.3 Global and Multi-Reference methods 
In local curve fitting methods natural frequencies and damping factors are performed 

on each of the individual FRF, however to obtain mode shape information a further 

stage of processing is required. Mode shapes are calculated through a combination of 

the individual eigenvector elements as modal constants. To anticipate this further 

stage of processing recent curve-fitting procedures capable of performing a multi- 

curve fit instead of working with individual curves, have been elaborated. In other 

words, they fit several FRF curves simultaneously, taking due account of the fact that 

the properties of all the individual curves are related by being from the same structure. 

A way in which a set of measurement FRF curves may be used collectively, rather 

than individually, is by the construction of a single composite FRF by adding several CP rý 
FRFs. Hence, from Eq. (3.9) it derives: 

N 
EZ,. 

aik ((')) =Z 
(C 

(3.10) 
týr2 _ C92 +j 17" 1) ik r--l 

wl- 

These techniques are referred as Global and Multi-Reference methods. Both time 

domain (RFP) and frequency domain (CE) methods are amenable to the expansion to 

multi-curve analysis. 

3.4 The design of a half-wavelength bar horn 

Vibration theory, FEA and EMA are now applied to the design of the longitudinally Cý 

resonant cylindrical bar horn shown in Figure 3.11. Ultrasonic systems often employ r) 
tuned bar horns which either operate as working, tools or transmit vibrations to other 45 

tuned components. 
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Piezoelectric transducer 

Figure 3.11. Half-wavelength bai- horn screwed into transducer l 

In the design of ultrasonic systems it is usual procedure, firstly, to calculate the modal 

parameters of the vibrating components via FE modelling, and subsequently to 

perform an EMA in order to confirm the predictions. However. the design of' units 

with basic geometries can rely on mathematical formulas. 

The requirements for the bar horn design are such that it responds in the first 

longitudinal mode of vibration at 35 kHz excitation frequency, and the used material 

is aluminium. 

3.4.1 Calculation of the tuned length 

The calculation of the tuned lenth and axial stress distribution of a cylindrical bar 

hom of unspecified tuned frequency and material is now derived [ 16]. Assuming free 

boundary conditions, isotropic material and no internal losses. the equation of motion 
for lonaitudinal waves propagating in the longitudinal direction is: 1: 1 tý zn -- 

II 

a, u 
= (SV) , 

a2u 

at' a 
-Y 

2 (3.11) 

where SV is the velocity of sound in the material and u is the displacement in the x 

(longitudinal) direction. The solution of Eq. (3.11) is of the type: 47- 

u= (A, e- iki +Ae"-)e jot -u(x)e"" (3.12) 

where A/ and A, are constants, o) is the angular frequency of the vibrations and k is the 

wave number 

k= 0) (3.13) 
sv 
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where the velocity of sound is given by the root square of the Young modulus of the 

CE. 
material divided by the density, SV 

Considering only the time-independent solution of Eq. (3.12), and given stress-free C> 0 
boundary conditions at the bar ends: 

du(x) 1 
x=O = () dx 

du(x) 
dx 

the displacement function results: 

u=u,, cos(kx) 

(3.14) 

(3.15) 

where u,, is the maximum displacement at the ends. Combining Eq. (3.13) and (3.15) 
0 

the tuned length of the hom results: 

kl=; r or 1= ;r= mc 
= 

SV 
(3.16) 

k co 2f 

where w= 2; rf. 

Eq. (3.16) is valid for diameter (D) length ratios such that Dll: ý 1. Hence, substituting C' 0 

the tuned frequency value, f= 35 kHz, and the velocity of sound in aluminium, SV -= 
5600 m/s, in Eq. (3.16), it results 1= 80 mm. Where 1 is the tuned length of the 

cylindrical bar hom resonating in the first longitudinal mode. Cý 0 

The stress associated with the longitudinal wave propagating in the hom can also be 
000 

derived. The longitudinal stress distribution is related to the strain as shown in the 

well-known equation below: 

a(x) = -Ee(x) =E 
du(x) 

dx 
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CE 
Usina SV where p is the specific mass of the resonator material, the stress C) 

equation results as follows: 

a(x) = -ctrcu,, sin(kx) . (3.18) 

r 

Figure 3.12. Displacement and stress distributions in the longitudinal mode 

Figure 3.12 shows the stress and displacement distribution along the cylindrical hom 0 
axis derived from Eq. (3.16) and (3.18). 

Analytical solutions for the design of bar-type resonators characterised by variable 

cross sections, producing amplitude gains towards the smaller face, can also be 
00 

derived [12-15]. 

45 

Figure 3.13. Tapered concentrator [ 12] 
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For the sake of completeness, the equations for calculating the tuned lengths of 0 
concentrators in longitudinal half-wave resonance in the form of conical, exponential, 4D 
and catenoidal homs are now provided. 

Calculations are conducted using, the annotations in the literature [12]. The equation Z, 
of motion of the highlighted layer of the generally tapered resonator shown in Figure 

3.13 is: 

pSdxýEu a 
=LSdx+T'S- adx at2 ax A 

The boundary conditions for no external load arc assumed: 

du(x) 
T- 

(3.20) 

du(x) IA-1 

dr 

After substituting the expressions of the cross section variations along the axis of each 

considered hom profile, the tuned lengths of the three concentrators result: 

for half-wavclength conical hom 

for half-wavclcngth cxponcntial hom I 

I=ým (3.2 1 
2 ;r 

+w-6, 
/) 

/R2 (3.22) 

1(, /4--2 

for half-wavelength catenoidal horn I =1 
y2 . 1)2 + (A 7-ch( 

%R2 W 
(3.23) 

21 ff 2 

E Where A -Cr-ý is the length of the longitudinal wave travelling in a hom with 
fý 
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constant section. Figure 3.14 shows the stress and displacement distributions derived 
for the modelled concentrator profiles. 

From the point of view of achieving large values of amplitude gains, for a given ratio 0 &ý 

between the input and output radius, the catenoidal concentrator offers a more 
beneficial solution compared with the other profiles. However, higher stresses arise in 

such concentrator configuration, which can be responsible for component fatigue 
failure. Amplitude gain and tolerable stress are the principal factors to account for at 
the design stage of ultrasonic components. Cý 0 

Conical 

Exponential 

Catenoidal 

Figure 3.14. Derived stress and displacement distributions 

3.4.2 The FE model 
FEA is a computer-based methodology used to model static and dynamic behaviour of 
solids and fluids. Nowadays FEA is regularly performed to determine the vibration 
characteristics of ultrasonic systems and assembly prior to machining. The FE model 
is composed of many small elements, each of these mathematically described by a set 
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of equations. In vibration analysis, the solution to this set of equations allows 
prediction of the resonator's natural frequencies, mode shapes and associated stresses. 
The main steps for the FE modelling of the half-wavelength bar hom are now Zý ZP 

described. Ile FEA pro-ram used for this simulation is ABAQUS which interfaces 0 
with PATRAN, a CAD-like pre-processor that aid in constructing the model geometry z; 1 
and the mesh. Displacements or an other degree of freedom are directl calculated at y0y 
the intersections of each element called nodes. At any other point in the element, the 
displacements are obtained by interpolating from the nodal displacements. The rP 
elements must be sufficiently small that the solutions for the natural frequencies 

converge. 20-nodcd brick (Hex2O) and 15-noded wedge (Wed 15) elements are used in 

the simulations carried out in this thesis. 

First, the geometry of the cylindrical bar hom is defined using the tuned length 

determined by solving Eq. (3.16). Iben, small elements describing the hom geometry 

are created. The required number of elements is determined through a study of 

convergence of modal frequencies. Figure 3.15 illustrates the frequencies of three bar 

horn modes predicted against the number of elements meshed along the axis of the bar 

horn. The first longitudinal, first bending and first torsional modes have been chosen 
as they are membcrs of the three modal families excitable in the bar horn. The 
incorporation of a minimum of six elements along the horn axis is predicted to 

guarantee convergence of the considered natural frequencies. In particular, the 

predicted longitudinal mcAe frequency occurs at 34.9 kHz, proving that Eq. (3.16) 

provides a good estimate of the tuned length. Further, Figure 3.16 shows that the 
frequency of the modes characterised by bending and torsional motions arc also 
dependent on the elements meshed around the hom circumference. Again at least six 

elements along the circumference are required to guarantee frequency convergence. 
7be bar hom, being symmetric about the axis, could be modelled with a 2D mesh. 
11owcvcr, while modelling only a 2D section of the resonator will save modelling and 

computing time, it also limits the FEA results, since asymmetric modes may not be 

extracted. Hencc, a limited FEA model that precludes these modes can lead to 

uncxpccted problems when machined. Therefore, a 3D bar horn incorporating 224 

elements (14 in the axial direction, 8 along the circumference and 2 radial) is 

modelled (Figure 3.17). A lower number of elements would assure convergence of the 

natural frequencies at the expense of mode shape definition. 

48 



Chapter 3: Methodology for Vibration Characterisation of Ultrasonic Dmces 
Z-- 

1 st Long. mode -*-- 1 st Bend. mode --0-- 1 st Tors. mode 
400W 

36000 

32000 
2 al Z') ci 28000 
cc 
4) 4) 24000 
Z im 

20000 

160D0 LL c 

(0 12000 

80D0 
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Figure 3.16. Mesh convergence around the circumference 
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Figure 3.17. Bar hom FE model 
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Figure 3.18. Mode classification by FE model of the bar horn 
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The three mode types available from this simulation are presented in Figure 3.18: 

longitudinal (L), torsional (7) and bending (B). Modes are classified by the above 
descriptors preceded by the harmonic number. 

The stresses associated with the operating longitudinal mode of the horn model are 

shown in Figure 3.19. The highest stressed section coincides with the displacement 

node. 

qngth 

Min Stress 
F- 

Figure 3.19. Longitudinal mode at 35 kHz: relative stresses 
Max Stress 

3.4.3 The experimental set-up 
An experimental validation of the predicted modal parameters (natural frequencies 

and mode shapes) is now required to assess the accuracy of FE model. Since empirical 

stress data is usually not available, stress cannot be directly validated. However, the 

FE stresses will not be correct if the predicted mode shapes are not validated, as stress 
depends on the amplitude gradient. The inability to verify predicted stresses is not a 

major issue, in fact the purpose of performing model stress simulations is not 

concerned with determining absolute stress values. Generally, it is important to know 

if the stresses have improved between successive FE models and not the exact values. 

This is especially true where the fatigue properties of the resonator material are 

unknown, in which case the resonator life cannot be predicted anyway. 

Figure 3.20 shows the experimental configuration used for the modal testing of the 

investigated aluminium bar horn manufactured in accordance with the FE model 
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dimensions. A function generator connected to a power amplifier drives the 

piezoelectric transducer connected to the bar hom. 

c) Transducer 1 /9 1<<II d) 3D LDV 

Ultrasonic bar horn 

e) 8 Input Channel 
Signal Analyser 

a) Function ----------- to output I 
Genei 00001ýI 

b) Signal Amplifier Computer 
(LMS) 

Figure 3.20. Experimental set-up for EMA 

The responses of the ultrasonic systems are then measured in the Cartesian x, y and z 

coordinates by means of a 3D laser Doppler vibrometer (Polytec 3D LDV), allowing 
both in-plane and out-of-plane responses to be measured. Finally, a multi-channel data 

acquisition analyser connected to a portable computer, enables calculation of the 

FRFs from the identification of the excitation signal and responses, and via signal 

processing software. 

3.4.3.1 Function generator and amplifier 

The signal to excite the ultrasonic bar horn is in the form of a sine wave provided by 

the function generator (TTi TG550), shown in Figure 3.21(a). Fast sweeps of the 

excitation frequency over a 0-45 kHz range are performed. The TTi TG 550 is a 

precision 5 MHz function generator capable of generating waveforms of sine, triangle, 000 

51 



Chapter 3: Methodology for Vibration Characterisation of Ultrasonic Devices 

ramp, pulse and DC. The frequency range is 0.005 Hz to 5 MHz selected by a seven 

decade range multiplier and calibrated vernier. The generator output level is 20 V pk- 

pk. Internal sweep rates of the excitation frequency are adjustable from typically 20 

ms to 20s. The excitation signal is amplified by the LDS PA 25E amplifier illustrated Cý 
in Figure 3.2 1 (b), which exhibits a harmonic distortion below 0.3%. Z-1 

(a) 

.4 

h) 

3.4.3.2 Piezoelectric transducer 

Ultrasonic transducers convert electrical power to mechanical vibrations by means of 
internal piezoelectric ceramics (PZT). PZTs are chemically inert materials, which 
have the characteristic of deforming when exposed to an electric field. In particular. if 

a piezoelectric ceramic element is exposed to an alternating electric field changes 
dimensions cyclically, at the frequency of the field. 

Most high intensity ultrasound applications, such as ultrasonic cutting, require half- C 
wave length longitudinal transducers with resonant frequencies between 20 kHz and . 11 Cý 
60 kHz. Figure 3.22 (a) shows a commercial 35 kHz longitudinal mode transducer 

I Z' 
(Martin Walter: MW 800) which is connected to the bar horn via a threaded stud. A 

schematic of the transducer and its internal elements is shown in Figure 3.22 (b). 

Piezoelectric ceramic disks (1) constitute the core of the transducer. Electrodes (2) are 

used on both sides of each ceramic disk to apply the alternating voltage which causes C L- 

it to expand and compress along the axis of the transducer. Several disks are used to : _I 

increase the movement -enerated. Using an even number of disks ensures that hiah tý CI 

voltage is applied only within the stack and both ends can be at zero volts. The 

ceramic disks are clamped together through the centre of the transducer by a clamping I Cý -- 
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bolt (3). To prevent them from cracking they should be kept under compressive stress 

even when the transducer is stretched to its maximum. 

(a) (h) 

_ 

(I) (2) 

Figure 3.22. (a) Piezoelectric Transducer (MW 800), (b) composition of the transducer 

3.4.3.3 3D laser Doppler vibrometer 

Laser Doppler vibrometers (LDV) are based on the principle of the detection of the 

Doppler shift of coherent laser light scattered from a small area of the test object. The 

object scatters or reflects light from the laser beam and the Doppler frequency shift is 

used to measure the component of velocity which lies along the axis of the laser 

beam. 

As the laser light has a very high frequency ly (approx. 4.74 xIO' 4 Hz), a direct 

demodulation of the light is not possible. An optical interferometer is therefore used 

to mix the scattered light coherently with a reference beam. The photo detector 

measures the intensity of the mixed light whose frequency is equal to the difference 

frequency between the reference and the measurement beam. Such an arrangement is 

shown in Figure 3.23. 

Figure 3.23. Schematic of a Michelson interferometer [Polytecl 
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A laser beam is divided at a beam splitter into a measurement beam and a reference 

beam which propagates in the arms of the interferometer. The distances the light r) 

travels between the beam splitter and each reflector are xR and xm for the reference 

mirror M and object 0 respectively. 

The corresponding optical phase of the beams in the interferometer is: C) 

Reference OR = 2kxR 

Measurement Om = 2kxm 

with k= 2zlAl. One usually defines 0(t) = OR - Om 

The photo detector measures the time dependant intensity I(t) at the point where the 

measurement and reference beams interfere. 

IRIm Ref + 2KýIRIm Rf cos(2. nfot + 0) 

Where IR and Im are the intensities of the reference and measurement beams, K is a 

mixing efficiency coefficient and Rf is the effective reflectivity of the surface. 

The phase 0=4; r AL /I where AL is the vibrational displacement of the object and the 

wavelength of the laser light. 

-a 

Displacement 

Figure 3.24. Light intensity 0 
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If AL changes continuously the light intensity 1(t) varies in a periodic manner as 00 
shown in Figure 3.24. A phase change 0 of 2; r corresponds to a displacement AL of C) 0 
1/2. The rate of change of phase 0 is proportional to the rate of change of position Cý 0 
which is the vibrational velocity V of the surface. This leads to the well known 

formula for the Doppler frequency, fD =2 V//11.. 

Due to the sinusoidal. nature of the detector signal, the direction of the vibration is 

ambiguous. There are two ways to introduce a directional sensitivity: 

" Introduction of an optical frequency shift into one arm of the interferometer to 

obtain a virtual velocity offset. 

" Adding polarization components and an additional photo receiver in such a 

way, that at the interferometer output a second homodyne signal occurs being C) 
in quadrature to the primary photodetector output. 

1D LDVs are commonly used to measure the out-of-plane component of the vibration 

velocity on the surface of ultrasonic units. The importance of mode shape 

characterisation is crucial in vibration analysis of ultrasonic systems. Hence, the 
detection of a single velocity component at each measurement point is not ideal, 

especially for investigating complex assemblies. A device able to measure in-plane as 

well as out-of-plane vibration velocities is therefore required. 

In modal testing of the bar hom, a 3D LDV is used to perform non-contact 

measurements of the surface vibration velocity in three mutually orthogonal axes. The 

measurement apparatus shown in Fi(,, Ure 3.25 is a Polytec CLV-3D LDV. The system 

comprises a three-channel controller unit coupled to an optical sensor containing three 

independent optical systems, all focused to the same measurement point. The 

individual vibration components lying along the three respective laser beams are 

available as analogue outputs. Most importantly, a geometry-calculation module 

generates true V, VY and Vz analogue outputs in real time, and can process vibration 
frequencies as high as 250 kHz. The optical sensor contains the optical components of 

three independent sensors. Each output laser beam is inclined at a 120' angle with 

respect to the surface, but from three slightly different directions. A 120' angle is 

small enouah to allow the sensors to collect enou-h back-reflected liaht to make hiah- Cý 4D 0 CP 
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quality measurement. but still large enough for good sensitivity to the in-plane 

vibration components. 

Figure 3.25. The Polytec CLV-3D laser vibrometer and a modular controller unit 

VI 
CLV-3D 

Laser Vibrometer V, - 

Figure 3.26. Top view of the probe beams and the coordinate system 

vt 

CLV-3D 
Laser Vibrometer 

Figure 3.27. A side view of the sensor 

Figure 3.26 and 3.27 show how the three beams converge into a measurement point. 

The CLV-3D sensor generates three laser beams: top, left and right, which measure 

components V, V, and V, respectively. When the sensor is pointed at a surface 

vibrating in three directions V., V and V, the true x- and z- components can be 
Z-1 Y 

calculated using these relations with reference to Figure 3.26, 

V, = V, cosO+V,, sin 0 and V, = V, cos 0+V,, sin 0 
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V, =(V, +V, )/2cosO and V, =(V, -V, )/2 sin 0 

Similarly, viewing the sensor as in Figure 3.27, the true y-component is calculatcd 

using, 

V, = V, cos 0+ Vy sin 0 

(V, - V, cos 0) / sin 0. 

3.4.3.4 Multi-channel signal anal. ilser 

The measured signals (three-velocity responses and excitation force) are then 

collected and processed via FFT algorithm in the multi-channel signal analyser 

(SignalCalc 620) shown in Figure 3.28 (a). L_ Z:, 

(a) (hý 

Figure 3.28. (a) Si, -, iiai (1)) COIIIJAIICI- 

Transfer functions between each velocity component and the excitation force are 

available so that three FRFs (mobility) are provided for each measured point. The 

resolution adopted for the derivation of the FRFs from the raw signals measured on 

the horn surface is 12.5 Hz. 50 FRF averages are performed at each measurement 

point in order to eliminate disturbances. A Hanning window is also used to avoid the 

problem of leakage due to non-periodic signals. C) Cý 

3.4.3.5 Computer software 
Measurements carried out on the bar horn, after being processed via SignalCalc 620, Cý 
are curve-fitted in a modal analysis software (Star Modal) installed on a portable 

computer (Figure 3.28 (b)). Star Modal allows identification of modal parameters via C, 
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curve-fitting, procedure including single DOF and multiple DOF time and frequency C) C) tý 
domain methods. The computer also constitutes the bench work from which all the 

operations are coordinated. 

In the experimental investigations carried out in this thesis, another software for 

modal analysis, LMS, which interface with another brand multi-channel analyser, 

Scadas, has been used. LMS presents similar specifications to Star Modal with the 

main difference that it runs on a workstation. Also, in the tests performed with LMS 

the used signal is a random signal generated by the Scadas analyser, and not by the 

function generator. 

3.4.4 Experimental validation by EMA 

The measured mode shapes of the IL mode and IB mode shown in Figure 3.29 reveal 

good agreement with the corresponding modelled deformations (Fig. 3.18). A 

comparison of the EMA and FE frequency evaluations is presented in Table 3.1. A 

4% maximum difference between the measured values and the FE values is estimated. 

A major factor because of which a difference between FE and EMA data occurs, 

stems from the free boundary conditions assumed in the FE simulation. Conversely, 

measurements are performed the real horn is fixed to the transducer. Also the FE 

predictions have been performed in hypothesis of elastic behaviour, however no real 

structure behaves as a linear model. 

IB = 9923 Hz 

LU Lt H TT L»JTTLH 
1L = 34932 Hz 

Figure 3.29. Measured mode shapes 

It can be seen that FEA predicts the existence of some modes of vibration which are 

not measured in the tested resonator. These are bendinc, and torsional modal 0 
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frequencies. Although these modes exist, they are not easily excitable by a C 
longitudinally resonant transducer and are, therefore difficult to detect by EMA. 

Blade Natural Frequencies (Hz) 

Mode Finite Element 
Analysis (FEA) 

Experimental Modal 
Analysis (EMA) Error (%) 

IB 9690 9923 -2.3 
IT 21680 - 
2B 24250 23971 1.1 

_ IL 35290 34932 -1.0 _ 3B 42610 - - 
2T 43360 45229 -4.1 

Table 3.1. Bar horn mode frequencies in the range (0-45 kHz) 

3.5 Conclusions 

This chapter has presented the main concepts of EMA technique for vibration 

characterisation of structures. The main stages pertaining to modal testing: FRF C, 0 

measurement techniques and modal parameter estimation methods have been 

described. 

To conclude, the vibration behaviour of a half-wavelength bar hom is characterised by C) 

EMA and FEA. A good correlation between the predictions and measurements of the 

modal parameters demonstrates that a combination of FE modelling and EMA 

constitutes a powerful tool in horn design. 
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CHAPTER 4 

THE DESIGN OF ULTRASONIC CUTTING BLADES 

4.1 Introduction 

Cutting of food products with ultrasonically assisted tools has demonstrated 

significant benefits including reduced wastage and improved cut quality. Hence, tools ztý I= C7 
for cutting of food products have largely been proposed in the last decade [2,5], where Zý z: 1 

industries have sought to address the problems of blade stall and product waste 

associated with conventional cutting techniques. For successful operation and relative zn 

ease of tuning, many food slicers rely on integral tuned blades to achieve the required 

depth of cut. 

Figure 4.1 shows a tool steel blade used in cutting food products tuned to the first Cl L- 

lonaltudinal mode at 35 kHz. The cutting knife has to be thin and lono, enou-h to meet Z-- I'-- Z-- LI 

the depth cutting requirements of the product. A vibration amplitude of 60-70 ýtm at 

the blade tip has been found to be required to ensure an effective cutting operation. L- 

Since ultrasonic transducers are not capable of delivering such high amplitudes, Zý L- 
amplitude -am is designed into ultrasonic blades by tapering of the their profiles. Z- LI 
Depending on the depth of the material, half-wavelength or wavelength blades are 

employed. 

Cuft ng knife 

Figure 4.1. Half-wavelength ultrasonic blade 

This chapter investigates the operation of a range of high power ultrasonic blades Z-- L, tl 
capable of cutting confectionary material in order to provide design strategies to Cý LI 
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enhance system performance by reducing the effects of modal coupling and proposing 

component geometries which result in reduced stress levels. Blades with a gain 

between six and eight are examined. However, the outcomes of this study are useful 

in the design of cutting tools characterised by different amplitude gains. 

4.2 Half-wavelength blades with built-in amplitude gain 

Series of half-wavelength blades just like the one shown in Figure 4.1 are used to cut 

confectionary material on a production line, as illustrated in Figure 4.2. The tuned 

length of this blade type is 80 mm, and seven is the built-in amplitude gain factor. The 

tuned unit consists of a cutting knife, which length depends on the depth of the 

confectionary material, brazed on a cylindrical holder. Two symmetric arcs, whose 

chord length is equal to the cylinder diameter, define a2 mm thick knife section 

(Figure 4.3). Hence, the material to be cut is compressed to such an extent as to enable 

it to pass through the blades. The blade dimensions are obtained via FE modelling. 

FEA allows fast calculations of blade tuned lengths which would otherwise result 

rather difficult to derive by solving analytically the partial differential equations of the 

profiles [ 12-151. 

Figure 4.2.15 blade cutting system [photo provided by Nestle' P. T. C., York, UK] 
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2 

4.2.1 Stress distribution 

Figure 4.4 shows the mode shape of the tuned longitudinal mode and the associated 

stress distribution, predicted by the blade FE model. As expected, maximum stress 

occurs at the section of transition from one diameter to the other, the step (or 

shoulder) which is the location of frequent failures. Great care must be taken when 

machining these parts, since any notch from damage or from poor design or 

machining in the nodal region will create stress raisers causing metal fatigue and 

almost guaranteed failure. Furthermore, the distributions of the normalised stress and 
displacement along the blade axis, illustrated in Figure 4.5, highlight that the 

longitudinal node is positioned at the blade step, thus maximising the stress at that 

location. 

Figure 4.4. (a) Blade first longitudinal mode (operating mode) at 35.0 kHz, 
N stress contours 
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Figure 4.3. Blade dimensions 
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Figure 4.5. Predictions of normalised stress and displacement 
distribution along the axis of the half-wavelength stepped blade rý L- 

4.2.2 Redesign of half-wavelength blades 

Frequent fatigue blade failures have limited the exploitation of ultrasonic cuttino 

using thin stepped blades. Therefore, there is a requirement for redesigned blades that 4- 
deliver the necessary operating amplitude at the tuned frequency under lower stress Z-- 
conditions. A profile redesign strategy is undertaken here in order to reduce stress at Z:, 4-- 

the blade step. Design is carried out using FE modelling and EMA. The creation of L- L- Z: ý 

alternative blade models is performed with the aim of reducing stress while preserving 

a minimum knife length necessary to cut through the material depth. Table 4.1 shows Z:, 4-- 
seven models of alternative blade profiles tuned at 35 kHz. 

Blade I (original design) 4-- -- 

Blade 4 

Blade 5 Blade 6 Blade 7 

Table 4.1. FE models of alterriative blade profiles 

-i ± t________ 
ii 

TT 

--- 

I r, 
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Figure 4.6. Predicted maximum stress for alternative blade profiles 

All the blades are designed with smoother section reduction in order to reduce the =1 
stress level at the failure location. The redesigned blades 2-5 exhibit catenoidal, C> 
conical, exponential, and a combination of catenoidal and conical shoulder tapers, 

respectively. For these models the redesi( gn approach does not alter the cutting knives, 0 
whereas cylinder lengths are adjusted in order to offset the tuned frequency shifts due 

to the step modifications. Conversely, the cutting knives of blades 6 and 7 are 0 
characterised by a slight section decrease, in order to preserve the tuned frequency, C) 

and are therefore longer. In particular, blade 7, which exhibits the steepest knife taper, 

is the longest. Tapered knives do not affect the cutting performance, but rather, 
facilitate tool insertion in the material. All the redesigned blades are predicted to 

exhibit lower stress at the step than the original design (Figure 4.6), thus, validating 

the assumption that a less steep section reduction results in lower stress. In particular, 
blade 6 and 7, with tapered cutting knives, are predicted to operate under significantly 

lower stress conditions. Slight variations of the blades' gains due to the geometric 

alterations, are also predicted for the modified models. 

4.2.3 FEA and EMA comparison 

A choice of blade model to manufacture is between blades 6 and 7. Blade 7 has the 

advantage of offering the lowest stress but at a cost of higher modal activity. In fact, C) 0 
many bending modes, associated with the longer knife, are predicted for blade 7 in the 

3040 kHz frequency range, with some of them very close to the tuned mode at 35 rý 
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kHz. Hence, the excitation of a multi-modal response at the operating, frequency, with Z. 

consequent reduction of the blade performance, is expected to arise with blade 7. An 

additional mode or even modes beina excited simultaneousl , is called modal Cý y 

coupling;. On the other hand, the FE model of the shorter blade (blade 6) predicts the 

modal frequencies to be well separated in the operation frequency range. As a result, 

Blade 6 is manufactured as a good compromise of low stress and modal activity. 

An EMA of blade 6 mounted on the piezoelectric transducer is carried out in order to 

validate the modal predictions. 3D LDV is used to measure vibration velocities at 

several locations on the blade surface. Figure 4.7 shows the sum of the FRFs 

measured on the blade-transducer stack obtained by random excitation test in the 

frequency range 0- 50 kHz. Agreement between the FEA and EMA data is within 6.3 

% for all modes up to 50 kHz (Table 4.2). Figure 4.8 illustrates the blade modes Z: - 

predicted by finite element analysis alongside the corresponding modal analysis C) 
measurements. The blade exhibits responses in three mode families: torsional (Figure 

4.8 (a, e) and Figure 4.8 (c, g)), bending (Figure 4.8 (b, f)) and longitudinal (Figure 4.8 

(d, h)). 

c3 0 

0 

0 

0 

z 

0 

I. 

I 

(Hz) 
Figure 4.7. Sum of the FRFs measured in the transducer-blade stack 
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Blade Natural Frequencies (Hz) 
Finite Element 
Analysis (FEA) 

Experimental Modal 
Analysis (EMA) 

Error (%) 

1418 - - 
6635 6626 0.1 
7137 6990 2.1 
8225 7971 3.1 
16824 17463 -3.7 
21435 22286 -3.8 
25934 24325 6.2 
28796 27202 5.5 
34276 33256 3.0 
36117(*) 35628 1.3 
37358 37990 - 1.7 
38181 38278 -0.3 
41634 41045 1.4 
43245 42320 2.1 
48756 47416 2.7 

Tuned Ion-itudinal mode C 
Table 4.2. Blade mode frequencies in the range (0-50 kHz) 

(a) 
T Tn 

f 7137 Hz 6990 Hz 

16824 Hz 17475 Hz 
(C) (g 

MT-iTTIP: 

f 21435 Hz 22287 Hz 
(d) 

f= 36117 Hz 35628 Hz 

Figure 4.8. Blade modes of vibration: (a-d) FE modal data, 
(e-h) 3D LDV EMA data 

4.2.4 Transducer influence on the blade modal behaviour 

Alongside the blade modes predicted by FEA, highlighted with the squares (0), the 

spectrum of Figure 4.7 exhibits a number of resonances which require some further 

explanation. Analysis is therefore carried out of the mode shapes of such resonances, 

identified with circles (X) and crosses (0). 
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Figure 4.9 (a-b) shows two mode shapes which, at first glance, seem to resemble the 

I" in-plane bending mode and the 2 nd out-of-plane bending mode of the blade (where 

the reference plane is the knife plane). These blade modes, however, have been 

predicted and measured in good agreement at 8.0 kHz and 6.6 kHz, respectively, and 

are shown in Figure 4.9 (c, d). 

f 4501 Hz (b) f 5359 Hz 

(C) f= 7971 Hz (d) f 6626 Hz 

Figure 4.9. Measured modes of vibrations of the transducer-blade assembly 

Careful inspection of the shapes of the modes occurring at 4.5 kHz and 5.4 kHz shows 

an involvement of the transducer in the bending motion of the blade. Hence, these 

natural frequencies (X) are associated with two modes of vibration of the entire blade- 

transducer stack and for this reason are not predicted by the FE model of the blade. 

These blade-transducer modes cannot be ignored, and must be included in the 

analysis. 

"0 

Figure 4.10. Sum of the FRFs measured on the transducer alone 
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To understand the nature of the modes corresponding to the remaining peaks (0) of CP 0 
the spectrum, a modal analysis of the transducer with no blade attached is performed. 
Figure 4.10 shows the sums of the FRFs measured on the transducer on its own. The 

transducer natural frequencies identified by dots (e) occur at frequencies very close to 

the peaks labelled with circles (0) measured for the transduccr-bladc assembly 

(Figure 4.7). 

The mode shapes of the transducer alone and the transducer-blade system are shown 

in Figure 4.11. The modes associated with the transducer-blade system (Figure 4.11 
C, 0 

(e-h)) exhibit the same transducer deformations as in the modes detected for the 

transducer alone (Figure 4.11 (a-d)). Hence, it is straightforward to associate the 0 
peaks grouped with circles (0) in Figure 4.7 with the presence of the transducer. 

From these findings, the choice of transducer is a key factor in the configuration of 

ultrasonic systems, as transducers tuned to the same frequency provided by different 

manufacturers have a different contribution to the vibration behaviour of the 

assembly. 

Transducer Transducer 

7 

(a) f 15666 Hz 

7 
Blade 

(e) f= 15635 Hz 

(b) f 18494 Hz Mf 19801 Hz 

(C) 

it 

f 25560 Hz (g) f 25462 Hz 

(d) 

7 7- 7 

f= 44650 Hz 

nTI I K' 
-0 

(h) f= 45987 Hz 

Figure 4.11. Transducer and corresponding transducer-blade measured modes of 
vibration 
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4.3 Wavelength blades with built-in amplitude gain 

For cutting operations requiring greater depths of cut, wavelength blades are usually 

used. Figure 4.12 shows a wavelength blade designed to resonate in its second 
longitudinal mode of vibration at 35 kHz. The unit is 167 mm long, and is 

manufactured from tool steel. The knife holder is shaped as a half-wavelength stepped 
horn which transfers the vibration from the transducer to the cutting knife. In order to 

deliver the required amplitude at the knife tip, the holder is designed to provide a gain 

factor of two. The half-wavelength cutting knife is characterised by a tapered profile 

which supplies a gain factor of three to the vibration amplitude provided by the 

holder. The constant reduction of the section thickness of the knife from 2 mm at the 

holder interface to 0.6 mm at the tip also facilitates tool insertion in the material. 

4.3.1 Stress distribution in a one-wavelength blade with built-in amplitude gain 

Figure 4.13 (a) shows the predicted mode shape of the tuned second longitudinal 

mode of the blade. The two nodal points of zero displacement are indicated in the 

figure. 

(b) tress 
T- -T- - F- -M 

Mai7x7Stress mon Max Stress 

Figure 4.13. (a) Blade second longitudinal mode (operating mode), 
(b) Second longitudinal mode at 35.0 kHz: relative stresses 
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The stress associated with such motion (Figure 4.13 (b)) reveals that the highest 

stresses of the blade occurs just after the step of the knife holder and near the middle 

section of the cutting knife. 

Moreover. the distributions of the normalised stress and displacement along the blade 

axis, shown in Figure 4.14, show that the maximum stresses occur in the vicinity of C 
the nodes. The maximum stress predicted for the wavelength blade proves to be only 1 
45 % of the maximum stress calculated for the original half-wavelengath blade (blade 

1) described in section 4.2. In fact, the tapered profile allows the knife to operate 

under reduced stress at the expense of a low gain. However, the stepped holder L- 

provides the additional gain needed to achieve the required amplitude at the knife tip. L- 

1. j 

:AsTR Elr- Z, 

--------------------- --- 

-0.5 
31c c. 03c. -, G01s 

DI ES 77AN CE 

Figure 4.14. Predictions of normalised stress and displacement 
distribution along the axis of the one-wavelength stepped blade 

Despite the advantages of offering greater depths of cut under low stress are 

characterised by a large number of modes, many predicted with frequencies in the 
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vicinity of the longitudinal mode. Hence, a sensitivity analysis is conducted of 

frequency sensitivity to blade profile parameters, in order to avoid modal coupling 

with the tuned mode. 

4.3.2 Mode shapes classification 

According to the nomenclature commonly used for the mode shapes of beani-like zn 
structures, the blade modes of vibration are classified by the harmonic number and the 

type of motion. The three translation degrees of freedom used as reference for the Cý 
blade model are illustrated in Figure 4.15. The bending modes can occur in the x- 

direction, x-y plane, therefore named B, modes, and also in the y-direction, y-z plane, 

therefore named By modes. Torsional modes occur around the z-axis, therefore called 

T, -modes. The longitudinal modes occur in the z-direction, are hence named the L, C 
modes. Figure 4.16 shows the respective first and second mode of the two bending 

torsional and lonaitudinal modes of the blade. Z- 

Figure 4.15. Blade model and reference coordinates 

4.3.3 FEA and EMA compatison 

An EMA of the wavelength blade attached to the piezoelectric transducer is carried 

out in order to validate the FE predictions. Measurements of the out-of-plane and in- 

plane components of the blade surface vibration velocities are performed using the 3D 

LDV. Figure 4.17 shows the sum of the FRFs measured on the blade-transducer 

assembly, where the modes, determined by a random excitation test in the 0- 60 kHz 

frequency range, are identified. A comparison of the calculated and the 
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experimentally obtained modal frequencies shows good correlation (Table 4.3). 

Hence, the FE model is considered for geometry alteration to improve the accuracy of Zý 
the design. In particular. the measured frequency of the 21-z tuned mode results in C! 
very good agreement with its FE prediction, as an error of only 0.0 1% Is estimated. 

Identification of the measured mode shapes is sometimes difficult as modal coupling ztý 
between some modes in the spectrum results in indistinct motions. Such an effect is 

not encountered in the FE predictions where the mode shapes are calculated without 

taking account of coupling effects. Z-- L- 

Modal coupling becomes detrimental for the system performance when involves the 

tuned mode couples with one or more modes. tn this case, from the FE predictions 

and measurements the frequency of the II By mode results very close to the tuned 2L, 

lono, itudinal mode frequency. 
Z-- 

IB d 

y 
L 

2B d 

y 
L 

, mo e z , mo e z 

IB mode 
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2B mode 
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Figure 4.16. Mode classification 
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Blade Natural Frequencies (Hz) 

Mode 
Finite Element 
Analysis (FEA) 

Experimental Modal 
Analysis (EMA) Error 

lBy 410 
2By 1479 - - 

_ lBx 2016 2051 -1.7 
_ 3By 3497 3432 1.9 
_ 2Bx 6212 6219 -0.1 

4By 6418 6383 0.5 
_ lTz 7079 7067 0.2 
_ 5By 9316 9216 1.1 
_ 3Bx 10184 9345 8.9 

6By 11025 - - 
_ 2Tz 14132 14796 -4.5 

7By 15554 15451 0.7 
_ 4Bx 16247 16754 -3.0 

8By 21165 20860 1.5 
_ ILz 22080 23522 -6.1 

4Tz 22516 22115 -1.8 
5Bx 25078 24749 1.3 
9By 25873 25404 1.8 

_ 1OBy 28600 27529 3.9 

6Bx 30184 29630 1.9 
5Tz 30192 30645 -1.5 

2Lz(*) 35268 35263 0.01 
I lBy 35516 35630 -0.3 
6Tz 38415 38956 -1.4 
7Tz 39676 39821 0.1 
7Bx 40836 39756 2.7 
12By 41998 42363 0.8 

_ 13By 44925 44310 1.4 
_ 8Bx 46621 46429 0.4 

8Tz 47146 47419 -0.6 
14By 53002 49758 6.5 
3Lz 53966 51822 4.1 
9Tz 55866 56130 0.5 
9Bx 59818 
Tuned longitudinal mode 
Table 4.3. Blade modal frequencies in the range (0-55 kHz) 

U-1 - 
f= 35263 Hz 

Figure 4.18. Modal coupling between 2Lz mode and I lBy mode 

74 



Chapter 4: The Design of Ultrasonic Cutting Blades cp 0 

Examination of the frequency response (Figure 4.17) in the region of the operating Cý 00 

frequency shows that the I IB, mode corresponds to the response peak at 35.6 kHz, 

whereas the 2L, mode at 35.3 kHz. Hence, the mode shape of the tuned mode 
illustrated in Fi aure 4.18 shows the 11 By mode participation in the Ion gitudinal mode C. ID 

as a result of modal coupling. The IIB motion superimposed on the longitudinal CP Y0 
motion results in hioher stress and therefore shorter life expectancy of the blade. As t) 
the FE modal data correlates well with the measurements, a redesign strategy to 0 
achieve isolation of the tuned frequency based on geometry alterations of the blade 

model is investioated next. r> 

4.3.4 Design modifications 
To adjust the modal behaviour of the blade for isolation of the longitudinal mode, a 0 
sensitivity analysis of the tuned frequency is conducted based on altering blade profile 

parameters. A frequency separation of the tuned mode from close modes by at least -± 
1000 Hz is estimated to be sufficient to remove problems of modal interference and 

mode switching [4], with the latter due to the generator frequency tracking onto the 00 

wrona, resonance. The aim is to identify one or more blade dimensions on which the r) 
coupled mode (IlBy) frequency is highly dependent and the longitudinal mode 
frequency is independent. The other important prerequisite for the redesign strategy is rP 
maintaining the required vibration amplitude. 

4.3.4.1 Stepped holder redesign 

The first considered modification is based on the alteration of the stepped holder of 

the blade. Figure 4.19 shows the geometric dimensions of the original stepped holder. 

The length of cylinder 1 is increased from 38 nun to 63 mm, whereas cylinder 2 is 

, shortened by the same amount to maintain the holder length constant. 

Since a slight increase in the 2L,, frequency occurs for this modification, the length of 

cylinder I is increased to compensate for the variation of tuned frequency. Frequency 

retuning could also be obtained by lengthening cylinder 2 and/or the cutting knife, 

however, in order to maintain a consistent rule, adjustments are only applied to 

cylinder 1. Hence, a length increase of 3 mm. in cylinder I is predicted to retain the 

tuned frequency of the modified blade to the 2L, frequency of the original blade. 0 
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Figure 4.19. Stepped holder dimensions 

Conversely, a 21, frequency decrease is expected when the lengths of cylinders I and 
2 are decreased and increased, respectively. In this case, a length reduction of cylinder 
I from 38 mm to 23 mm. is followed by a further reduction of 9.2mm in order to 

maintain frequency tuning. 

Figure 4.20 shows the predicted mode sensitivities from 3 data points for the 

described len-th alterations of the original model. It can be seen that the alteration of 0 4: 1 
the stepped holder does not have a significant effect on the modal frequencies in the t; ' 

frequency range considered (25-47 kHz), except for the 7T, mode (Figure 4.21) C., C> 

frequency which proves to be appreciably affected by the modification. In particular, 

the 11 By mode, regarded as the dangerous mode due to its vicinity to the 2L, mode, 

appears totally unaffected by the modifications. 

Figure 4.22 illustrates the effects on the predicted tuned mode amplitude using this 

redesign strategy. The longitudinal displacements of the original blade and the 

redesigned models are calculated along the knife axis. The nodal point appears at a 

constant location for the three depicted curves, as no considered alteration affects the 

knife geometry and the tuned frequency is maintained constant for each redesign. The 

longitudinal amplitude is highest for the case the length of cylinder I is decreased to 

23 mm. and lowest for the case in which the length is increased to 63 mm. In 

particular, an amplitude increase of 20.3% and decrease of 12% in comparison to the 
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original blade are predicted. These amplitude variations stem from altering the Cý 0 

stepped holder amplitude gain due to the step repositioning. Z) 

In particular, with the length of cylinder 2 increased, and its cross section being Cý z; ' 
smaller than the length and cross-section of cylinder I the holder gain increases. Cý 0 
An increase of the holder gain enables a higher longitudinal amplitude at the knife tn Cý 

interface to be attained with the result that, for an unmodified knife, the amplitude 

reached at the knife tip is higher. 

( 

6 IOBY 

--C)--6BX 
-x- STz 

-e-2Lz* 
-d-Ilay 

0 6Tz 

--4-7Tz 
7Bx 

f= 39676 Hz 

Figure 4.21. Predicted mode shape of the 7T, mode 
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Figure 4.22. Amplitude variation of the cutting knife 

4.3.4.2 Cutting knife redesign 

Since the alterations of the holder lengths have failed to uncouple the 2L, and II By 

modes another redesign approach is investigated. Modifications of the cutting knife 

are now studied in order to isolate the tuned mode. Figure 4.23 shows the cutting 

knife dimension to be varied. 

F7-2 
LTJ 

A F-L-ength 
of the B 

oe cutting knif 

B 
A sl 

Figure 4.23. Modification of knife length 

Initially, the effects of four variations of the knife length from the original blade 

model are considered. Table 4.4 summarizes these length alterations along with the 
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adjustments of cylinder 1 length estimated to maintain the tuned frequency. The cross- Cý 
sections of the redesi-ned knife at the holder interface and at the tip are kept constant 0 
so that only the total blade length is varied. 0 

Knife length 
a4justament -5mm -3mm 0 (Original Blade) Cý +3mm +5mm 

Effective knife 67mm 69mm 72mm 75mm 77mm length 
Freq. Retuning 

(cylinder I length +2mm +Imm -Imm -1.5mm 
a4justament) 

Table 4.4. Length modification, effective blade length and tuning length ZP r) Z) 

I 

a 1OBy 

-0-68x 
-m- STZ 

-6-2LZ* 
-6-11BY 
--O. -6Tz 
-4- Trz 

00 

Figure 4.24 illustrates the FE predictions of frequency sensitivity to length alterations 

of the cutting knife. It appears that a decrease of the knife length is responsible for 
0 C, 

frequency increases of the bending modes in the 25-45 kHz range. The I lBy mode CP Cý 

frequency is influenced by the length modification. Alternatively, the trend of the 6Tz 

and 7Tz-modes cannot be readily explained, as their frequencies increase and 
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0 t) 

decrease unpredictably with the knife length. A frequency separation of more than 

3000 Hz is predicted on either side of the tuned mode frequency for reductions of the 

knife length between 3 mm. and 5 mm. Figure 4.25 shows a more detailed 
1.,. ) 0 

representation of the sensitivity of the modal frequencies in this region. It can be seen 0 
that the best frequency separation (3200 Hz) is predicted for a length reduction of 3.4 rý 

MM. 

The predicted amplitude sensitivity to these knife alterations is presented in Figure C. 

4.25. The diagram shows small amplitude increases for knife length reductions, 

whereas considerable amplitude decreases are predicted for the knife lengthening. In C. ) 0 
particular for a length increase of 5 mm, the loss of amplitude is over 30%. This effect 

is due to the repositioning of the nodal point as a result of the length alterations, 

which moves towards the knife tip (gain decrease) when the knife is lengthened and 00 
away from the tip (gain increase) when the knife is shortened. Hence, the best 

frequency separation of the tuned frequency, achieved when the knife length is 

reduced by 3.4mm, also corresponds to a 4% amplitude increase. 

ii 01 

90 

I 35N) H" 3211 H/ 0 

4.4mm 

4.6mm 

-4 -87] 

EED 
29000 31000 33000 35000 37000 39000 41000 

Frequency (Hz) 

Figure 4.25. Detailed altering of knife length and frequency separation t) r) 

43000 

A IOSY 
-x-STz 
--o-6Bx 
-o-2Lz* 
--d- 11 By 
--*. --6Tz 
--i-7Tz 
-ý*-Mx 
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Figure 4.26. Amplitude variation of the cutting knife 

4.4 Conclusions 

This chapter reports on the main research challenges in the design of half-wavelength 

and wavelength ultrasonic blades used for cutting of food products. Ultrasonic cutting 

can be a reliable technology but the often conflicting design requirements for the 

isolation of the operating frequency and low stress distributions during cutting can 

only be addressed by vibration analysis. The vibration behaviour of these systems is 

characterised using a combination of FEA and EMA using a 3D LDV. The effects of 

geometry modifications on vibration responses and associated stresses have been 

discussed and improvements for enhanced performance proposed. Finally, it has 

shown how FE models can be used effectively to predict the sensitivity of modal 

parameters to geometry modifications to improve the design of cutting blades. 
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CHAPTER5 

THE DESIGN OF ULTRASONIC BLOCK HORNS 

5.1 Introduction 
Ultrasonic block homs are used in numerous industrial applications, such as welding 

and cutting, where they either operate as a tool directly vibrating on the work surface, 

or as an intermediate component acting as a transmission element between the 

transducer and the tool. Usually block horns are tuned to the first longitudinal mode at 

a frequency in the of 0- 40 kHz range. Reliable operation of block horns is associated 

with the amplitude of vibration, uniformity of vibration amplitude at the working 

surface and the avoidance of modal participation by non-tuned modes at the operating 

frequency [4,6]. Although in the last ten years various researchers have provided 

practical design strategies to enhance the performance of simple block horns [3,4,7], C' 
block horns with elaborated geometries still exhibit reliability problems. C' 

In this chapter the vibration behaviour of half-wavelength block horns is investigated 

in order to provide extra design insights to improve their performance. Initially the 

conventional principles of block hom design are illustrated with reference to the 

literature. Subsequently the vibration behaviour of a multi-slotted block horn of a 

multi-component cutting device is modelled and validated by EMA. The importance 

of mode shape characterisation is discussed and modes are classified using 

experimental data from ID and 3D laser Doppler vibrometer measurements and finite 

element analysis. 

5.2 Classification of resonators with wide output cross-sections 
Usually ultrasonic components with wide output cross-sections are utilised in place of 

slender rod-type resonators (bar horns) for those applications requiring a large output 

area. The size of the horn output surface depends on the dimensions of the workpiece 

in contact with the ultrasonic tool. A classification of longitudinal mode components 
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with wide output surface on the basis of their geometrical shapes is given by Derks C. C.;, 
16]. The three main grOups are: 

9 cylindrical type, diameter > X5 (FigUre 5.1 (a)) 

" blade type, only one dimension >, ̂ ,, /3 (Figure 5.1(b)) 

" block type, both dimensions> X3 (FigUre 5.1(c)), Z; 

where k3 corresponds to one third of the wavelength of the longitudinal wave. For the 4D Cý 
sake of simplicity, all components with at least one lateral dimension exceedin,, X/3 

0 
will be called block homs. 

loo r4 
lu oo 

kj 

Figure 5.1. Hom classification: (a) cylindrical type, (b) blade type, (c) block type 

Whereas the design of simple half-wavelength rod-type horns is possible by solving, 

the equation of motion derived in section 3.4.1, theoretical calculation of the tuned 
length of block horns proves to be more complicated. Although Derks has provided C> 0 
validated theoretical models to calculate the dimensions of some basic block horn 

shapes, FE modelling currently constitutes the standard method used in horn design. 

Despite the numerous manufacturing applications and the design experience gained 0 z: - 
through the use of FEA, the performance of block horns is often still unsatisfactory. 
Block horn problematic behaviour is mainly due to the modal density in the region of rD 
the excitation frequency. This is investigated in this section. 

5.3 Design principles 
Generally, the design of ultrasonic block horns is focused on satisfying three main 0 

performance criteria: isolation of the operating frequency from close non-tuned modal 
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frequencies, uniformity of amplitude at the working surface and sufficient amplitude Z. 

in the operating mode. Research has shown that improved amplitude uniformity and 
frequency separation can be achieved by the inclusion of slots in the horn 

configuration [4,6], whereas higher vibration amplitudes are obtainable in block horns C) C) 
with tapered profiles [6,55]. 

A detailed strateg to control the vibration behaviour of block horns based on FE ZIY 
models was presented by 0' Shea [4]. Formerly block horn design mainly relied on 0 
experience and a trial and error approach. 0' Shea provided a design methodolog for ZP Cly 
large ultrasonic horns through investigation of the effects of slot length, slot width, r) Cý 

and the number of slots on mode shapes and natural frequencies. According to this 

method, uniformity of amplitude at the output surface and isolation of the longitudinal 

mode frequency could be predicted prior to machining. 

(b) 

Figure 5.2. Longitudinal mode of block horns: (a) block horn with no slots, 0 (b) double-slotted block hom 

Figure 5.2(a) shows an FE model of the longitudinal mode at 35 kHz of a solid block 

horn with a lateral dimension exceeding ? V3. Poor unifon-nity of vibration amplitude 

on the block faces, due to Poisson's effect in the longitudinal mode, is predicted for 

this configuration. The uniformity requirement for a welding block horn, measured as 

the ratio of minimum to maximum response amplitude on the output surface, 

Umin/Umax, is estimated to be at least 80% [4]. A double-slotted block horn having the 

same global dimensions, modelled following the design rules for slotting introduced 

by O'Shea, is shown in Figure 5.2(b). Incorporation of two slots, having length, width C, 0 

and slot spacing of 1/3,1/24 and 1/4 wavelength respectively, results in good Cý In t) 
amplitude uniformity (90%) and adequate isolation of the longitudinal mode (2300 
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Hz). According to O'Shea, a frequency isolation of at least I kHz of the tuned mode is Cý 

necessary to avoid problems of modal coupling during operation. C) Cý 

Design techniques to isolate the tuned mode from close modes of differently profiled r) 

block horns, have also been proposed by Lucas [55] and Graham [7]. With a 

combination of laser based measurement techniques, ESPI and ID LDV modal 

analysis and FEA, block hom dimensions were identified which could be modified in 

order to shift coupled modal frequencies away from the operating frequency. In 

particular, it was shown that the frequencies of the out-of-plane bending and torsional 

modes are highly dependent on horn thickness and the in-plane bending and 

longitudinal modes are largely independent. Hence, modal coupling between the 

longitudinal mode (in-plane mode) and out-of-plane modes was avoided via 

opportune horn thickness dimensioning. 

Figure 5.3. Model of an exponential block hom for welding applications 0 

(b) (a) 

fi-p 1 35020 Hz fo-o-p 3 34920 

Figure 5.4. FE modal data: (a) Longitudinal mode, Cý 
(b) coupled out-of-plane bending mode 

An application of this redesign approach is shown here for a double-slotted tapered 

welding block horn depicted in Figure 5.3. Results of the FE model of the horn 0 ZD 

predict the existence of modal coupling between the longitudinal mode (Figure 5.4 tý 0 
(a)) and an out-of-plane bending mode (Figure 5.4 (b)). The plot in FigUre 5.5 ID 4ý Cý 
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illustrates the FE predictions of mode sensitivity to thickness alterations of the hom in 

the 20 - 45 kHz frequency range. Out-of-plane modes are indicated with the descriptor 

"o-o-p", whereas in-plane modes are indicated with the descriptor "i-p". A number, 
increasing with the modal frequency, is associated with the above descriptors to 

distinguish between modes of the same category. A thickness reduction of 10% is 

estimated to provide aI kHz frequency isolation of the tuned modal frequency (i-p 1) 

from the close out-of-plane modal frequency (o-o-p 3), thus, removing problems of 

modal coupling. 

Despite the effectiveness of this design approach, it is not effective for block horns 

characterised by non-reglar profiles, as simultaneous realization of all the 

performance criteria cannot be readily achieved. In particular, the required frequency 

isolation of the longitudinal mode is difficult to achieve for those components with CI 

highly tapered profiles and/or many slots, as they exhibit numerous bending modes 

near the operating frequency. Hence, careful identification of all the mode shapes and 

a measure of their responsiveness are required. Where there are a large number of 

modes at frequencies close to the tuned frequencies, identifying each mode and its 

responsiveness allows it to be categorised in terms of its participation in the response 

of the tuned mode via modal coupling. Strongly coupled modes can therefore be 

prioritised for shifting their modal frequencies in the redesign of the block horn. A Z; ý 1-7 
multi-slotted block horn is studied to demonstrate this approach. 

45- 

40 - 
d-*.. 

1 
--12-o-o-p 2 

0A 0-0-p 3 

ä 35 --0- i-p 1 

--W-o-o-p 4 
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Z 
0 25 
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20 
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Figure 5.5. Effect of hom thickness on natural frequencies 
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5.4 Design of a half-wavelength block horn with fine slots 

The vibration behaviour of an aluminium half-wavelen-th double-slotted block horn 

is investigated (Figure 5.6). The block horn is used as the intermediate component 

between the piezoelectric transducer and three cutting blades in an ultrasonic cuttincr 

device. The block horn also includes six fine slots, as shown in the figure, 

incorporated to improve amplitude uniformity on the output face of the block. The 

additional masses on the input surface are also used to improve amplitude uniformity. 

Figure 5.6. Double-slotted block hom with six fine slots 

FEA and EMA of the block horn are performed to investigate its vibration behaviour. 

In order to demonstrate the importance of measuring vibration velocities in the space, 

first, measurements using a ID LDV. which detects only normal to surface responses, 

are performed. The modal frequencies are determined by random excitation test in the 

0-40 kHz frequency range. The 2 nd and 3 rd columns of Table 5.1 show a comparison 

of the predicted and measured natural frequencies, respectively. Experimental values, 

although in good agreement with the calculations, allow identification of only some of 

the predicted modes of vibration. This is partly because the ultrasonic transducer is 

unable to excite all the natural frequencies of the attached component. Also, as the ID 

LDV measures only the non-nal to surface component of velocity, a number of modes 

involving in-plane motions of the horn columns turn out to be either undetected or 1: 1 

incomplete. Figure 5.7 depicts the FE and EMA modal data of two in-plane modes of r_I 

the horn involving bending motions of the columns. For instance, correlation between 
I tý 

the predicted mode shapes (Figure 5.7 (a, b)) and the corresponding measurements C) ZD 

performed with ID LDV (Figure 5.7 (c, d)) proves inadequate for allowing validation 

of the FE model. 
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Subsequently, EMA is performed using a 3D LDV, which allows one out-of-plane 

and two in-plane components of the vibration velocity response of the surface of the 

block to be detected. The corresponding measured data, reported in the 4 th column of 
Table 5.1, clearly shows how the 3D LDV improves the experimental modal analysis 

allowing the identification of almost all the predicted modes in the considered 
frequency range. The ability to measure the three components of velocity provides 

very accurate mode shapes (Figure 5.7 (e-f)), improving validation of FE results. 

Block Hom Modal Freq encies (Hz) 
Mode No. Finite Element 

Analysis (FEA) 
EMA using 

ID LDV 
EMA using 

3D LDV 
Error (%) 

(FEA- 3D LDV) 
22 28155 28349 28396 -0.8 
23 28642 - 27922 2.6 
24 28824 28146 28135 2.4 
25 30071 - - - 
26 30474 30192 0.9 
27 31151 - 30415 2.4 
28 32522 32910 32893 -0.1 
29 34921 34951 35024 -0.1 
30 35404 35454 35468 0.0 
31 36040 35847 35944 0.1 
32 36096 35177 35172 2.5 
33 36118 35218 35214 2.5 
34 37000 - 38039 -2.7 
35 37002 35324 35320 4.7 
36 38672 - - - 
37 39786 - 37470 6 
38 39824 38691 38716 2.8 

Tuned longitudinal mode 
Table 5.1. Block horn mode frequencies in the range (28kHz - 40kHz) 

Figure 5.7. Comparison of mode shapes determined by FE (a-b), ID LDV (c-d), 3D 
LDV (e-f) 
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5.4.1 Modal coupling 
Predictions and measurements of the block horn vibration behaviour highliaht the g Cý 
presence of three modes of vibration occurring at frequencies 35172 Hz, 35214 Hz 0 
and 35468 Hz, very close to the longitudinal frequency at 35024 Hz. Since a C) 
frequency separation of I kHz of the tuned mode is required, according to O'Shea's 

method, a horn modification should be made to isolate the operating frequency from 

these three modal frequencies. 

(a) (d) 

f 36096 Hz f 35177 Hz 

(b) (e) 

IN 

f 36118 Hz f 35218 Hz 

IN 

f 35404 Hz f 35468 Hz 

Figure 5.8. Comparison of mode shape due to the flexural motion of the inner 
columns determined by (a-b-c) FEA, (d-e-f) EMA using, 3D LDV 
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First, two observations regarding the three modes can be made. As shown in Fioure C) ZP 
5.8, with a correlation between FEA and EMA data lower than 3%, the modes are 

characterised by different phase variations of the out-of-plane vibration of the hom 

columns, none of which involve deformation of the output surface. Also, the sum of 

the FRF measurements illustrated in Figure 5.9 shows that the modes are largely 

unexcited by the transducer. Consequently, modal coupling between the longitudinal 

mode and these neiahbourina modes does not prevent the system from running in the 

operating mode with high amplitude uniformity, as shown in Fi-Ure 5.10. For these 

three modes, although they all couple with the longitudinal tuned mode, it is not 

necessary to shift their modal frequencies because their response participation in the 

tuned mode is negligible under longitudinal excitation. 

Tuned mode 

5: 
(j 

U- 

U- 

0 

E 
OJ 

Torsional mode 
mode 

28 29 30 al 32 33 34 35 36 37 Se 39 40 
Frequency (kHz) 

Figure 5.9. Sum of the FRFs measured on the block horn with fine slots 

Figure 5.10. Comparison of longitudinal mode shape determined by cp 
(a) FEA, (b) EMA using 3D LDV 
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The modal frequency sensitivities to altering the thickness of the block horn are 

shown in Fiallre 5.11 for a number of modes with modal frequencies close to the C) 
tuned frequency. Sufficient frequency isolation of the tuned mode is predicted for a 

20% increase in the horn thickness. However, it is also necessary to consider the 

effects on other natural frequencies which critically lie outside the frequency range of 0 
concern. For example, the frequency of the torsional mode, Figures 5.9 and 5.12, is Z. 

predicted in Figure 5.11 to increase for thickness increases, reaching 34.01 kHz for CI Cý 
the estimated thickness adjustment, barely satisfying O'Shea's requirement for 

frequency separation. 

38000- 
17 37000- -m- Mc)de no. 28 

n 36000,. --o- Mode no. 29 
35000 A Mode no. 30 
34000- A Mc)de no. 31 

Cr 
w 

33000- 
--o- Mode no. 32 

"a 32000- 
--Cý- Mode no. 33 

31000 

30000 

-20 -10 0 10 20 
Relative Thickness (, Yo) 

Figure 5.11. Effect of hom thickness on natural frequencies 

Figure 5.12. Comparison of torsional mode shape 
determined by FE (a), (b) 3D LDV 

Since a small error (< 4%) between the measured and predicted torsional and 

longitudinal frequencies of the redesigned block hom is typical, modal coupling 
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between these modes is possible. A torsional contribution to the longitudinal vibration 

of the output surface would lead to poor performance of the block horn. 

Hence, having established that modal coupling in the original horn profile is not 

affecting the performance, whereas alterations of the horn thickness may result in 

unwanted torsional motions, no alteration of the block horn is performed. 

5.4.2 Modalfamilies 

From the FEA and EMA results it emerges that incorporation of slots considerably 

enriches the number of modes of a block horn and incorporating fine slots results in 

numerous modes appearing in the frequency spectrum. The response is characterised 
by the appearance of mode families. These are families of multiple modal frequencies, 

characterised by a common mode shape of the columns with each mode being 

differentiated by spatial phase variations between adjacent columns. A mode family 

usually appears as a cluster of modes in a narrow frequency band and the excitation of 

these families significantly enriches the frequency response spectrum. Figure 5.13 

shows two such mode families whose common feature is the in-plane motion of the 

horn columns. Their experimental detection and identification with predicted modes is 

only possible through 3D LDV measurements. 

(a) (b) (C) 

f 13686 Hz f= 14047 Hz f 14202 Hz 

(d) (e) 

f 18590 Hz f 20461 Hz f 21163 Hz 

Figure 5.13. Two measured mode families characterised by spatial phase variations 
between adjacent columns: (a-c) first family, (d-f) second family 
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5.4.3 The effect of transducer coUPUng 

Previous research on transducer-horn assemblies has shown that excitation of all the 

vibrational modes predicted for the horns is not possible [6]. Similarly, for the 

investigated transducer-block horn stack, despite the great accuracy of the 3D LDV 

measurements, several modes predicted for the horn model are undetected in the 0-40 

kHz range due to the difficulty in exciting a measurable response using the 

longitudinal transducer. However, modal measurements do highlight the presence of a 

number of modes which are not predicted by the block horn FE model. EMA of the 

whole assembly, including measurement of the transducer surface, allows 
identification of these modes. Such modes, characterised by simultaneous responses 

of the transducer and block horn, cannot be anticipated by FE modelling of the block 

horn alone. Figure 5.14 (a) depicts a measured mode shape characterised by in-plane 

motion of the block, which has been predicted by the horn FE model. On the other 
hand, Figure 5.14 (b) illustrates the detected mode shape of a system mode composed 

of out-of-plane motions of the horn and transducer, which is not predicted by FE 

model. Measurement of whole system modes proves to be as important as detection of 

the horn modes, and this highlights the importance of including the transducer in the 

FE model. 

Figure 5.14. (a) Mode of the block hom, (b) mode of the assembly 

5.5 Conclusions 

This chapter has concentrated on the identification and classification of modal 

behaviour of block horns. To achieve accurate mode identification a combination of 
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FEA and EMA have been performed. It has been demonstrated that the ability to 

measure the three components of vibration velocity using the 3D LDV provides very Cý 
accurate mode shapes allowing improved validation of FEA models. C) 

The use of 3D LDV was also crucial in the response characterisation of a block horn 

incorporating fine slots. Due to the multi-slotted profile the horn spectrum was 

characterised by the appearance of numerous modes, with three of them coupling with 

the tuned mode. Measurements of the response amplitude of the coupling modes 

revealed that their participation in the tuned mode was negligible; therefore no 

geometry alterations were required. 

Finally, a clear influence of the transducer on the vibration characteristics of the 

whole assembly was detected, showing that the reliability of the hom design is also C) C) 
dependent on the choice of the transducer. 

94 



Chapter 6: The Design of Ultrasonic Cutting Heads CP -- 0 

CHAPTER 6 

THE DESIGN OF ULTRASONIC CUTTING HEADS 

6.1 Introduction 
High power ultrasonics can be applied in manufacturing operations requiring a large r) Z' 0 

number of tools, such as multiple-blade cutting operations or simultaneous multiple- 

welding tool operations. However, in order to make these applications cost-effective, 

where possible it is advantageous to minimise the number of generator and transducer 

systems. For example, several cutting blades can be attached to a wide output face 

block horn driven by a single transducer. For multiple welding tool operations, the 

number of tools can be kept small if the output face of the welding block horn is as 
large as possible. However, the vibration behaviour of such complex systems leads to 

frequent component failures and poor operating performance. r> 

In this chapter, numerical and experimental investigations of the vibration 

characteristics of multi-blade cutting heads, tuned to resonate in a longitudinal mode, 

are performed. A characterisation of the effects of the individual components on the 

assembly's performance is carried out in order to provide the basis for improved 

design strategies of complex ultrasonic systems. In particular, the importance of mode 

shape identification is discussed and modes are classified using experimental data 

from 3D LDV measurements and FEA. 

6.2 Three-blade cutting heads - Design principles 

The design of complex cutting systems consisting of three high-gain blades attached 

to an intermediate block horn, such as the one depicted in Figure 6.1, is the subject of 

this section. Usually, each component of a cutting assembly is designed in the form of 

a half-wavelenoth unit resonatino, in the first longitudinal mode of vibration at the 

frequency provided by the transducer. The most practical solution is to attach the 

cutting blades to the block horn via threaded studs, as manufacturing the entire stack 

in one piece is problematic. 
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For simplicity, the block horn depicted in the figure has a constant cross section. tý 
However, amplitude gain can be designed into the block may be needed at the blade 0 
tips, which can be achieved through tapering of the horn profile. Distribution of the C. &; ' 

amplitude gain between the system components by using tapered block horns can also ZD 0 
be a useful way to reduce blade stress. 

Block horn Transducer 

0 

Ue- % 

0 

Threaded studs 

Figure 6.1. A three-blade cutting head assembly 

In the previous chapter, it was shown that reliable performance of block horns is 

normally associated with uniformity of the amplitude of vibration at the working 

surface and the avoidance of modal participation by coupled non-tuned modes at the 

operating frequency. The design of block horns acting as transmission elements 00 Z> 

between the transducer and attached blades requires, perhaps, even more care than the 

design of block horns used as working tools. Certainly, the longitudinal mode at the 

tuned frequency should be such that, at the output surface where the blades are 

attached, the vibration amplitude is as uniform as possible. In this case, the blades will 

have equal and in-phase vibration displacement input. If the surface amplitude is not 

uniform, for instance due to Poisson's effect in the longitudinal mode, the required 

operating amplitude at the blade tips would not be achieved. However, even for 

systems where the block horn output surface exhibits very high uniformity of 

vibration amplitude, the attached blades can exhibit non-identical vibration responses, 

including bending and torsional responses. Furthermore, isolation of the tuned mode ZP 0 
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frequency from other modal frequencies is particularly difficult to achieve for 

complex systems because they are characterised by a high number of modes of Cý 
vibration. 

The desi-n of a three-blade cuttin- head is investioated by analysino, the effects of 
block horn and blade geometries on the vibration response and stress condition. LI 
Design improvements are suggested and the general applicability of these issues in Zý CN-_ Z__ 
ultrasonic system design is discussed. 

6.2.1 Vibration analysis of a three-blade cutting head 

Figure 6.22 shows an ultrasonic cutting head used for cutting food products. where a C 2D LI 
double-slotted block horn drives three equally spaced tuned cutting blades. All 

components of this system are half-wavelength units tuned longitudinally to 35 kHz. 

The system is used to slice slabs of food product. This cutting device is designed to 

provide 65 pm pk/pk of amplitude at the tip of each blade when driven in resonance 

by the transducer. The block horn and blades of the assembly have been discussed 

previously in Sections 5.4 and 4.4.2, respectively. 

Figure 6.2. Three-blade cutting head 

Figure 6.3 shows the experimental rig set-up to deten-nine the fatigue life of the 

cutting head. Tests have been carried out on a single head under the power loading 
Zý Z1- 

and amplitude that the system would undergo in normal use on a production line. On a 

production line, ten cutting heads would stand side by side separated by a few 

millimetres. Trial outcomes showed that the assembly cuts effectively when immersed 

in the material, but blade failures occur when the head is withdrawn from the material. 

Also, the system becomes noisy in air and the response suddenly changes into a multi- 
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frequency response exhibiting what appears to be a nonlinear behaviour. Hence, a 

number of factors seem to be responsible for blade failure. 

Figure 6.3. Fatigue trial of the three-blade cutting head 
[photo provided by Nestle' P. T. C., York, UK] 

In order to understand the vibration behaviour of the head, a FE model of the whole 

assembly is created and subsequently validated by EMA performed using a 3D LDV. 

Finite element results correlate well with the measured modal behaviour at low 

excitation, allowing identification of almost all the predicted modes in a 0-40 kHz 

frequency range as shown in Table 6.1. The large number of modes is the result of the 

complexity of the cutting assembly. 

Four mode categories are identified: (a) modes where blade responses dominate, (b) 

modes where block horn responses dominate, (c) modes of the block and blades 

assembly, and (d) modes of the transducer, block and blades assembly. The last group 
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cý t: - 

is neglected in the following discussion, since all the detected modes are predicted by 
C0 

the head model without including the transducer. 

Cutting Head M dal Frequencies (Hz) 
Mode 

no. 
Finite Element 
Analysis (FEA) 

Experimental Modal 
Analysis (EMA) Error (%) 

1 6420 6645 -3.3 
2 6690 - - 
3 6550 6699 -2.3 
4 9540 9842 -3.1_ 
5 13120 13374 -1.9 
6 14220 13946 2.0 
7 14970 14614 2.3 
8 17020 16559 3.0 
9 17040 16773 2.6 
10 17120 17037 1.0 
11 17130 17165 -0.1 
12 18800 18669 0.1 
13 20710 21019 1.5 
14 21135 - - 
15 21380 - - 
16 22230 21995 2.0 
17 22270 22151 0.5 
18 22280 22378 -0.4 
19 28890 30215 -4.4 
20 31510 32426 -2.8 
21 32010 33110 -3.3 
22 32600 33596 -3.0 
23* 34580 34999 -1.2 
24 35890 35298 1.7 
25 34840 35330 -1.4 
26 36370 36382 0.0 
27 36500 - - 
28 36920 36954 0.0 
29 37330 37330 0.0 
30 37900 37582 - 
31 38380 37976 1.0 
32 38170 37991 0.5 
33 39770 38630 2.9 
34 40130 39881 

--0.1 Table 6.1. Cutting head modal frequencies in the range (0-40 kHz) 
0 Cý 

6 2.1.1 Head modes dominated by blade respQnses 

Experimental modal data has shown that many modes of vibration of the three-blade 

cutting head are essentially characterised by blade motions. The frequencies of such 
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modes are very close to the natural frequencies measured in the single blade system 
investigated in Section 4.2.3, where an identical single blade is driven by the 

transducer. 

Alk 
M41 1 11 ,IU III I IldJ 

I L-J L-J==L=jkl" 
EMA: f=37989 Hz 

EM 82 Hz EMA: f=38194Hz FE: f=3650OHz 

Figure 6.4. Comparison between the modes of the single blade system and 
the three-blade head determined by EMA and FEA 
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The modal data obtained throuah EMA of the single blade system and the three-blade 

ýssembly are shown in Figure 6.4. Visual comparisons between the mode shapes of 

the single-blade system and the corresponding blade responses detected in the three- D0 
blade head, illustrate how a mode of the single blade system develops into a mode 
family in the three-blade assembly. The mode shapes of the three-blade configuration 

ýt these frequencies do not exhibit block deformations, and they essentially typify 

blade modes, where the block horn acts as a stiff exciter. The mode families, 

ýssociated with spatial phase variations of the blade responses for the same blade 

mode, occur in clusters of very close modal frequencies. 

The FE model of the three-blade system predicts three modes for each mode family, 

however, not all of them are detected experimentally. Althou,, h these modes exist, 

they are not excited with a measurable response by the longitudinal mode transducer. 

The modes that are predicted but cannot be measured are mostly from families 

ýssociated with torsional and bending vibration of the blades. Where a mode has not 
been measured, the FE predicted mode of the mode family has been included in 

Figure 6.4. 

This demonstrates the importance of EMA data, which prevents the problems of high 

modal density being misinterpreted or exaggerated by FE data alone and allows 
design strategies not to be abandoned only on the basis of FE model results. This also 
demonstrates the importance of using a measurement instrument for EMA that detects 

in-plane and out-of-plane responses. On the other hand, the undetected modes should 

not be completely ignored, and the reasons for this will be discussed in the next 

chapter. 

62.1.2 Head modes dominated by the block horn 

The block horn also affects the vibration behaviour of the cutting system. In the three- 

blade cutting system shown in Figure 6.2, an improvement in amplitude uniformity on 

the block hom output face in the operating mode is achieved by introducing six fine 

slots into the block. However, incorporating fine slots in the block hom introduces 

families of modes mainly associated with bending responses in the increased number 

of columns. These modes are numerous as they excite several frequencies for each 

mode family. Figure 6.5 illustrates the measured mode shapes and frequencies of the 
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block horn, as investigated in Section 5.4 (Table 5.1), alongside the detected modes of 

the three-blade cutting head. 

Mode families of the transducer- Mode families of the three-blade 
block horn sys m cutting syste 

I" mode 2 nd 
mode 3 rd 

mode I" mode 2 nd 
mode Pmode 

7= I IJ II ITTI I 
UI U-1 

f 13686 Hz f= 14047 Hz f 14202 Hz f 13374 Hz f 13946 Hz f 14614 Hz 

> 

73 _TT F_ 11 

f 17165 Hz 

'2 
1U 

I'= 18590 Hz f 21163 Hz f 21019 Hz 

7: 1 1 _Lj I TD I an IT i 

f 37470 Hz IF 38716 Hz 40175 Hz f 37330 Hz f 38630 Hz f 39881 Hz 

Figure 6.5. Comparison between the modes of the block horn and the three-blade 
head determined by EMA 

102 



Chapter 6: The Design of Ultrasonic Cutting Heads 

Mode families, characterised by spacial phase variations of the bending responses of 

the block horn columns for the same column mode, are shown for the block horn 

alone and for the cutting head. The modes of each family occur at very close 
frequencies for both system configurations. The cutting head modes in Figure 6.5 

often exhibit blade and block responses, but it can be argued that the modes are 
dominated by block horn resonance where the modal frequencies are very close to the 

corresponding modal frequencies of the block horn alone. 

in other cases, the modal frequency is close to a modal frequency of the block horn 

alone and the modal frequency of the single bade system. For example, the head 

natural frequency measured at 17165 Hz is close to the third bending mode of the 

single blade system which has been detected at 17465 Hz, whereas the head mode at 

38630 Hz is close to the blade sixth bending mode measured at 38278 Hz (Section 

4.2.3, Table 4.2). Consequently, these modes could be included either in the category 

of modes dominated by blade responses, or in the head modes dominated by block 

horn responses. 

Figure 6.6. Measured compound modes of the three blade head determined by EMA 
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6.2.1.3 Modes of the block-blades assembly 

Another group of modes of vibration of the three-blade head exists, whose frequencies 

do not correspond to the natural frequencies of the block horn or blades components 

separately. The modes in this category are whole assembly modes, characterised by Z; ' 
continuous deformations of all the components of the assembly. Figure 6.6 shows the r) 
mode shapes of six of the numerous modes of the assembly measured for the three- 

blade cuttino, head. From the mode shapes it is evident that the columns of the block 4: 1 

horn exhibit bending and torsional responses which result directly in bending and Cý Z; 
torsional responses in the blades. The modes shown in Figure 6.6 (e) and (f) occur at 0 
frequencies very close to the tuned frequency, measured at 35298 Hz. 

6.2.2 The tuned longitudinal mode 

The tuned mode of the three-blade head is a mode of vibration characterised by the 

simultaneous longitudinal motion of the block horn and the cutting blades. The horn 

and the blades are tuned individually to resonate in their first longitudinal mode at 35 

kHz, which is the excitation frequency of the transducer. Hence, the operating mode 

of the block and blades assembly is the second longitudinal mode with two nodes and 

three antinodes. The nodes are located near the middle sections of the components and 

the antinodes are located at the horn input and output faces and at the blade tips. 

(C) 
A. 

Uniformity (U U..,, ) 43 %1 Uniformity (U, i,, U a, ) 80 % Uniformity (Unill Uinaj 95 % 

Figure 6.7. Predicted uniformity of longitudinal mode 

Figure 6.7 shows the predicted longitudinal mode for the block horn alone (Figure 6.7 

(a)), the block hom with its three threaded studs screwed into its output face (Figure 0 
6.7 (b)) and the whole cutting system (Figure 6.7 (c)). The figure demonstrates that 00 
although high amplitude uniformity (95%) is achieved on the face of the block horn 
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for the complete cutting system, the block horn modelled alone predicts an amplitude 

uniformity of only 43%. It is clear that the block horn cannot be designed in isolation 

for such multiple component systems. 

Figure 6.8 presents the responses of the tuned mode of the cutting head predicted by 

FEA and measured by EMA at 35.9 kHz and 35.3 kHz respectively. The 

measurements of the longitudinal motions correlate well with the predicted mode 

shape. In the second longitudinal mode of the system, the elongation half-cycle of the 

block horn coincides with the compression half-cycle of the cutting blades, and vice 

versa. The mode shape reveals that while the middle blade vibrates in a purely 
longitudinal mode, the outer blades are characterised by longitudinal and bending 

responses. Bending responses in the outer columns of the block horn are responsible 
for the bending responses in the outer blades. This behaviour gives rise to dynamic 

stresses in the two outer blades, which can cause failure. Hence, a design strategy 

needs to constrain bending responses in the blades. 

Figure 6.8. Predicted and measured mode shape of the tuned mode 

The mode shapes of two other modes, which are excited close to the tuned frequency 

and exhibit longitudinal and bending responses in the blades, are shown in Figure 6.9. 

These two modes and the tuned mode are of the same mode family and differ only in 

the phase relationships between the bending responses and the longitudinal responses 
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in the different blades. Tuning the transducer excitation frequency to either of these 

modal frequencies would not produce the required vibration at the blade tips. 

FE and EMA data also highlight the presence of two modes of the whole assembly 

occurring at frequencies close to the longitudinal mode frequency. The mode shapes 

and frequencies were presented in Figure 6.6 (e) and (f). Modal coupling between the 

tuned longitudinal mode and these modes exhibiting bending responses in the blades, 

can prevent the system from running in its operating mode and increase stress, 

particularly in the blades. The issues of modal coupling, therefore, also need to be 

addressed. 

Figure 6.9. Measured modal shapes of the untuned longitudinal modes of the blades 

6.2.2.1 Redesign of block horn to eliminate bending responses in the outer blades 

Bending responses in the outer blades are due to bending responses in the block horn, 

in particular in the outer block columns, which are coupled to the outer blades via 

threaded studs. In this case, poor performance of the cutting system is not connected 

to poor amplitude uniformity at the output surface of the block, which is 95% and 

unlikely to be significantly improved. In fact, the method used to improve block 

amplitude uniformity is the cause of blade bending responses. Additional masses of 

the horn input face and the incorporation of fine slots produces high amplitude 

uniformity together with increased bending responses in the outer columns and 

consequently in the outer blades. Although equal and in-phase vibration of the three 
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blades can only be achieved through uniformity of the horn output surface, 

participation of bending responses in the longitudinal mode is a major source of 
increased stress in the outer blades and poor cutting reliability. 

I I im 
IrTH 

Figure 6.10. Comparison of predicted and measured responses using longer horn 
central column (a) FEA, (c) EMA, and castellation of horn outer columns (b) 
FEA and (d) EMA 

A block horn redesign strategy based on modifications of the horn columns in the FE 

model of the assembly is performed. As shown in Figure 6.10(a), a castellated block 

horn with a longer central column is predicted to remove blade bending responses 

from the longitudinal mode. An alternative block horn with a form of castellation of 

the sides of the outer columns is shown in Figure 6.10(b). This restricts bending 

motion of the outer columns in the longitudinal mode, resulting in equal and in-phase 

longitudinal motion of all three blades, as evident in the figure. 
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Subsequently, the redesigned block horns were manufactured. An experimental modal 0 
analysis using a 3D LDV is perforined on the new cutting heads incorporating the r) rý 0 

alternative horns. Measurements shown in Figure 6.10(c) and 6.10(d) reveal high 

correlation with the predicted mode shapes of the tuned mode, with successful 

elimination of blade bending; responses in the lonla; itudinal-mode being achieved. 
Parallel vibration of the blades is achieved at the cost of amplitude uniformity at the 

block horn output face. The uniformity associated with the systems shown in Figure CD 
6.10 is 90%. 

6.2.2.2 Redesign of block horn to improve modalfrequency separation 

Modal coupling of the tuned mode with other modes of vibration occurring at close 0 
frequencies is frequently detected in ultrasonic systems. As reported in Section 5.4.1, 

isolation of the tuned mode frequency from untuned frequencies is problematic for 

systems characterised by many modes of vibration in the vicinity of the operating, 
frequency. 

In order to distinguish modes whose contribution is detrimental to operation, from 

those which have a marginal effect, due to modal coupling, an investigation of the Cý 0 
modes in the re-ion of the operating frequency is conducted. 0 C) 

Figure 6.11 shows the sum of the frequency response functions (FRFs) measured on Cý 
the original three-blade cutting head in the frequency range 29.5-42 kHz. The modes Cý r) 
of the assembly of Figure 6.6 (e) and 6.6 (f) also occur in the FRF but are present in 

the figure within the bandwidth of the response of the longitudinal mode. 

The tuned longitudinal mode response, illustrated in Figure 6.12, reveals a bending C) 
response contribution in the longitudinal response of the block horn and the blades. 

This is clear evidence of modal coupling between the operating mode and the bending Cý 
mode measured just 30 Hz above the tuned frequency and presented in Figure 6.6 (f). 

On the other hand, the mode shape of the longitudinal mode does not present evidence 

of additional responses associated with the torsional mode of the assembly measured 

300 Hz below the tuned frequency and shown in Figure 6.6 (e). This mode, whose 0 
response is identifiable as the small spike at 35 kHz, is barely excited by the 
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transducer, and therefore does not contribute significantly to the longitudinal mode 

response. The existence of modal coupling is not always a detrimental feature of 

ultrasonic operations. There are applications where the simultaneous excitation of two 

modes of vibration, i. e. longitudinal/torsional modes or longitudinal/bending modes, 
has a positive effect on the system operation [63,64]. 
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Figure 6.11.3D LDV frequency response function measurement of cutting head 

Figure 6.12. Side view of the longitudinal mode 

A redesign strategy to isolate the longitudinal mode frequency of the three-blade head 

from close modal frequencies is proposed to provide practical insight in the design of 

systems where modal coupling cannot be tolerated. Since the blade dimensions are 

dictated by the operation requirements (amplitude gain and cutting depth), the block 
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horn geometry is modified to improve isolation of the longitudinal mode frequency. 

Block horn modes in an 8 kHz frequency range around 35 kHz are classified into two 

main categories: a) in-plane modes whose frequencies are highly dependent on block 

width and/or length, but independent of block thickness, and b) out-of-plane modes 
(including bending and torsional modes), which are highly sensitive to block 

thickness. Both of the modes discussed previously (torsional and bending), whose 
frequencies are closest to the tuned frequency, belong to the latter group. Therefore 

horn thickness is an appropriate dimension for alteration. The other modes in the 

range are in-plane modes of the block horn, whose modal frequencies are insensitive 

to thickness changes. The identification of five in-plane modes in the frequency range 
is illustrated in Figure 6.13. Figure 6.14 shows the FE predictions of mode 

sensitivities to horn thickness modifications. A thickness reduction of 20% results in a 
2.5 kHz isolation of the tuned mode frequency from both the torsional and bending 

mode frequencies, and maintains the tuned mode at the operating frequency. 

b) (a) ( 

In-Plane Mode I (f=31510 Hz) f=32426 Hz 

(C) (d) 

In-Plane Mode 2 (f=32010 Hz) f=33110 Hz 

(e) 

In 

In-Plane Mode 3 (f=32600 Hz) f=33595 Hz 

(g) (h) 

vi 

In-Plane Mode 4 (f=36370 Hz) f=36382 Hz 

IONA. 

In-Plane Mode 5 (f=36920 Hz) f=36954 Hz 

Figure 6.13. Mode classification by FE (a, c, e, g, 
experimental data (b, d, f, h, 1) 
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Figure 6.14. Predicted effect of horn thickness on modal frequencies 

6.2.3 Cutting head component detuning to reduce stress 
Fatigue trials carried out on three-blade cutting heads have resulted in failures due to 9: 1 
high dynamic stresses in the cutting blades under operating conditions. Equally, in the Cý 

single blade system investigated in Section 4.2.1, fractures occur at the blade step 

which is where the highest stress is predicted, as shown in Figure 6.15. Hence, 

geometric modifications of the cutting blade, in line with the redesign strategies 

discussed in Chapter 4, would reduce stress at the failure locations. However, with the 

presence of the block hom as an intermediate component in the cutting head, another 

strategy is available to reduce stress at the blade step without altering the blade 

profile. Before proceeding towards this redesign approach, an observation can be r) Cý 

made regarding the positioning of the node with respect to the stress distribution in C' t; 
longitudinally vibrating structures. Figure 6.16 shows the normalised stress and 0 
displacement predicted for a uniform cylindrical bar hom and for a cutting blade used Z' 

in the three-blade head, both resonant in the first longitudinal mode. For the bar with C> 
constant cross-section, the longitudinal node corresponds to the highest stress 

location, whereas for the blade the highest stress is predicted just after the steep 

section reduction and the node is located a few millimetres away, within the step 

profile. 

The stress at the hichest stress section increases the closer the node is. If the node and Cý 
the highest stress location coincide, stress is maximised. Hence, shifting the node 

further away into the thicker blade section, reduces stress at the highest stress section. 0 
The technique to achieve this is to detune the block and blades, thus shifting the node 
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into the cylindrical end of the blades, in particular by tuning the block horn 

longitudinal mode to a lower frequency, whilst maintaining the original tuned 
frequency of the assembly. 

Block horn 

imMax Stress 

Antinode 

Figure 6.15. Predicted stress distribution in the central blade of three-blade head 
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0 

Figure 6.16. Normalised Stress and Displacement in: (a) bar horn, (b) cutting blade 
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Small modifications of the block horn length do not significantly influence the 

longitudinal frequency of the whole assembly, which in contrast is particularly 

sensitive to variations of the cutting knife length. Alternative cutting head models, 
based on this technique, are proposed. The results, shown in Figure 6.17, predict a 

reduction in stress for increased system detuning, with the displacement node moving 
further back into the cylindrical cross-section part of the blade. 

Another benefit of this design strategy over the possible modifications of the blades is 

that variations of the block horn length have a comparatively minor impact on the 

response spectrum of the assembly, therefore avoiding introducing modal coupling. 
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Figure 6.17. Longitudinal node shifting by system cletuning 

6.3 Design strategies for improved vibration behaviour of cutting systems 

The characterisation of the vibration behaviour of single ultrasonic components and 

complex assemblies has revealed that the number of modes of an ultrasonic system 

depend on the quantity and the geometry of its constituent units. In Section 6.2.1, it 
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was shown how mode families are excited in cutting systems comprising a block horn t) C) 
driving three cutting blades. The blades, due to their tapered profiles, are characterised rý 0 

by numerous bending modes which become easily excited when a slotted block horn tý 
is used as an intermediate resonator. In addition, the slotted confiauration of the horn C) 

considerably increases the number of modes of the whole assembly, increasing the 0 
risk of coupling the tuned frequency with close natural frequencies (linear modal 0 
coupling). The characterisation of energ leakage from the operating frequency to C. I'y C, 4: 1 

well-separated modes (nonlinear modal coupling) will be the subject of the next 

chapter. 

In this section, design strategies to eliminate the effects of linear modal coupling in 
C. > r) 

three-blade cutting systems, by focusing on reducing the number of vibration modes, C) C. 

are proposed. Finite element models are used to characterise the vibration behaviour 

of the assembly components and propose improved designs. t) 

6.3.1 Effect of number of slots on block horn modes 

A simple approach to eliminating modal coupling in a resonant system is to separate 0 C' 
the tuned mode frequency from other modal frequencies by making small geometry 

modifications of the assembly. For instance, in a system exhibiting modal coupling tý 01 
altering the positioning and/or length of the threaded studs connecting the 0 C. 

components, can provide the required frequency shifts to remove non-tuned modal 

participations in the operating mode. However, this detuning, strateg , which is useful 

in systems characterised by a few modes of vibration, is inadequate for complex 

systems characterised by many modes of vibrations such as multi-blade cutting heads. 

In fact, for such complex assemblies, small geometric modifications often alter the 

modal behaviour of the whole system in such a way that other modes just couple with 

the tuned mode. Hence, attention is focused on finding a design strategy which 

reduces the number of modes so that removal of the response contributions of non- 

tuned modes becomes more straightforward. 41n 

We have seen that in multi-blade cutting systems, block horns are responsible for the 0 
presence of a large number of modes and the incorporation of slots results in a highly 

00 
enriched response spectrum. Reducing the number of slots in block horris for 0 
wavelength systems therefore provides a strategy for decreasing the number of modes. 00 
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In Section 6.2.2 it was shown that for a double-slotted block horn, the output face 

vibration amplitude in the longitudinal mode was very uniform, but that the outer CI 
columns of the block horn exhibit bending responses which result in bending and 
longitudinal vibration of the outer blades. It was also shown that purely longitudinal Z: ' __ 

II 

vibration of the three blades could be achieved throuGh the incorporation of Cý 
castellations in the block horn profile (Section 6.2.2.1). For a block horn with no slots, 

the longitudinal mode visibly exhibits curvature on the faces of the block due to Cý 
Poisson's effect. 

Figure 6.18. (a) Double-slotted block hom, (b) single-slotted block hom, 
(c) solid block hom, for wavelength cutting head 

For a three-blade cutting head this effect would also lead to the outer blades C) 

exhibiting longitudinal and bending responses. Therefore, the solution for design 

aimed at reducing the number of modes of the cutting head, is to decrease the number Z71 Zý 
of slots and use castellations to eliminate the effects of curvature in the response at the 

output face of the block horn. Three block horns are shown in Figure 6.18. The 

double-slotted block horn is desi-ned based on standard slottin- conficrurations, 

whereas the other two blocks are a single-slotted and solid block geometry 

incorporating castellated faces to improve uniformity of the output face vibration 

amplitude and constrain the bending responses in the outer blades. The single slotted 

block horn in Figure 6.18 exhibits 20% fewer modes than the double-slotted block 

horn and the solid block exhibits 40% fewer modes in a0- 50 kHz frequency range. 

The predicted shape of the tuned mode resulting from incorporating a single-slotted 4: 1 LI 
block horn with no castellations, is shown in Figure 6.19 (a). Poor uniformity of the 

horn output face and bending motions of the outer columns and blades, are evident. 

However, as shown in Figure 6.19 (b), a form of castellation of the outer columns of C 
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the block horn is predicted to provide uniformity at the output face and to remove 
bending motion from the longitudinal motion of the blades. Cý L- 

Figure 6.19. Mode shapes of the tuned mode predicted for the same magnification L- 
factor, (a) no caste II ation, (b) castellations of the horn outer columns 

6.3.2 Short-block design for a half-wavelength system 

The characterisation of the vibration behaviour of the three-blade cutting head 

investigated in Section 6.2.1 revealed that the mode families associated with the three 

identical blades. each consist of a cluster of modal frequencies. Increasing the number IIIL, 

of identical blades mounted on the block horn does not significantly increase the I 
possibilities for exciting modal coupling. In fact, the number of modes of each mode 

family increases but their modal frequencies tend to be very close, with the response 

dominated by one or two of the modes, under longitudinal excitation of the assembly. C 
More significantly, it is the length of the whole assembly which directly affects the 

IC 
number of modes. It is usual to assemble ultrasonic systems from a series of tuned 

ystems, half-wavelength components. Where, in cutting sa block hom acts as the 

intermediate component between the transducer and blades, the system is one- 

wavelength. An opportunity therefore exists to reduce the number of modes by 

designing a block and blade assembly within a half-wavelength. 
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Wavelength block horn and blade assemblies are tuned to operate in the second I 
longitudinal mode. In order to reduce the number of modes. a half-wavelength three- Cý 
blade cutting system is designed by finite element modelling, tuned to the first Z-- C, Z-11 

lonaitudinal mode. The redesign is achieved without altering the blade cuttin- lenLyth, 

which is an operational requirement, and the system is shown in Figure 6.20. The FE 

model predicted the existence of about half of the number of modes of the wavelength 

system in the 0-50 kHz frequency range. 
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Figure 6.20. Half-wavelength three-blade cutting head 

6.3.2.1 Incorporating slits to eliminate bending responses 

For the half-wavelenth cutting system. it is possible to accommodate slits into the 
IIZ:: I 

desian, which constrains bending responses in the outer blades and results in a pure r-I Z71 
longitudinal mode response of the system with parallel, in-phase responses in the C_ 
blades. The predicted Ion-Itudinal mode response for a half-wavelength cutting head, 

without and with slits, is shown in Figure 6.21 (a) and (b). respectively. Subsequently 

an EMA is conducted on the redesigned cutting head. The sum of the FRFs measured Z71 Z__ 

on the half-wavelength cutting head in the frequency range 0-50 kHz is shown in Zý LI L_ 
Figure 6.22. Figure 6.21 (c) presents the measured longitudinal mode shape of the Cý C-1 4: 1 
head. The measurements confirm that bending responses in the outer blades are 

eliminated by the introduction of the slits in the block horn. 

The half-wavelenoth cuttino, head, due to its reduced number of modes, provides L- t- 
straightforward opportunities to remove the adverse effects of modal coupling, where Z-1 1) 

they exist. by making small geometry modifications to the design using a sensitivity L- Z' Z-1 

analysis as described previously in Section 6.2.2.2. 
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Figure 6.21. Predicted and measured longitudinal mode response of half-wavelength 
cutting head with (a) solid block horn (FEA), (b) double-slitted block horn (FEA), (c) 
double-slitted block horn (EMA) 
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Figure 6.22. Sum of the FRFs measured in the half-wavelength three-blade head 

6.3.2.2 Design strategiesfor reducing stress 

An important consideration in the design of ultrasonic components is the stress 

condition. It has been shown that amplitude gain is achieved by using steep section 

reductions in the blade profiles and by altering the thickness and profile of the blocks. 

The result is that weak points exist that become failure locations in operation, and the 

most common failure location in cutting systems occurs just after the steepest section 

reduction in the blades. As discussed previously, the removal of bending responses in 

the cutting blades significantly reduces the number of blade failures, but other 

geometry modifications can also improve the reliability of the cutting assemblies. The 
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highest stress in the half-wavelength cutting system excited in the longitudinal mode 

also occurs just after the blade section reduction. The effect of variation in the block 

thickness is investigated. Normalised displacement and stress along the axis of the 

system FE model for different horn thicknesses are illustrated in Figure 6.23. The 

stress can therefore be reduced by relocating the node of the longitudinal mode further 

back into the block. One way this can be achieved is by increasing the thickness of the 

block. Figure 6.23 shows the reduction in stress at the highest stress location due to 

variation of block thickness in 2 mm increments, where increasing the thickness 

moves the node backwards, thus reducing the slope of the modal displacement curve. 

Altering other geometry parameters can also be used to improve the stress condition 

by judicious repositioning of the longitudinal mode node. 
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Figure 6.23. Predicted normalised axial displacement 
and stress for half-wavelength cutting head 
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6.4 Conclusions 

This chapter has presented a numerical and experimental characterisation of the 

vibration behaviour of a three-blade ultrasonic cuttinc, head used for cuttinc, food 

products. Significant improvements in experimental validation of the FE models are 

achieved by the use of a 3D LDV, which allows modal analysis from both in-plane 

and out-of-plane response measurements, which are necessary for the classification of 
the modes of the system. 

Strategies for reducing the maximum stress in the components of the assembly have r) Z5 

been proposed. Stress reduction at the failure locations of the cutting blades is 

achieved by detuning the different system components while maintaining the system 0 
tuned frequency, and using geometry modification such as castellations to eliminate 

participation of bending motion in longitudinal-mode systems. Also, a design 

technique to avoid modal coupling has been proposed. 0 

Design approaches focusing on reducing the number of modes in the cutting head iD 

have been discussed. Block horns incorporating a reduced number of slots or a solid 

geometry have been modelled by FEA and block horns have been designed with 

castellated faces to reduce the number of modes while maintaining purely longitudinal 

cutting blade responses. A half-wavelength system tuned to the first longitudinal 

mode has been presented which halves the number of modes and the design 

incorporates slits to maintain purely longitudinal responses in the blades. 0 
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CHAPTER 7 

MODAL INTERACTIONS IN ULTRASONIC SYSTEMS 

7.1 Introduction 

Ultrasonic devices driven at high power in a longitudinal mode are often characterised 
by surprising phenomena such as frequency shifts, and particularly multiple 

responses, which tend to affect their performance. Evidence suggests that modal 
interactions are characteristic of ultrasonic systems where special relationships exist 
between two or more linear mode frequencies and the excitation frequency. Especially 

in devices characterised by many modes of vibration, external excitation of the tuned 

mode may excite one or multiple modes through what appears to be a nonlinear 

mechanism. Typically, systems tend to leak energy into lower modes [8], with the 

consequence for ultrasonic systems being that energy is leaked into audible modal 
frequencies and that the response of a tuned longitudinal mode includes bending 

and/or torsional contributions. The immediate consequence is that less energy excites 

the operating mode and stress is raised due to the additional responses, causing 

component failures. 

Although multi-modal responses have been discussed and reported for simple 

structures, such as bars and beams [72-761, the reliability problems in ultrasonic 

tooling devices have not previously been linked to these phenomena. The focus of this C' 

study is therefore to investigate multi-modal responses in ultrasonic devices, with 

reference to the published models of simple dynamic systems. 

7.2 Review of literature 

In the last three decades, considerable research work has been carried out on the 

theoretical and experimental study of modal interactions of simple dynamic systems 

such as rods and cantilevered beams. This research effort has attempted to understand 

the vibration behaviour of flexible space structures characterised by many modes of 
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vibration. In these systems it was found that if the natural frequencies CO are matched 

with an external harmonic excitation, under a certain condition of the excitation 

(parametric excitation), energy: exchanges between modes can occur. In particular, 0 
internal resonances or autoparametric resonances can exist when the external 

excitation frequency is close to a modal frequency which, in turn, corresponds to the 

sum or difference of two or more modal frequencies, depending on the degree of 

nonlinearity and the number or modes involved. These autoparametric resonances 
have been successfully treated by a number of authors using the widely used 

perturbation method of multiple scales. This method has been associated with several 

researchers but can mainly be attributed to Nayfeh [72]. The principle behind this 

technique is that the dependent variables of the equations of motion of a system are 

expanded in terms of two or more independent variables, or scales, instead of a single 

variable, thus taking better account of slow and fast oscillations within the system, 

this being a commonly occurring feature within nonlinear and parametric systems. 

In 1980, Crespo da Silva [73] presented a theoretical study of autoparametric 

resonances in a base-excited cantilever beam using the perturbation method. 

Calculations showed that the beam's whirling (nonplanar) motions were the result of a 

modal coupling between bending and torsional modes. A previous work from 

Dugundji and Mukhopadhyay [74] dealt with the simultaneous excitation of two 

(bending and torsional) modes of a thin beam under parametric excitation. However, 

in this case the excitation frequency did not correspond to a natural frequency of the 

beam, but to the sum of the frequencies of the excited modes (parametric vibrations). 

A large body of experimental results, which show good agreement with the 

perturbation results, has also been published [75,76]. Important observations for a 

fundamental understanding of parametric stability, together with a detailed description 0 

of developments in practical applications, are encompassed in a review paper 

published by Barr [77]. In this work the effects of including small parametric terms in 

the equations of the modelled structures are characterised for those conditions under 

which they become of considerable significance. 

In 1987 Cartmell [781 demonstrated that it is possible for two or more combination 

resonances to be excited simultaneously in vibrating structures under single frequency Zý 0 
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external parametric excitation, and that an effect generated by a weaker type of 

coupling can in fact modify that of a stronger coupling to a significant extent. As in 0 CP 00 

the work of Du-Undji and Mukhopadhyay [74], a flexible cantilever beam undergoing C) 0 
axial excitation was investigated. A theoretical model of the system to first and Cý 
second order approximation accurately predicted the observed laboratory behaviour 

within a range of excitation accelerations. A re-examination of this study has been C) 
published recently [791. 

Research has shown that other nonlinear phenomena, such as chaotic motions, can be 

observed in parametrically excited system. Haddow and Hasan conducted an 

experimental investigation of a parametrically excited cantilever beam excited close 

to twice the natural frequency of its fourth bending mode [80]. They observed that 

during a slow frequency sweep of the excitation frequency, a planar periodic response 

that essentially consisted of the fourth mode of the beam internally excited via 

principal parametric resonance, lost stability and a nonplanar chaotic motion took 

place. Hence, the energy seemed to leak through the modes. A similar experiment was 

carried out in 1988 by Burton and Kolowith [8 1] who identified the modes involved 

in the chaotic motions. 

Nonlinear systems under parametric excitations can also be characterised by a 

particular type of interaction between high and low-frequency modes, distinct from 

typical autoparametric resonances. Anderson et al. [82] conducted experiments on a 

parametrically excited cantilever beam and found that interactions could occur 
between two high-frequency modes and the fundamental mode, with the excitation of 

the fundamental mode not due to parametric internal resonance. Rather, it appeared 

that slow modulations of the high-frequency modes were responsible for energ oy 
transfer to the fundamental mode. In a later publication, Nayfeh and Nayfeh [83] 

experimentally investigated a cantilever beam with circular cross-section subject to 

axial excitation. One-to-one autoparametric resonances were found at each natural 

frequency of the beam due to its axial symmetry, with the result that the mode in the 

plane of the excitation interacted with the out-of-plane mode resulting in a nonplanar 

whirling motion. More importantly, it was observed that when the beam was excited 

near the natural frequency of its third or any higher mode, a large first-mode response 

appeared in the spectrum. As in the work of Anderson et al. [821, the appearance of 
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the first mode was accompanied by modulations of the amplitudes and phases of the 

high frequency modes. 

Modal interactions via modulations have also been reported in ultrasonic systems 

externally excited at a frequency in the vicinity of the longitudinal mode of vibration. 

Graham and Lucas published an experimental study of the vibration behaviour of a 

multi-component ultrasonic tool, where the system resonance and component tuning 

are typically at variance with the transducer tuned frequency, due to inherent 

manufacturing tolerances [8]. Energy transfer into a system natural frequency, due to 

the input excitation, causes the system to vibrate with an amplitude modulation 

related to the driving frequency and equal to the separation between the tuned 

frequency and the driving frequency. 

7.3 Introduction to parametric vibrations 

In 1990, Cartmell published a book in which the subject of parametric vibrations is 

presented through the analysis of practical examples [84]. The theoretical analyses of 

relevance to the characterisation of ultrasonic systems is discussed here. 

7.3.1 Parametric systems 
The prediction of the response of harmonically excited dynamic systems can be 

complicated due to the participation of one or several modes in the response. The 

issue of modal interactions often depends on the type of applied excitation and the 

system nonlinearity. For instance, the effects of parametric excitation of a simple 

structure are such that very large responses may be generated in a plane perpendicular 

to that of the excitation, provided that certain relationships exist between the 

frequency of excitation and the frequency of the excited mode or modes. The term 

parametric is descriptive of cases where the external excitation appears as a time 

varying modification of a system parameter. In contrast, in forced vibrations the 

response of the system to the excitation depends entirely on whether a resonance 

condition is present, and there is no resulting time variation in the system parameters. 

A case of forced vibration and two typical parametric configurations, for which there Z; 
is a parameter varying with harmonic excitation, are given in FigUre 7.1, where a 00 
simple beam is in turn excited in the three spatial directions by a harmonic force. 
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(a) Transverse excitation (b) Axial excitiftion (c) Transverse excitation 
normal to the plane of the beam in the plane of the beam 

Figure 7.1. Examples of (a) a forced and (b, c) two parametric configurations of a 4D harmonically excited beam 

In general mathematical terms, the inhomogeneous differential equations of motion C. 
for a forced system are replaced by homogeneous forms, in which there exist a 

varying periodic coefficient in the parametric c. ase. This is typified by the fundamental 

Mathieu-Hill equation 

4+ (a+ bcosL2t)q = 0. 

A more generalised version for which the excitation function f(t) is periodic, but not 

necessarily harmonic, is the Hill equation, 

4 (a +f (t))q = 0. (7.2) 

Parametric systems respond when the frequency of excitation is related to the natural 
frequency (or frequencies) by a resonance condition, and this does not imply 

synchronicity between these frequencies. 
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(amplitudes as shown are not numerically significant) 
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Figure 7.2. Frequency spectra for typical parametric combination resonances; (a) two 
modes modal interaction (principal parametric resonance), (b) three modes interaction 

So, large responses may be generated in cases where the excitation frequency is 

remote (but related through an integer or fractional multiple of some sort) from the 

natural frequency or frequencies. Figure 7.2 illustrates the spectral plots of two 

combination resonances typical of parametrically excited systems, where internal 

modes are related to the external excitation frequency through the following 

resonance conditions (or internal couplings): 0 

Q =- 2col and Q =- col + ca_, (7.3) 

7.3.2 Autoparamettic systems 
An autoparametric system consists of a primary system, which is an externally excited 
forced oscillator, coupled to a secondary system which is parametrically excited by 

the response of the primary system. Assuming that the primary system is excited close CP 
to resonance, such that Q 

-= col, then if the excitation frequency is such that, for 

instance, co, =- 2w2, where w2 is a natural frequency of the secondary system, the 

secondary system's response will be a principal parametric resonance. For this case, 

there can be an energy flow that results in responses in both modes, at co, and ". In 

general, an autoparametric system is one where internal coupling exists between two 

or more modes and a response relationship exists between these modes and the 

excitation frequency. 
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C 

dary beam 

Primary beam 

Figure 7.3 Coupled beam interaction problem showing primary response resulting 
from an imposed external excitation P(t) [84] 

Cartmell [84] has shown that for an example of a two DoF system of two coupled 
beams, illustrated in Figure 7.3, the responses of the primary and secondary systems 

of the two-mode autoparametric system can be solved using the following equations 

of motion: 

i+2ý, co,. i+ctj'x-c, U(ý+ yý) = P. cosQt, (7.4) 

y+2ý2aýý W22 y_ 4§iy = (), (7.5) ' 

where ý, 
, 

ý, are damping ratio terms and r and # are constants. 

The nonlinear coupling between the two equations is apparent in the 0 
termsg/i(ý + yý) and 6v. Eq. (7.4) can be reduced to a linear forced oscillator (with 

one degree-of-freedom) if the nonlinear term disappears. 'Me other equation of 

motion, Eq. (7.5), is clearly a parametric type equation where i acts as a coefficient 

of the coordinate y. 

The calculated primary and secondary system responses are represented in Figure 7.4, 

where P0 indicates a chosen excitation level. The region of modal interaction is 

bounded by ABCD in Figure 7.4 (a) and (b). Outside this region Eq. (7.4) drops the Cn 
nonlinear term and becomes the equation of motion for a forced linear oscillator, as 

stated above. 
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Figure 7.4. Responses for two-mode autoparametric coupling: (a) theoretical primary 
response, (b) theoretical secondary response [84] 

In Figure 7.4 (a) there is an exact relationship, (01 = 2aý'. The linear response, for the 

chosen excitation level PO = 10, is replaced by a v-shaped curve where nonlinear 

autoparametric interaction occurs. The secondary system response, shown in Figure 

7.4 (b), follows the linear curve in a sweep-up of the excitation frequency until 

reaching point A, where the response jumps from A to B, and continues along the 

nonlinear curve to point C, where the response jumps from C to D and then returns to 

a linear response. Jumps AB and CD are symmetrical about the linear resonance. A 

larger excitation level (PO = 100) would extend the frequency region over which the 

nonlinear characteristics occur and would increase the magnitudes of responses. The C) 

nonlinear primary response in Figure 7.4 (a) is independent of PO, in fact an increase 

in PO to PO = 100 would simply promote jumps AB and CD at points further away 
from (ol than the lower excitation level of PO = 10. 

(a) (b) 

92w 
.a 124 

Frequency Frequency 

Figure 7.5. Theoretical primary responses: (a) ((o2/coj) = 0.48, (b) (co2/coj) = 0.52 
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Where an exact relationship does not exist, and co, =- 2uý,. the primary system 

response loses this symmetry about the linear resonance. as illustrated for two cases 

where (o, /(ol = 0.48 and co, /(ol = 0.52 in Figure 7.5. 

7.4 Combination resonances in ultrasonic systems 
In ultrasonic cutting systems, energy can leak into bending and torsional inodcs at 
frequencies lower than the excitation frequency, as a direct result of' tuning and 

exciting the system in a longitudinal mode of vibration. In particular. the principal Z-- L- 

parametric resonance e), =- 2(t), and relationships involving combination resonances. 

(j), =- where " and oY3 are two internal modes. are typically identified in 

ultrasonic systems. The vibration behaviour of these complex ultrasonic devices can 

therefore appear to be similar to published models of autoparametric systems. 

In this section the vibration behaviour of single-component and multiple-component 

ultrasonic systems are experimentally characterised to illustrate the excitation of 

combination resonances. 

7.4.1 Combination resonance in an ultrasonic block horn 

The first resonator under investigation is a double-slotted block hom used as the C, 

intermediate component in a three-bladed cuttiner head, shown in Figure 7.6. 

II 

Figure 7.6. Doubie-slotted block hom 

As discussed in Session 5.3, conventional block horn desian relies on the use of In 
standard slotted geometries and profiles. Block profiles are largely based on the tr Z71 
required amplitude gain for the output face, while slots are used to control the 

vibration amplitude uniformity on the output face, and also control the separation of 
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non-tuned modal frequencies from the tuned frequency. As a result, slotted block 

configurations result in the presence modes of vibration associated with the width of 

the horn columns. 

An FE model of the block horn is performed in order to predict its modes of vibration 
in a0- 40 kHz frequency range. Furthermore, a steady-state dynamics step, 

calculating the amplitude of the horn response caused by harmonic excitation over the 

same frequency range, is created in order to simulate the transducer excitation. 
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Figure 7.7. FRFs from block horn: 
(a) predicted, (b) measured 

The FRF of the block horn is also measured using the experimental rig used for 

swept-sine excitation as described in Section 3.4.3. The response of the block horn- 

transducer system is measured by the 3D LDV over the same frequency range as the 

numerical simulation. The predicted and measured FRFs at a corner of the block horn 

are shown in Figure 7.7. Good correlation between the predicted and measured modal 
frequencies is achieved. However, the predicted FRF (Figure 7.7 (a)) exhibits a lower 
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number of modes than the measured one (Figure 7.7 (b)), and there are differences 

between the predicted and measured responsiveness of the modes. Such discrepancies 

are due to the simplistic model of the transducer-block horn, which neglects the 

modes introduced by the transducer. 

Subsequently, to inspect whether modal interactions occur during the operation of the 

transducer-horn stack, an experimental sweep of the excitation frequency is performed 
in a small frequency band around the hom's longitudinal frequency (37 kHz). The 

frequency is gradually swept over a range of 300 Hz with the sweep repeated for 5V 

increments of the excitation level. As soon as the excitation level reaches 40 V, two 

responses, occurring at 4.3 kHz and 32.6 kHz, are visible in the response spectrum 

(Figure 7.8 (b)). 
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Figure 7.8. (a) FRF of the block horn measured in 0-50 kHz 
frequency range, (b) three-mode combination resonance 

The ratios of the velocity response of the directly driven longitudinal mode and the 

other two responses in the spectrum, are of the order of 20: 1. The sum of the 

frequencies of the indirectly excited responses is equal to the frequency of the 

externally driven mode. The response detected at 32.6 kHz corresponds to a mode of 

vibration, as evident in the measured FRF (Figure 7.8 (a)). Conversely, the FRF does 
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not exhibit any resonant mode at the frequency of the other response component, 

detected at 4.3 kHz (Figure 7.8 (b)). An EMA of the system carried out by FRF 

measurements of the entire surface of the block, and partially of the transducer, allows 

the classification of 4.3 kHz also as a mode of vibration. This demonstrates the 

importance of EMA which prevents the problem of missing modal responses 

performing single FRF measurements. The block hom-transducer system behaves as 

an autoparametric system where the driven mode and the indirectly excited modes 
form a combination resonance involving three system modes. The experimentally 

detected mode shapes of the two internal modes excited through the combination 

resonance, are illustrated in Figure 7.9. The low frequency mode, shown in Figure 7.9 

(a), is a bending mode of the transducer and block hom assembly in the plane of the 

block. 

The FE model of the block horn alone does not predict the 4.3 kHz mode, because it 

involves the motion of the whole transducer-horn assembly. Hence, an FE model of 

the entire system is required. Figure 7.9 (b) shows a predicted mode of vibration of 

the system, the frequency and mode shape of which correlate well with the measured 

bending mode of Figure 7.9 (a). The other mode involved in the energy transfer, 

measured at 32.6 kHz and predicted at 33.1 kHz (Figure 7.9 (c) and (d)), is 

characterised by torsional motion of the block horn, and could therefore be predicted 

by the block horn model. Hence, system FE models should include the transducer so 

that potential resonance conditions can be predicted at the design stage. Cý 

The contribution of the two internal modes to the longitudinal mode is negligible, as C' 0 C) 

the amplitudes of their responses are negligible compared to the externally excited 

mode response (Figure 7.8 (b)). However, an audible noise level due to the excitation 

of the lowest modal frequency, is detected during the measurement. Finally it can be 4ý 
observed that, whereas at the low excitation levels required for EMA, untuned 

bending and torsional modes are not excited by the longitudinal mode transducer, at 0 
higher excitations the system can lose stabilit , self-exciting bending and torsional y Cý C' 

responses. 
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Figure 7.9. Measured and predicted mode shapes of the combination modes of the 
assembly: transdu cer-b lock horn bending mode (a) measured, (b) predicted; block 
horn torsional mode (c) measured, (d) predicted 

7.4.2 Combination resonances in a single-blade cutting system 

A test is also conducted to study the vibration characteristics of the single-blade 

ultrasonic cutting system shown in Figure 7.10, whose modes of vibration were 

predicted and validated in Section 4.2.3 through FEA and EMA. A complete EMA of 

the cutting device enabled classification of all the modes by random excitation test in 

the 0- 50 kHz frequency range. The FRFs measured from a point at the tip of the 

blade are shown in Figure 7.11 (a). The figure highlights the presence of three 

responsive modes corresponding to three longitudinal modes of the transducer-blade 

assembly, alongside several small resonance peaks matching the frequencies of 

bending and torsional modes. 

Figure 7.10. Transducer-blade 
ultrasonic cutting system 
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As previously, a blade FE model is created. Again, a sinusoidal longitudinal force 0 4D 
simulates the excitation provided by the transducer over the frequency range of the 

measurement. The predicted FRF shown in Figure 7.11 (b) exhibits one longitudinal 

mode occurring at 35.5 kHz corresponding to the first longitudinal mode of the blade. 

Subsequent inclusion of the transducer in the system FE model, allows the prediction 

of the other two longitudinal modes detected in the test as shown in Figure 7.11 (c). 

From the simulation it appears that, if the transducer provided a purely longitudinal 

excitation over the frequency range, no bending and torsional mode responses are 

visible in the spectrum. However, the transducer itself exhibits some bending and 

torsional modes of vibration at certain frequencies, which can excite bending modes 

of the attached blade and of the whole assembly. In consideration of that, transverse 

components of the excitation force, small in comparison with the longitudinal one, are 

introduced into the FE model. Figure 7.11 (d) shows the predicted FRF of the 

transducer-blade under longitudinal and transverse excitation. Small bending modal Z; ' 
responses, excited by the transverse component of the applied sinusoidal force, are 

predicted in a frequency region around 5 kHz, improving agreement with the 000 
measurement of Figure 7.11 (a). 

Modal interactions are experimentally identified from a slow frequency sweep over a 

narrow frequency band around the tuned longitudinal mode frequency at 35.3 kHz, at 

constant increments of the excitation voltage. The excitation frequency is swept 

forward and backward over a range of 300 Hz at increments of 5 V. At 30 V 

excitation, two peaks appear in the spectrum which correspond to frequencies 

identifiable in the FRF (Figure 7.12 (a) and (b)) at 16.8 kHz and 18.3 kHz, 0 

corresponding to the third bending mode, fBT , and to the second torsional mode, C) 38y 

fBT 

zr, , of the transducer-blade assembly, respectively (Fi, Ure 7.13). The superscripts 

BT indicates that both blade (B) and transducer M are involved in the motion, 

., 
indicate the mode types according to the whereas the subscripts, 3B and 2T, Y t) 

classification of Section 4.3.2. Since the responses of the bending modes are 

particularly low, as a result of the mainly longitudinal excitation provided by the 

transducer, a logarithmic scale is adopted for the measured FRF and the response 

spectra. 
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The sum of the internally excited modal frequencies is equal to the frequency of the 

driven mode, f BT 
, which is evidence of a combination resonance, f IBT =f BT +f BT 

2L, 2L, 3By 2T, 

and typical of an autoparametric system. The participation of these modes in the 

overall response is insignificant, as their responses are low compared to the tuned CP 
mode response (Figure 7.12 (b)). At this excitation level, the performance of the 

cutting system is only affected by the noise associated with the 16.9 kHz mode. 0 

As seen for the transducer-block horn assembly, in order to predict the vibration 

behaviour of ultrasonic cutting assemblies the transducer must be included in the FE 

model. 
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Figure 7.12. (a) FRF from transducer-blade system, (b) 
combination resonance I, (c) combination resonance II 
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Figure 7.13. (a, c) Measured and (b, d) predicted mode shapes of an internal resonance; 
(a, b) third bending mode of the transducer-blade assembly, (c, d) second torsional 0 
mode of the transducer-blade assembly 

Z4.2.1 Single-blade cutting system driven in lower and higherfrequency modes 
In order to investigate whether other resonance conditions are detectable in the 

system, the transducer-blade assembly is driven in the first longitudinal mode at 19.7 

(f BT ), kHz IL, which is not the tuned mode of the system. The excitation frequency is 

again swept over a 300 Hz range at 5V increments of the excitation level. However, 

in this case no combination resonances are measured at any excitation voltage. In 

principle, energy exchanges between the excited mode and untuned modes can be 

both upward and downward, but experiments indicate a preference for modes to pass 

energy downwards to lower frequency modes [77]. When the cutting system is 

externally driven in a lower frequency at its first longitudinal mode (19.7 kHz), there 

is a smaller number of modes at frequencies below the driving frequency, thus 

combination resonances are less likely occur. 

The system is finally driven at 42.9 kHz, corresponding to the third longitudinal C) 

modal frequency of the assembly, f 
BT (Figure 7.12 (c)). As previously, a sweep of X, 

the excitation frequency is performed. In this case, at 20 V excitation two responses, 

corresponding to the first in-plane bending mode of the transducer-blade assembly 
(f IIT 

and the third torsional mode of the blade, occur at 4.8 kHz ,, and 38 kHz (f3BT,, ) 

respectively, and satisfy the internal resonance, fBT = fBT+ fB 
. Figure 7.14 3L, IBý 3T, 

illustrates the measured and predicted mode shapes of the excited modes of the 
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combination. The FE model of the blade alone predicts the higher frequency niodc of 

the pair as illustrated in Figure 7.14 (d). this mode exhibiting only blade responses I LI I 
(Figure 7.14 (c)). The transducer contributes to the bending motion of the lower 

Z-- -- 
frequency mode as visible in Figure 7.14 (a). Hence, this mode can only be predicted Z-- 
by including the transducer in the FE model of the system (Figure 7.14 (b)). 

In this case, the response of the internally excited modes are of the same order as the 

externally driven mode (Figure 7.12 (c)). In addition, the 4.3 kHz mode is clearly 4n 

audible. 

(a) (b) 

ý 

BT BT Y z f 
i B, 4800 Hz flB, 4420 Hz 

(C) (d) 

f, B 37990 Hz 
, T, 

fB 36520 Hz I T, 

Figure 7.14. Mode shapes of an internal resonance of the assembly-, (a) measured and (b) 
predicted I" in-plane bending mode, (c) measured and (d) predicted 3d torsional mode 
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Figure 7.15. (a-b) Measured and predicted 2d in-plane bending mode 
ofthe assembly, (c) Predicted I st in-plane bending mode of the blade 
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Another example demonstrating how incomplete FE models lead to misinterpreted 0 
mode shapes, is shown in Figure 7.15. Figure 7.15 (a) and (b) illustrate the measured 0 Zý 
and predicted second in-plane bending mode of the assembly at 7.7 kHz. The blade 0 
model alone predicts its first in-plane bending mode at a close frequency (Figure 7.15 t: - 4D 

(c)), but the two modes are different. 

Z4.2.2 Stabiliy regions 
It is convenient to identify the regions inside which the system response switches 

from a single mode to a multi-modal response, in terms of the excitation frequency 

and the excitation level. Experimentally obtained boundaries for the transition from 

stable single-mode to unstable multi-modal responses of both combination resonances 
detected for the transducer-blade system, are given in Figure 7.16. The excitation 

level versus frequency chart shows two v-shaped zones inside which the combination 

resonances (secondary responses) participate within the primary response (driven 

mode). Curve I shows the experimental transition values for the combination 

resonance detected when the assembly is driven in the second longitudinal mode at 

35.3 kHz, and it can be noted that the instability region is relatively narrow. In 

addition, the excitation threshold at which the system goes unstable is 30 V. On the 

other hand, the instability region of the second combination resonance, detected when 

the system is driven at 42.9 kHz, described by Curve 111, is wider and has a lower 

threshold. 
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Figure 7.16. Stability regions for the transducer-blade ultrasonic 
cutting system C. 
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The transition curves of the instability regions indicate the degree of coupling 
between the tuned mode and the internally excited modes. Frequency shifts of the 

modes involved in a combination resonance are necessary to uncouple the externally 

excited mode from the internal modes. These frequency shifts depend on the width 

and threshold of the transition curve. Bigger frequency shifts are required to get rid of 

a strong modal coupling, characterised by a wider instability zone and lower 

threshold. 

Alteration of the positioning and/or length of the threaded stud connecting the 

transducer and the blade, constitutes a simple strategy to control the frequencies of the 

modes involved in a resonance condition. The normal attachment configuration has 

the threaded stud connecting the blade and the transducer half screwed into the 

transducer and half into the blade. 

Stud 

: M=I 
Transducer Blade 

320 

240 

160 

0 80 

As 
0 

-80 

ý-160 LL. 

-240 

-32D 

Figure 7.17. Frequency trend of the combination modes due to different stud 
positioning 

A sensitivity analysis is performed of the combination mode frequencies, detected in 

the operation tuned mode response, to different positions of the threaded stud. Figure 
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7.17 shows the dependence of the modal frequencies of the first combination 

resonance on stud position. It is evident that the stud location mainly affects the 

frequency of the tuned mode, whereas the other modal frequencies prove 

comparatively insensitive. The largest shift of the tuned mode frequency is detected 

for the configuration with the threaded stud fully screwed into the blade. 

A frequency sweep around the tuned mode frequency, obtained for this attachment 

configuration, reveals no energy exchange between the driven mode and other modes 
in the spectrum. Therefore, a detuning strategy based only on connecting stud r) 00 
repositioning results eliminates the modal interaction in the single-blade cutting C) 0 

assembly. 

74.2.3 Influence of transducers on response characteristics 
Finally, to establish whether modal interactions are related to the type of transducer 

used, a similar test was conducted, with the blade mounted on a transducer supplied 

by a different manufacturer tuned to the same frequency (35 kHz). The FRF measured 

at the blade tip for a5V excitation level is shown in Figure 7.18 (a). Again three 

modal responses representing the longitudinal modes of the assembly are detected by 

random excitation test in the 0-50 kHz frequency range. As expected, the tuned 

longitudinal mode of the system occurs at the same frequency as in the preceding 

case, since both transducers are tuned at the same frequency. However, the other two 

responsive modes in the spectrum occur at different frequencies than for the system 

studied previously. As before, a sweep of the excitation frequency is performed 

around each longitudinal modal frequency at increments of the excitation level. In this 

case, no modal interactions are measured when the system is excited around its tuned 

frequency at 35 kHz. Only one combination resonance is detected, when the system is 

excited near the third longitudinal mode frequency at 45 kHz, as shown in Figure 7.18 

(b). The internally excited modes are the second out-of-plane bending mode and the C. ) 
tuned second longitudinal mode of the assembly occurring at 10 kHz and 35 kHz, 

respectively. 

Since the cutting system is designed to operate in the longitudinal mode at 35 kHz, the Z. r) 0 

second transducer provides a better excitation source. In general, an ultrasonic tool 
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that works well when mounted on one transducer, can perform poorly when driven by 

another. 

(a) 

u a LL 
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(b) 

-1-n 

---- In-plane velocity 

- Out-of-plane velocity 

- In-plane velocity 

0 

0 10.0 20.0 kHz 30.0 40.0 50.0 
Figure 7.18. (a) FRF from transducer-blade, 
(b) combination resonance 

7.4.3 Combination resonances in three-blade cutting systems 
It has been shown that in ultrasonic systems, energy can leak into bending and 

torsional modes at frequencies lower than the excitation frequency, as a direct result 

of tuning and exciting the system in a longitudinal mode of vibration. 

In this section, the energy exchange from the operating mode into a modal frequency 

close to half of the tuned frequency, and excitation of combination resonances 

consisting of two modal frequencies whose sum is close to the tuned frequency, are 

characterised for two three-blade cutting systems. The measured energy transfers from 

the primary responses to the internally excited modes are compared with the theory of 

simple autopararnetric systems discussed in Section 7.3.2. 
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Z4.3.1 Principal parametric resonance 
Figure 7.19 (a) shows the first three-blade cutting system investigated. Initially, an 0 
experimental modal analysis is performed in order to identify the modes by random 

excitation test in the frequency range 0- 50 kHz. One such measurement, overlaying C 
the out-of-plane and two in-plane FRFs from a point on the tip of one of the blades, is 

illustrated in Figure 7.19 (b), so that, if internal responses are measured by exciting 0 Cp 

the tuned frequency, they can clearly be identified as multi-modal interactions. Time 

domain and frequency domain measurements of the system's response when driven at 
the tuned modal frequency at 40 V excitation, are presented in Figure 7.19 (c) and (d) 

respectively. Both feature the presence of an internally excited principal parametric 

resonance coupled with the externally excited resonance. Figure 7.20 illustrates the 

measured mode shape of the internal mode corresponding to the fifth bending mode of Cý 
the block-blades assembly occurring at 17737 Hz (fBBH ). The superscript BBH C, 5BY 

indicates that the blades (B) and the block horn (BH) are involved in the motion. 

To investigate this modal interaction more clearly, measurements of the system's 

response to a sine sweep of the excitation frequency over a narrow frequency band 

around the tuned longitudinal mode frequency at 34737.5 Hz (fBE" ) are performed. 4: 1 2L, 

The excitation frequency is swept forward and backward over a range of 275 Hz at 

two different excitation levels. A slow sweep rate and small frequency step (12.5 Hz) 

are adopted in order to record only steady responses. Figure 7.21 (a) shows how the 

system responds to an excitation level of 40 V. It is observed that when sweeping the 

frequency forward initially from 34625 Hz, the system responds only at the excitation 
frequency (primary response), and no modal interactions are detected. However, when 

the frequency reaches 34712.5 Hz, the primary response suddenly increases and a 

.,, 
e secondary response is also excited (Figure 7.21 (d)). When the excitation larg 

frequency is further increased, both responses decrease, reaching a minimum at 34750 

Hz. 

Continuing the frequency sweep, the responses once more increase up to 34762.5 Hz 0 
and then the secondary response disappears, whereas the primary response decreases. 

Identical response paths are identified through a sweep down of the excitation 0 
frequency as shown in the figure. The time responses measured at each frequency step Z' 
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are in a steady state during the intermodal energy exchange as illustrated in Figure 
C L- Cý 

7.19 (c). The resulting v-shaped curve, due to energy flow from the primary response Cl CI 

to the internally excited mode, appears qualitatively similar to the predicted response 

of the theoretical 2DoF model discussed in Section 7.3.2 and illustrated in Figure 7.4. 
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Figure 7.19. (a) Three-bladed cutting head, (b) FRF, (c) time domain response, (d) In 
response spectrum 

Figure 7.20. Measured modes shape of the indirectly 
excited fifth bending, mode of the assembly 
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Measurements of the system at an increased excitation level of 80 V show that the 

primary response curve is independent of the excitation level in the double response 

region (Figure 7.21 (b) and (c)). The hi-her excitation level extends the reaion over 4-7 In 
which the multiple-response exists (Figure 7.21 (c)). which again agrees with the L_ L_ Z__ 

theoretical analysis of Section 7.3.2. 

Furthermore, the asymmetries of the primary response due to the not exact 

relationship f BBH f BBH 
, predicted by the theoretical analysis and shown in Figure 2L, 5B, L, 

7.5, are also illustrated in the measurements. 
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Figure 7.21. Responses for the two mode autoparametric coupling: (a) measured 
primary response at 40 V, (b) measured primary response at 80 V. (c) measured 
primary responses at both excitation levels, (d) measured secondary responses at 
both excitation levels 

Figure 7.22 illustrates the effect that varying the excitation level has on the primary 

response of the system driven at a constant external excitation frequency. In the 

measurements illustrated in Figure 7.22 (a) the excitation frequency matches the 

frequency at which the double response is initially detected (34712.5 Hz) during the I 
upward frequency sweep. An excitation frequency corresponding to the frequency of L- - 
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the minimum nonlinear response (at the bottom of the Vshape at 34750 Hz) is 

adopted for the measurement plotted in Figure 7.22 (b). In both measurements the Z: ' 

primary response increases linearly with excitation level up to the threshold (where 

the secondary response appears). Further increasing the excitation level, the primary 

response first decreases and then stays constant. This confirms that the primary 

response of the system is not governed by the excitation level when the modal 
interaction is underway. From the comparison of Figure 7.22 (a) and (b), it is also 

evident that the drop in the primary response, associated with the internal excitation of 

the secondary response, is greater when the system is driven at the minimum 

nonlinear response frequency. This is not a surprising result since the largest amount 

of energy extracted from the primary mode occurs at this frequency. 
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Figure 7.22. Primary responses measured as a function of excitation level 

Figure 7.23 shows the secondary system response over the same excitation level 

range, also for the excitation frequency equal to the minimum nonlinear response C) 

frequency. It can be seen that the response of the internally excited mode, above the 

threshold, increases with excitation level. A response saturation effect, attributable to 

the inherent nonlinear behaviour of the system, limits the growth at high excitations. 
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Figure 7.23. Secondary response measured as a function of excitation level 

74.3.2 Double principal parametric resonance 
Theoretical modelling of simple autoparametric systems has predicted that diverse 

modal interactions can be excited when the external frequency is varied in the vicinity 

of a modal frequency [84]. In particular it is found that, for certain excitation level 

thresholds, primary responses are characterised by a number of v-shaped regions each 

of which indicates a single modal interaction. In Figure 7.24, the primary response of 

the cutting device is measured through a sweep of the excitation frequency over the 

same range considered in the previous measurements. However, in this case the sweep 
is performed at a higher excitation level (I OOV). 

The figure shows two v-regions in two distinct frequency bands of the primary 

response, indicating that the excitation level threshold for two modal couplings is 

reached. In this case, the first combination resonance, occurring in the lower 

frequency v-region of the figure, has a higher excitation level threshold, which is not 

reached, at the lower excitation levels of Figure 7.21. Hence, this combination is 

weakly coupled. The second combination corresponds to the same modal coupling 
detected in the previous measurements at lower excitation levels. This combination is 

strongly coupled. Both modal interactions feature two internally excited principal 

parametric resonances coupled with the external mode. The internally excited modes, 

occurrino' at 17.3 kHz and 17.35 kHz, are identified in the FRF of the cutting device 

as shown in Figure 7.25. For measurements carried out at even hi"'her excitation 0 4D 
levels, an overlap of the two v-shaped regions over a frequency bandwidth will occur. 
As a result three modal responses, one external and two internal, would be excited in 

the response spectrum. 
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Figure 7.24. Primary response for two internal resonances 

Since different modal interactions can be excited at different excitation thresholds, it 

is important in the experimental assessment of an ultrasonic device to check the 

response up to the excitation level typical of its operating conditions. From the Z1- 

experimental evidence gathered in this study. it would appear that, for high power rn -- 
ultrasonic systems that incorporate multiple tuned components and particularly hierh- 

gain components, if one of the frequency relationships which results in a modal 

interaction exists, the threshold will lie within the operating excitation level ranore. I 

7- 

Mode excited in the 2.0 2" Combination 
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LL 
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Figure 7.25. Measured FRF in I kHz frequency range centred at half of the excitation 
frequency 
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7.4.3.3 7hree-mode combination resonance 
Multi-modal combination resonances have also been theoretically characterised for 

simple beam-like structures with the introduction of three modal coordinates in the 

Eq. 7.4 and 7.5. An experimental investigation of another ultrasonic cutting device, 

shown in Figure 7.26 (a), aims to identify a combination resonance involving three 

modes. As before, the mode of vibration are identified from measurements of the 

FRFs from the whole surface of the assembly over a 0-50 kHz frequency range. 

Figure 7.26 (b) illustrates one FRF measurement from a point on the tip of an outer 

blade of the cutting head. Subsequently, a sine-sweep of the excitation, over a 

frequency range of 175 Hz around the tuned longitudinal mode frequency (f "' - Z: ' 0 2L, - 

34405 Hz), is carried out at an excitation level of 40 V. A slow sweep is performed 

for frequency increments of 6 Hz. Initially, for the forward sweep, starting from 

34325 Hz, the response consists only of a response at the excitation frequency. At 

34400 Hz, two responses, in addition to the directly driven response, appear in two 

lower frequency modes (Figure 7.26 (d)). These modes, corresponding to the second 

bending mode of the blade (Figure 7.27 (a)) and the fifth bending mode of the 

13 (f 11BH assembly (Figure 7.27 (b)), occur at 6 kHz (f2,, 
Y) and 28.4 kHz ,, ), respectively. 

Their frequencies satisfy the combination resonance, fBBH_ fB +f BB". The 
2L, 2B, 5B Y 

measured time response at this excitation frequency shows periodicity of the three 

modes, as illustrated in Figure 7.26 (c). 

When the excitation frequency is further swept up to 34406 kHz, the three responses 

become enriched with sidebands, which rapidly spread across the frequency spectrum, 

and the response in the tuned mode decreases, as shown in Figure 7.26 (f). The time 

domain measurement at this excitation frequency step (Figure 7.26 (e)), shows 

evidence of non-periodic responses. At 34412 Hz, the sidebands disappear leaving the 

three modes of the combination in the spectrum (Figure 7.26 (h)), and periodicity is 

re-established (Figure 7.26 (g)). Carrying on the forward frequency sweep, the two 

internally excited modes disappear, and the primary response decreases. 

Figure 7.28 shows the system primary response obtained as function of the excitation 

frequency. As expected, a v-shaped curve indicting the energy flow from the primary Cý 

response to the internally excited modes is detected. 
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Figure 7.26. (a) Three-blade cutting head, (b) FRF. (c), (e), (g) time domain Z: ' zl_ 

responses; (d), (f), (h) corresponding response spectra Z: ' 

Subsequently, measurements of the system at an increased excitation level (80 V) are 

performed. Figure 7.29 illustrates the responses obtained through a slow downward L, r-I 
sweep of the excitation frequency carried out in a frequency band around the tuned 

modal frequency. Responses qualitatively similar to those detected at the lower 

excitation (40 V) are measured. However, the frequency region over which the system 41- 
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becomes unstable, triggering off the multi-modal response, proves to be wider. 
Moreover it can be observed that at 34400 Hz excitation frequency the amplitude of 

the three excited modes (the tuned mode and the two internal modes) si-nificantly 
decreases as illustrated in Figure 7.29 (g). 
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Figure 7.27. Measured modes shapes of the internally excited modes of the 
combination resonance, (a) blade 2 nd bending, mode (b) assembly 5 Ih bending mode 
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Figure 7.28. Measured primary response for the three-mode combination resonance 

Lar2e amounts of energy are fed in other modes as a result of a cascading effect I*! ) Z1- 

which involves the excitation of other internal resonances. The response spreads 

across the frequency spectrum. The time domain measurement shown in Fic'ure 7.29 

(c) is clearly a non-periodic response, which, alongside the broadband spectrum 

response of Figure 7.29 (g), shows evidence of a dynamic behaviour typical of chaotic 

motions. 
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- C) 

This modal interaction differs from the one investigated in the previous section, not C) 
only in the number of modes involved, but also in the conditions under which the 

energy flows from the primary to the secondary responses. In fact, interactions 

between three modes are characterised by non-steady responses, whereas the energy 
exchange involving two modes is typically steady-state. 
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Figure 7.29. (a-d) Time domain responses, (e-f) corresponding response spectra, CP 
measured at frequency steps of 12.5 Hz 
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V-shaped regions indicating energy transfers from the externally driven mode 
(primary response) to one or more internal modes (secondary response) are more 
difficult to detect in the systems discussed in Section 7.4.1 and 7.4.2. Single- 

component assemblies exhibit lower amplitudes of the internal modes compared with 

the tuned mode amplitude therefore revealing small energy leakages. 

74.3.4 Stud relocations 
Alternative positions of the threaded studs connecting the block horn to the blades are 

considered in order to provide shifts in the modal frequencies required to eliminate the 

resonance condition 
fBBH= fB + fBBH 

. Figure 7.30 shows the frequency dependence I 2L, - 2B Y 5BY 

of the three modes of the combination resonance on stud location. 
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Figure 7.30. Frequency trend of the combination modes due to different stud 
positioning 

The initial attachment configuration has the threaded studs half screwed into the blade 

and half screwed into the horn. It is evident that the configurations with the studs fully 
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screwed into the blade bases provide the greatest frequency shift of the tuned mode, 

whereas the internal frequencies result less sensitive to the alteration. Hence, a slow 

sweep of the excitation frequency near the tuned mode for this attachment 

configuration is performed. Up to a 30 V excitation, the response consists only of the 

longitudinal mode, whereas above it, a response occurring at 17250 Hz, exactly half 

of the tuned frequency (34500 Hz), appears in the spectrum (Figure 7.31 (b)). The 

result of shifting the frequencies of the internal modes involved in the original 

resonance condition is that parametric resonance is excited. 

(a) 
- Out-of-plane velocity 

-- In-plane velocity 

- In-plane velocity 

(b)i 

-ý2 

kHz 

Figure 7.31. (a) FRF from wavelength cutting head; 
(b) principal parametric resonance 

Hence, relocating the threaded studs does not eliminate modal interactions coupled 

with the tuned mode as it did for the single blade system (Section 7.4.2.2). In this, in 

the investigated multi-component assembly, which is characterised by a large number 

of modes of vibration below the tuned frequency, a slight detuning via stud 

relocations may eliminate an internal resonance condition. However, the general shifts 

in modal frequencies can often lead to the excitation of a different modal interaction. 
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This provides a strong argument for minimising-, as far as possible, the number below C7 In 
the tuned mode in multi-component ultrasonic assemblies. 

7.4.3.5 Single-slotted block horn 

In Figure 7.32. a redesigned multi-blade cutting head is presented, where the half- 

wavelength single-slotted block horn of Figure 6.18 (b) is attached to three half- 
Z1 4-- 

wavelenath tuned blades. 4-- 

.......... 

Figure 7.32. Single-slotted cutting head C- Zý 

Castellations at the side faces of the block help to eliminate bending motion from the Z: I 
longitudinal motion of the blades and to provide uniform amplitude at the blade tips. L_ 
An FRF measured at the tip of an outer blade of the assembly over a0- 50 kHz 

frequency range is presented in Figure 7.33 (a). The spectrum exhibits a substantially L" L_ 

lower number of modes of vibration than the three-blade head previously examined. 

This is not surprising since the incorporation of a single-slotted block in the cutting 

system reduces the number of the modes of vibration (Section 6.3.1). 

Subsequently forward and backward sweeps of the excitation frequency around the 

tuned mode frequency (35.7 kHz) are performed for incremented excitation levels. At 

a 50 V excitation, two modes occurring at 6.5 kHz (second bending mode of the 

blade) and 29.1 kHz (fourth bendiner mode of the block-blade assembly) appear in the Z__ 
response spectrum, indicating the occurrence of a combination resonance (Figure 7.33 

(b)). 

Figure 7.34 shows the frequency sensitivity of the modal frequencies of the rn 
combination resonance to threaded stud positions. It is evident that the configuration 

with the studs fully screwed into the block horn provides the greatest shift in the tuned L- 

mode frequency. 
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300.0 

(a) 

LL 

IL 
(b) 

Out-of-plane velocity 

In-plane velocity 

In-plane velocity 

kHz 

Figure 7.33. (a) FRF from single-slotted cutting head, 
(b) two-mode combination resonance 
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Subsequent frequency sweeps of the excitation frequency carried out on the assembly 

with this attachment configuration are conducted. The excitation level is increased 0 
after each frequency sweep, and no modal interaction is detected up to the excitation 
level required to drive the cutting head at its operating cutting amplitude. 00 

Since this sinale-slotted assembly exhibits a reduced number of modes, it may be ID 
possible to eliminate internal resonance conditions through small geometric 0 
modifications of the system, without exciting other combination resonances 0 

Z4.3.6 No-slotted block hom 

In Figure 7.35, a multi-blade cutting head incorporating the solid block hom of Figure 

6.18 (c) is shown. Figure 7.36 illustrates the FRF measured at the tip of a blade of this 

system. The number of modes is less than in the configurations with one or two slots 
in the block horn. The cutting head is driven in the tuned mode up excitation levels 

sufficient to excite the required cutting amplitude in the blades with no modal 
interactions detected. 

Therefore, cuttina heads incorporating solid block homs represent a valid design 

solution for eliminatina modal interactions by reducing the number of modes. 0 Z: ' 
However, in order to avoid bending responses of the outer blades at the tuned mode, 

castellations are introduced in the block. The predicted mode shape of the tuned mode 

of this alternative cutting head is shown in Figure 7.37. 
0 

74.3.7 Half-wavelength system 
Finally, the vibration behaviour of the half-wavelength cutting head, described in 

Section 6.3.2 and illustrated in Figure 7.38, is investigated. An FRF measured at the Z' 
tip of a blade of this system excited by random test in the 0- 50 kHz frequency range 

is shown 7.39 (a). Again, the number of modes is significantly reduced and the Cý 
measured FRF in Figure 7.39 (a) and the full EMA of the device, have shown that the 

number of modes (in the frequency range up to 50 kHz) is 50 % fewer than for the 

double-slotted wave-leng 
., 
th system operating at the same nominal driving frequency. 

The measured response also showed no evidence of inter-modal energy exchanges 

(Figure 7.39 (b)). 
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Figure 7.35. Solid block cutting head cutting head 
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Figure 7.36. FRF from solid block cutting head 
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Figure 7.37. Predicted longitudinal mode 
of a solid block cutting head with castellations 
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Figure 7.39. (a) FRF from half-wavelength 
cutting head, (b) external resonance 

7.5 Conclusions 

The experimental study of the vibration behaviour of single-blade and multi-blade 

ultrasonic systems demonstrates that modal interactions can be characterised by 

measuring the responses and referring to mathematical models of simple 
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autoparametric systems such as beam-like structures. The two and three-mode 

interactions, commonly identified in ultrasonic devices, excite responses which are 

clearly qualitatively similar to such theoretical models. 

Energy leaks are characterised for a number of different modal interactions, including 0 
principal parametric resonances, double principal parametric resonances and three- 

mode combination resonances. These are typical responses of high power ultrasonic 

devices, where energy leaks into modes at frequencies lower than the tuned 

longitudinal mode frequency, exciting bending modes of the system. ID 0 Z' 

Modal interactions can be controlled by designing devices with as few modes as C. C. 

possible at frequencies below the driving frequency, within design constraints. 

Modifications of block homs and design of devices within a half-wavelength of the 0 tl> 
driving frequency, have proved to be successful strategies. With a lower number of 

modes, effecting frequency shifts to internal modes by simple geometry modifications 

can prove successful in eliminating the frequency relationships that lead to modal 

interactions. 
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CHAPTER8 

NONLINEAR RESPONSE CHARACTERISTICS 

OF ULTRASONIC SYSTEMS 

8.1 Introduction 

Ultrasonic energy is generated within piezoelectric transducers, which are inherently b 
nonlinear and which are physically coupled to one or more tuned components such as 
block homs and cutting blades. When transducers are driven at high voltage levels, 0 rý 
the nonlinear domain for piezoelectric ceramics is reached [10]. Instabilities appear 

and the performance of ultrasonic systems is limited by nonlinearities. 

Nonlinear behaviour of ultrasonic systems is responsible for resonance frequency 

shifts, multivalued responses and energy leaks into non-tuned modes, leading to an 

uncontrollable ultrasonic performance often accompanied by noise and component 
failures [8]. Although the nonlinear behaviour of piezoelectric stack transducers has 

been examined in the published literature [10,85,86], the consequences of this 

behaviour on the performance of high power tooling components have only 

previously been reported by Lucas et al. [9]. In a study of a multiple bar-horn stack, it 

was shown that the type of nonlinear response measured at the tuned operating 
frequency depends on the number of bars in the stack. 

The present study builds on this preliminary work [9] to progress to design solutions 
for ultrasonic devices. The nonlinear dynamic behaviour of the excitation system and 

the tuned components are characterised. Nonlinearities in the form of harmonic 

generations, and amplitude saturation and frequency shifts of the tuned mode are 

measured in two piezoelectric transducers. Subsequently, various transducer- 

component configurations are examined. Hence, strategies to control and possibly 

mitigate the inherent nonlinear characteristics of one transducer are discussed through 0 

design modifications of the attached components. C) 
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8.2 Review of literature 

A whole range of nonlinear phenomena such as multiple solutions, amplitude jumps, 

subhannonic resonance, frequency modulations and chaotic motions have been 

extensively researched in simple mechanical structures, such as rods and beams, under 
harmonic excitation. 

Cusumano and Moon published a theoretical and experimental study of the dynamics 

of a thin, cantilevered rod subject to forced vibrations [871. In a graph plotting the 

excitation frequency versus the amplitude of the excitation they have observed wedge- 

shaped regions of instability were the motions of the rod become chaotic. Pai and 

Nayfeh presented a general nonlinear theory for anisotropic beams under'going three- 

dimensional vibrations, in order to find the point of bifurcation [88]. Hence, they 

studied chaotic motions, modulations and chaotically modulated motions. 

Anderson et al. experimentally investigated the vibrations of a cantilevered beam 

excited at a frequency near the fourth bending-mode frequency for different directions 

of the applied force [89]. They found that when the excitation was axial, a parametric 

combination resonance was detected. On the other hand, when the base excitation was 

applied perpendicular to the axis of the beam and a stationary sweep of the external 
frequency was carried out, no combinations were measured. Instead the response, 

consisting only of the fourth bending mode, showed features of a classical softening 0 Cý C) 

Duffing's equation, and a jump from a large-amplitude to a small-amplitude response Cý 
occurred when the frequency was decreased. Moreover a nonplanar chaotic motion of 

the beam was detected for excitation amplitudes above a threshold value. BaJaJ and 
Johnson applied asymptotic techniques to predict complex dynamical motions in 

weakly non-linear forced mechanical systems [90]. They showed that the averaged C) 

equations of a harmonically excited string possess non-planar constant solutions, 

which become unstable and give rise to limit cycles, period-doublings, and isolated 

periodic solutions, as well as chaotic attractors. 

8.3 Nonlinear vibrations 
Nonlinear behaviour, to some extent, is present in mechanical and structural systems 
due to inherent sources of nonlinearities existing even in simple systems. 
Nonlinearities are responsible for a variety of effects which are absent in linear 
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systems, such as the jump phenomenon, natural frequency shifting, combination a 
resonances, frequency modulations and chaotic motions [83]. Many systems excited 

in vibration, which exhibit linear behaviour at low levels of excitation, become 

nonlinear at higher levels of excitation. ZP 

Nonlinearities appear in the majority of real systems in one form or another. 

Nonlinearities can be grouped in two main categories. The first category contains 00 
nonlinearities which are not based on a known physical phenomenon (such as 
damping) but are essentially geometrical in origin. The other group are due to 0 tý 
physical characteristics of systems such as nonlinear damping which may be C. 

generated by material composition. 

A form of nonlinearity of the first group, characterised by the inclusion of a cubic 

term in the equation of motion of a single DoF system is as follows: 

x= Acosflt 

Such an equation, containing a cubic nonlinearity, linear viscous damping, linear 

stiffness and a single frequency excitation, is a forin of the well-known Duffing 0 
equation [91]. 

Figure 8.1 shows the representative curves for h=0, h>0 and h<0. It is evident that 0 
the sign of the cubic term determines the hardening or softening nature of the elastic 0 
element. Hence, if the cubic term is positive the frequency response curve bends to 

the right (the system hardens), and conversely if the cubic term is negative the curve 

bends to the left (the system softens). 

4, - DuffinS type systems frequently display nonlinear jump phenomena and hysteresis 

effects. The jump phenomenon for a system characterised by a softening response is 

shown in Figure 8.2. The hysteresis effect is visible in the loop ABCD, obtained from 
ZP 

a sweep up and down of the excitation frequency around a system natural frequency. 

Response transitions from periodic, to amplitude-modulated, to chaotic motions, 
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through swept-frequency excitation have been theoretically and experimentally 0 
observed for simple structures characterised by a form of nonlinear behaviour [87]. 

0 
r-L 

w 

Figure 8.1. Frequency-response curves for different h values [72] 

0 
cl 
CA 
0 
Ix 

Frequency 

Figure 8.2. Jump phenomenon for softening response characteristic 0 

A typical route to chaos is described by Greene [92] in an experimental and numerical 

investigation of the nonlinear behaviour of a simple driven diode resonator. The diode 
0 

resonator circuit is shown in Figure 8.3. When driven at a frequency near the diode's 
CP 

resonant frequency, the circuit exhibits periodic behaviour (Figure 8.4). The harmonic 
a 

frequency appears at that of the driving force, while a small ultrasubharmonic appears 

at double of the driving force frequency. Ultrasubharmonic frequencies are found at 

mfYn where n=l and m-- 1,2,3 ...... Figure 8.4 is the time series for the periodic 
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solution. This display shows that the function of the circuit is similar to a sine wave 

and therefore periodic. 

Figure 8.3. Diode resonator circuit [92] 
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Figure 8.4. System driven at the harmonic frequency at low amplitude. Periodic 
behaviour [92] 

As the driving amplitude is increased, the periodic state becomes unstable. A second 

frequency appears in the response at a frequency half of the driven resonance, 

resulting in a period doubling bifurcation (Figure 8.5). This system exhibits the same C, 4: 1 -- 
ultraharmonic frequencies as seen in the periodic solution. but now there are 

ultrasubharmonic frequencies as well. Ultrasubharmonic frequencies can be found at 

My,, where n=1,2,4,..., and m= 1,2,3,... Figure 8.5 (b) exhibits the time series graph 

of the period-2 solution. The two different frequencies are clearly visible in this 

display. Further increase in the excitation amplitude results in the splitting of the two 

periods, giving quadrupling, octupling, and finally chaos (Figure 8.6). Zý -- 1: 11 ZI I zn 
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These indirectly excited responses differ from the resonance conditions typical of 

parametric systems as they generally do not correspond to the frequencies of Internal 

modes. 
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Figure 8.5. System driven at the harmonic frequency at hlzc--, h amplitude. Perlod-2 
solution [92] 
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Figure 8.6. System driven at the harmonic frequency of 143 kHz at amplitude 304 
mV. Chaotic solution [92] 

8.4 Nonlinear vibrations in ultrasonic systems 
High power ultrasonic systems, designed to resonate in a tuned mode of vibration at a 4-- C 

low ultrasonic frequency, exhibit response characteristics strongly associated with Cý 
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positive and ne(yative cubic stiffness effects typical of Duffing oscillators. High levcls Cý -- C, 

of modal spill-over. such as multivalued responses and complex bifurcatory 

behaviour. are also detectable in the responses of ultrasonic devices. 

In this study the vibration behaviour of two piezoelectric transducers and three 

multiple-component ultrasonic systems are characterised expen mentally. 

8.4.1 Nonlinear behaviour of ultrasonic transducers 

A simple way to identify the nonlinear behaviour of vibrating systems is to measure 

the response spectrum at increasing increments of the excitation level. For instance, 

the response spectrum of a linear system under periodic excitation consists only of the 

harmonic response at the driving frequency for all excitations. Conversely, if a system 

is nonlinear, above a certain excitation level, the spectrum enriches with subharmonic 

and superharmonic responses. At very high excitation levels the responses can also 

become chaotic with spectra of frequencies replacing the specific response peaks. L- 

The nonlinear response characteristics of two different 35 kHz high power ultrasonic 

transducers, used for industrial applications, are investigated. Figure 8.7 shows the 

first transducer under study. 
Initially the transducer is driven in the tuned mode frequency at 30 V excitation, as 

shown in Figure 8.8 (a). The velocity response measured at the transducer tip by 

means of the 3D LDV, exhibits a period bifurcation. In fact, the response splits into 

numerous frequencies over the 0- 50 kHz range, indicating that the nonlinear domain 

of the piezoelectric ceramics is reached. These indirectly excited frequencies differ 

from the combination frequencies of parametric and autoparametric systems as they 

do not necessarily correspond to internal modes. The dots, squares, and triangles 

marked in the figure indicate three sets of harmonically related frequencies. Z- 

Figure 8.7. Transducer I [Telsonic Ultrasonics Inc. ] 
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Subsequently the response spectrum of the transducer driven at 50 V excitation is 

measured, as shown in Figure 8.8 (b). At this excitation level the response spectrum Z-- 
shows a spreading of the responses around certain frequencies in the spectrum, a 

typical sign of chaotic behaviour. 
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Freq.: 37006 Hz (a) 

*1 1 

1.0n 

U 

(b) 
Excitation: 50 V 
Freq.: 37006 Hz 
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Figure 8.8. Response spectra measured at (a) 30 V. (b) 50 V excitation 

Finally, the response of the transducer is measured through a slow forward and L- 

backward sweep of the excitation frequency around the tuned frequency. Figure 8.9 

illustrates the response measured at 50 V excitation. 

1.2 Sweep Up (50 V) 
Sweep Down (50 V) 
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Figure 8.9. Response characterstic of transducer I at 50 V excitation level 

From this figure two observations can be made. First. the transducer lonaitudinal 
L_ Z-1 

resonance exhibits a low Q factor, as a consequence of the response saturation due to 

the energy spill-over. Second, the responses measured during the frequency sweep up z: 1 C_ 
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differ from those ones detected in the sweep down. This is because different 

mechanisms of enercry leakage occur during the frequency sweeps. In Cý lll.: ý 

The second transducer investigated is illustrated in Figure 8.10. Figure 8.11 (a) and 

(b) show the measured response spectra of the transducer driven at the tuned mode 

frequency at 30 V and at 50 V excitation. No energy transfers from the externally 

excited mode to other spectral frequencies are detected at either excitation levels. thus 

implying a more linear behaviour of this transducer. L- 

Figure 8.10. Transducer 2 [Martin Walter] 
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Figure 8.11. Response spectra measured at (a) 30 V. (b) 50 excitation levels 
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Figure 8.12. Response characterstics of transducer 2 at (a) 30 V. (b) 50 V excitatlon 
level 

Frequency sweeps at 30 V and 50 V excitation levels, measured around the tuned 

mode frequency. are shown in Figure 8.12 (a) and (b). A softening characteristic of C- 
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the transducer responses, increasing with the excitation level, is evident in the figure. tý 0 

Such asymmetric responses are an indication of nonlinear behaviour. However, the 

higher Q factor and the absence of ýifurcation demonstrate that the second transducer 

represents a better design for high power ultrasonic applications. The responses of the 

two transducers, measured over a range of excitation levels, are plotted in Figure 8.13. 

The measurements show that transducer 2 provides higher velocity response at the 

output face for all excitation levels. In addition, this transducer exhibits a saturation of 

response for excitations over 60 V, whereas transducer I saturates at 50 V. 

--*-Transducer 1A Transducer 2] 
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Figure 8.13. Velocity response plotted against excitation level Z; ý 

8.4.2 Nonlinear behaviour of ultrasonic systems 

The responses of several ultrasonic assemblies consisting of a transducer attached to 

tuned components of different geometries and materials are investigated. Since 

resonance frequency shifts and hysteresis phenomena are typical signs of nonlinear 

behaviour, the response characteristics of these assemblies driven in the tuned mode 

are investigated. The transducer shown in Figure 8.10 is used, as it exhibits low 

energy leakages and therefore a clearly identifiable response characteristic. C) 

8.4.2.1 Transducer-1.5 A bar horn 

Initially, a solid aluminium cylindrical rod, or bar horn, of one and a half-wavelengths 

at 35 kHz is attached to the transducer as shown in Figure 8.14. The threaded cutting C) 
stud is half-screwed into both components. The response characteristic of the 

assembly measured at 30 V excitation is shown in Figure 8.15 (a). It can be seen that 0 
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the response of the assembly exhibits a softening characteristic which is less soft than 
I 

for the transducer alone (Figure S. 12 (a)). A similar observation applies in the case of 1ý7 
50 V excitation. where the response of the transducer-bar horn exhibits a less sot'( 

characteristic than the transducer measured at the same excitation (Figure 8.12 (b)). L_ 

The implication is that the 1.5 k bar horn exhibits an inherent hardening characteristic C, 
which, combined with the soft response of the transducer, tends to linearise the 

response of the transducer-bar assembly. A preliminary theoretical investigation has 

successfully modelled this phenomenon for a 2DoF system consisting oftwo serially 

coupled oscillators of opposite nonlinear characteristics [93]. 

Figure 8.14.1.5 k bar hom screwed into transducer 
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Figure 8.15. Response characteristics of transducer-bar hom assembly at (a) 30 V, 
(b) 50 V excitation level 

The measurements suggest that, for typical industrially relevant equipment. the 

softening nature of the transducer can be mitigated to a certain extent by the addition 

of characteristically hardening tuned components. However, a truly linearised 

response characteristic at the output of the system is not easily achieved. Evidence in 

the literature demonstratin- that beam-like structures exhibit a hardeniner 

characteristic (941, tends to support the likelihood that the 1.5 ý, bar horn exhibits a 

hardening nonlinearity. This, in turn temds to linearise the response of the transducer- 

bar system. 

171 



Chapter 8: Nonlinear Response Characteristics of Ultrasonic Systems 

8.4.2.2 Transducer attached to half- andfiull-wai, elength blades 

Figure 8.17 (a) and (b) show the response characteristics ofthe transducer attached to 

a half-wavelength and a wavelength cutting blade (Figure S. 16 (a) and (b)), 

respectively. Both blades manufactured from tool steel. At 30 V excitation. the 

response of the first configuration, exhibits a softer response than the transducer 

measured alone, as shown in Figure 8.1-1 (a)). At the same excitation level, the 

response of the second configuration exhibits an almost linear characteristic (Figure 

8.17 (b)). It appears that the half-wavelength blade exhibits an inherent softening 

characteristic which, combined with the soft response of the transducer, produces a 

softer nonlinear response. By contrast, the wavelength blade does not have a 

significant effect on the nonlinear characteristic of the transducer but tends to linearlse 

the response slightly. 

An observation regarding the strain levels reached in these two single-blade and L_ in, 

transducer configurations can explain the differences in the measured responses. For 

the same transducer excitation. the wavelength blade, due to its tapered profile, is 

predicted to exhibit a lower strain than the half-wavelength blade. It is possible that 

the confi-uration with the half-wavelenorth blade reaches the threshold of elastic 

nonlinear behaviour at a lower excitation [95]. 

(a) (h) 

Figure 8.16. Transducer-blade assemblies: (a) transducer and half-wavelen-th blade, 
(b) Transducer and wavelength blade 

8.4.2.3 Influence ofjohn tightness on system nonhnearitA- 

The effect of tiohtness of the joint connecting two components, on the response Z__ Z__ 
characteristic is investi-ated. The threaded stud between the transducer and the bar 

horn in Figure 8.14 is tightened at two different torque levels. Fi-"'ure 8.18 shows that, I= ýn C! 
for the same excitation (50 V), a more linear response is achieved for the 

configuration with higher torque (Figure 8.18 (a)) than for that with lower-torque 

(Figure 8.18 (b)). These measurements find analogies with recent studies carried out 
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on NDE of imperfect interfaces and adhesive bonds [96]. In fact, it has emerged that 

imperfect interfaces. resembling a low torque joint, exhibit much stronger Cý C, 
nonlinearities than do bulk materials or well-bonded interlaces. rcscniblini-, a high 

torque joint. 
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Figure 8.17. Responses of an industrial ultrasonic transducer and (a) 0.5 ^ý and (b) 
blades at 30 V excitation level 
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Figure 8.18. Effects of joint tightness on the response: (a) high torque joint, (b) low 
torque joint 

8.4.2.4 Influence of positioning of stud on system nonlineariti, 

The nonlinear characteristics of an assembly can also be varied by means of the axial 

positioning of the stud within the joint. Figure 8.19 shows three different 

configurations for the position of the threaded stud. When the stud is fully-fitted into 

the transducer-base (Figure 8.19 (a)) the narrowest nonlinear region is exhibited in the 

response measured at the blade tip. When the stud is fully-fitted into the blade-base 
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(Figure 8.19 (c)). the nonlinear response region is widest. This configuration exhihits t7 Zý Z7 
the softest response. 
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Figure 8.19. Different stud configurations: (a) Stud fully-fitted into the transducer-base, 
(b) Stud half-fitted into the blade-base, and (c) Stud fully-fitted into the blade-base 

8.5 Conclusions 

It has been shown that nonlinearities in high power ultrasonic systems mainly stem 

from the transducer behaviour. A practical method for influencing the inherently tý 
nonlinear behaviour of the transducer, by attaching tuned components of different 

geometry and materials. is proposed. It is found that some tuned components (Iona 

bar horns and blades) are capable of reducing the effect of the nonlinearities within Z_ 
the system. In other cases, including a half-wavelength blade, the blade-transducer 

assembly response is softer than that of the transducer alone. In addition. the tightness L_ 

of the joints and the configuration of the threaded stud connection prove crucial in the 

control of nonlinearities. 

Therefore, a manipulation of the nonlinear characteristics of ultrasonic assemblies 

may be achieved by opportune component design and joint configurations without the 

need for exclusively modifying the transducer response characteristic. On the other 

hand, the softening characteristic of an ultrasonic transducer is an inherent 
I 

characteristic of piezo-ceramic elements, and therefore difficult to adjust. 
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CHAPTER9 

CONCLUSIONS 

The work carried out within this thesis has been focused on achievin" a fundamental 

understanding of the vibration behaviour of high power ultrasonic devices by 

concentrating on a number of ultrasonic components and assemblies used in food 

cutting operations. Characterisation of linear and nonlinear mechanisms responsible 
for energy leaks into non-tuned modes has been achieved, and subsequent strategies 

for improved ultrasonic device design have been proposed. Many key advances have 

been made during the research and these innovations and developments are 

surnmarised in the following sections. 

9.1 Reducing component failures by design 

Most ultrasonic tools and devices are designed with amplitude gain, allowing high 0 
vibration amplitudes at the working surface. The tuned components' profiles are 4D 
stepped or shaped to provide the required gain, but the maximum stress then occurs at 

the steepest section reduction, which in turn becomes a common failure location. 

Finite element analysis has been successfully used to model a wide range of 

component geometries, predicting that, for the same gain, the highest stressed 

components are those where the longitudinal mode node is at or closest to the highest 

stress location. For the study of ultrasonic cutting blades, requiring a gain factor of six 0 týl 
to eight, blade failures were significantly reduced by judicious repositioning of the 00 
node away from the failure location by blade reshaping. For example, a reduction in 

0 
stress of 45% was achieved for a blade design which located the node further into the 

thickest blade section. 

It was found that for multi-component systems, failures are often caused by bending, 

responses in the longitudinal mode. For these systems, stress reduction requires a dual 

approach. First, node repositioning is achieved by detuning the different attached C: - 
components while maintaining the overall system tuned frequency. This again allows C) C' 
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nodes to be located away from highest stress locations. Second, the use of block horns 

as intermediate components in multi-component systems required a new approach to 

block horn design. Block horns are widely used in ultrasonic systems, as workina Cý 0 

tools or as intermediate components linking the transducer-booster system to the Z) 
working tools. In multi-component systems, block horns allow several working tools 00 
(such as cutting blades) to be driven by one transducer. Standard block horn design 

0 
rules exist, which are based on satisfying two performance criteria: tuned mode Cý 

frequency isolation from non-tuned mode frequencies and vibration amplitude 

uniformity on the working surface. These two criteria cause conflict in the design as 0 
the first is more easily achieved if the number of modes is small, whereas the second 

is achieved by slotting confi( gurations which hugely increase the number of modes. t) 

A new approach to block horn design has been proposed which concentrates on 

eliminating bending responses in the attached components, reducing stress and 

improving reliability. For a three-blade cutting system, the study has characterised the 

effects of slotting configurations, the use of fine slots and block castellations in terms 

of the vibration response of the three blades, which should be in-phase, of equal 

amplitude, and purely longitudinal. The design procedure also concentrates on 

reducin- the number of modes and improving tuned mode isolation. This is also 

critical in controllina the effects of energy leakage mechanisms associated with 

nonlinear vibration behaviour and therefore the new block horn designs have also Zý 
been crucial in reducing the adverse effects of nonlinear behaviour. 

Cý 

9.2 Linear modal coupling 
For reliable operation of ultrasonic components and assemblies, the frequency of the 

operating mode has to be isolated from close modal frequencies which can result in 

non-tuned modes participating in the response at the operating frequency via modal 

coupling, or can cause mode switching to occur during operation. Operating mode 

isolation can be achieved by FEA, where models are validated by accurate EMA 

using 1D LDV. However, the experimental validation of numerical data has not 

always been satisfactory using conventional normal-to-surface response 

measurements, therefore, improvements in the detection of modal responses are 

required. 
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In this investiuation vibration velocity measurements were carried out using, a 3D 0 CP 
LDV, which allows both in-plane and out-of-plane responses to be characterised, and 

which resulted in accurate identification of modes and significant improvement in 
Cý 

data correlation. The combination of FE modelling and 3D LDV response C) 
measurements has enabled a greater depth of understanding of vibration behaviour of 0 

ultrasonic systems and components to be gained. C) 

In particular, two ultrasonic applications dominated by the behaviour of block horns 

have been discussed: the first involving a block horn acting as a tuned working tool; 

the second a block horn used to transmit vibration to three cutting blades. Due to the 

multi-slotted profile of the block homs numerous modes with similar characteristics, 

differentiated by spatial phase variations between adjacent columns, appeared in the 

response spectra, with some of them coupling with the tuned mode. The use of the 3D 

LDV was crucial for the identification of these coupling modes and for the 

measurement of their responses. This information was vital for the redesign stage as it 

allowed unresponsive modes to be neglected in the sensitivity analysis stage. C, C, 

9.3 Characterisation of system nonlinearities 

Characterising the nonlinear behaviour of multi-component systems has relied on first 

obtaining an accurate description of the system's modes and modal frequencies. The 

use of a 3D laser vibrometer and finite element models has been critical in this 

exercise. The number of modes is high and many of the system's bending modes are 

difficult to detect when the excitation can only be adequately provided by a 
longitudinal mode transducer. The modal analysis is conducted at low power, where 

the system responses are linear. Energy leakage into non-tuned modes is detected by 

adjusting the power to the transducer until responses are detected at known modal 

frequencies. 

In particular, energy exchanges from the operating mode into a modal frequency close 

to half of the tuned frequency, and excitation of combination resonances consisting of 0 
two modal frequencies whose sum is close to the tuned frequency, were detected in 

single- and multi-component devices. The measured energy transfers from the 

primary responses to the internally excited modes (secondary responses) were shown 

to be qualitatively similar to the theoretical descriptions of autoparametric systems. In 
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particular it was observed that, once the nonlinear threshold is reached, the primary 

response becomes independent of the excitation level, but the secondary response 
increases with it. Also, response transitions from periodic, to amplitude-modulated, to 

chaotic motions, have been experimentally observed inside the frequency regions of 
instability. 

It was shown that predicting and controlling the dynamic response of high power 

ultrasonic cutting devices is more easily realised if there are a small number of modes 

at frequencies below the driving frequency, because modal interactions are a result of 

energy leaks into lower modes of vibration. If the number of modes is small, there are 

reduced opportunities to couple the longitudinal resonance with bending modes and 

reduced opportunities for the required special relationships between the modal 

frequencies to exist. Hence modifications of block horns and design of devices within 

a half-wavelength of the driving frequency, have proved to be successful strategies for 

eliminating the frequency relationships that lead to modal interactions. 

The nonlinear response characteristics of systems were also determined. Ultrasonic 

transducers are inherently nonlinear at high power and tend to exhibit a cubic 

softening characteristic, with a jump phenomenon typical of a Duffing oscillator. To 

find a practical design solution to the effects of nonlinear responses, it was first 

necessary to measure the linear regime and nonlinear response at a range of input 

voltages to the transducer. The effect on this response of attaching different tuned 

components was assessed, as well as the attachment method. It was found that some 

tuned components, including some wavelength blades and block horns, tended to 

reduce the softening response when attached to the transducer and result in the system 

increasing its linear threshold, and operating with a near linear response. In other 

cases, including half-wavelength blades, the blade-transducer system response was 

softer than the transducer alone, had a lower linear threshold and wider instability 

region. A bank of information on the nonlinear characteristics of transducers, bar 

horns, and blades had been obtained, providing valuable data for understanding 

serially-coupled multi-component system configurations which assist the control of 

the nonlinear response in the design of ultrasonic devices. Additionally, the width of 

the instability region could be manipulated by altering the tightness of joints and by 

altering the position of the stud between attached components. 
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It has always been understood in the high power ultrasonics community that careful 

assembly of system components is critical for good system performance. There have 

been many "rules of thumb" applied, concerned with stud sizes, stud position and 

torque requirements for joining components, although there are inconsistencies 0 
between manufacturers recommendations. 

The work carried out in this project has clarified this issue providing, a fundamental 

understanding of the nonlinear phenomena which have considerably limited the 

development of ultrasonic technology. 

9.4 Design of ultrasonic system components for preferential modal 

characteristics 
The design of multi-component ultrasonic devices relies on the combined knowledge 

of reducing stress in high gain components, block horn design for a reduced number 

of modes and reduced coupling of bending motions, modal interactions resulting in 

combination resonances, and the manipulation of nonlinear responses from an 

understanding of the hard and soft characteristics of the interacting components. 

Despite the seemingly complex nature of the system dynamics, many practically 

realisable solutions are possible. For the example of the three-blade cutting device, 

finite element models are used initially to design a new system, serially coupling 

components with appropriate hard and soft characteristics to mitigate the effects of the 

transducer nonlinearity. 

Low stress and high gain blade profiles are modelled to accommodate the required 

cutting depth and other geometry restrictions. The number of modes is constrained by 

adopting a reduced slotting design for the block horn with appropriate castellations for 

a wavelength device, or by incorporating elements of the block and blades within a 

single half-wavelength device. Mode combinations where, for instance, the sum of 

two modal frequencies is approximately equal to the tuned frequency, are identified 

and eliminated by geometry modifications via a sensitivity analysis. The resulting 

cutting heads benefit from comparably low stress, parallel and purely longitudinal 

blade responses, low modal density, reduced nonlinearity at high power and 

elimination of combination resonances. Although all modal interactions are not 0 
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eliminated, their threshold of activation is raised such that the cutting heads can run at 

higher power without their effects being detected. 00 

9.5 New ultrasonic cutting heads 

A ran(ye of new three-bladed cuttina heads has been designed and manufactured. By 
r) Cý 

pulling together the various analytical and experimental strands of the project, the new 4: 1 0 

cutting heads have lower stress, no bending responses in the blades, a much cleaner rý 

spectrum than any other multi-component systems, a high threshold for combination 

resonances, and are assembled and shaped for minimising nonlinearity. Additionally, 0 
it was possible to design several different block horn and blade combinations that 0 
satisfied these requirements. All have been successfully tested in the laboratory. This 

research has resulted in new knowledge about the dynamic response of high power Z: ) rp 

ultrasonic systems and has provided insights into resolving the problems associated 

with nonlinear dynamic phenomena in the design of multi-component tuned systems. 
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CHAPTERIO 

RECOMMENDATIONS FOR FUTURE WORK 

The work proposed in this thesis can be expanded to include the following tasks: 0 

The current work provides design strategies to control the inherent nonlinear C) 0 
behaviour of ultrasonic cutting systems resonating longitudinally. In C. 0 

particular, a design approach focused on reducing the number of modes is 

demonstrated to improve the performance of three-blade cutting systems. The 

same approach could be extended to ultrasonic devices designed for other 

applications such as welding tools and medical devices, and also to those 

operating in other modes of vibrations, such as radial, bending and/or 

torsional. Hence, more numerical and experimental work needs to be 

conducted to verify the applicability of this design strategy to a variety of 

ultrasonic systems characterised by enriched modal activity. 

* Theoretical models of simple parametric systems [84] have shown that the 

threshold and the width of the regions inside which combination resonances 

involving multi-modal responses appear, depend on the amount of damping 

inherent in the vibrating systems. Hence, ultrasonic devices manufactured 
from alternative materials exhibitina hiaher structural dampina, should be 

considered in order to push the thresholds of the instability regions above the 

nominal operating amplitudes. C. 

It has been shown that the softening response characteristic of a piezoelectric 

transducer can be influenced by the attached component/s. In particular, 
experiments have proved that attaching high gain blades further increases the 0 4: 1 
saturation effect detected in the transducer response. The high stress levels 

0 
and strain conditions associated with the longitudinal vibration of these blade C) 

181 



Chapter 10: Recommendations for Future Work 

types are, in fact, beyond the linear range of the constituting materials. The 
Cý 0 

design and testing of ultrasonic block hom-blades assemblies in which the r) 0 

required amplitude gain is distributed between the components is 

recommended in order to limit the contribution of the amplitude saturation 

effect to the inherent nonlinear transducer. 
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