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Abstract 

The selection of the preload bolt is often an afterthought in the design of Langevin type “sandwich” transducers, but quite often it 
is the root cause of failure for power ultrasonic applications.  The main role of the preload bolt is to provide a “prestress” in the 
piezo stack to prevent interface “gapping” or tension in glued joints which can result in delamination.  But as an integral part of a 
highly tuned dynamic system, the resulting parasitic resonances in these preload bolts, such as bending or longitudinal modes, are 
often difficult to predict and control.  This research investigates many aspects of preload bolt design for achieving optimal 
transducer performance, including basic size and strength determination based on drive amplitude, as well as ensuring adequate 
thread engagement to the mating horn.  Other aspects such as rule-of-thumb configuration and length guidelines to reduce 
parasitic resonances are also investigated.  Optimizing the uniformity of stress in the piezoceramics is also considered, which is 
affected by end mass length, counterbores and proximity to threading.  The selection of the bolt material based on stiffness is also 
investigated as related to electromechanical coupling.  The investigation focuses solely on Langevin type transducers used for 
semiconductor wire bonding, and which are comprised of the common Navy Types I and III (PZT4 and PZT8) piezoelectric 
materials.  Several metrics are investigated such as impedance, displacement gain, and electromechanical coupling factor.  The 
experimental and theoretical research methods include Bode plots, scanning laser vibrometry and finite element analysis. 
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1. Introduction 

     The selection of the preload bolt is often an afterthought in the design of Langevin type “sandwich” transducers.  
Even within transducer design companies such as Kulicke & Soffa Industries, there is no consistent methodology for 
design or configuration of preload bolts.  Quite often the preload bolt is the root cause of failure for power ultrasonic 
transducers (e.g., yield/breakage, preload loss, parasitic mode).  The main role of the preload bolt is to provide a 
“prestress” in the piezo stack to prevent interface “gapping” or tension in glue joints (delamination).  Preload bolts 
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are an integral part of the highly tuned dynamic system.  Resulting parasitic resonances in preload bolts such as 
bending or longitudinal modes are often difficult to predict and control.  Some rule-of-thumb design and 
configuration guidelines for preload bolts are needed. 

2. Specific transducer application 

Kulicke & Soffa Industries is the leading manufacturer of semiconductor wire bonding equipment.  This “back-
end” type of equipment provides ultrasonically welded interconnect wires or ribbons between the wafer level 
semiconductor circuitry and the mounting package as shown in Fig. 1.  The ultrasonic transducer delivers energy to 
a wedge or capillary tool for welding wire or ribbons (typically aluminum or copper) (DeAngelis et al., 2006, 2011, 
2012). As is easily seen in Fig. 1, many different preload bolt configurations have been used for the various 
transducer designs. 

 

 

 
Fig. 1. (a) K&S 60kHz large wire transducer, (b) K&S 80kHz high power ribbon transducer, (c) K&S 80kHz large wire or ribbon, (d) K&S 

40kHz large wire, (e) Heavy wire device, (f) Heavy ribbon device, (g) K&S 120kHz fine wire, (h) K&S 60kHz wire (ball bonder). 

3. Common preload bolt configurations 

     Figs. 2 through 6 show the pros and cons of common preload bolt configurations (Wilson, 1991, Sherman et al., 
2007, Stansfield, 1991).  From a dynamic standpoint, the preload screw should be fairly well behaved at the 
operating mode of the transducer, such that there are no parasitic resonances in the preload screw near the operating 
mode. Also, absent of parasitic modes the symmetry of the free length of the preload screw relative to the piezo 
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stack will determine if the operating node in the stack and screw are co-located: this can be important for aging 
considerations and for glue filling due to relative motions; it should also be noted that the location of parasitic screw 
modes can be inconsistent with glued piezo stack designs when considering dry versus glued designs. From a static 
standpoint, the preload screw configuration should provide a uniform stress distribution over the piezoceramics to 
utilize this active material most efficiently; both the electromechanical coupling and maximum drive level are 
degraded with non-uniform stress (Woollett, 1957). 

4. Failure modes in preload screws 

Fig. 7 shows the finite element model for analyzing failure modes in the preload screw for the 80kHz large wire 
transducer shown in Fig. 1(c).  Fig. 8 shows actual screw failures with an assessment overview including effects 
from glue bridging (can move parasitic screw mode frequencies), and static finite element modeling to illustrate the 
degree of non-uniform stress in the piezo stack due to preload bolt loading.  As shown in Fig 7(b), the screw 
resonance mode here may be described as “slinky-like” (i.e., longitudinal mode), since the screw mode has “one 
end” out of phase with the natural driver motion.  This situation has the potential to exert very high loads at the 
preload screw threads, as shown by the breakage in Fig. 8.  It should be noted that alternate axisymmetric FEA 
models would have predicted this slinky mode, but will have missed all the bending modes in screw (common 
mistake). 

 

       
Fig. 2  Pros and cons of a counterbore bolt head configuration for preload screw. 
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Fig. 3  Pros and cons of a threaded front mass configuration for preload screw. 

 
Fig. 4  Pros and cons of a counterbore front mass configuration for preload screw. 

 
Fig. 5  Pros and cons of a threaded end mass configuration for preload screw. 
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Fig. 6  Pros and cons of a half wave transducer design for preload screw. 

 
Fig. 7  (a) Finite element model of K&S 80kHz large wire transducer, (b) Preload screw resonance analysis results. 

 
Fig. 8  Preload screw resonance analysis with description of actual failure modes. 
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5. Selection of preload bolt material and sizing of preload bolts 

Always use the yield stress, not the tensile strength, when sizing bolts since loss of preload occurs during 
yielding prior to the bolt breaking.  When optimizing for bolt strength, higher strength materials allow the smallest 
diameter screw, which maximizes volume of the piezo material for a given stack diameter (lower impedance, higher 
e-mech coupling).  Higher strength materials allow for less thread engagement, which minimizes frictional losses 
(threads can be lossy with higher impedance).  When optimizing for transducer electromechanical coupling factor 
(k), it should be noted that the coupling is proportional to the transducer “phase window” difference of the 
antiresonance fa and resonance fr from the Bode plot (i.e. k  (fa-fr)/fr) (DeAngelis et al., 2010, Uchino et al., 2003, 
Woollett, 1957). The phase window or coupling k is maximized when the bolt stiffness is minimized relative to 
piezo stack (i.e., least amount of stack energy absorbed by preload screw) (Sherman et al., 2007, Stansfield, 1991).  
For example, if the preload bolt stiffness is the same as the stack stiffness, then k will be reduced by at least 50% 
from the max possible k33 for the piezo material.  The best bolt material is the one with the highest yield strength σy 
and the lowest stiffness or elastic modulus E, i.e., maximize the ratio σy /E.  The highest yield stress material allows 
the use of the smallest diameter screw (less stiff).  The lowest modulus results in the lowest stiffness for a given 
diameter.  For example, beryllium copper (BeCu, C17300) screws are better than alloy steel screws for maximizing 
k (i.e., 160/18.5 = 9 versus 170/30 = 6).  The coupling k is maximized when the stress in piezo stack is most 
uniform.  Custom screws can be advantageous with necking down in unthreaded areas (reduces stiffness) and flared 
heads for more uniform stress in piezos; especially with end masses that have poor length/diameter (i.e. L/D) ratios 
in an attempt to maximize piezo volume.  The wave speed (c=sqrt(E/ρ)) is also a consideration for screw design 
(phasing, node placement, etc.); steel, Ti and Al are about the same, whereas BeCu is 20% less. The uniformity of 
piezo stress is very important when sizing preload bolts.  Nonunifom piezo prestress ultimately results in two 
simultaneous problems: some volume of the piezo material is insufficiently loaded (i.e. outer diameter of stack) 
resulting in either tension/delamination in glue joints (for glued stacks) or dynamic gapping at interfaces for dry 
stacks, and some volume of the piezo material will be overloaded (i.e. inner diameter of stack) resulting in severe 
depoling (i.e. little or no output).  For example, with near uniform prestress in piezo stack (i.e., max/min stress ratio 
≈ 1.0) PZT8 materials can withstand 90 MPa of prestress (DeAngelis et al., 2009).  However, with max/min stress 
ratios in the 1.5-3 range, the prestress for PZT8 materials should be reduced to the 30-60 MPa range.  For sizing 
common alloy steel bolts under static prestress, the catalog recommended seating stress of 120 ksi (e.g. Unbrako) is 
a good guideline.  This allows sufficient margin for torqueing and dynamic loading up to 170 ksi yield.  The 
dynamic loading in the bolt is typically less than 10% of prestress levels without resonances.  Prestress of 150 ksi 
can be used for more aggressive designs with a compression load fixture.  Figs. 9 and 10 provide guidelines for 
determining proper thread engagement based on common materials for bolt and internal threads (Walsh, 1990). 

 
Fig. 9  Preload bolt thread engagement analysis. 
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Fig. 10  Preload bolt thread engagement example for various materials. 

 
Fig. 11  1D modeling for predicting longitudinal mode bolt resonances. 
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Fig. 12  Solving 1-D model for longitudinal mode bolt resonances using matrices. 

 
Fig. 13  Example of 1-D model results for longitudinal mode bolt resonance prediction. 
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Fig. 14  1-D modeling for predicting bending mode bolt resonances. 

 
Fig. 15  Solving 1-D model for bending mode bolt resonances using matrices. 

 
Fig. 16  Example of 1-D model results for bending mode bolt resonance prediction. 
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Fig. 17  Comparison of 1-D model of the 40kHz half wave Langevin stack solution to FEA model. 

7. Conclusions 

The preload screw configuration and design requires a detailed trade-off analysis to optimize stress uniformity, e-
mech coupling and stack symmetry, while minimizing interaction of parasitic screw modes.  Screw resonances can 
manifest as both longitudinal and bending modes.  Actual boundary conditions can be tricky to model in FEA 
making prediction difficult.  Commonly used axisymmetric FEA models cannot predict screw bending modes.  
Screw boundary conditions can especially vary with glued piezo stack designs, so greater separation with parasitic 
screw modes is required compared to dry stacks.  Uncontrolled screw resonances often lead to preload loss and 
screw failure, but at the very least they can negatively affect transducer performance.  The best bolt material is the 
one with the highest yield strength σy and the lowest stiffness or elastic modulus E, i.e., maximize the ratio σy /E.  
The phase window or coupling k is maximized when the bolt stiffness is minimized relative to piezo stack.  The 
sizing of preload screws and determination of minimum thread engagement should always be done based on yield 
strength (yielding = preload loss).  An adequate thread engagement length based on yield stress is critical for both 
the preload screw and internal threads of horn to prevent preload loss under dynamics.  Uniformity of prestress 
effects both bolt sizing and e-mech coupling.  Simple 1-D wave equation models can be a fast and effective way to 
identify locations of parasitic screw resonance for many piezo stack configurations.  For parasitic bolt resonances, 
use 10% frequency separation for dry stacks and 20% frequency separation for glued stacks. 
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