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1. INTRODUCTION
1.1. Historical aspects

The high-power uses of ultrasonics are generally believed to be rooted to the invention
of sonar in 1917 (Langevin). The spectacular effects of high-power ultrasonics on
various processes as first described by Wood and Loomis in 1927, induced many
scientific research activities on dispersion, coagulation action, chemical and biological
effects and cavitation. Not until 1950 did a burst of activity in high-power ultrasonics,
such as cleaning and machining, advance from laboratory phenomena to industrial
applications (Graff (1977)). A great breakthrough was made possible by the develop-
ment of piezo-electrical crystals and of the modern efficient transducer which converts
electrical power into mechanical power (the prestressed sandwich transducers).
Another major advancement was the use of tapered halfwavelength resonators for the
magnification of the amplitude of vibrations of the piezo-electric transducers.

The most important applications of high-intensity ultrasonics that came in accelerated
development for industrial use since then, are drilling, cleaining, soldering, metal
welding and plastic welding.

High-power ultrasonics extend from somewhat above the range of human hearing into
the megahertz range. Most industrial applications have an operating frequency
between 20 and 60 kHz with power densities at the output surface ranging from a
few W/cm? to several thousands of W/em?2. At the output surface the vibrational
amplitudes are between 1 and 50 pm (Hulst (1973), Thews (19753)).

Some examples: cleaning is done at 0.5 to 3 W/em?, plastic welding at 10 to 50 W/em?,
drilling at 10 to 100 W/cm?, and metal welding at 600 to 6000 W/cm?®.

Power ultrasonics has grown in terms of commercial use by the seventies, although it

was still mainly restricted to a few processes. Ultrasonic cleaning has become the

major application (Graff (1977)). Unheralded by scientific publications ultrasonic
plastic welding has become a large-scale industrial process, whereas the considerably
researched metallurgical and metal working processes have resulted in little (Shoh (19753;
Fitzgerald (1980)).

The basic studies on ultrasonic cleaning were published between 1940 and 1950. With
regpect to the widespread industrial use nowadays, it is hard to envision any break-
throughs in this field (Shoh (1975)). Basic research on plastic welding has hardly been
published until 1970 (Potente (1971)). Since then there appears to be a general lack
of interest in academic research on these applications of high power ultrasonics. One
of the reasons was that industry lived very well with the stand of technology. It can
be observed in the last five years that the continuing technological developments are
reaching the boundaries of the potentials of the ultrasonic techniques as they have
been available up to now. There is need for more basical understanding of the
processes and the operation of the equipment to fulfill the requirements of today.

1.2.  Principles of ultrasonic plastic welding equipment

The essential elements of an ultrasonic welding apparatus can be seen in Fig. 1.1,
These are: a generator, the welding press, the transducer, the booster and the resonator
(*horn” or “sonotrode”). The generator, or power supply, converts electrical energy
into mechanical vibratory energy at an ultrasonic frequency by means of piezo-¢lectric



elements, rigidly clamped between two metal parts in a sandwich construction. This
type of modern transducer is well described in literature (Hulst (1972); Neppiras
(1973); Maropis (1969)). The transducer is driven in a resonance frequency and the
vibrations are generated in the length direction. The transducer is designed to vibrate
in the fundamental longitudinal mode, the half-wavelength mode (A/2) (this mode will
be described in chapter 2). The piezo-electric elements are located adjacent the nodal
plane where the amplitudes of motion are minimum. For welding applications the
amplitudes of vibrations of the transducer are far too low (about I to S um). A
booster is used to produce an amplification of the amplitudes, the amount of which is
determined by its shape (mostly the amplitude gain is between 1 and 4). The booster
also is designed to vibrate in the fundamental longitudinal mode (half-wavelength) at
the same frequency as the transducer. They are coupled mechanically. The booster is
fitted with a special support means at the nodal plane to allow a clamping of the
resonating system to the welding press with minimum losses (the vibrations in the
system are not hindered by the fact that it is supported). Once the resonance
frequency is chosen, the dimensions of the transducer and booster are fixed and so
the location of the nodal plane.

The resonance frequencies of ultrasonic welding systems have been standardized to
obtain a limited range of resonating systems according to their dimensions and the
power capability. For powers up to 3000 W the 20 kHz range is used (frequency some
value between 19 and 22 kHz). For powers between 50 and 500 W the 40 kHz range
is used (frequency between 35 and 40 kHz). For low power applications of 0.1 to

5 W the 60 kHz range is suited (frequency between 58 and 62 kHz). A commercial
ultrasonic welding system will be provided with a resonating system of one of these
ranges and the exact resonance frequency will depend on the suppliers choice.

The mechanical vibratory energy is transmitted from the booster to the products to be
welded by means of the resonator. It is shaped and profiled such as to amplify and
concentrate the mechanical energy, and transmit it to the product parts in such a way
that energy absorption in the plastic is optimised. This resonator is designed for each
application individually according to the product shape. It is clamped to the booster
by mechanical means {steel bolt) and can be exchanged easily. The resonator also is
driven in a resonance mode. Its resonance frequency must fairly well coincide with
that of the transducer-booster assembly. If not, the resonance frequency of the
complete system will change and the support of the booster will no longer be located
in the nodal plane and vibrations will be induced into the welding press (in practice a
frequency shift of 1% can be tolerated). The design of these resonators is the subject
of the present work.

The resonating system is fixed in the welding press. A pneumatically controlled
carriage system applies the resonator with some predetermined pressure to the parts to
be welded, which are positioned into a jig or fixture. The design of adequate jigs
greatly determines weld quality. After the pressure is applied (depending on the
application some value between 10 and 2000 N), ultrasonic energy is generated during
a fixed welding time, in which the thermoplastic is heated in the weld area (generally
0.1 to 1.5 sec.). After this the parts are held together during the hold time to

allow solidification of the plastic (about 0.3-1 sec.).
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Fig. 1.1 Elements of an ultrasonic welding system (scale about 1:10); the lower
drawing shows the projection of the longitudinal vibrational mode in the
resonating systems and the location of nodal planes; the resonator length is 1.
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The absorption of energy in the plastics is proportional to the square of the vibrational
amplitude at the output area of the resonator (Potente (1971); Becker (1973)).
Therefore at all places where the resonator is in contact with the plastic parts, the
amplitude should be as equal as possible to guarantee a uniform energy absorption
(deviations of maximum 10% are found acceptable). The amplitude largely
determines the welding time needed, and it is therefore of economical interest to have
large amplitudes. The basical problem in the present work is to design resonators
producing uniform output amplitudes along the output surface.

The pressure has only a small influence on the welding time, but rather determines the
coupling between resonator and product, and so the effectiveness of energy
transmission (Krisbe (1980); Denys (1967)).

The energy absorption in the thermoplastic parts is proportional to the frequency of
the generated vibrations (Potente (1971)). Once a welding system has been chosen out
of the range 20, 40 or 60 kHz, the frequency is within a 10% range about these values.
Therefore the actual resonance frequency is not a critical design parameter for the
welding process.

As a conclusion, the design of resonators is concerned with the vibrational mode from
the point of view of the welding process and energy transmission, and with the
resonance frequency from the point of view of a loss-free coupling of the vibrating
system to the welding press through the support of the booster.

1.3. Aim of the present work

In ultrasonic plastic welding the most vital part is the welding tool {often called
resonator, horn, sonotrode or velocity transformer). Each tool is designed specifically,
based on the required application. The design of half-wavelength resonating tools has
been extensively described in literature up to now, as far as the lateral dimensions are
small as compared to the length which is determined by the wavelength in that specific
material (see Figure 1.1) (Merkulov (1957); Neppiras (1977) (1963); Coy (1974)).
One of the problems encountered in tool design is the occurrance of unwanted
supurious vibrational modes when any of the lateral dimensions exceeds the half-
wavelength (A/2) (Crawford (1969); Stafford (1979)).

In the present work all resonators having at least one of the lateral dimensions (more
specifically the dimensions of the output surface) exceeding one third of the wave-
length (3/3), will be called resonators with wide output cross-sections.

The design of resonators with wide output cross-sections is hardly described in
literature. An attempt was made by Stepanenko (1979) to calculate the resonance
condition for a set of mechanically coupled resonators, producing thus very wide
output cross-sections (output surface of 8100 mm width). It is, however, not
generally applicable for designing ulirasonic resonators, because the theory is not
based on the requirements as to obtain a uniform output-amptitude (the measured
difference between minimum and maximum amplitude was 30%) (see appendix 3).

Although widely used in plastic welding applications, the design of these tools remains
the domain of a few very experienced people, resulting in statements like in
Jakubowski’s paper "Translating an art into sound design principles” (1972).



Shoh (1975) stated that further developments in ultrasonic plastic welding were to be
expected in the area of horn improvement to expand size and wear.

Problems that are often met in resonator design are:

— improper welding or poor energy transmission to the process;

- short tool life (failure due to fatigue);

— noise produced during welding is unacceptable;

-~ the lack of thorough knowledge of design principles turns the devicing of resonators
into a very expensive business.

The present study is based on the conviction that ultrasonic plastic welding is still a
very promising technology and will remain so for a long time. Integration of it in
modern manufacturing processes can only tally with quality improvement programs
when there is sufficient knowledge of the process itself and of all aspects of tool design.

The aim of this study is the description of the problems encountered in tool design and
elaboration of the design principles that will take away the limitations which prevent
full exploitation of the technology.

In all papers on resonator design, the vibrations in the resonator are studied for the
case where there is no load applied (the freely vibrating resonator). Under welding
conditions the vibrations are damped due to the load of the welding process. There is,
however no realistic model available to describe the complex situation under load.
From own experiments on the measurement of the amplitudes of vibrations in a
resonator under welding conditions, it is observed that the amplitude sometimes can
decrease (it also depends on the power supply that is used}. However, the mode of the
vibrations of the resonator does not change, so that it can be considered identical to
that of the freely vibrating resonator. In the next only freely vibrating

resonators will be analyzed.

In chapter 2 the basic theory of half-wavelength resonators will be discussed and some
remarks are made to the analysis of ultrasonic vibrations.

In chapter 3 the dimensions and shapes of resonators that are currently used will be
classified. Based on own experiences, an analysis of the problems encountered when
designing resonating tooels is set up in terms of the vibrational modes and resonance
frequencies.

The information on the design principles for wide output resonators that is available
from patent literature is summarized in chapter 4. Of interest is to learn what kind of
geometry changes can be used to improve the performance of a resonator.

In chapter 5 and 6 the applicability of solid cylindrical and rectangular resonators is
studied extensively. It is investigated both analytically and experimentally up to
what dimensions resonators of these basical shapes can be used for welding
applications without providing slots, cut-outs etc. The literature on the vibrations in
cylindrical and rectangular resonators will be reviewed and formula will be derived
from it to calculate the resonance conditions for the fundamental longitudinal mode.
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Above certain dimensions the resonators have to be slotted or provided with cut-outs
to obtain a vibrational mode with a constant cutput amplitude. In chapter 7 the
optimization of a specific resonator will be discussed. The overall dimensions were
determined from the information available from the slender rod resonators and the
patent literature. First, the geometry will be optimised on an experimental approach
by providing various cut-outs based on the interpretation of the vibrational modes and
frequencies as measured. Secondly a finite element analysis is used to study the
vibrational characteristics of the same resonator and it will be shown that at other
dimensions a resonator can be designed which shows a constant output amplitude
without providing additional cut-outs.

In chapter 8 a model will be presented to calculate the overall dimensions for wide
output resonators of bladeike, block-like and cylindrical shape, which are provided
with slots. The model is set up to predict the resonance condition in these resonators
for which a vibrational mode can be expected with a constant output amplitude.

The predictions of the model are found fo be in good agreement with the experiments.

The possibility to predict the optimum geometry to obtain the desired mode at a given
resonance frequency, does not imply that all problems have been overcome. In a wide
output resonator many resonance modes are possible, and sometimes they do interfere
with the desired mode. The complex shape of slotted resonators does not allow an
analytical analysis of all modes. In chapter 9 a finite element analysis is used to derive
mode charts for one resonator type with various slotlengths. These charts show the
resonance frequencies of various vibrational modes as function of the slotlength. They
allow to predict critical dimensions at which modes do interfere. Interpretation of the
calculated modes reveals that for some slotlengths no mode with a constant output
amplitude can be obtained.

Finally, in chapter 10 the design of multiple resonator systems is discussed. Wide
output resonators often are successfully used to transmit vibratory energy to several
half-wavelength resonators which are coupled to its output surface. They are used for
welding products of complex shape in which great differences in height levels of the
weld area are present and where different amplitude levels of the resonator may be
needed. The so-called funnel-shaped resonator will be investigated to explore its
capability to serve as half—wavelength resonator of prescribed length and prescribed
amplitude gain.



2. HALF-WAVELENGTH RESONATORS AND VIBRATION ANALYSIS
2.1. Resonating tools

In ultrasonic engineering tools are designed 1o vibrate in a resonance condition. For
the main part of the applications the tools are resonating in the fundamental
longitudinal mode (half-wave}. There are a number of design requirements to take into
account. The desired frequency and the resonator material determine the overall
dimension such as the length. The stress-distributions along the resonator must be
directed such as to guarantee a reasonable life expectancy. For most applications an
amplitude amplification is desired.

Generally, bar-type resonators are used with a variable cross-section along the length.
Such a tapered resonator will produce an amplitude gain towards the smaller end-
portion (the standing wave of the longitudinal vibration has an output amplitade (u;)
higher than the input amplitude (u;} : u, > u,). See figure 2.1.

As long as the lateral dimensions are small as compared to the wavelength, the
problem is governed by the one dimensional wave equation for the propagation of
longitudinal waves in the bar and solutions are available for some resonator profiles.

Analytical solutions have been derived for exponential, conical, Gaussian-shaped
resonators €.0. A large number of papers on this subjects has been published.
(Merkulov (1957); Neppiras (1963); Vetter (1966-1968); Makarov (1964)). For most
shapes, however, no analytical solutions ¢an be found and numerical procedures are
used {Eisner (1963); Kleesattel (1970); Scheibener (1971)).

input

surface output surface

l

Fig. 2.1 Half-wavelength resonator with a tapered shape towards the output end.
{cylindrical cross-section), input amplitude u, and output amplitude u,,

As an example the bar-type resonator with constant crosssection as shown in figure
2.2 will be explained. The material is isotropic and the wavepropagation is uniform in
a cross-section of the resonator, it is loss-free and linear elastic. The wave equation for
longitudinal waves propagating in the axial direction is:

2n _ , 2%
FICR 2.1



where U is the displacement in the x-direction; it is a function of both time t and
coordinate x; ¢ is the propagation velocity for longitudinal waves in slender rods.
The solutions of equation (2.1) for harmonic vibrations are as follows:

A= (Ale"’kx+ Age*'jkx)ej(*)t = u(x) eJ®1 Q2.2

where A; and A, are constants; w is the angular frequency of the vibrations and k is
the wave number:

k=2 (2.3)
e U(X)
é‘*" o(x)
X
e
I Z{x)
Uy o~ - .
VRS
,,’ ’X. \\\
DN N
s . v \ ”/;,-/‘T

/ ~ u(x)
l

Fig. 2.2 Half-wavelength resonator of length I with a constant cross-section;
definition of the displacement ufx), stress o{x) and the modulus of
the mechanical impedance Z(x).

We will only consider the time-independent part of the solution of equation (2.2): the
displacement function u(x). For the half-wave length resonator as shown in figure 2.2
the boundary conditions follow from the requirements that the ends are stress-free:

du(x) / _
dx /— 0
=0

du(x) [
"a“'/ =0
y=

(2.3)



Therefore the displacement function u(x) can be written as follows:
u(x) = up cos (kx) 2.4)

where ug is the maximum amplitude of motion at the ends. This vibration mode is
called the fundamental longitudinal mode.
From equations (2.3) and (2.4) also follows that:

w
kl = # or l—-E (2.5)

This frequency equation relates the resonator length | to the resonance frequency f by

=T L 2.6
T (2.6)
{where w = 27f). The length 1 is very often presented as A/2 (half-wavelength).

The mechanical stress in the x-direction o{x) is related to the strain ¢(x} and the
displacement u(x) as folows:
o(x) = Ee(x) = E ?(il_uﬁ 2.7

Using ¢ =\/%, where p is the specific mass of the resonator material and E is Young’s

modulus, equation (2.7) gives:
a(x) = —wpc ug sin(kx) 2.8)

The stress-function is shown in figure 2.2. It is maximum in the midplane of the
resonator where the amplitude is zero (this is called the nodal plane). The maximum
stress in a resonator is determined by the frequency, the material properties and the
maximum amplitude. At distance x in the resonator, the particle velocity 0 in the
x-direction follows:

o= g—;‘ = a(x) eIt (2.9)

As we only consider time-independent solutions, the particle velocity U(x) is calculated
from equations (2.2), (2.4) and (2.9):

a{x) = jwug cos(kx) {2.10)
At distance x the axial tensile force F(x) is defined as (A is the cross-sectionalarea):

Fix) = Ao(x) (2.11)

A quantiy that is essential to wave phenomena in solid materials is the mechanical
impedance Z(x), which is defined as the quotient of the force F(x) and the particle
velocity u(x) for a given cross-section:

Z(x) = E-(—}Q (2.12)
u(x)

Using equations (2.10) and (2.11) Z(x) becomes:

Z{x) = —j Apc tan(kx) (2.13)
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The modulus of Z(x} is shown in figure 2.2,

It is zero at the ends (F(x) = 0 for x = 0 and x =1} and becomes infinite in the nodal
plane W(x) = 0 at x =1/2). The quantity Z(x) will be used later on to calculate the
effect of variations in the cross sections on the wave propagation.

The theory presented here is only valid as long as the displacement is uniform along a
cross-section. When the wavelength is no longer large as compared to the dimensions of
the crosg-section, the wave propagation is distorted by the effect of lateral motions
(perpendicular to the wave propagation) on account of the Poisson constant » (see
chapter 5 and 6). It will result in a non-uniform output amplitude.

2.2. Resonator materials

In selecting materials for resonators there are several facts to bear in mind.

As they are driven in a resonance condition, there is the mechanical stress level that
determines the failure rate due to fatigue. The miechanical stress is determined by the
resonator characteristics such as shape, the material properties (density, Young’s
modulus} the amplitude of motion and frequency (see equation 2.8). Limitations in
high power ultrasonics are also found for reasons of the elastic loss in the resonator.
The power dissipation strongly dictates the material choice, because it will decrease the
fatigue stress. A third fact, that is related to each application involved, is the wear
resistance of the material.

The mechanical damping factor of the material is a very important parameter. It can be
described as hysteresis loss or internal friction. Excessive heat built-up in the
resonating parts of an ultrasonic system can be a result of it.

The power dissipation in a resonating rod (as shown in figure 2.2) is determined by the
mechanical loss-factor &y of the material. The mechanical loss-factor is defined as the
quotient of the dissipated energy in a volume element per period of vibration and 27
times the maximum stored patential energy of the vibrating red in the same volume
element. (Skimin (1964)):

_ {dissipated energy) in one period
21 » {(max. stored energy)

Sm (2.14)

The reciproke of 61 is also known as the mechanical quality factor Q.

The stored potential energy Up which is a function of time can be calculated from the
local stress and strain in the resonator:

By using equations (2.7) and (2.8) the maximum stored energy flp in one period
in a volume element at distance x becomes:

U, = %—E k? ug? cos*(kx) (2.16)

To get from encrgy to power, equation (2.16) has to be multiplied by the frequency f.
Re-writing equation (2.16) it follows with equation (2.8) and equation (2.14) for the
power dissipation per unit volume Piage{x):

1 w

Ploss(x) = 5 7 07 (x) 8m 217



11

The power dissipation in a resonator is not constant over the length and is concentrated
in the nodal plane. It is proportional to the square of the stress. In order to evaluate
the power dissipation in a half-wavelength resonator equation (2.17) has to be
integrated. For a resonator of cross-sectional area A, the power loss Pigss (M 2)
becomes:

_ %

7 pe & Aug? 8 (2.18)

Pross (M2)
Typically for an aluminium 20 kHz resonator of diameter d = 50 mum, vibrating at an
amplitude ug = 30 um the power dissipation becomes (8 = 51078, p = 2700 kg/m?,
¢ = 5200 m/s):

Ploss(N2) =153 W (218

For general applications at 20 kHz at amplitude levels of 30 um, the power dissipation
in a half-wavelength resonator of cylindrical cross-section is in the order of 10-30 W.
For reason of a lower 8y, alloys of aluminium and titanium are widely used in
ultrasonic engineering (8 < 5 10%). .

For chromium steels 8y, can be as high as 100.10% . Usually, steels or alloys of it

are rarely used, especially not at high stress levels.

In general 8y s not easily measured. Measurements of actual ultrasonic resonators
activited at high amplitude levels show that 8§y is not only a material constant, but
increases with the stress level (Hulst {(1975)).

Of great importance is also the machineability of the material. Resonators with wide
output cross-sections, with dimensions above 80 nun (at 20 kHz) are mainly made of
aluminium alloys, and very occasionally of titanium alloys. In the present work the

main part of the resonators is made of a Duraluminium. The material properties have been
analyzed and are summarized in table 2-1 (accuracy for the elastic properties + 0,5%).

p E ¢ v Ofatique

(k&/m*) Njm?) (m/s) -] Nim?
Al 2.71 102 0.73 101 5200 0.335 ~ 120 10°
Ti 4.4110° 1.08 104 4930 0.305 ~ 200 10¢

Table 2.1 Material properties of Al- and Ti-alloy as used for the fabrication of
resonators.

The dimensions of a specific resonator at a certain design frequency, are determined by
the propagation velocity of the longitudinal wave, ¢. Once a resonator has been
fabricated of a certain material, the dimensions clearly are not valid anymore when
another material will be chosen. As an example figure 2.3 shows the effect of the
material choice on the overall dimensions of a 20 kHz resonator. This type of
resonator will be discussed into more detail in chapter 10. The dimensions of both the
cylindrical parts at the input and the output end are kept constant. The strong effect
on length 1 is seen.
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A
- ~ ¢=3520Mm/5
5 —— L
1= 852 mm
— .

| ¢ =4130 W/g

1=104.0 mm

—F

¢ = 4930 Mfg

1=127.6 mm
' ¢ = 5200 M/s

1=1354mm

Fig. 2.3 The effect of the value of the propagation velocity ¢ (various materials) on
the resonator length 1 as calculated. (Design frequency 20 kHz, the lengths 1,
and 1, as well as the diameters d, and d, of the cylindrical parts are kept
constant).

To conclude this introduction into the analysis of a vibrating rod the energy trans-
mission through the resonator will be discussed.

An ultrasonic system is operated at resonance and mechanical energy is stored into it
(which is periodically converted from kinetic to potential energy and vice versa). The
stored vibrational energy can be calculated from equation (2.16) and (2.18).
Normally an ultrasonic system consists of three resonators. At 20 kHz typically
1000 W electrical energy is converted into mechanical energy in the resonator and
transmitted to the load. From equation (2.18) one can calculate the stored power
capacity in the resonator. In the case of three resonators (50 mm diameter, material
aluminium, mean amplitude 30 um) the stored power amounts 300 kW. As the
loadpower is 1000 W, one can conclude that in an ultrasonic system the stored
mechanical energy is very much larger than the energy transmission to the load.
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It can be understood from this that the resonating system can be kept in resonance under
load conditions. In applications for which the transmitted energy is no longer small as
compared to the stored energy, one will see that the system no longer can be kept in
rescnance (’stalling-effect).

2.3. Vibration analysis

The most important parameters to characterize ultrasonic resonators are the resonance
frequencies and the corresponding vibrational modes. A quick impression of the
resonating body can be obtained from the location of nodal patterns. The use of fine
sand which moves towards the velocity minima on a vibrating surface, was used for this
purpose.

A point-by-point analysis of the vibrations was found to be most practical when using
a "Fotonic Sensor”, a non-contact optical proximity detector (Documentation Ref. 67).
Only motion perpendicular to the surface can be measured. Up to frequencies of

100 kHz, amplitudes down to 0.1 um can be measured on spots as small as 0.5 mm?.
The Fotonic Sensor was found to be more accurate than Eddy-current displacement
detectors or mechanical contacting elements. Overall measurement of the vibrational
amplitudes of a resonator is possible with holographic analysis (Herrmann (1982) (ref.
65); Tuschak (1975)). However, for the purpose of this study it does not show many
advantages over the point-by-point methods. For the measurements in the present
work the amplitudes have an accuracy of £ 0.2 um.

Two ways of frequency measurement were used. The resonance frequency of the
resonator itself was measured using piezoelectric elements. A variable frequency
oscillator is used to drive one element (at constant voltage) which, in contact with the
resonator to be studied, transmits mechanical vibrations through the resonator, which
again are detected by the second element (which acts as receiver in contact with the
resonator). The output voltage of the receiver-element is proportional to the
amplitude measured, which is maximum in case of resonance in the resonator.

A spectrum analyzer (0-300 kHz) was used to find the resonance frequencies.

The second method is to couple the resonator under study to a transducer as used in
a conventional welding equipment. The transducer has a fixed resonance frequency
for the longitudinal vibration, say 20 kHz.

The resonance frequencies of the assembly are found when at the electrical terminals
of the transducer a minimum driving impedance is measured (again with the aid of a
spectrum analyzer with oscillator). This is equivalent {o the mechanical resonance
frequency of the system (as measured mechanically by the first method) when the
¢lectrical terminals are short circuited.

When the resonance frequency of the system is measured with open electrical terminals,
a slightly higher frequency will be measured, which is called the anti-resonance
frequency. In the present work only the resonance frequency will be considered,
because most of the commercial equipment operates in the resonance frequency. All
frequency measurements have an accuracy of £ 10 Hz {in the range of 20 kHz).
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3.  OBSERVATIONS ON A RANGE OF RESONATORS
3.1. General design requirements

When using half-wavelength resonators of the slender rod-type, the maximum output
area is limited (the lateral dimensions are small as compared to the wavelength). At

20 kHz the half-wavelength is between 110 and 135 mm so that the lateral dimensions
may not exceed 70-80 mm, and the output area typically is restricted between 500-
2000 mm?2. Many applications, however, do require a much larger output area {up to
50000 mm*). For each application the lateral dimensions of a resonator will have to
be adjusted to the product dimensions, e.g. in case of ultrasonic welding of thermo-
plastics. A resonator was called wide when at least one of the lateral dimensions
exceeds one third of the wavelength (A/3) of the longitudinal wave at the design
frequency (A = 9-). The resonator with a wide output cross-section also has to be
designed to vibrate in resonance and the desired vibrational mode is mostly described
as "longitudinal” mode. The vibrational mode of the resonator is called longitudinal™
when the amplitude of motion at the input and output surface is uniform in magnitude
along the surface and has a direction perpendicular to these surfaces. The amplitudes
at the input and output surface are 1809 out of phase, and the amplitude is zero in

the nodal plane, located about halfway the distance between the output and the input
surface. Generally the actual mode will only approximate these characteristics of the
“longitudinal” mode. The differences in the output amplitude will seldom be smaller
than 10%, neither can the component of the output amplitude in the plane of the
output surface be obtained smaller than 10% of that amplitude.

It will be clear that there is an enormous variety of shapes possible which do fulfil
these requirements with respect to the longitudinal mode. The basic requirements are
shown in figure 3.1 for an arbitrary shaped resonator. The output surface must be
matched to the dimensions of the products to be welded. The input surface must be
such that the resonator can be coupled to the vibrations generating part of a welding
apparatus. The desired amplitudes of vibration at input and output surface are shown.
The resonance frequency for the longitudinal mode must coincide with the operating
frequency of the welding apparatus. 1t is the task of the ultrasonic engineer to choose
the resonator shape so that it fulfils these requirements. Below some additional criteria
for a good resonator design will be discussed.

3.2. Classification of resonator shapes

The general approach to make a resonator is very straight forward. Referring to figure
3.2 a brief description will be given now. The lateral dimensions are matched to the
productparts to be welded. The resonator length is chosen somewhat longer than the
length of the half-wave of the longitudinal vibration mode in that specific resonator
material and at the design frequency.

All the resonators are in some way provided with slots, bores, holes or cutouts to
satisfy the conditions for which they will be able to resonate in a “longitudinal” mode.
(These will be discussed in chapter 4},

The locations of slots, bores etc. will be such that all lateral dimensions in the zone of
maximumn stress produced by the longitudinal wave (nodal plane) does not exceed A/4
to compensate for cross-coupling, and to correct for distortion of the longitudinal
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Figure 3.1 Basic design requirements for a resonator with a wide output cross-section
{three -dimensional body, not necessarily a body of revolution); the arrows
indicate the amplitude of vibration.

wave. (This wil be discussed in chapter 5 and 6). Secondly the resonator length will be
shortened by small steps until the measured resonance frequency coincides with the
design frequency.

A study of various resonator shapes as used in practice, reveals some generality in the
geometry. On the basis of their geometrical shape, resonators with wide output cross-
sections can be classified info three groups. These groups are shown in figure 3.3,
The resonator types are:

1. cylindrical type, diameter > A\/3;

2. blade-like type, only one dimension > A/3;

3. blocklike type, both dimensions > A/3.

Capitals will be used for the overall dimensions of these resonator types only.
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Fig. 3.2 General lay-out of a wide resonator and methods to alter the resonance
frequency.

At 20 kHz the width of the blade-like resonators ranges from 80 to 400 mm ; block-like
resonators are between 100x100 and 200x200 mm?; cylindrical resonators usually are
between 100 and 200 mm diameter, occasionally up to 300 mm; the resonator length |
is in the range of 110 to 135 mm {close to the half-wavelength in a slender rod

A2 = £ =130 mm for aluminium).

In resonators of the cylindrical or bladelike type an amplitude gain is often built in,
created by a discontinuity of the cross-section in the zone of the nodal place, see

fig. 3.3, or. 2. Block-like resonators are never provided with an amplitude gain.

The wide output resonators are mostly used for direct energy transmission to the load.
Sometimes they are used as a base resonator, where small half-wavelength resonators
are attached to it (they serve as an energy distributor), see figure 3.3, nr. 4.



17

D= 125 mm
1l N
oy
A.__.____Llp,jn______.,\
! g
g
=3
a
' [
=
o N ] U
\

Fig. 3.3 nr. 1 Cylindrical type resonator {typical dimensions);
diameter D and length L.

B =200 mm E=40 mm
T TN
i ! i .i
E
; a
N 4 -
et
y
25 mm

Fig. 3.3 nr. 2 Blade-like resonator (typical dimensions);
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Fig. 3.3 nr. 4 Base resonator with small resonators attached to it {typical dimensions}




19

The cutput area will not always be a plane. Often it is profiled to match the product
shape to assure optimum energy transmission. Generally the profiles are much less
than \/4 deep.

As the resonator dimensions are matched to each application individually, no
“standard’” dimensions, but rather a wide variety of resonator dimensions will be
encountered. For high power applications the operating frequency of an ultrasonic
apparatus is some fixed value between 20 and 22 kHz, depending on the choice of the
manufacturer or supplier. This means that for each type of equipment other
dimensions are required. Equipment operating at 30, 36 and 40 kHz has become of
real interest of late. Therefore the variety of resonator dimensions has been enlarged
enormously. Although the problems in designing are identical for all these frequencies,
there are no scaling laws available to predict the resonance behaviour for all these
frequencies from one reference value. In the present work resonators in the 20 kHz
range will be studied.

As mentioned before, the resonator material usually is an aluminium alloy, only for
relatively small resonators a titanium alloy is used (at 20 kHz for dimensions

<100 mm). Although superior to aluminium, the titanium alloy is unfavourable
above these dimensions for reason of its bad machineability and the price of the raw
material.

3.3. Analysis of some resonators

In order to quantify the problems encountered in devicing wide output resonators,

an analysis of 37 existing resonators was set up. They cover the whole range of
dimensions as commonly used in ultrasonic plastic welding applications at 20 kHz.
The most important characteristics measured are: frequency spectrum and modes of
vibration. Of interest are the resonance frequency of the “longitudinal” mode (if
existing) and the shape of this mode. The presence of other resonances near the
operating frequency indicates the risk that the resonator is used in another mode than
the desired one, or that coupled vibrational modes are present. All resonators, in some
way tuned as close to the optimum as possible, were coupled to a welding apparatus.
The vibrational modes were measured optically in unfoaded condition (the ultrasonic
generator is activated but the welding head does not contact any load, it is freely
vibrating}. Only the amplitudes perpendicular to the surface are measured, along the
contours of the resonator. In this way enough information can be obtained for
interpretation of the vibrational mode.

Special attention is paid to the amplitudes along the output surface. The uniformity
is indicated by the differences in amplitude as related to the maximum amplitude.

In tables 3.1, 311 and 3.TII the results of the study are summarized. No detailed
information on vibrational modes and corresponding resonance frequencies are given here.
The main dimensions of the resonatorshape are listed as well as the number of

resonances within the range of 18 to 22 kHz.

The number slots provided in each resonator (see figure 3.3) is an important
characteristic. The evaluation of the analysis is presented by four judgments.
Tuning problems” does not mean that it is difficult to let coincide the resonance
frequency of the longitudinal mode with the design frequency. It also can mean that
there are spurious resonance frequencies close to the frequency of the longitudinal
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mode which could not be eliminated. If the longitudinal mode is coupled to some
spurious mode it is classified as “coupled modes™. The uniformity of the output
amplitude is a very important parameter. In the tables the maximum difference of the
output amplitudes (as measured) is given. Differences smaller than 10% are not listed.

As an example the vibrational modes and corresponding frequencies for one specific
resonator are shown in more detail in figure 3.4, for some values of the resonator
length. The length obviously has a great influence on the vibration mode that is
excited when the resonator is coupled to an ultrasonic welding apparatus. At the
output surface, the energy transmission will be far from optimum if the length is not
chosen properly.

As a result of this study and from experiences with resonator designing for production

apparatus in general, the observations can be summarized as follows:

— Within the range of 18 to 22 kHz the number of resonance frequencies detected is
between 2 and 5, one of which is the desired frequency of the “longitudinal” mode.

— In most cases the “longitudinal” vibrational mode is not optimal; amplitude
differences along the output surface from 10-80% are observed, resulting into
unequal energy transmission during welding. Even nodes (no motion) and a phase
shift in amplitude are observed, which does not resemble a longitudinal mode at all,

— The longitudinal mode is sometimes coupled to another ("spurious™) mode; the
effect is mostly a distortion of the longitudinal mode with a nop-uniform amplitude
along the output surface as a result.

— At the output surface of a resonator the vibrational mode very often has both an
amplitude perpendicular to the surface and an amplitude in the plane of the surface.
The latter causes small resonators attached to it (in the case of a base resonator
(figure 3.4, nr. 4) to vibrate both in a longitudinal (where it was designed for) and a
flexural mode. The flexural mode has very large amplitudes when its resonance
frequency coincides with that of the longitudinal one. The flexural mode is not desired
and often causes a failure of the clamping screw due to excessive mechanical stress.

With the aid of vibration mode analysis and the measurement of the frequency
spectrum, in many cases an optimum operation of the resonator can be reached, on
account of the interpretation of these modes and adequate variation of the
dimensions.

During these optimization procedures (called "tuning™) various striking effects were

observed:

— Tuning is to reach a condition in which a specific resonator is vibrating in the
desired mode at the design-frequency, by successive material removal on
strategically chosen places; optimization of frequency and vibrational mode do not
necessarily go in the same proportions or direction as a result of a change in
dimensions.
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Fig. 3.4 Vibrational modes and resonance frequencies of a cylindrical-type resonator
of 125 mm diameter (material aluminium, design frequency 20 kHz).
Shown here are those modes which could be excited on the ultrasonic

welding apparatus used, for various values of the resonator length.
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~— Although an attempt will be made to reach the optimum in careful small steps,
overshooting is not unrealistic; consequently a shift in the reverse direction may
become extremely difficult.

— While changing the desired mode, also aff other modes and their corresponding
resonance frequencies will change; this can interfere with the attempts to optimize the
desired mode.

— The amount of changes after material removal is not easy to predict.

- The optimum is reached, but the resonance frequency of some spurious mode is very
close to the frequency of the desired mode (say within the operating range of the
ultrasonic generator) so that it is not possible to discriminate between both; for 20 kHz
equipment no spurious modes are allowed within a bandwidth of 600 to 1000 Hz on
both sides of the operating frequency; the elimination of this spurious mode without
changing the optimum, is extremely difficult, if not impossible.

The conclusion has to be that, only by systematical analysis of resonance frequencies and
vibrational modes as a function of the resonator shape, perfectly operating resonators can
be obtained. Devicing a resonator on a trial and error base is fime consuming and results

in material waste and unrealistically high costs for the resonator as compared to the total
costs of a welding apparatus (sometimes up to 50% of the total amount).



dimensions (mm) number of tuning coupled | output amplitude
Nr. | width, depth, length | number of slots | resonances | no problems .
B R L 1822 kHz problems modes difference

1 90 x 30 x 124 1 1 X 40%

2 100 x 35 x 126 1 3 X

3 100 x 69 x 123 2 i X

4 103 x 40 x 125 2 1 X

5 124 x 40 x 136 2 - X R0%

6 130 x 35 x 130 2 3 X 80%

7 130 x 55 x 129 2 2 X 70%

8 131 x 35 x 122 2 2 X

9 138 x 40 x 123 2 - X 10%

10 140 x 50 x 120 2 3 60%

11 145 x 35 x 124 2 5 X

12 150 x 40 x 132 2 - X 20%

13 150 x 40 x 123 2 2 X 25% special cutouts
14 152 x 40 x 123 2 2 20% |

15 180 x 55 x 124 2 1 10% ;

16 180 x 80 x 121 2 3 X 30% special cutouts
17 184 x 73 x 125 2 - 10%

18 200 x 80 x 120 2 1 X

19 232 x 60 x 130 4 3 X

20 240 x 38 x 124 4 3 X special cutouts
21 264 x 39 x 124 4 4 X X

22 370 x 60 x 120 4 3 X

23 299 x 35 x 123 5 4 20%

Table 3.1: Resonators of blade-like type (all aluminium, only nr. 12 Titanium; { — )} denotes not measured); see figure 3.3 nr, 2.

€T



Nr. wi:kt:fgzt)ﬂis, (lrer;:;lt)h number of ?‘MS ::s':l?:l:;f no problems tuning coupled o tp‘.lt amplitude
B R L (in 2 directions) 18-22 KHz problems modes difference

24 190 x 105 x 113 2and0 3 X

25 185x 112x 113 2and 2 4 10%

26 180x 125 x 120 2and 1 4 X 10%

27 179 x 100 x 119 (B) 2and 1 3 X 30%

28 152x 120 x 120(B) 2and 1 3 X 25%

297 I85x120x 121 2and1 2 X

30 160 x 160 x 121 2and 2 3 X X

31 190 x 180 x 120 (B) 2and 2 2 X 50%

Table 3.1I: Resonators of block-like type {aluminium, B = base resonator); see figure 3.3, nr. 3.

ve



dimensions (mm} number of R .
. number of tuning coupled | output amplitude
Nr. | diameter, length Jot resopances | no problems oblems modes diffe
b L slots 1822 kHz pr e ifference

32 152 x 126 none 2 X no longitudinal mode

33 152 x 98 none 2 80% distortion of
longitudinal mode

34 152 x 123 6 3 X X bell-shaped
(hollowed resonator)

35 160 x 119 6 3 X 60%

36 125 x 116 6 3 X 10%

37 190 x 119 6 3 X X bell-shaped

(hollowed resonator)

Table 3.1 Resonators of cylindrical type (aluminium); see figure 3.3, nr. 1.
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4.  SURVEY OF PATENT LITERATURE (PATENTS AND PATENT APPLICATIONS)
ON RESONATORS WITH WIDE OUTPUT CROSS-SECTIONS

4.1. Introduction

Most of the information on the design of ultrasonic resonators having large dimensions in
planes perpendicular to the direction of the longitudinal vibrations to be transmitted, can
be obtained from patent literature. After all, the design of well functioning resonators
(horn) requires much skill and experience. Therefore most of the knowledge will be kept
company confidential, resulting in a very limited number of publications on this item.

The available patents and applications can be categorized into three groups: the first

group describes design principles, the second gives means by which the mode of vibration
can be influenced, and the third group describes the coupling of resonators to a multiple
resonator system. Without pretending to fully cover the patents and applications published
until now, below the most significant features encountered will be discussed.

4.2. Design principles

In a resonator which is designed to resonate in the longitudinal mode, generally the
maximum dimensions in the planes perpendicular to the direction of the vibrations may
not exceed one quarter to one third of the wavelength of these vibrations, when a plane
wave front is to be obtained. If these dimensional limits are not observed, the amplitude
of the vibrations at the output surface is greater at the center than at the periphery
(amplitude fall-off). Attempts to obtain a plane wave front at the output surface using a
number of transducers at places on the input surface at distances smaller than the limiting
dimensions mentioned above, failed. For reason of cross-coupling of waves (caused by
Poisson’s constant ¢} to the generated vibrations at the nodal planes caused complex
vibrations so that no in phase vibration and no uniform amplitude at the output could be
obtained. (Kleesattel (1963)).

The invention of Kleesattel e.0. is to provide the resonator with slots extending there-
through at right angles to the input and output surfaces so that the slots break the
cross-coupling between the sections of the resonator. The sections act as individual
resonators with lateral dimensions not exceeding the design limits.

A resonator with one large output dimension (blade-like) is shown in figure 4.1a.

The sections are connected by narrow connecting bridges adjacent to the output and
input surfaces. If the resonator is in the form of a rectangular block with large side
dimensions, then the slots for breaking the crosscouplings can be in a grid arrangement
(see figure 4.1b). (Kieesattel (1963)).

In Kleesattel’s publication a transducer is connected to each of the sections to transmit
vibrational energy. However in most industrial applications today, only one transducer
is coupled at the center of the input surface (see for example figure 4.5).

The maximum width of a blade-like resonator is limited. For some applications a very
wide working dimension may be needed. However, when increasing the effective working
dimension of the resonator bevond a certain value, the costs of producing such a
resonator increase disproportionally to become prohibitive (Long (1973)), Kleesattel’s
solution gives practical solutions from three inches to ten inches (75-250 mm).

More convenient is the use of a plurality of resonators of relatively small dimensions as
shown in figure 4.2.



transducers | -
\_H_J NJ '[HJ &U _L| eenerator

input surface

resonator
slots

output surface

Fig. 4.1a: Resonator provided with slots to avoid cross-coupling (Kleesattel (1963 ).
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Fig. 4.1b: Resonator with large dimensions in fwo directions; slots in a grid arrangement
(Kleesattel (1963 }).

Fig. 4.2: Arrangement of six resonators to cover very wide working dimensions (Long (1973)).
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The use of slots to interrupt cross-couplings will not always be a solution of practical
value. In practice it is sometimes found, that it is not only difficult to machine slots of
the type as suggested before, but when using certain materials such as titanium, the
machining of slots is time consuming and expensive. It has been suggested to provide

a less expensive means for breaking cross-couplings by internal holes or bores parallel
to the direction of the longitudinal vibration and extending across the nodal plane of
the resonator (see figures 4.3a and 4.3b). (Biro (1971)).
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Fig. 4.3a: Internal Fig. 4.3b: Resonator with reduction
bores to break cross- in the cross-section to increase the
couplings (Biro (1971)). output amplitude (Biro (1971)).

The resonator is designed so that its dimensions from the input surface to the opposite
output surface correspond to an integral number of half wavelengths of the vibration.
However, no information is given with respect to the positioning of the bores, Instead
of one large bore, a multiple set of small bores is said to be possible. Figure 4.3b gives
an example of a resonator with an increased output amplitude; a bore results into a slot
in the reduced cross sectional area.

In the same way as described hitherto cylindrical resonators can be made to resonate in
a longitudinal mode. Above a certain diameter slots and/or holes are to be provided to
avoid cross-couplings. An example of such a resonator is shown in figure 4.8b.

4.3. Influencing the output vibration amplitude

Up to now blade-ike and rectangular block resonators have been discussed. Where for
example plastic welding along a circular ring is needed with a resonator having a
diameter larger than a quarter to a third of the wavelength of the vibration, such
expedients as hollowing out the resonator to provide a bell-shaped structure having
longitudinat slots through the bell wall and extending along the Iength of the bell are
used (see figure 4.8b). Great difficulties are encountered in obtaining a uniform
distribution of vibration amplitude over the output surface of the resonator.
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It was suggested by Davis (1978) that a solid cylindrical resonator with large diameters
can be used without the use of sloiting or other expensive machining operations.
Generally a solid resonator will show a smaller amplitude in the peripheral area
compared to the center of the cylinder. By providing a groove in the outer surface of a
large solid resonator extending about the body, preferably near the middle zone of the
resonator length, the amplitude at the peripheral area can be increased.

The so-called “accordion-hom” is shown in figure 4.4a.

The width and depth of the groove is small in comparison with a quarter wavelength at
the operating frequency. Figure 4.4b shows the influence of the location of the groove
on the amplitude distribution at the output surface. As an example, at 20 kHz
resonators with a diameter between 100 and 175 mm suffer a non-uniform amplitude
distribution. The groove is said to compensate for this effect.

B

T
H

: ;é Y 7
g
Fig. 4.4a: Fig 4.4b: The influence of groove location on the
“Accordion horn” amplitude at the output surface (Davis (1978)).

with a groove in
the outer surface
{Davis (1978)).

In general the designer of a resonator will aim at obtaining a uniform amplitude
distribution at the output surface. The use of slots as taught in Kleesattel’s patent
(1963) is a main contribution to this purpose. However, sometimes it is desired to
have smaller amplitudes at certain regions of the output surface. As an example, an
apparatus for simultaneously welding and cutting textile material {(Grgach (1976)),
requires a small amplitude at the lateral edge regions of the resonator to reduce wear
problems and to greatly reduce in magnitude audible chatter. Here the aim is a blade-
like resonator which exhibits a non-uniform motional amplutide along its output
surface (see figures 4.5a and 4.5b).

The reduction of amplitude as shown in figure 4.5b is achieved by providing two
notches at the input surface of the resonator, one on each side. The significant
reduced amplitude is 20 to 30 percent of the amplitude in the center portion.

In figure 4.5¢ an alternative way is shown where in the rear portion of the resonator is
provided with a cutout section extending a quarter wavelength from the input surface.
Additionally two slots are provided extending from the output surface, a quarter
wavelength toward the input surface. A resonator, 216 mm long, showed an amplitude
at the edges of about a quarter of the center region amplitude (Grgach (1976)).
However, the results of the slots is that flexural vibrations are generated in the studs in
a direction perpendicular to the direction of the longitudinal motion. There are means
to damp these flexural vibrations by mechanical actions (Grgach (1976)).



30

S transducer P m
f £
Té» l
i
IR i
Fig. 4.5a: Notches at the input surface Fig. 4.5b: Reduction of the
reduce the amplitude at the output surface amplitude at the lateral edges
(blade-like resonator) ( Grgach (1976)). . (shown is the amplitude

distribution along the width
of the resonator of fig. 4.5a.
{Grgach (1976)).

transducer

[ snemaam—.

Fig. 4.5¢: Narrow slots at the edges
and cutout sections are provided to
reduce the output amplitude near the
edges (Grgach (1976)).

When using blade-like resonators, above a certain width, it is said to be impossible to
obtain a uniform amplitude distribution along the output surface. As an example at
20 kHz a resonator of 500 mm width, shows a uniform amplitude along 200 mm
symmetrical to the central axis, and a significant reduction at the outer regions
{Scotto (1974)). During welding operations bad energy transmission is observed at the
outer regions, By providing mechanical filters of half-wavelength onto the resonator
the amplitude reduction can be eliminated (see figure 4.6a and 4.6b).

These filters are preferably positioned in the region of amplitude reduction, either by
screwing, welding or glueing. The filters may be of any shape or material, provided
that their resonance frequencies of the longitudinal mode do coincide with those of the
wide resonator and the transducer.
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Fig 4.6a: The use of mechanical filters or half Fig. 4.6b; Cross section of
wavelength resonators to eliminate amplitude fig. 4.6a,

reduction {Scotto (1974)).

Ultrasonic plastic sealing techniques use vibrational motion perpendicular to the
surface of the materials to be joined; relatively little heat is produced by such motion
in the joint and the seal is effected at low temperature and high pressure. In contrast in ultra-
sonic metal welding large heat build-up occurs due to a shear mode of vibration (in the
same plane as the surface of the materials to be joined). For sealing thin sheets of
plastic materials it is advantageous to combine both types of motion simultaneousty
(in shear and perpendicular to the surface).

A resonator providing the desired bi-directional ultrasonic vibration is described
(Balamuth (1966)). Figure 4.7a shows a resonator with the well-known slots, but
formed to provide a seal along a S-shaped configuration. The lower section is provided
with a relatively thin lip portion extending along the entire width of the resonator and
in such a way as to produce an asymmetry or mass unbalance with respect to the
vertical plane through the centre of the resonator (figure 4.7b). The result of this
unbalance is an elliptical vibration at the tip, the magnitude of the amplitudes
depending on the mass. According to the same principle a ¢ylindrical resonator is
provided with a plurality of slots evenly spaced about the circumference (figure 4.7¢}.

Blade-like resonators which suffer an amplitude fall-off at the outer edges, are the
subject of the invention presented by Holze (1982). A stepped resonator is designed to
produce a large output amplitnde, the amplitude gain being somehow proportional to
the masses at both sides of the nodal plane of the longitudinal vibration in the
resonator. It is suggested that the amplitude gain should be increased along the
resonator width to compensate for the amplitude fall-off. The way to achieve this is
shown in figure 4.10. The masses of the upper portion at the lateral sides are enlarged
by addition of an extra mass at the input surface. This solution is said to reduce a
fall-off from 15% to only 2% for resonators of 150 to 230 rmam width. The studs can
be up to 12 mm high. It is mentioned that the resonance frequency of the resonator
will change, and a tuning procedure is necessary.

4.4. Coupling of resonators to a multiple resonator system
The lateral dimensions of blade-like, block-like and cylindrical resonators are

limited. At 20 kHz ultrasonic frequency resonators with widths above 350 mm and
diameters above 300 mm are difficult to produce.
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lip
Fig. 4.7a: S-shaped resonator with Fig. 4.7b: Mass unbalance causes
lip portions at the output surface elliptical motion near the welding
(Balamuth (1966)). area (amplitudes depend on the mass

of the lip (Balamuth (1966)).

i

slots

Fig. 4.7¢c: Cylindrical resonator with
a plurality of slots to produce
bidirectional motion ( Balamuth (1966)).

Using more ultrasonic resonator systems, pieces with large dimensions can be welded.
To overcome this problem partly it is suggested to use a multiple resonator system
(Scotto (1974)). Characteristic is an extra resonator with wide output cross section to
the output surface of which two or more large resonators are coupled. They are
resonating in the longitudinal mode at the same frequency. Figure 4.8a shows a
coupling of blade-like resonators. The resonator assembly in figure 4.8b is composed
of a blade-like resonator with two cylindrical resonators coupled to it, covering an area
of 500 x 225 mm? if e = 280 mm.

r‘% transducer IAH
! !

{

[ 1]
101
A

Fig4.8a: Coupiinga blade-like resonator to cover wide working areas
(Scotto (1974)).
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Fig. 4.8b: Arrangement of a blade-like resonator Fig. 4.8¢. Coupling of many small resonators
with two cylindrical resonators { bell-shaped} (of different length) to a wide blade-like
{Scotto (1974)). resonator (Scotto (1974)).
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Fig. 4.9:  Blade-like resonators with additional masses at the input surface to
compensate for amplitude fall-off. (Holze (1982)).

The cylindrical resonators are provided with slots, slightly different from Kleesattel’s
proposals, and an internal bore. It is also possible to use a wide blade-like resonator to
transmit ultrasonic energy to a multiple set of resonators with different length and
lateral dimensions, but resonating at the same frequency (see figure 4.8¢). Such an
apparatus is adequate for welding at various heights in one single product.
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4.5. Some remarks

The designer of resonators for uitrasonic high power applications may employ one of
the principles mentioned above, to influence either vibrational modes or the energy
transmission to the output surfaces. In practice many more, mostly unpublished
technigues for providing slots, bores or cutt-offs into a resonator at arbitrary places,
will be encountered. It is believed, however, that the survey given convers the basic
principles most commonly to be dealt with.



5. SOLID CYLINDRICAL RESONATORS
5.1. Introduction

The use of slender rods as half-wavelength resonators has been discussed in chapter 2.
When the lateral dimensions are no longer small as compared to the wavelength, the
wave propagation is not uniform in a cross-section perpendicular to the direction of the
wave propagation. This results in non-uniform output amplitudes when designing
resonators. A second result is that the wave propagation velocity decreases due to this
dispersion effect. In the next chapter the solid cylindrical resonator will be studied to
evaluate its applicability in ultrasonic high power applications. Of practical interest
are ¢cylindrical resonators for which the diameter to length ratio is between zero and
unity. It is the objective to find formula to calculate the resonance conditions for the
longitudinal mode in the cylinder. The presence of other vibrational modes which
could interfere with the longitudinal one is to be investigated.

Finally, a number of cylindrical resonators have been analyzed experimentally. The
coupling of a resonator to a transducer of a welding apparatus will cause its resonance
frequencies to shift. Some frequencies will even disappear. Amplitude measurements
are carried out to measure the uniformity of the amplitude of the output surface, and
from it conclusions are drawn up to what diameters the deviations are within the
acceptable range (< 10%).

5.2. Literature review

The studies of vibrations in solid cylinders of finite length are often related to practical
problems. The application of solid cylinders in underwater transducers requires the
understanding of the frequency characteristics in that range in which the cylinders
themselves have natural modes of vibration and cannot be considered as lumped mass
anymore (McMahon (1964)}. A second example is the need for understanding the
modes of vibration in cylinders for gravitational wave detectors (weighing several tons)
(Rasband (1975)). In the present work the understanding of the modes is essential for
designing efficient ultrasonic resonators.

In general we will have to solve the three dimensional equations of the linear theory of
elasticity when we want to study small vibrations of efastic rods. This will not lead to
difficulties when the rod is of infinite length. Equations giving a solution were first
formulated by Pochhammer (1876) and Chree (1884) and an exploration of these
equations was first undertaken by Bancroft (1941).

Bancroft presented the decrease of the wave propagation velocity ¢ as function of the
diameter to wavelength ratio in the infinite cylinder for some values of Poisson’s ratio.
The only experimental work that has been referred to in literature on the vibrations of
solid cylinders of finite length has been worked out thoroughly by McMahon {1964).
Until then no existing theoretical analysis was adequate to predict the natural
frequencies of solid cylinder of finite length with diameter to length ratios up to unity.
The introduction of a method for axisymmetric solutions was done by Hutchinson
(1967} (1972). His procedure is based on choosing a series of functions with unknown
coefficients which satisfy the governing equations and boundary conditions. Even for
the simplest cases of a solid cylinder the method is cumbersome. A method for
approximate solutions was presented by Rumerman (1971) to compute natural
frequencies in both solid and hollow cylinders, based on the expansion of the
displacements in series of functions which correspond to the modes to be be expected
in the cylinder.
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The first paper on non-axisymmetric vibrations of finite cylinders was presented by
Rasband (1975). However, no numerical data are available here. Finally, the complete
discription of vibrations in solid cylinders was published by Hutchinson (1980).

The numerical results show complete agreement with the experimental results of
McMahon (1964).

All theoretical analyses mentioned above are far from easy in analytic formulation and
the generation of numerical results requires much computer time. For practical use
these exact solutions are inaccessible. Fortunately, the finite element analysis packages
available today are a good alternative.

For the design of unitrasonic resonators the longitudinal mode in the solid cylinder is of
interest. In the next an approximate, simple formula will be derived to calculate the
resonance frequency of this mode for a given cylinder. It is based on assumptions
suggested by Mori (1977) that the actual longitudinal mode can be considered to be

the result of a coupling of the longitudinal wave solutions in slender rods to those for the
radial vibrations in thin discs.

5.3. Cylinder dimensions of interest

In chapter 3 it was discussed that the diameter d of cylindrical resonators is between 0
and 200 mm at an operating frequency of 20 kHz. Up to diameters of 60 4 80 mm the
length 1 of the cylinder equals the half-wavelength A/2. Depending on the material

1= 1204 130 mm. Above d = 80 mm the resonators very often are slotted and a
resonance condition is found at length 1= 1104 130 mm. At other frequencies

(40 or 60 kHz) similar limitations to the dimensions are found.

Using the wavenumber k (see equation 2.3) the ¢ylinder dimensions of interest can be
presented in a non-dimensional notation. At 20 kHz the diameter range of interest is:
60 < d <200 mm, and the length is in the order of 1 = 130 mm.

So the non-dimensional frequency parameter (which is referred to the diameter) kd is
between: 1.5 <kd < 5 and the length to diameter ratio 1/d is between: 0.6 < 1/d < 2.

5.4. Experimental studies of the vibrations of solid cylinders by McMahon (1964)

The vibrations of twenty of the graver modes in solid aluminium and steel cylinders
were studied experimentally by McMahon (1964), covering cylinders having length to
diameter ratios between 0 <{1/d < 1.7 and for frequency parameters between

1.2 <<kd <(6.2. These values almost completely do cover the range of interest for the
design of ultrasonic cylindrical resonators.

The cylinder characteristics are shown in figure 5.1. Referring to the cylindrical
coordinates r, @ and z, the cylindrical surface is at r = d/2 and the plane surfaces are at
z = +1/2. The radial, tangential and axial displacements are u, v and w respectively.
The mode of the longitudinal vibration is shown in figure 5.2 (on an enlarged scale).
The modes of the vibrations observed by McMahon are presented in figure 5.3, The
modes are classified according to the circumferential and longitudinal symmetry of the
vibrations. Radia! displacements are proportional to cos (n@) and the circumferential
order n indicates the symmetry with respect to rotation about the axis of the cylinder.
Modes are longitudinally symmetric or anti-symmetric if the radial and tangential
displacements are symmetrical u{z) = u{—z) or anti-symmetrical u(z) = —u{—z) about
the median plane of the cylinder.
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Fig. 5.1 Cylinder of length 1 Fig. 5.2 Mode of the longitudinal
and diameter d; vibration in the cylinder
definition of symbols {axially symmetric)

McMahon denotes symmetric modes by even numbers and anti-symmetric modes by
odd numbers.

Figure 5.3 shows the approximate form of the vibrations at a diametrical cross-section.
Heavy lines represent nodes on the surface of the cylinder and arrows show the
directions along which fine sand {sprinkled on the horizontally placed cylinder surface)
moves toward the nodal lines. Where no arrows are shown it moves directly to the
nodes.
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Fig. 5.3 Mode chart showing the approximate form of the vibrational modes of
cylinders at a diametrical cross-section and the nodal lines on the surfaces.
The circumferential order n indicates symmetry in radial direction. Even
mode numbers are symmetric and odd mode numbers are anti-symmetyic
about the median plane of the cylinder (McMahon).
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Figures 5.4, 5.5, 5.6 and 5.7 show the frequency spectra determined experimentally
by McMahon. For all modes of vibrations according to the numbers in figure 5.3 the
non-dimensional frequency parameter kd is presented versus the length to diameter
ratio Ifd. These frequency spectra are valid for aluminium cylinders, where

vy =0.344 and ¢ = 5150 m/s (McMahon).

We will now use these results to observe the problems that can be encountered when
designing a solid cylindrical resonator for ultrasonic welding applications. All modes,
except mode 2, show at least one nodal line at the output surface and therefore do not
meet the requirement that for a well-designed resonator the output amplitude along
the surface must be as uniform as possible. The longitudinal mode in the cylinder as
shown in figure 5.2 is denoted in figure 5.3 as mode number 2. The frequency
spectrum of figure 5.4 shows mode branch 2. For small values of the length to
diameter ratio (I/d < 0.2) this mode corresponds to the radial mode of vibrations in thin
discs (kd =~ 4.4). For large values of 1/d (1/d > 1.5) this mode is the half-wavelength
longitudinal mode in slender rods (see chapter 2). Here the mode branch converges in
the spectrum to kd-(li = g {following equation 2.6). As the range of interest

(0.6 < 1/d < 2) is almost completely covered by McMahons work, the resonance
frequency for any cylinder dimeunsion for the longitudinal mode can be determined
from figure 5.4,

From the frequency spectra one can find those cylinder dimensions I/d for which mode
branch 2 is crossing any other branch, and where interference of these modes will
occur in the cylinder. From figure 5.4 it is clear that foré = 0.77 mode 2 will
interfere with mode 1 (see figure 5.3).

Other crossings are found for modes 7 (1/d = 1.25), mode 16 (I/d ~ 0.97), mode 15
{1/d =~ 1.18), mode 20 (I/d = 0.2) and mode 19 (I/d =~ 0.66).

Figure 5.5 also reveals that modes 7 and 8 are closely coupled to mode 2 over a large
range. This means that when designing a resonator at least three resonance frequencies
will be measured very close to each other.

To conclude, there is no value of I/d for which the difference between the resonance
frequency of the longitudinal mode and that of any other is larger than 10%. Ifina
specific resonator the resonance frequency of any of the unwanted (spurious) modes is
too close to the longitudinal one (according to own experiences when the difference is
less than 5%) the frequency spectra can be very helpfull to learn what dimensions have
to be changed to improve the situation.

In the next formula will be presented to calculate the resonance frequency of the
longitudinal mode for any length to diameter ratio.

5.5 Rayleigh’s correction to the wave propagation velocity

The propagation velocity ¢ of longitudinal waves in cylinders will decrease for
increasing diameters. Lord Rayleigh presented a correction formula for the wave
propagation velocity in cylinders that compensates for the finiteness of the diameter.
The formula is accurate up to diameter to wavlength ratios of 0.4, It will be used here
to calculate part of the mode branch 2 in figure 5.4. The corrected propagation
velocity ¢’ (see appendix 2 for the derivation) for a ¢ylindrical resonator equals:
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Fig. 5.4 Frequency spectra for modes of circumferential order n = 0, mode numbers
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c=cll = 57 (5.1}

where: »: Poisson’s ratio (—)
d: diameter of cylinder (m)
f: frequency of the vibration (s™)

In figure 5.4 (curve A, dotted line) the calculated resonance frequency with equation
(5.1) is shown. A similar correction formula exists for the radial vibrations in discs
(curve B in figure 5.4).

In order to compare this correction formula with the results which will be presented in
the next, equation (5.1) is rewritten in non-dimensional form, relating the cylinder
length 1 and the diameter d.

The cylinder length 1 for the longitudinal mode equals (using equations (2.6) and (5.1)):

c?

= £ )
1 3F {(5.2)
Using the wavenumber k =% and equation (2.6}, the non-dimensional length kl is
related to the non-dimensional diameter kd as foltows:

q s C_’ = vkd 2

kl=ma . 1?(1—(—-—4 %) (5.3
Figure 5.8 shows this correction to the resonator length versus the diameter (Poisson’s
ratio v = 0.344 in order to compare it to McMahon’s results).

5.6. Approximate theory for the calculation of the resonance frequency of the
longitudinal mode

McMahon (1964) investigated the relation between the cylinder length and diameter
experimentally whereas Hutchinson (1980) elaborated analytic solutions with large
computer effort. An approximate theory to calculate the resonance conditions for the
longitudinal mode in a cylinder for a wide range of the length to diameter ratios,
resulting in simple formula would be of great value for practical use. Mori (1977)
suggested a way to derive such a formula. Mori presented the results graphically and
did only derive part of the approximate theory in his paper. We will now present the
approximate theory and derive the formula.

Mori’s theory is based on the assumption that the actual vibrational mode of the
fongitudinal wave in a cylinder for which the diameter to length ratio is near unity, can
be considered as an interaction of two orthogonal waves. One being the longitudinal
wave in slender rods, the other the radial extensional wave in thin discs.

The interaction of the two waves is realized by introducing a wave coupling factor m,
which is based on certain assumptions to the stresses in the cylinder, which are
explained below.

The resonant length of the cylinder for small diameters was derived in chapter 2
{equation 2.6):

kl=x (5.4)

where k= w\/%', the wavenumber.
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The wave equation for harmonic vibrations in thin discs, according to the definitions in
figure 5.1 equals (Gladwell (1967)) (where u is the radial amplitude).

2 14 1
e 59

2
Where the wavenumber k; for radial vibrations is defined by ky = w V pU-27)
Solutions for the axisymmetric radial vibrations in thin discs, for the fund%mental radial
extensional mode, yield the following equation:

5dip d5d = a -y &9 (5.6)

Where Jg and J{ are the zero and 1-st order Bessel functions of the first kind. The first
root of equation (5.6) is (Kleesattel (1968)):

}f%fl =q (5.7)

The solutions for a depend on Poisson’s ratio. In Kleesattels paper a is presented
graphically. It can be approximated by:

a = 1.84+068v (5.8)
Now we have to find a theory to couple the solutions of equations (5.4) and (5.7).
For the derivation of equation {5.4) it was assumed that in the slender rod both radial

and tangential stresses are zero (01 = 0 and og = 0). It is proposed by Mori that with
increasing diameters, o and og will increase and can be approximated by:

L
m

or = 9z
1 (5.9
og = E Gz
Using Hooke’s law, the axial strain ¢ then follows:
€z = g (6z~v(ortop)or
(5.10)

é'z:"é-OZ (]"%nl)

According to Mori an apparent elasticity for the vibrations in axial direction is defined
by: :

_ 2v
E =E (1 —E-)—l (5.11)

In fact, this is identical to a decrease of the wave propagation velocity. The corrected
resonator fength due to this apparent elasticity follows from equation (5.4):

- A
Kl=7 (-9 1/2 (5.12)
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For the radial vibrations in thin discs it was assumed that the axial stress g7 = 0.
Again, Mori suggests to approximate the axial stress oz (with increasing thickness of
the disc) using the same wave coupling factor m by:
07 = m oy (5.13)

Using Hooke’s law the radial and tangential strain ey and eg follow:

er = %-(or(] —mp) —vog}

(5.14)
1
€g = E—{og —por (1 +m))
The radial stress oy is related to er and €g by:
ar=FE(er+reg) ((1 —v?)—mw (1 +p)) (5.15)

The apparent elasticity for the radial vibrations is defined by comparing this stress
relation to that for the case where oz = (.
For the thin disc {0z = 0 and m = 0) the radial stress would produce:

or = E (er+veg) (1 —v?) (3.16)

So combining equations (5.13) and (5.16), the apparent elasticity for radial vibrations
becomes:

E =B (- (1—v? —mp(l+p))? (5.17)

The corrected diameter would follow from equation (5.7} by introducing (5.17). For
convenience the non-dimensional cylinder diameter is defined using the wave number k
(instead of ky). From equations (5.7}, (5.16) and (5.17) it follows:

%—d =a (1 -»?) —mp (1+p)y12 (5.18)

Elimination of the wave coupling factor m from equations (5.12) and (5.18) results in
a relation between cylinder length 1 and diameter d:

1o (-2 (R

kla _ 2a

& s kd 619
| (E)2 (1-3p° -2%H

In order to compare this approximate theory with McMahon’s experimental results, the
solution of equation (5.19} is plotted in figure 5.8 for Poisson’s ratio ¥ = 0.344.
McMahon’s results as shown in figure 5.4 (mode branch 2) are translated into figure 5.8
as well. Clearly, the apparent elasticity method deviates from McMahon’s results, the
mean difference is 3 4 6%.
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Fig. 5.8 Non-dimensional representation of the cylinder length | versus the diameter d
{(Poisson’s ratio v = 0.344, * are points from McMahon).

The solution of equation {5.19) has two as&mtotic values which were already discussed
(k—,f~> 0 gives the slender rod vibration and Td- — 1.41 gives the radial disc vibration).
Mori’s theory gives a too short cylinder when designing an uitrasonic resonator, which
would result into too high resonance frequencies. However, the formula fairly well

approximates the experiments and is easy to handle for practical applications.

The influence of Poisson’s ratio on the cylinder dimensions are shown in figure 5.9.
The nature of wave coupling is present by favour of Poisson’s ratio; it is obvious that it
strongly influences the solutions of equation {5.19).

According to Mon'’s approximate theory the length of aluminium cylindrical resonators
has been calculated as function of the diameter for the longitudinal mode of vibration
at frequencies of 20, 36, 40 and 60 kHz (these are frequently encountered in ulirasonic
high power applications such as welding). The properties of the aluminium can be
found in table 2.1.
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Fig. 5.9 Influence of Poisson’s ratio v on the cylinder length | and diameter d for the
longitudinal vibrational mode (according to Mori’s theory, equation (5.19))
(v=10.25,0.30,0.35).

Figure 5.10 shows the length to diameter relation for various resonance frequencies.
The effect of variations in the wave propagation velocity ¢ is shown in figure 5.4 at a
frequency of 20 kHz.

5.7 Resonance frequency measurement of five cylinders

Five aluminium resonators have been designed in order to study the resonances in the
solid cylinder. Table 5.I summarizes the dimensions of the cylinders which are
designed to be in resonance in the longitudinal mode at 20 kHz. From the actual
cylinder dimensions the resonance frequency was calculated from Mori’s approximate
theory, using equation (5.19). The deviation of the measured frequencies to the
calculated ones is listed in table 5.1. Clearly the approximate theory gives frequencies
of 1-2% below the measured ones (this is in accordance with the analysis above).

The experimental values of McMahon are used to predict the frequencies of the
cylinders with aid of figure 5.4. Although McMahon’s results are based onv =0.344,
they still may be used for comparison. According the equation (5.19) the frequencies
with ¥ = 0.344 will be £ 0.3% lower with respect to those calculated with p = 0.355.
The deviation of the measured frequencies to the results of McMahon are listed in
table 5.1. If the differences of Poisson’s ratio are considered, one can conclude that the
approximate theory, McMahon’s results and the own measurements are in good
agreement.
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Nr. (m:ln ) (mlm} (1 id) ;;igz d fﬂi];g:y) deviation Nfcgif}f; o deviation
80 126 1.57 20.20 19.86 +1.7% 20.00 +1 %
2 100 122 1.22 20.26 19.92 +1.7% 20.09 +0.8%
3 130 116 0.89 19.80 19.50 +1.5% 19.72 +0.4%
4 160 91 0.57 2005 19.82 +1.2% 20.11 - 0.3%
5 165 743 | 045 20.34 2048 +0.7% 20.63 —-0,7%

Table 5.1 Resonance frequencies for the longitudinal mode in 5 cylinders; comparison of

own measurements to Mori’s theory and McMahon’s experiments.

material aluminium ¢ = 5200 m/s, v = 0.335.
{(McMahon's results are for v = 0.344).

5.8 The effect of coupling to a transducer and spurious modes

In the solid cylinder various modes of vibration can occur. For certain cylinder diameter
to length ratio’s modes are coupled to the longitudinal mode. Spurious modes are all
modes which occur in the cylinder and that are not the longitudinal design mode. For the
3 cylinders studied before (table 5.1) the resonance frequencies of all spurious modes
which are close to the design frequency of 20 kHz, are determined from McMahon’s

results (figures 5.4 to 5.7), see table 5.1I. McMahon’s results were obtained experimentally.
The vibrational mode shapes are classified according to the definitions in figure 5.3, and
are given between parenthesis.

cylinder 1 2 3 4 5
diameter 80 100 130 160 165
(mm)
1633 (1)
17.80 (7) | 17.04 (7) | 16.64 (19)
17.80 (8) | 18.06 (8) | 16.75 (8)
19.60 (7) | 1830 (16) | 18.27 (19) | 19.73 (7)
frequency | 2000 (2) | 2009 (2) | 1972 (2) | 20.11 (2) | 20.63 (2)
(kHz) 2143 (7) | 2014 (15) | 22.6 (1) | 22.45 (20) | 21.92 (20)
22.90 (16) 23.17 (18)
23.78 (9)

Table 5.11 Resonance frequencies of spurious modes determined from McMahon's
experiments as listed in figures 5.4 t0 5.7,
The numbers between parenthesis are the mode numbers.
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The spurious modes were also determined by own experiments. The results are listed
in table 5.IIk. Again the cylinder dimensions are those in table 5.1. It can be concluded
that these measurements are in agreement with McMahon’s results from table 5.11
(again one has to remember that McMahon’s data are for v = 0.344). 1dentification of
the vibrational modes was difficult and not always unambiguous. Some modes could
not even be detected. The number of modes near the 20 kHz is largest of the larger
diameters. For diameters d <C 80 mm no spurious modes are present when designing
solid cylindrical resonators.

cylinder 1 2 3 4 5
diameter 80 100 130 160 165
(mm)
17.14
17.26 17.84 16.75
19.47 17.70 1948 19.37

frequency 2020 2026 19.80 20.05 20.48
(kHz) 21.56 22.26 22.00 23.73 21.83

2238

Table 5.1 Measurement of spurious modes in the aluminium resonators as defined in
table 5.1

When a resonator is coupled to the transducer and booster of a welding apparatus (see
figure 5.12), some of the vibrational modes in the resonator will not be possible. The
resonator-booster-transducer system will show resonances at frequencies corresponding
to vibrational modes that are possible in the complete system only. When the
resonator is coupled its boundary conditions differ from those of the free resonator.
Only those modes in the resonator for which the mechanical impedance does match to
that of the transducer-booster assembly, will also appear in the coupled resonator.

In table 5.1V the resonance frequencies of three coupled cylinders are given. The
cylinders were coupled to a transducer-booster assembly which vibrates in the
longitudinal mode at 20.30 kHz. Vibrational modes (1) and (2) according to
McMahon’s definition could be identified by sprinkling sand on the vibrating surfaces
which moved to the nodal lines. From table 5.1V we can learn that all solid cylinders
have been designed as good resonators in which the unwanted spurious modes are not
close to the operating frequency of 20 kHz (it was discussed in chapter ! and 3 that
for optimum operation no spurious modes are allowed in a 1 kHz range about 20 kHz).
However this result would not have been predicted from table 5.11. Obviously many
modes disappear when the ¢ylinders are coupled.

Comparing table 5.IT and 5.1V one may conclude that only modes of ordern = 0,
which have no nodal lines crossing the contact area of coupled cylinder to the booster,
preferably will be excited. However, one can imagine the transducer and booster
vibrating in a flexural mode rather than the longitudinal mode. In that case modes of
order n = 1 with one nodal line in the contact area will be possible in the complete
system.
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cylinder 3 4 5
diameter 130 160 165
(mm)

13.76 16.52 (1) | 15.31
frequency 19.73 (2) 2005 (2) 2046 (2)
(kHz) 22.15 (1)

2395 23.52 23.75

Table 5.1V Resonance frequencies in the resonator-booster-transducer system, the
vibrational mode number between parenthesis (booster-transducer have
a resonance frequency at 20.3 kHz).

5.9 Amplitude measurements

Resonators are used to transmit vibrational energy. It is important to know how
uniform the vibrational amplitudes are over their output surfaces. The five cylinders
as presented in table 5.1 were coupled to the transducer of a welding apparatus. The
amplitudes along the cylinder surfaces were measured (with an optical detector, see
chapter 2, with accuracy of + 0.2 um) while it was activated in its resonance frequency
at an input amplitude wy, = 10 um,

Figure 5.13 shows the typical shape of the longitudinal mode. A maximum amplitude
is reached at the centre of the cylinder at the input and output surface (wg) and at the
midplane of the cylindrical surfaces (ug). These maxima decrease towards the edges
{wo = we and ug — ue, see figure 5.13). The dotted lines indicate the vibrational
maxima at the positive and negative phase (half a period phase shift),

Both radial amplitudes u and axial amplitudes w are shown in figure 5.14 and 5.15
respectively. The amplitudes are normalised to the maxima ug and wo respectively.

With increasing diameter the output amplitude strongly decays from the centre
towards the outer diameter. The available amplitude atr = yas compared to the input
amplitude is summarized in table 5.V (we/wq).

If an amplitude decay of maximum 10% is acceptable, the maximum diameter for
solid cylindrical resonators would be + 60-70 mm at 20 kHz (extrapolation of the
results in table 5.V).

In figure 5.14 ii can be seen that for the largest diameters the amplitude shows an
extremely sharp fall-off towards the outer diameter, resulting into a relatively small
area of the output surface that can be used effectively. It certainly would be of no
use to design cylindrical resonators of larger diameters to reach the largest

effective area that is possible. For instance at d = 130 mm only 12% (up to d = 45 mm)
of the area has an amplitude higher than 90% of the input amplitude, whereas at

d = 80 mm this amounts to 65% (up to d = 65 mm).

The degree of coupling of the radial to the axial vibrations is expressed by \%3 in
table 5.V. Strong radial amplitudes are measured for the largest diameters.
This is in agreement with the observation in the frequency spectra for the longitudinal
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cylinder i 2 3 4 5
diameter 80 100 130 160 165
(mm)

We

A 0.83 0.76 0.40 0.25 0.18
Wo

Uo

Wa 0.36 0.44 0.54 0.65 0.90
ue

-2 ; 0.1 0.20 0.61 0.66
Uo

Table 5.V Typical amplitude ratios as measured for the longitudina mode in

cylindrical resonators.
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mode as derived by McMahon and theoretically. For large diameters the spectrum
approaches asymptotically the solutions for radial vibrations in thin discs. At 20 kHz
the thin disc of aluminium is in radial resonance at d = 180 mm (see figure 5.8), or
equation (5.19).

5.10 Other modes of vibrations

Finally, it was conchuded that the longitudinal mode in the solid cylindrical resonator
only is possible up to diameters of £ 165 mm. Above this diameter other vibrational
modes would be needed when devicing resonators. However, in this case nodal circles
at the output surface will always be observed, according to McMahon’s frequency
spectra. Two resonators were designed with aid of figures 5.4 to 5.7 at d = 220 mm
and d = 300 mm, showing one and two nodal circles respectively when coupled to a
welding apparatus. The vibrational modes are axisymmetrical (the dimensions and
frequencies were: d = 300 mm, | = 145 mm, f = 20.65 kHz and d = 220 mm,

1= 130 mm, f=20.20 kHz). We

In both cases the modes showed an amplitude ratio at the output surface of Vo = -]

(d=220)and g% =1 {d =300). Although it was possible to make welds at a restricted
area near the outer diameter, problems did arise in order to keep the complete system
in resonance {the ulfrasonic generator would not lock to the resonance frequency).

It is not the objective of the present work to explore other vibrational modes than the
longitudinal one.

5.11 Conclusions

Solid cylindrical resonators can be used effectively up to diameters of 60-70 mm at
20 kHz, provided that an amplitude fail-off at the output surface of maximum 10% is
acceptable. However, when only restricted areas of the output surface are to be used
(for example a small part near the outer diameter) diameters up to 1635 mm are
possible, however with only 20% of the input amplitude available.

The approximate theory to calculate the resonance conditions in the cylinders for the
longitudinal mode is very useful and of reasonable accuracy. McMahon's frequency
spectra are of importance to determine the presence of spurious modes and the
coupling of them to the longitudinal one. When designing solid cylindrical resonators
never spurious modes will be present for diameters d < 80 mm (at 20 kHz). The
coupling of these resonators to a welding apparatus results into disappearance of many
spurious modes, but for the larger diameter still modes are present near 20 kHz.
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6. SOLID RECTANGULAR RESONATORS
6.1 Introduction

For ultrasonic high power applications the resonator with a rectangular cross-section
perpendicular to the propagation direction of the longitudinal wave into it is very often
used (see figure 6.1). At 20 kHz the output surface has typically dimensions in the
range of 50 x 50 mm? to 50 x 150 mm?, mostly one dimension not exceeding 50 mm. As
discussed in the previous chapters these dimensions are typical for wide cutput
resonators (dimensions > A/3). Their dimensions are also of the order of A/2, the
half-wavelength of the longitudinal wave, so that the determination of the resonance
frequency of the resonator is more complicated than as would be predicted by the
fundamental theory for longitudinal waves in slender rods. As discussed in chapter 3,
very wide output resonators of the blade-like and block-like type are separated through
slotting in half-wavelength resonators of rectangular cross-sections. Therefore it is
important to know the characteristics of the rectangular resonators for determination
of the number of slots needed and their location and dimensions. It is to be studied in
this chapter up to what dimensions solid rectangular resonators can be used effectively,
regarding the uniformity of the output amplitude.

Available literature on the subject will be reviewed. From it correction formulae for
the wave propagation velocity in the rectangular resonator are presented. In a very
similar way as Mori (1977) used the apparent elasticity method for solid cylinders, in
this chapter the resonance conditions of the longitudinal mode will be derived. Using
the Rayleigh method, the resonance conditions will also be derived while certain
assumptions on the shape of the longitudinal mode are made. The calculated mode
shape and the resonance frequency will be compared with own experiments. Other
modes (spurious modes) will not be discussed as extensively as was done for the
cylindrical resonator. Some information on it can be derived from very recent papers
of Hutchinson and Zillmer (1983) and Leissa and Zhang (1983), but not on an even
elucidative way.

6.2 Literature review

For small resonator dimensions (lateral dimensions << Af4) approximate theories for the
decrease of the wave propagation velocity of the longitudinal wave have been derived
(the basical work of Love, and in publications of Morse (1959), Kynch (1957) and
Redwood (1960)). Very recently Hufchinson and Zillmer (1983) and simultaneously
Leissa and Zhang (1983) published papers on the vibrations in rectangular
parallelepipeds. In both, complex numerical manipulations are needed to derive the
resonance frequencies, Hutchinson derives the lowest order modes for some
dimensions and his results are converging to the elementary solutions exactly. Leissa
uses the Ritz method to derive the frequencies for the 5 lowest modes, based on
assumptions for the displacement functions. Some mode shapes are presented.
However, Leissa’s idealisation regarding the zeros for the displacements at one face of
the parallelelepiped makes his results not useful for the design of resonator.
Hutchinson’s paper, however, deals with free parallelepipeds. His results do not
contain mode charts or descriptions of the actual mode shapes, in relation to frequency
spectra, to enable the study of the presence of spurious modes of vibration in the
rectangular resonator which could be coupled to the longitudinal one.
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When the thickness and width of the resonator comes in the order of the
half-wavelength of the longitudinal wave, strong lateral resonances will be observed,
coupled to the longitudinal mode. ltoh and Mori (197 1) studied experimentally this
effect and showed that it is possible to design directional converters, in which
ultrasonic vibratory energy can be transmitted in perpendicular directions. However,
to use them effectively, the output area is limited to those of slender rod resonators.

Stepamenko {1979) developed an approximate theory to calculate the resonance
frequencies of rectangular resonators for which only one of the lateral dimensions is
small, while the other is of the same magnitude as the wavelength of the longitudinal
mode. Stepamenko created very wide output resonators by coupling several rectangular
resonators by favour of the presence of lateral resonances (see appendix 3). The
validity of his model will be compared to those of others. From measurements by
Stepanenko, it followed that these resonators did not show a uniform output

amplitude (differences up to 30% are observed).

6.3 Corrections to the wave-propagation velocity

There exist two propagation modes for the longitudinal waves in resonators of
rectangular cross-sections, The extensional character of this wave causes a cross-section
perpendicular to the propagation direction to expand or contract in the width

direction (width-mode) or in the thickness direction (thickness-mode). These are shown
in figure 6.1 on an enlarged scale (cross-section through the midplane of the resonator,

z = (). Morse {1950) studied both modes. In the range of practical interest for ultrasonic
applications the thickness-mode has much higher a propagation velocity than the width
mode. The width mode will normally be observed when designing resonators.

b d
| "Tj"’— input
I T
| .
2 L’l—* u 2 l v
[—’X —— -y 1
> e output
i |
| i
| I
il —— l {
thickness-mode width-mode

Fig. 6.1 Solid rectangular resonator of length I, width b and thickness d; two
propagation modes for the longitudinal wave are shown; the thickness-mode
has much higher a propagation velocity than the width-mode {(the modes
shown are a cross=section through the midplane z = ().
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The resonance frequency for the longitudinal mode of the half-wavelength (A /2)
resonator of length 1 for small lateral dimensions (b <A/4 and d < \/4) (see figure 6.1)
follows from:

= L =
[ = 3F orkli=m 6.1
With increasing width and thickness the longitudinal wave propagation is to be
corrected for the effect of lateral inertia, caused by Poisson effects. Love derived a
theory to calculate a correction for resonators of rectangular cross-section (see also
Kynch (1957) and Leissa (1983)):

¢ o= (1+s2 K2 K212 6.2)

where k = wave number, K = polar radius of gyration of the cross-section. After
linearisation of equation (6.2}, it follows for the rectangular resonator:

1
¢ = (l - K (B2 +d*) (6.3)
24
Again, for comparison with the results below, the actual resonator length 1 is calculated
as function of the width b. Using equations (6.1) and (6.3), in non-dimensional form,
it follows:

Mog o dee & asdy (6.4)
Often the decrease of the propagation velocity is calculated from a modified Rayleigh
approximation taking into account Poisson’s ratio and the cross-sectional area rather
than its actual shape and dimensions by use of the radius of gyration. This
modification is basically not correct. The deviation to equation (6.4} is compared in
figure 6.2, amongst the other theories (where d/b = 0.3).

The corrected velocity equals {see also equation 5.1):

bd
L ot e 22
¢ =c(l —»*K 41:) (6.5)

Within the range of validity, (d < /4 and b < 7N/4 or—l;—b < 0.5), the difference is less
than 0.5%. The deviations from the elementary value of the wave propagation velocity
is small (for which-%{l— = 1}. From figure 6.2 it follows that up to width to length

ratios b/1 ~ 0.7 the deviations of the corrected velocity is less than 1% (b/l =~ —k-?).

The effect of the thickness to width ratio d/b on the propagation velocity following
equation (6 .4) is shown in figure 6 3, by comparing the resonance length 1 versus the
resonator width b. Within the range of validity, the difference betweeng = 0,2 and

5= 1 amounts about 1%.

6.4  Apparent elasticity method

In a very similar way as was shown for the cylindrical resonator, the apparent elasticity
method can be used to determine the resonant length of a resonator with a rectangular
cross-section. In the following only one dimension will be small as compared to the
others {(d <1 and d <b) (fig. 6.1). We will assume the plain stress case. The resonator
is supposed to resonate in the z-direction in the longitudinal mode. Due to Poisson’s
contraction the largest lateral motions are to be expected in the x-direction.
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Fig. 6.2 Non-dimensional representation of the length | of a rectangular resonator
versus its width b; comparison of various theories (v = 0.335), own
experiments are marked with asterics {*).

We will now derive the resonance conditions in the resonator in a very similar way as
Mori did for the cylindrical resonator. The equations of motion fo both x-and z-
direction are coupled by introducing the wave coupling factor m. Consider two
extreme situations, first the slender rod resonator in z-direction (1 2 b and 1> d),
secondly the slender rod resonator in x-direction (b > | and b > d).

The resonance conditions for the half-wavelength mode are respectively:

kl=7 (>bix>d (6.6)

kb=% (b>Lb>d) 6.7}

The governing equation was discussed in chapter 2 (equation 2.1).
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Fig. 6.3 The effect of the thickness to width ratio dfb on the resonant length I versus
the width b for a rectangular resonator (correction on the wave propagation
veloeity according equation (6.4)} (v = 0.335).

For the first situation (ki = ) both stresses ox and oy are zero. For increasing width b
the stress in x-direction will increase. For reason of d <b and d <1 oy will be zero.
1t is assumed that oy is related to oz by:

1
Ox =0z (6.8)
In z-direction, Hooke’s law gives the stress-strain relation:

€z = é"(ﬂz - D(I“x) or (69}

ex=g (021 -2y (6.10)
The apparent elasticity in z-direction is defined by E™:

" LAY
E' =E (1 m) (6.11)
The second situation (kb = 7}, yields to exactly the same apparent elasticity in the

x-direction (where oy = 0). The resonant length | and width b (equations (6.6} and
(6.7)) are calculated by introducing E” instead of E.
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- _ryl/2
kl=w(l m) (6.12)
and

= _ B2
kb =7 (1l m) (6.13)

Elimination of the wave coupling factor m from these equations, results in the
frequency equation relating the elastic properties and the dimensions of the
rectangular resonator:

ki ot i_-l;’z
il ) (6.14)

Clearly this solution is independent on the resonator thickness d. The solution of
equation (6.14) is shown in figure 6.2. In the case of 1 = b, the resonance frequency
relation becomes »1}‘-‘} = (0.865 forv = 0.335. From figure 6.2 it is clear that this theory
gives much lower resonance-frequencies than those obtained from the corrections to
the wave propagation velocity. The agreement with own experiments (which are
explained below) is excellent. For small width the theory converges to the slender
rod solution, as expected. So, it can be concluded that the theory is adequate for
larger widths whereas the corrections to the wave propagation velocity are not.

6.5 Resonance conditions according to Stepanenko

Stepanenko*®) (1979) derived a theory to calculate the resonance condition in a resonator
of rectangular cross-section where one dimension was small compared to the others.

In his model both length ! and width b are of the same magnitude, resulting in a strong
coupling of the lateral vibrations to the longitudinal mode. A complete derivation of

the theory can be found in Stepanenko’s paper. The theory holds only for a small

range of the width b. Using the non-dimensional notation mentioned above, the
resonance condition becomes for the half-wavelength longitudinal mode:

ki

.S I b oy2
o= 2 - (@)2) 6.15)

4

Width b has to fulfill the following limitations:

1= kb /i—p 1
tHy < T < I+p 12 (6.16)

For v = 0.335, these limitations are 0.71 < k7;3< 1.23. The solution of equation (6.15)
is shown in figure 6.2. Clearly, this theory strongly deviates from the apparent
clasticity method, or from the experiments. There is only a small range where this
solution coincides with the apparent elasticity solution, namely for those values of 1
and b for which b i8 near unity (%= 0.865). It is in this range that Stepanenko
designed his ultrasonic resonators.

*) (see appendix 3).
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6.6 Rayleigh-Ritz method to determine the resonance frequency and mode of
vibration

In order to calculate the resonance frequency of the longitudinal mode in the
rectangular resonator, we will derive the resonance conditions while an assumption is
made for the displacement function, which best fits the actual vibrational mode. By
equating the maximum kinetic encrgy and the maximum potential energy during 2
cycle of vibration in the resonator, the resonance condition is found, vielding the
frequency equation. The displacement function, which will be described below,
contains one unknown variable. The unknown variable is found from the requirement
that it must minimize the calculated resonance frequency. This method is known as
the Rayleigh-Ritz method. The results obtained will give a frequency higher than the
exact value.

Figure 6.4 shows the rectangular resonator and the relevant definitions of coordinates

and displacements. The mode shape is plotted in the same figure. We will assume the
resonator thickness d to be small as compared to the other dimensions. The stress in
y-directions is zero: oy = 0 (see also figure 6.1). The resonator width to length ratio

will be varied between 0 <T< 1, for reason of symmetry. The displacement functions

u (x,z) and w (x,z) related to the mode of vibration that is expected are chosen as follows:
(again time-independent solutions are discussed, the vibrations are harmonic): )

u{x,z) = ugsin (%x)cos (Igz} {6.17)
w(X,2) = Wg cos (T“x) sin (%z) (6.18)

The displacements are independent of the thickness d. The unknown variable in
equations (6.17) and (6.18)isn = g\;% , which equals the ratio of the maximum lateral
amplitude ugp to the maximum axial amplitude wg. As a result of the analysis the
frequency and 1 will be found.

When body forces are absent, the maximum potential energy pr, and the maximum
kinetic energy Uy, for the two-dimensional problem are:

Op=3 [ (oxex+ozer+ Sz ) aV , (6.19)
vol

Uk =% w?p (U (x2) +w* (x,2)) dV (6.20)

vol

The stressstrain relations are related to the displacements by (for convenience
displacements are denoted by u and w):

€z=%¥
i
ex:a_i (6.21)

-3w  du
X2 9% * oz
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The contribution of the displacement v in the y-direction would contribute to the
kinetic energy equation (6.20). By neglecting the displacements v, the calculated
frequency will be somewhat higher; the effect of the displacement v is identical to
the results of the correction formula which were detived for the wave propagation

velocity (equation 6.3)).

Combination of equations (6.19), (6.20) and (6.21) and Hooke’s law, the maximum
potential energy and kinetic energies become:

au du dw 3 E 9w  du,? 2
Up 21[ ¥y ax 9z (ax)} 2(1+V)[8x aZI av (6.22)

vol

U =% pw2[ ? +wh) av (6.23)

The frequency equation resulting in w follows from the equation of equations (6.22
and (6.23). After some mathematical operations, it follows:

1 E E
%pwg (= n* +a3) =157 (n*a? +a3) YA (n* +2-a3—2nas)

E .
+(—1”—V2) (naag) (6.24)

Where the constants @ and a) fo ag are defined by:

e=L
b

2] = ITllf—cf sin (%(1 +1fa))
R sm( (1~ 1/a}

a3 = 1 +~%sin (%)

%(31 +a3)

£
i

as =-f;(81 —a2)

In the frequency equation (6.24) w must be minimised with respect to 7,
So it follows:

pw? (;}(_)2 n= a- »i- na®*+va agq) + 2(1_1_})) (n —ag) (6.25)
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By elimination of w from equations (6.24) and (6.25) a relation for  is obtained:

Pt a3 (a®*-1) + (1-») (a3—-D g

az=0 (6.26)
1

Tas (1-v) —vaay

A special solution of equation (6.26) is found forI=bora = 1. In that case p = —1.
The resonance frequency follows from equation (6.24):

K 1_15’ or L 0.865 for v = 0.335 (see section 6.5 of this chapter; it is identical

f{) the solution of Stepanenko’s theory).

For small values of the width b the solutions will converge to the half-wavelength
solution for the slender rod. Forn =~ 0 equation (6.24) results in k?% 1.05. So, the
theory presented here will result in + 5% too high frequencies.
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Fig. 6.4 The longitudinal mode in a rectangular resonator of small thickness; definition
of the displacement functions; the maximum axial amplitude is wo and the
maximum lateral amplitude is uy,.

Equation (6.26) has two solutions for n, with a negative and positive number. As
discussed before, the actual mode shape corresponds to the mode shown in figure 6.4,
so the negative solution forq is to be evaluated.
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The resulis of this theory are shown in figure 6.2 giving the resonator length | and the
width b in non-dimensional notation. In figure 6.5 the solutions for the amplitude
ration = %% as well as the amplitude ratio &_e are shown, versus the resonator width b.
(v =10,333). The degree of uniformity of the output amplitude is expressed here by
the amplitude at the edges we. If only 10% amplitude fall off is tolerated, the
maximum resonator width is K2 = £ 0.3, The maximum lateral amplifude uq can also
be derived from figure 6.5.

The influence of Poisson’s ratio v on the solutions of the theory presented here is
shown in figure 6.6. For small width b the influence on the resonant length 1 is small,
whereas, it is great for large values of the width b, The influence on the amplitude
ratio 7 is great for the whole width range.

6.7 Dimensioning of rectangular resonators

Using the apparent elasticity method {equation (6.14), the dimensions of rectangular
resonators for the longitudinal mode were calculated for some resonance frequencies.
Figure 6.7 gives the length | of the resonator versus its width b for the most commonly
used frequencies between 20 and 60 kHz (material aluminium, see chapter 2).

Figure 6.8 gives the resonant length 1 versus the width b for various values of the wave
propagation velocity ¢ (4.0 to 5.2 10° m/s) at a design frequency f = 20 kHz.

6.8 Comparison with measurements

Four resonators of rectangular cross-section were made for a resonance frequency of

+ 20 kHz to investigate the resulis as obtained from the various theories. The thickness
of the resonators are small compared to the other dimensions: d =30 mm. The
material was aluminium, ¢ = 5200 m/s, v = 0.335. The actual dimensions of the
resonators are presented in table 6.1.

Resonators 1, 2 and 3 were provided with a threaded hole at the input surface to
enable a coupling to an ultrasonic transducer of a welding apparatus for amplitude
measurements. The resonance frequency of the longitudinal mode was measured

while the resonator was suspended into thin wires (see also chapter 2), they are listed
in table 6.1, column A. Due to the presence of a threaded hole at the input surface, the
resonance frequency is higher than for the same resonator without a hole.

A correction for the resonance frequency can be approximated from the mass
difference due to the hole. The volume of the hole is translated into a resonator
volume along the input surface of width b and thickness d. The result is a small
increase in the resonator length. IThe frequency correction is proportional to the
change in length (—fw == ’1;‘: where V = volume of the hole, V = 3000 mm?}.

The corrected frequencies are listed in table 6.1, column B. From the apparent
elasticity theory (equation (6.14)), the resonance frequency was calculated for the
actual resonator dimensions. The results are listed in table 6.1, column C. The
measured frequencies are compared to the calculated ones in column D (the corrected
frequency was used for resonators 1, 2 and 3). The deviations are small, from 0,5 to
1%. As expected the measured frequencies are higher than the calculated ones.
Finally, the non-dimensional length and width are calculated from the measurements
to compare them with the theories (see table 6.1, column E and F). The measurements
are shown in figure 6.2,
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Fig. 6.5 Resonant length l versus the width b of a rectangular resonator; the amplitude
ratio % andn = %’,2 {according to equations (6.24) and (6.26)
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Fig. 6.6 Resonant length | versus the width b of a rectangular resonator and the
amplitude ratio n for various values of Poisson’s ratio v (equations (6.24) and
(6.25) Rayleigh-Ritz)



65

b 14e

1 128
(mm) i \

Rl

8a

- T \2@
<

48 N | 4B

68
2a

a 28 48 60 BA 182 128 148
b (mm) —————»
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A B C D E F
measured | correction | calculated K Kb
Nr.| b 1 f f f deviation ;1— -
(mm) (mm)| (kHz) (kHz) (kHz)

1 70 0+ 130 19.94 19.64 19.53 +0.6% |0.9820.529
2 95 = 137 1847 18,27 18.19 +0.5% |0.963|0.668
3 109 = 112 20.71 20.50 20.36 +0.7% | 0.883 | 0.859
4 1 110 = 130 18.66 — 18.45 +1.0% |0.933,0.789

Table 6. Measured resonance frequencies of 4 solid rectangular resonators (material
aluminium ¢ = 5200 mfs, v = 0.335, d = 30 mm). Comparison to the
calculated frequencies (equation (6.14)). Column B is a corrected frequency
for the threaded hole in the resonator.

The actual vibration mode of resonators 1, 2 and 3 were measured after that the
resonator was coupled to an ultrasonic transducer.

Fig. 6.8 shows the measured amplitudes and those as calculated from the Rayleigh-
Ritz method. There is a good agreement with the theory. The amplitudes plotted here
are strongly enlarged values, the actual maximum amplitude was 15 um. The resonance
frequency of the resonator-transducer assembly differs from the measured frequencies
in table 6.1. The transducer itself had a resonance frequency of the longitudinal mode
at 20.10 kHz. So, when coupling a resonator with another frequency, some
intermediate value will be measured.

1t is observed that the amplitude measurements for the wide resonator fits best to the
calculated ones. The vibration modes of the smaller resonators are influenced by the
coupling to the tfransducer with a diameter of 40 mm. This causes some stiffening and
therefore a smaller amplitude fall-off at the input surface (see fig. 6.8).

The uniformity of the output amplitude is denoted by the ratio we/wg {which was
defined in figure 6 .4). Resonator 1 (70 mm wide) already has 15% amplitude fall-off.

6.9 Conclusions

The longitudinal vibrational mode in solid rectangular resonator was studied. For small
width and thickness the resonator length at a given frequency can be approximated by
the correction formula for the wave propagation velocity (figure 6.3). The validity
holds up to width to length ratios of 0.3 to 0.4 (see figure 6.2), or at 20 kHz to width
b=04* 130~ S0 mm.

For the range 50 < b < 100 mm, a longitudinal mode is possible in the resonator, and
the resonance conditions are very well predictable by equation (6.14), following the
apparent elasticity method. The deviations from the measurements are < 1%. The
method presented by Stepanenko (1979), is only valid for resonators of width to length
ratios near unit. The equations derived with the Rayleigh-Ritz method show similar
results as the apparent elasticity, however the calculated frequencies are higher

(% 5%). The mode shape, which is calculated with this method, fairly well approaches
the measured mode shape. At 20 kHz the uniformity of the output amplitude is

better than 90% for width b << 70 mm. Above it, the amplitude at the edges strongly
falls, to become zero at b = & 100 mm, and the rectangular resonator is not suited
when a constant energy transmission along the output surface is wanted.
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The design of resonators at other operating frequencies than 20 kHz was not discussed.
However with aid of the non-dimensional representation in the figures shown, the
resonance conditions of a resonator at any operating frequency can be determined
easily.
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Fig. 6,9 Vibrational modes of resonators 1, 2 and 3 when coupled to a welding
transducer of 40 mm diameter. The input amplitude was 15 ym. Measured
amplitudes are denoted by "07. The calculated mode shape from the
Rayleigh-Ritz method (equation (6.24)) is presented by dotted lines.

The resonance frequencies as measured, the uniformity of the outpuft
amplitude (wefwo) and the wave coupling (up/wel are listed
(see also figure 6.4).
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7. OPTIMIZATION OF A RESONATOR: EXPERIMENTALLY AND WITH
FINITE ELEMENT ANALYSIS

7.1 Introduction

In the previous chapters solid cylindrical and rectangular resonators were discussed.
The resonance conditions for the longitudinal mode in these resonators could be
determined analytically, with results in non-dimensional form. The objective of the
present work is to study wide output resonators, with dimensions exceeding the limits
for the cylindrical and rectangular resonators. In order to have wide resonators
vibrating in 2 mode with a uniform output amplitude, commonly slots are provided in
a way as was described in chapter 4 (patent literature). Clearly, analytical solutions for
the vibrations in such resonators of complex shape will not be possible.

In this chapter the design of one specific wide output resonator of the blade-like type
will be studied. First, it will be optimized to meet the design-requirements, on an
experimental approach on account of the interpretation of the measurements of
resonance frequencies and vibrational modes. Secondly, a finite element analysis
method is used to study the characteristics of the resonator, and it will be shown that
it vields a more successful optimization procedure.

Gladwell (1975) reports very briefly a finite element analysis of two practical resonator
shapes as used in ultrasonic welding (axisymmetric cylindrical and a bellshaped
resonator), using a finite element method which was published earlier for the analysis
of thin disc and ring-type ultrasonic resonators (Gladwell (1967)). Only the mode
shape of the resonator vibrating at 20 kHz is described and it is observed that locally
there are strong radial amplitudes (not desired). Gladwell concluded to state that the
major design problem remains to find a resonator shape which shows only small radial
vibrations as compared to the longitudinal ones. Generally, the problem is to find
basical design rules which result in a resonator shape very close to the final optimum
shape. These are not given by finite element analysis. The presence of other resonance
frequencies near the operating frequency (spurious modes) is not mentioned in
Gladwell’s paper, 8o that no information on the reliability of the resonator under
operating conditions can be obtained.

7.2 Description of the resonator shape

From experiences of suppliers of ultrasonic equipment it is known that designing
blade-like resonators of about 130 to 150 mm width at 20 kHz can be troublesome.
Below, a 131 mm wide and 35 mm thick resonator will be studied. Generally, a
resonator having at least one lateral dimension exceeding a quarter of the wavelength
{\/4) will be provided with slots or cut-outs to compensate for Poisson coupling (see
chapter 4). It is attempted in this way to have the resonator vibrating in a
"longitudinal” mode. The description "longitudinal” mode very often is used to
denote that the mode must show a uniform amplitude along the output surface. By
providing slots the wide resonator is separated in slender rod-like resonators in which a
pure longitudinal mode is generated, which shows indeed a uniform output amplitude.
From it originates the description “longitudinal” mode when the wide resonator is
meant.
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Figure 7.1 shows the resonator and its dimensions, provided with two slots, thus
representing three slender-rod resonators which are coupled at the ends. This coupling
is effectuated in a zone where the lateral strain in the resonator is minimum (see
chapter 2, vibration analysis). The mutual disturbance of the longitudinal wave in each
part will be minimized as a result. The choice of the width of the slots is not critical,
but will be kept as small as possible. For reason of machineability these slots usually
are 8 to 12 mm wide for 20 kHz resonators. The length of the slots is a compromise
between two arguments. To have a good decoupling of the parts, the length will be
maximized. However through the remaining bridging elements mechanical power has
to be transmitted. So mechanical siresses and the overall stiffness of the resonator
would demand larger dimensions of these coupling elements. Usually, the slot length is
such that the remaining bridging elements are 10 to 25 mm high. There are no strict
criteria for the location and number of slots to be provided. Usually, the width of the
elements is between A/8 and \/4, so that the number of slots depends on the resonator
width. The location almost always is such that the width of the elements is nearly
identical for all elements. In the next chapter this subject will be discussed more
extensively.
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Fig. 7.1 A blade-like resonator of 131 mm width and 35 mm thickness designed to
resonate in a longitudinal mode at 20 kHz (dimensions in mm). Part of the
vibrational mode that is to be expected is shown. Amplitudes are presented
on a strongly enlarged scale.

The resonator material is alumium (see chapter 2 for the properties), so the half-
wavelength. at 20 kHz for the longitudinal mode in a rod-type resonator equals:

N2 = 2—°f—= 130 mm
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As the wide resonator is composed of slender-rod resonators, it should be resonant at
alength 1, which is about 1 & 130 mm.

The actual resonator length is chosen 1 = 128 mm. The amplitudes of vibration, as
desired, at the output surface, are illustrated in figure 7.1 too. The overall vibrational
mode which can be expected because of the Poisson contraction in each element is
shown (only part of mode is shown).

7.3  Optimization on an experimental approach

A resonator was deviced as shown in figure 7.1. In the range of 20 kHz, four resonance
frequencies could be detected (the measuring method is described in chapter 2):

f1 = 18.50kHz, fy = 19.42 kHz, f3 = 20.63 kHz, f4 = 21.57 kHz. The resonator was
coupled to a transducer of a welding apparatus, of which the resonance frequency of
the longitudinal mode was measured to be 20.30 kHz. After coupling, in the same
frequency range only two resonances could be detected: ’1 = 19.30 kHz and

f ’2 =19.52 kHz. The coupling causes two frequencies to disappear.

When the transducer-resonator system is mounted in the apparatus so that the output
sutface faces upwards, the vibrational mode of this output surface can be studied using
fine dry sand. When the transducer is connected to a low power frequency oscillator,
the sand moves towards nodal lines (if present) in case of excitation in a resonance
frequency. In this way f ’1 and f’g were excited, and no difference in sand patterns was
observed. At the output surface no nodal lines were detected, and therefore no
discrimination between these modes was possible.

On the welding apparatus only f ’2 could be tuned to (the frequency range of the
generator is always very limited, in this case from 19.50 to 20.30 kHz).

The overall vibrational mode of the resonator was measured while if was activated at an
output amplitude of 10 um at a frequency £ = 19.52 kHz (this corresponds to about
100 W output power of the gencrator). The amplitudes were measured optically (see
chapter 2, Fotonic Sensor measurements). The mode is shown in figure 7.2.

The amplitude at the output surface is far from constant. At the edges only 23% of
the centre amplitude is available. This resonator showed poor welding resuits,
especially near the edges (for good welding the difference must be less than 10%).

The amplitudes at the side suffaces, along the length are not those to be expected from
the longitudinal mode (compare with 7.1). There seems to be a coupling of a lateral
resonance to the longitudinal mode, resulting in a distortion of the latter. As the width
is 131 mm, it is not unrealistic to expect a lateral resonance in the input- and output
portion of the resonator, because the width is very close to the half-wavelength at

20 kHz. The mode shown in figure 7.2 is not acceptable, and measures have to be
taken to improve the mode shape.

By providing various cut-outs (2 mm wide and 11 mm deep) in the upper and lower
resonator portions, it was attempted to break the lateral resonance mode (all other
dimensions are kept constant, see figure 7.1). The elimination of this (spurious) mode
was studied in three steps, as shown in figures 7.3, 7.4 and 7.5.

The resonance frequency of the resulting modes is hardly influenced (this sounds
reasonable because of the small amount of mass that is removed). However, a strong
change in vibrational mode can be observed, resulting in a difference of less than 3%
in amplitude at the output surface (%) when three cut-outs are provided, two at the
input surface, one at the output surface, see figure 7.5.



input surface

i e s
s
| 4
) w2
fw )
/
L
i
’4»
i

\

\./ \_ \

SN
~

* 3

N 7 We

~ s
~ -
S _ output surface
\’VO
10 pum
e e

Fig. 7.2 Vibrational amplitude at f = 19.52 kHz

We
Wo

= 0.23

|
|
H l H b
~ N
L
i
by
\
L
./ s 3
\
We
\\\ ~mjkj(i’ /,,//

Fig. 7.4 f=19.51 kHz, two cut-outs at the input
surface

We = p.80
Wo

L |

et W

U ’?L‘T \

|

Wo
-
«\Lh oy -

Fig. 7.3 £=19.51 kHz, one cut-out at the
output surface

We

e = 0.78
Wy

! ; I
Ny
f
|
|
|

L W
ﬂ n

wo We

p— JRN— [ompp—" S

S .

‘Fig. 7.5 f=19.51 kHz, three cut-outs provided

WYe = 097
W



72

The side surface still shows some spurious mode, but of a relatively low amplitude as
compared to the longitudinal one.

As for good welding a uniform output amplitude is required, this resonator should be
adequate for welding applications. Experiments revealed that the welding results with
this resonator were strongly improved.

So, on account of the interpretation of the frequency spectrum and the vibrational
modes in four steps the resonator was optimized to an optimum vibrational mode.

For a better frequency match to the transducer of the welding apparatus, finally a little
increase of the resonance frequency may be realized.

7.4. Finite element analysis

The experimental approach gave a reasonable solution. Still, it can be considered
whether there are resonator dimensions for which the “longitudinal” mode can be
obtained without additional cut-outs, at a resonance frequency of about 20 kHz.

Using computer programs based on a finite element method, the resonance frequencies
and the corresponding vibrational modes in an arbitrarily shaped resonator can be
calculated. The resonator is a three~-dimensional body, in which vibrational modes can
exist having amplitudes into three directions. The resonator under study, however, can
be regarded as a two-dimensional body for the vibration analysis (plain stress problem).
The thickness of 35 mm dictates that all resonance frequencies in this direction are at
least 4 timies higher as compared to the height and width direction.

Shear modes or plate vibrations with motions perpendicular to the plane of the
resonator have relatively low resonance frequencies. Therefore only the in-plane
vibration will be studied.

Figure 7.6 shows the resonator of which only a quarter has been divided into elements,
for reasons of symmetry (no cut-outs are analyzed). All vibrational modes are
symmetrical or anti-symmetrical with respect to the axes of symmetry. In this way the
amount of computer time can be reduced. By adequate choice of the boundary
conditions regarding the displacements on the axes of symmetry all modes can be
calculated.

The resonator is not supported, so all rigid body motions have to be included in the
analysis. The material is isotropic and the elastic properties are defined by Young’s
modulus E, Poisson’s ratio v and the density p (see table 2.1). The accurary of the
computer calculations is determined by the number of elements and the mesh density,
the number of frequencies to be calculated and the number of iterations. Five
iterations were sufficient to obtain an acceptable convergence using the ASKA-package
and QUAM-9 elements (Ref. 66).

Table 7.1 gives the resonance frequencies of the 12 lowest vibrational modes (the three
rigid body motions excluded). Within a 4 kHz range around 20 kHz, four frequencies
are calculated (modes 7, 8,9 and 10). Figure 7.7 shows the vibrational modes (a
quarter of the resonator).

To obtain the mode of the complete resonator, the modes shown have to be trans-
formed according to the symmetry or antisymmetry. For reason of symmetry, the
butput and input surface do vibrate in an identical way.

From figure 7.7 one can conclude that several modes will not be suited because of the
presence of nodal lines, resulting into zero amplitudes, and a non-uniform amplitude of
the output surface. Vibrational mode no. 8 is very similar to the mode measured in
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Fig. 7.6 A quarter of the resonator divided into QUAM-9 elements. (All dimensions in
mm). E=0.7310" N/m?, v=0335 p=2710 kgim®, thickness = 35 mm.

Mode Resonance frequencies Resonance frequencies Deviation
no. calculated (kHz) measured (kHz) (%)
(finite elements)
1 6.58 6.80
2 7.32 7.50 2.3
3 8.04 8.30 3
4 9 .88 10.38 5
5 14.32 14.45 0.9
6 14.97 15.18 1
7 19.16 19.15 0.07
8 19.38 19.38 0.03
9 19.86 19.98 0.6
10 21.31 21.32 0.07
11 24.56 24.67 0.43
12 26.98 26.95 0.1

Table 7.1 Resonance frequencies calculated by finite element analysis and measured

and the deviations; resonator dimension following figure 7.6.
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Fig. 7.7(1) Vibrational modes and corresponding frequencies as calculated from the
finite element analysis. Only one quarter of the resonator is shown
{modes are symmetric or antisymmetric with respect 1o the axis of
symmetry of the resonator as shown in figure 7.6).
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figure 7.2, showing a large amplitude near the centre and no motions at the edges.
However, vibrational mode no. 7 has an amplitude distribution, which is very familiar
to the desired "longitudinal” mode. It has even higher amplitudes near the edges.

From these calculations it can be concluded that it should be possibie to have this
131 mm wide resonator vibrate in 2 “longitudinal” mode at 20 kHz without
additional cut-outs etc.

Below measurements are presented to support these findings.

7.5 Experimental verification of the computer calculations

In order to investigate the accuracy of the frequencies as predicted by the calculations,
a resonator was deviced having the same dimensions as used in the finite elment
analysis. Two piezo-lectrical vibration detectors and a spectrum analyzer were used to
measure the frequencies (see chapter 2).
Figure 7.8 shows two frequency-spectra of the resonator. One of the detectors is used
as transmitter and is connected to a variable frequency oscillator with constant output
voltage. The second detector acts as a receiver and converts mechanical vibrations into
an electrical signal. This signal is shown in fig. 7.8 on a linear scale. Each peak
corresponds to a resonance condition. The transmission of mechanical energy and
therefore the strength of the detected signal depends on the location of the transmit-
ting elements. Clearly, when placed on a nodal line, no signal will be transmitted.
Fig. 7.8 shows the spectra for two locations of the detectors which are indicated by
arrows. Obviously, some frequencies do disappear, or do result in a low signal
transmission. Using this principle all vibrational modes could be identified and
compared to those calculated. The frequencies detected in this way are summarized in
" table 7.1 (the accuracy of measurement is £ 10 Hz, see chapter 2).
A qualitative picture of the vibrational mode can be drawn using this method (vibration
maxima, zeros etc, can be measured easily). It is not possible to obtain a phase relation
for the various locations on the resonator.
Figure 7.9 shows the amplitudes of modes nr. 7, 8 and 9 as measured. For convenience
these modes are shown in the same resonator, each representing a quarter of the
complete mode. -
The measurements are in good agreement with the calculations. For the lowest
frequencies the deviation is 2-3%, but for the highest frequencies less than 0.5%. The
computer calculations are therefore of sufficient accuracy.

7.6 Final optimization of the resonator

From the finite element analysis it was concluded that mode 7 has to be identified as
the desired “longitudinal” mode. The resonance frequency of 19.16 kHz, however, is
too low to assure a good coupling and high efficiency when coupled to the transducer
of a welding apparatus. The resonator can be tuned to 20 kHz by shortening the
length in the same proportion as the desired frequency change. The length at 20 kHz
should therefore be:

_ 192.1¢6 =
1= 3500 128 = 1226 mm
The resonator of figure 7.4 was shortened to 122 mm in such a way as to guarantee a
symmetric location of the slots. Figure 7.11a shows the frequency spectrum of the
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the resonator. The longitudinal mode is now in resonance at f = 20.57 kHz. This
frequency is higher than 20 kHz because of the shorter length (influence ~ 250 Hz).
The presence of the threaded hole at the input surface causes a higher resonance
frequency (see chapter 5 and 6 where the influence was discussed briefly), the shift is
about 150 Hz (hole 20 mm deep, 16 mm diameter).

The resonator was coupled to a transducer which has a resonance frequency of the
longitudinal mode at 20.14 kHz (see figure 7.11b). The frequency-spectrum shows the
admittance of the transducer when connected to a constant voltage source of variable
frequency (see chapter 2); the admittance is proportional fo the transducer current.
There are no spurious modes detected in a 1 kHz range around this frequency. Figure
7.11c shows the spectrum of the resonator-transducer assembly. The “longitudinal”
mode is found at 20.06 kHz. Comparison of figures 7.11a and 7.11c¢ reveals that many
resonances do disappear. Secondly it is found that coupling of two resonator systems
results in a resonator assembly having a resonance-frequency which is lower than those
of the components. The mass which is added by the coupling bolt causes a decrease of
the resonance frequency. The only spurious mode detected at 19.59 kHz is of very
low efficiency and could not be excited on the welding apparatus. It therefore does
not influence the resonance behaviour of the longitudinal mode.

Figure 7.10 shows the amplitudes on the resonator surfaces measured, while the
transducer was activated at high power level, comparable to that during welding. A
very constant amplitude at the output surface is obtained indeed. This resonator
showed good welding results.

7.7 Conclusion

It was shown that the design of resonators on an experimental approach not always
results in the optimum solution. The success of it strongly depends on how good is the
first “’shot” to determine the overall dimensions of the resonator.

With finite element analysis the optimum was found in a much more effective way.
However, there are still precautions to be regarded in the interpretation of the finite
element calculations, because the coupling to a transducer causes frequencies to
disappear and other to shift. The design of & 131 mm wide resonator presents no
difficulty, in contradiction to the information from the suppliers of equipment. The
resonator could be tuned to 20 kHz, without any disturbances due to coupling of some
spurious modes.

In the following chapter an analysis will be presented to determine approximately the
overall dimensions of the resonator for the "longitudinal” mode at a given design
frequency.
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Fig. 7.11a Frequency spectrum of the final resonator of 122 mm length, hovizontally
frequency (kHz); vertically the detector signal (linear scale).
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Fig. 7.11b Frequency spectrum of the transducer; horizontally the frequency (kHz);
vertically the admittance of the transducer (logarithmic scale).
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Fig. 7.11¢ Frequency spectrum of the transducer-resonator assembly; horizontally the
frequency (kHz); vertically the admittance of the transducer
(logarithmic scale).
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8. A SIMPLIFIED MODEL TO CALCULATE THE RESONANCE CONDITIONS
FOR THE LONGITIDUNAL VIBRATIONAL MODE IN WIDE RESONATORS

8.1 Introduction

In the previous chapter, the resonant length of a wide-output resonator was shown to
be considerably smaller than the half-wavelength in a slender rod. To enable an
efficient optimization, it was necessary to start with a resonator geometry close to the
optimum geometry that will meet the design requirements. Some design rules will now
be derived to approximate the optimum geometry. Although the wide resonator is
separated into small resonators by slotting, there is the mass of the bridging elements
that has to be taken into account. Below a simplified model will be presented to
calculate the effect of this mass on the resonance frequency. The three resonator types
as discussed in chapter 3 (bladedike, block-like and cylindrical-type) will be studied.
The resonator is characterized by its overall dimensions, the length L, the width B, the
thickness R or de diameter D, the number of slots, their location, length and width.
Capitals are used here exclusively for the overall dimension.

Figure 8.1 shows a blade-like resonator of width B and length L, provided with three
slots equally distributed over the width. The resonator thickness R is small as
compared to the length (R </ A/3). The analysis will be restricted to slots of the shape
as shown in fig. 8.1. The slot length (number of stots n, width t) is such that the
bridging elements are s§ and s high respectively. A resonator can be divided
hypothetically into a number of elements, each of which has exactly the same
resonance frequency for the longitudinal mode. Figure 8.2 shows these elements, each
to be considered as a slender rod with an additional mass at both ends for a blade-like
resonator with two slots. The additional mass is identical for all elements. The
number of slots usually will be chosen such that the width of these elements b is small
as compared to the wavelength, but sufficiently wide to guarantee an acceptable overall
stiffness of the resonator (3/8 < b < A\/4). The separation into elements is such that
each resonator has the same resonance frequency. After coupling, the complete
resonator will have exactly the same resonance frequency as one of these separate
elements.

431

- — — | b

L

n [ 5 Y N -
52 }

t t t

# # # #
B R

Fig. 8.1 Blade-like resonator with three slots of width t and length (L-sj-s)).
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| TR

Fig. 8.2 Separation of a resonator into three equivalent elements, which can be
considered as a slender-rod resonator

Fiig. 8.3 Comparison of the slender rod (2) to an element with additional masses (1),

In this model it is assumed that the vibrational mode of the resonator is not influenced
by the coupling, so that at the output surface the vibration amplitude will be uniform
as a result. (In chapter 6 it was demonstrated up to what width b the amplitude over
the output surface remains constant).
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8.2  The blade-like resonator
For the bladedike resonator of total width B, the width of the elements b follow from

the number of slots n and their width t (see figure 8.2):

B--nt

b= n+l

(8.1)

The separation into elements is such that the total mass of each of the bridging
elements is identical, no matter how it is distributed over the cross-section. We will
assume for now that sy =sp =s,
From geometry the bridge section x follows: (see figure 8.2):

_ nt
X =—7 (8.2)
At the design frequency f, the resonant length 1 of a slender rod with constant
cross-section follows from (see figure 8.3.2.):

C

1='5¥\

(8.3)
At the same resonance frequency f, the resonant length L of one resonator element is
smaller than 1, for reasons of the added mass at the ends (see figure 8.3.1.). By equating
the mechanical impedance (see chapter 2) of the longitudinal wave in the resonator
element at distance s from the free end to the impedance in the slender rod resonator at
distance y from the free end, a relation between y and s can be obtained.

From this the length L can be calculated. At distance y and s the modules of the
mechanical impedance Z(y) and Z(s) are (see equation 2.13):

i

Z(y) = bR pc tan(ky) (8.4

Z(s) (b+x) R pc tan(ks) (8.5)

Both resonators are of identical materials so (8.4) and (8.5) give:

+
tan(ky) = 1’3"- tancks) (8.6)
From figure 8.3 it follows:

L =1-2(ys} (8.7)

Combining equations (8.2}, (8.3), (8.6) and (8.7) gives the resonant length L of the
wide resonator:

L = Loy 23 —“garctan[(l +

ot
5 . o) tan(ks)] (8.8)

In chapter 6 the resonator of rectangular cross-section was discussed. The wave
propagation velocity ¢ depends on the ratio of the width and thickness to the half-
wavelength, due to dispersion effects. It was shown that up to width to length ratios
of (1.5 the resonant length can be calculated with sufficient accuracy with aid of the
corrected value of the wave propagation velocity (equation 6.3).
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By slotting the width of the elements will always be kept small (< 3/4) to keep the
dispersion effect to a minimum. Using equation (6.3) the correction to the wave
propagation velocity ¢’ follows (using equation 8.1)):

B—-nt
n+l

¢ bovof, .,
PR - hY +
Tl g O REHA

?) (8.9)
The wave number k and the velocity ¢, as used in equation {8.8) have to be

: Y

corrected for the velocity ¢’ (k= —Cs—).

For reasons of geometry it can be shown that for the case s 5 53 equation (8.8)
becomes:

¢ 1 ot N
L= 3 +31+8) —F[arctan {(1 +B—nt) tan (k sl)} +
nt R
arctan {(1 + g=) tan (k") }] (8.10)

As an example figure 8.5 shows the resonant length L of a blade-like resonator versus
its width B, with the number of slots as a parameter. The resonance frequency is 20
kHz, the resonator thickness is 35 mm, the slotwidth is 10 mm and the height of the
bridging elements is equal for both ends s = 20 mm. Clearly the length L differs
considerably from the half-wavelength A/2 (130 mm). At B = 90 mm the difference
between a resonator with no slots (n = 0) and two slots (n = 2) is about 6 mm or 5%.

In figure 8.4 the width b of the elements of the resonator is shown versus the number
of slots. Generally, this width is chosen maximum b ~ A/4 and minimum b ~ A/8.
For 20 kHz in aluminium or titanium resonators the choice is 30 < d <60 mm.

When no slots are made, the maximurmn width is + 70 4 80 mm (chapter 6).

Using figures 8.4 and 8.5 one can easily determine how many slots are needed and
what resonant length will be needed to have the resonator vibrating in a longitudinal”
mode at 20 kHz.

The maximum resonator width B in practice is about 300 mm at 20 kHz. Suppliers of
ultrasonic ¢quipment maintain that there are forbidden zones for the resonator width
B. The range of 130 < B < 150 mm and 190 < B < 220 mm are such for bidden zones
(Ref. 64), either because no mode could be found with a uniform output amplitude or
because the resonators would always fail due to cracking., Others only apply an even
number of slots. For odd numbers, the resonator will be coupled to the transducer
right above such a slot. Strong arguments for these principles are not given.

Figure 8.5 reveals that in the case of only even slot numbers, the 80 <B < 110 mm
range cannot be used. At B ~ 190 mm there is a transition range, with only the two
extremes for b. For wider resonators, the choice for the number of slots is less critical.
The influence of the height of the bridging elements s and the slot width t on the
resonant length L can be calculated from equation (8.10). For various resonators
width B, the length L was calculated for a blade-like resonator of thickness R = 35 mm,
slot width t = 10 mm and the number of slots being n = 3. See figure 8.6. The effect
of this height s is little for wide resonators, but strong for the small ones. One can
calculate from these how much the resonance frequency of an existing resonator can
be raised when the height s is decreased. Conversely the frequency can be lowered by
widening of the slot with t. The influence of t is shown in figure 8.7. As an example
when t is widened from 8 to 10 mm, while all other dimensions are kept the same, the
resonance frequency falls about 300 Hz (1,5%) (B = 140 mm, n = 3).
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Fig. 84 The width b of the elements in a blade-like resonator versus the resonator width
B as a function of the number of slots n. (f = 20 kHz, ¢ = 5200 m/s, v = 0.335,
$=20mm, t =10 mm, r = 35 mm). (equation 8.10}).
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Fig 8.5 The resonance length of a blade-like resonator of width B as a function of the
number of slots n (same conditions as in fig. 8.4). {equation {8.10)).
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Figure 8.8 shows the effect of changing the resonator thickness R. This effect is small as

compared to that of t ors.

138
Fig. 8.6 The effect of the
height s of the bridging
L 126 S elements on the resonant
(mm) L e length (n =3, f=20 kHz,
. //’/" ©=5200mfs, v=10.335,
122 - R=35mm,t=10mm).
{blade-like resonator)
118 15
28
14 —=23
118 -
3351 188 148 iBg 22n 268 3gg
B{mm)
A 13D
‘ Fig. 8.7 The effect of the
125 width t of the slots on the
L resonant length (n = 3,
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(22 . e T v =0.335, R = 35 mm,
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i T on the resonant length{n =3,
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5= ¢ =5200 mfs, v = 0.335).
s t =10 | (blade-like resonator)
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Eight existing blade-ike resonators were analysed.

Table 8.F summarizes the results. The resonance frequency of the longitudinal mode
was measured. In order to check the validity of equation (8.10), the resonator length
L’ was calculated from (8.10) using the measured resonance frequency freg as design
parameter. This length L’ is compared to the actual length L. The ratio L’/L is given
in table 8.I. In almost all cases the deviation is less than 0.5%. Bearing in mind that a
tolerance on the fabrication of the resonator of * 0.5 mm already results in a frequency
deviation of 1—3-% * 100 = 0,38%, one can conclude that equation (8.10) is accurate
enough to calculate the resonant length of blade-like resonators.

n R* B % L t $1.52 fres L/L
(-) (mm®) (mm) (mm} (kHz}) (-)

Nr. 1 1| 35%100% 125 10 20 2000 | 1.002
Nr. 2 2 | 35+145% 124 10 20 2002 | 0997
Nr.3 2 | 27%105% 125 8 20 1998 | 0.990
Nr. 4 2 | 63%100%121 9 e 2010 | 1.004
Nr. 5 2 | 72%189% 125 8 L 1978 | 1.005
Nr. 6 2 | 49184 %125 8 I 1992 | 1.004
Nr.7 2 | 35+130%127 10 20 19.30 | 1.004
Nr. 8 5 | 35%229%123 10 20 19.85 | 1004

Table 8.1 Analysis of 8 blade-like resonators of thickness R, width B and length L
and slot number n; the measured resonance frequency fres, is compared to
the calculated one by equation (8.10) through L'[L.
(Material Aluminium ¢ = 5200 m/fs, v = 0.335).

83 The blockdike resonator

The analysis of the block-ike resonator is identical with that of the blade-like one.
Figure 8.9 shows such a resonator. The difference is the large dimension in the thick-
ness direction. The lateral dimensions B and R are provided with n) and n7 slots
respectively. For completeness the resonant length of this resonator type will be
determined for different height of the bridging elements (s) and s7). Using equation
(8.9) and (8.10) it follows:

< v'nf N B—n]t}2 {R—nzt2
. 1'6 —) H"—"mﬂ +———}n2+1 | (8.11)
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£

c 1 nit nat N
= o — - + & i)
L 35 + 51 +s2 e [arutan (1 + Bm»nlt) (1 R*nzt) tan (ks ) +
nyt not ey |
+ + Yy (1 + s i
arctan 1 (1 Bonit (1 R-ngt) tan (k sz,)l] 8.12

As an example, the length L for a 20 kHz resonator of R = 150 mm having one slot in
this direction (n3 = 1) is calculated (see figure 8.10). The width B varies over a wide
range, with O to 5 slots into it. The actual resonant length considerably differs from
the half-wavelength. The length difference is + 10-20 mm (10-15%1).

Figure 8.11 gives the results for a 40 kHz resonator. From these figures one can
determine what number of slots is needed and what length L will be found.

The design of block-like resonators is more complicated as the results shown before
would suggest. The resonant length L can be calculated, but the presence of spurious
modes cannot be predicted. In appendix 1, the design of one specific block-like
resonator is discussed to illustrate how spurious modes can be coupled to the
longitudinal one, and how they can be eliminated on account of the measurement of
resonance frequencies and vibrational modes.

In the following chapter the finite element method will be used, as an example, to
study the effect of slot length variations on the vibrational characteristics of a blade-
like resonator. With aid of mode charts that can be derived, one can predict the effect
of changes in geometry on the presence of spurious modes, and how to ¢liminate them
without influencing the “longitudinal” mode.

.
R\/B/r‘
Fig. 8.9 A block-like resonator; width B, thickness R withnj =2 and ny = 1 slots

respectively.
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Fig. 8,10 Resonant length of a block-like resonator at 20 kHz for various numbers of
slots as a function of its width B(R =150 mm, n3 =1, t = 10 mm, s = 20 mm,
¢ =5200 m/s, v=10.335) (equation (8.12}).
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Fig. 8.11 Resonant length of a block-like resonator at 40 kHz for various numbers of
slots as a function of its width B(R =50 mm, np =1, t =S mm, s = 12 mm,
¢ =5200mjs, v = 0.335) (equation {8.12)).
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84  The cylindrical-type resonator

Resonators of the cylindrical type are provided with slots in radial direction all over
the diameter in a similar way as the other types. The number of slots is chosen such
that the portions af the circumference, separated by the slots do not exceed A/4. As
shown in figure 8.12, the crosssection of the resonator is divided into n pie-elements
of area A. By providing slots this area is reduced to A’:

P k3
A’ =%D2 [;——%arcsin(%)]m%p\;/ I—('B)2 +ﬁ (8.13)

tan (E)

The propagation velocity of longitudinal waves into rods of quasi triangular cross-
section is not easily calculated. As its dimensions are kept small as compared to the
wavelength, it is assumed that the dispersion effect of the longitudinal wave can be
estimated by using the Rayleigh correction in which the contribution of the cross-
sectional area is taken rather than the actual shape {equation (6.5)). The resonant
length again is calculated using the mechanical impedance transformation (equation
(8.4)). The bridging elements are s| and s7 high. Using equations (8.9}, (8.13) it
follows:

o e Ant, A
A e (8.14)
¢’ ) A N A
I R A — sy}t arctan |-+ — ’$1
L > s1 +s8g o [arctan {A’ tan (K’sy) arctan{ IS tan (k S‘}H (8.15)

P Moo N M
A\ |
- t
- . -

Fig. 8.12 Resonator of the cylindrical-type of diameter D and length L, the number of
slots n is symetrically distributed along the circumference.
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The minimum number of slots is n = 3, if the circumferential dimension of the

elements is at least smaller than the diameter. It will be clear that the resonator
diameter must not exceed 2 times A/3 in order to guarantee any dimension of the
cross-section being smaller than A/3. At 20 kHz this implies a maximum diameter of

+ 160 mm. Above this diameter the presence of the slots will not be sufficient to

brake the Poisson coupling, unless other slots or cut-outs in the circumferential direction
are provided. As an example figure 8.13 gives the length L for various diameters versus
the number of slots. '

The effect of variations of the length L on the resonance frequency for the longitudinal
mode is seen in figure 8.14. This kind of relations can be very helpful to predict the
effect of a length decrease when tuning up a specific resonator to raise its resonance
frequency.

138
126
122
(L) N — R —
4 / | i w/
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Fig. 8.13 Resonant length L of a 20 kHz cylindrical-type resonator for various
number of slots (¢t =10 mm, s = 20 mm, ¢ = 5200 m/fs, v = 0.335)
(equation (8.15))

8.5 Conclusions

The method described here to calculate the resonant length of wide-output resonators
with slots, is very straightforward. However, comparison with some experiments
showed the validity of this approximate theory. With the formula presented above one
can determine how the resonator dimensions should be if a "longitudinal” vibrational
mode must be possible at a given design frequency. Although the overall dimensions
are correct for the “longitudinal”™ mode, it does not exclude the presence of spurious
modes, as was shown in appendix ! for a block-like resonator. However, the formula
will be very helpful to predict how the change of some dimensions (to eliminate the
spurious modes) will influence the resonance frequency of the “longitudinal” mode.
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Fig. 8.14 The resonance frequency of a cylindrical-type resonator versus the length L
for some diameters D (mm) (¢ = 5200 mfs, v = 0.335, 5 =20 mm, t = 10 mm,
n=6).
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9.  FINITE ELEMENT ANALYSIS OF THE EFFECT OF SHAPE VARIATIONS
FOR SOME RESONATORS

9.1 Introduction

In the previous chapters a simplified model was presented to calculate the resonance
conditions for three classes of wide resonators. Only the resonance frequency for the
desired (longitudinal’’) mode was chosen as a design parameter. By providing slots it
was pursued to obtain a mode with a flat amplitude distribution at the output surface.
However, the model is of no value to predict the optimum slot dimensions or locations
with respect to the vibrational mode to be obtained. Neither can it be predicted when
spurious modes will interfere with the desired one. In this chapter the effect of slot
dimensioning for a bladeike resonator will be discussed with respect to the resonance
frequencies, the shape of the “longitudinal” modes and the presence of spurious
modes. Questions that will be answered are: does the “longitudinal” mode exist at all;
are there critical slot dimensions; may the effect of slot length variations on the
resonance frequency and the vibrational mode lead to contradictory requirements?

9.2 Two types of slots in a blade-like resonator

In chapter 6 the solid rectangular resonator was studied. When both width and length
dimensions are in the order of the half-wavelength, the vibrational mode shows a strong
distortion (see figure 6.8). Below such a resonator will be provided with two types of
slots to compensate for the distortion. The first (A) as shown in figure 9.1, is identical
with those discussed in chapter 8. The second (B) as shown in figure 9.2 is a slot with
an open end at the output surface. This type has not been analyzed up to now, but it
is often met with in practical resonators. Both will influence the resonance frequencies
and the vibrational modes of the resonator. Of slot type A the effect of its length will
be studied by variation of the thickness of the bridging element s (figure 9.1). For slot
type B the variations of the length h will be studied (figure 2.2). In both cases the
resonator is designed to resonate near 20 kHz in the “longitudinal” mode. The overall
dimensions will be kept constant (length = 130 mm, width = 110 mm, thickness =

35 mm, slot width = 10 mm). The material is aluminium {see table 2.1).

9.3 Finite element analysis ‘

A standard finite element package was used to anlayze the vibrational modes and
corresponding resonance frequencies of the two resonator types described above. For
reasons of symmetry, only part of the resonator needs to be analyzed (see figure 9.3)
and in case of slot type B only half of the resonator is analyzed (see figure 9.4). By
proper choice of the boundary conditions all modes which will occur in the total
resonator can be calculated. The blade-like resonator will be considered as a two-
dimensional problem (plain stress). No vibrational modes with motions perpendicular
to the surface of drawing (see figure 9.3 and 9.4) will be calculated. 1t was
demonstrated before that this assumption holds for practical resonator designs.
Secondly, only those modes will be analyzed which do have an axis of symmetry
coinciding with that of the resonator through the center of the input and output
surface. In chapter 7 it was shown that modes which are not symmetrical with respect
to this axis are not likely to be excited when the resonator is coupled to a transducer.
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Figure 9.3 and 9.4 show the division into elements. The number of element is so that
at least 2 elements cover a half-wavelength of any mode to be calculated. In order to
obtain valuable information from the calculations, all modes with a resonance
frequency up to 30 kHz have to be calculated. In all cases the determination of the 10
lowest resonance frequencies was sufficient. The convergence of the solutions in
solving the eigen value problem, generally was very fast, normally requiring only 4
iterations. The accuracy of the frequencies resulting from the finite element analysis
was compared with experiments. In table 9.1 the analysis of the solid rectangular
resonator is summarized (see also chapter 6, table 6.1, no. 4), with the measurements of
the resonance frequencies. The vibrational modes are shown in figure 9.5. Comparison
of measurements and calculations yields a deviation of about 1%. As compared to the
results discussed in table 7.1 these results are somewhat less accurate, but still very well
acceptable.

Frequencies (kHz}

Mode Calculated Measured Deviation
1 18.46 18.66 + 1.06%
P2 20.08 19.88 — 1.04%
3 2194 21.81 — 0.64%

Table 8.1 Comparison of calculations and measurements for the solid rectangular
resonator (resongtor 110 * 130 * 35 mm?® ); the mode number is according

to figure 9.5.
i
A
Y
1
. h {
|
Fig. 9.3 Slot type A, division into finite Fig. 9.4 Slot type B, division into finite
elements elements

{resonator of figure 9.1) (resonator of figure 9.2)
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mode 1 mode 2 mode 3
f= 1846 kHz f=20.08 kHz f=2194 kHz

Fig. 9.5 Vibrational modes of the solid rectangular resonator for the resonance
frequencies near 20 kHz. All modes are synumetric to the axis x-x {only half
of the resonator is shown, dimensions 110 * 130 * 35 mm?> ).

94  Variation of the slot length of type A (figue 9.1)

The influence of the slot length of the resonator as shown in figure 9.1 and 9.3, is
studied through the variation of the thickness s of the bridging elements. The case
where there is no slot was shown in figure 9.5. The results of the finite element
analysis are summarized in table 9.11. The lowest modes are presented, covering the
frequency range from 0 to 35 kHz. There are always two or three frequencies near
the design frequency of 20 kHz. The corresponding modes are shown in figures 9.6 to
9.9. In order to obtain the vibrational mode of the total resonator, the results have to
be transformed according to the axis of symmetry. There are symmetric and anti-
symmetric modes. From these modes the effect of slot length variations can be
understood. As an example, the first three modes in figure 9.6 (s = 55 mm), are similar
to those in figure 9.5. Clearly the small slot length hardly influences the mode shapes.
The resonance frequencies of the first and third mode are lowered, while that of the
second mode is increased. Finally, this small slot length does not improve the
resonator so that a flat amplitude distribution near the output surface is obtained.



96

’ 10 20 35 55 65
mode

1 596 7.69 11.38 1711 18.46
2 1345 16.97 19.39 20.19 20.08
3 19.14 19.33 19.99 21.01 21.94
4 19.54 21.63 22.84 24.68 26.08
5 2333 2296 2398 26.53 26.78
6 32.13 3221 35.53 34.86 —
7 3536 3554 3571 35.98 —

Table 9.IF Calculated resonance frequencies (kHz) for the resonator of slot tvpe A
{see figure 9.1) as a function of the thickness s (mm) of the bridging
elements for the 7 lowest modes (s = 65 mm corresponds to the solid
rectangilar resonator).

On account of the interpretation of the modes one can set up a frequency spectrum for
the resonator, relating the resonance frequency of a specific mode shape as a function
of the slot length. Figure 9.10 is such a frequency spectrum showing the branches for
the 5 Jowest modes.

Starting from the solid resonator (no slot) all frequencies decrease with increasing slot
lengths. Only one mode has an almost stationary frequency fors = 10 up to s = 35 mm.
Of very great importance is the observation that for some values of s two branches are
crossing each other. In the frequency range of interest mode v is crossing mode § three
times! Near those crossing points clearly interferences of these modes can be expected
when devicing a resonator. If no spurious modes are to be allowed in a 1 kHz band-
width around the design frequency of 20 kHz, only a very limited choice of the slot
length is possible.

Up to now no attention has been paid to what mode branch meets the design require-
ments for application as a welding tool. As a flat amplitude distribution at the output
surface is desired, the choice of the slot length is restricted again. Close observation of
the modes reveals that only three are found acceptable. These are marked in figure
9.10; fors =35 mm, s = 20 mm and s = 10 mm respectively (all on mode branch 7).
All slot lengths for values of 10 <5 < 35 mm will be a good choice. Fors>> 35 mm
no acceptable mode shape if found. However, combination of the requirements of no
spurious modes in a 1 kHz bandwidth and the latter results in a slot length range of
15<s<25 mm.

Mode branch a (figure 9.10) for s = 65 mm corresponds to the longitudinal mode for
the solid resonator. From the definition this mode is called the fundamental
“longitudinal” mode (chapter ). It has no flat amplitudes distribution at the output
surface {in consequence of distortion due to Poisson’s coupling). As can be seen in
figure 9.10 those modes which have a uniform amplitude distribution at the output
surface are on the v branch. These are therefore not originating from the fundamental
longitudinal mode in the solid resonator, but rather from a second order higher mode.
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Fig. 9.6 Vibrational modes for the resonator of slot type A for s = 55 mm (see figure
9.3). (The axesof symmetry are shown, s = symmetric mode, a.s = anti-
symmetric mode).
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Fig. 9.7 Vibrational modes for the resonator of slot type A for s = 35 mm (see figure
9.3). (The axes of symmetry are shown, s = Symmetric mode, 4.5 = anti-
symmetric mode).
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Fig. 9.8 Vibrational modes for the resonator of slot type A for s = 20 num (see figure
9.3} {The axes of symmetry are shown, s = symmetric mode, a.5 = anti-
symmetric mode).
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Fig. 9.9 Vibrational modes for the resonator of slot type A for s = 10 mm (see figure
9.3). (The axes of symmetry are shown; s = symmetric mode, .5 = anti-
symmetric mode).
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Fig. 9.10 Frequency spectrum of the resonator of slot type A (see figure 9.1) as
determined from the finite element analysis (branches o through € gre
according to figures 9.5 to 9.9); frequency f versus thickness s { # denotes a
calculated frequency; 0 denotes a mode with a constant output amplitude).

For this reason it would be better not to use the description “longitudinal” mode for
that desired mode with a uniform amplitude distribution at the output surface. One
should preferably use the "mode with a flat output amplitude™.

The blade-ike resonator studied here was of 130 mm length. In order fo raise the
resonance frequency of the “constant output mode” to 20 kHz exactly, the length has
to be shortened by about 3 mm. Other mode branches in the spectrum will also shift.
However no striking effects are to be expected regarding the coupling to spurious
modes in the range of 15 < s <25 mm.
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9.5 Variation of the slot length of type B (figure 9.2)

As shown in figures 9.2 and 9 4, the second slot type B is characterized by an open end
at the output surface. This slot type is often used to influence the mode shape when
some distortion is present. As a function of the slot length h resonance frequencies
and modes were calculated. The results are summarized in table 9.I1I. The caseh =0
corresponds to the solid resonator. In all cases the third and fourth mode are in the
frequency range of interest.

Not all vibrational modes which have been calculated will be presented here. Figure
9.11 shows the second to the fifth mode for the resonator of slot length h = 110 mm.
Clearly the fourth mode at f= 19,72 kHz corresponds to a "constant output mode”,
although the amplitude is not exactly constant. The third mode at £ = 19.10 kHz has
a flat amplitude distribution at the input surface and can therefore easily be excited
when such a resonator is coupled to a transducer. However, this mode has zero output
amplitude at the ouiput surface near the center of the resonator and high amplitudes at
the edges. It is of no value for welding applications. The frequency difference with
the 19.72 kHz mode is about 600 Hz (~ 3%), which is generally too small for safe
operation, due to the risk of interferences, or by an improper tuning procedure of the
ultrasonic generator (tuning to the wrong mode).

A close study of all modes again reveals some similarities in the mode shapes. All
modes are familiar to flexural vibrations in beams. Only few modes show an amplitude
distribution at the output surface which would be acceptable for welding purposes.
Figure 9.12 shows for all values of slot length h analyzed, those modes which do
approximate the “constant output amplitude” requirements. The other modes have at
least one nodal point at the output surface.

0 20 40 60 90 100 110

1 1846 12.90 7.34 4.50 2.17 1.54 0.95
2 20.08 18.71 18.53 16.50 11.65 10.35 9.22
3 2154 | 21.14 2099 | 20.09 19.45 19.40 19.10
4 26.08 2520 | 2341 21.94 21.63 21.09 19.72
5 26,78 | 26.85 26.25 26.08 23.89 2284 22.82
6 - 34.87 34.88 | 3518 3330 | 3298 | 32.53

Table 9111 Calculated resonance frequencies (kHz} for the resonator of slot type B
(see figure 9.2) as a function of the slot length h (mm) for the 6 lowest
modes. (h = 0 corresponds to the solid rectangular resonator).

The effect of a small slot length on the amplitude distortion of the fundamental
longitudinal mode in the solid resonator is seen in figure 9.12. Up to h = 40 mm the
effect is very small and can be neglected as a positive way to improve such a resonator.
There is only a small increase in the resonance frequency. Up to h =60 mm no modes
are judged acceptable for devicing a good resonator for welding purposes. Only for

h =90 to h = 110 mm acceptable mode shapes are to be found.



110 mm

h=
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f=19.10 kHz

f=722.82kHz

f=19.72 kHz

Fig. 9.11 Vibrational modes for the resonator of slot tvpe B {see figure 9.4) for b =
110 mm (one axis of symmetry).



104

h=0 h=20mm h=40mm ‘ h=60mm
f =18.46 kHz f =187 kHz f=1852kHz f =20.09 kHz

h=90mm h= 100 mm h= 110 mm
f=1945 mm f=1940kHz f=1972kHz

Fig. 9.12 Vibrational mode of the resonator of slot type B (see figure 9.4) for various
values of siot length h. Modes which approximate the constant cutput
requirements (only one axis of symmetry)
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Fig. 9.13 Frequency spectrum of the resonafor of slot type B (see figure 9.2) as
determined from the finite element analysis (mode branches a to €);
frequency f versus slot length h. (% denotes a calculated frequency; O denotes
a mode which approximates the “constant output amplitude” requirements).

From these results a frequency spectrum can be set up relating the resonance
frequency of various modes to the slot length h. Five mode branches are shown in
figure 9.13. All modes have a decreasing resonance frequency with an increasing slot
length. The modes shown in figure 9.12 are marked in figure 9.13 by 707, Clearly they
belong to three different branches.



106

Surprisingly their resonance frequencies are very close to the design frequency of 20
kHz. Only one branch crossing is found at h = 5 mm. Over a wide range of the slot
length the frequency difference between the branches near 20 kHz is greater than

1 kHz. From the analysis it follows that resonators with slot type B can be used for
slot lengths of 90 < h < 105 mm.

From the frequency spectrum (figure 9.13) it follows again that the acceptable modes
are on the v or § branch and are not originating from the longitudinal mode of the
solid resonator (branch §).

Finally a striking effect is to be explained, which is often encountered when tuning a
resonator on a trial and error base. Suppose one has deviced a resonator with a slot
fength h = 40 mm. From the mode shape (figure 9.12} it follows that at the ocuter
portion of the output surface there is no motion. In order to improve the mode shape
one would machine the resonator to enlarge the slot length to say h = 60 mm. Now
some surprising observations can be made. Firstly the resonance frequency of the
mode (§) will fall about 2 kHz (11%), and no improvement of the mode shape will
result from it, but rather a deterioration (the new mode shape is not shown). The
second observation would be that at a higher frequency a mode (branch ) will be
found of a shape very similar to that from the prior resonator (h = 40 mm).

However, the mode shape now reveals a very small amplitude at the center portion of
the output surface. No improvement will be reached as a result. Only a further
increase of the slot length to about h = 90 mm will yield a better mode shape. Note
that the resonance frequency of mode branch «y varies slowly with increasing slot
{ength.

9.6 Stress analysis

In the present work no attention has been paid to the stresses in the resonator which
greatly determine the toollife and the maximum attainable amplitude of vibration. In
slender rod type resonators the stresses can be calculated analytically. In resonators of
complex shape like the wide output resonators studied here stress concentrating
factors such as slots and cut-outs are to be considered. Secondly, the stresses have to
be determined for the loaded resonator when both static forces (needed to guarantee a
good acoustical coupling between the resonator and the products to be welded) and
the stresses resulting from the forced vibrations into it are present. Brinkmann (1971)
already showed that the analysis of freely vibrating resonators not always provides
realistic information with respect to the level and location of maximum stresses,
However, there is no theoretical model available to describe the interaction of the
welding process and the mechanical stresses in the resonator.

Being aware of the limitations we carried out some stress analysis for the freely
vibrating resonator. The stress is calculated from the deflections of the resonator as
calculated from the frequency analysis. As an example the resonator with slot type B
is presented. In a slender rod with maximum amplitude T, the maximum stress &
occurs in the nodal plane (chapter 2, equation 2.8). Taking the same input amplitude
U for the resonators the locations and levels of the maximum stresses were determined.
Figure 9.14 shows the results for slot lengths h =60, h =90 and h= 110 mm. Asa
conclusion, the slot length not only is crucial for obtaining an acceptable vibrational
mode, but above all can result in high stress concentrations.
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Clearly a slot length h = 110 mm will be too critical, because the stresses in the bottom
of the slot are 1.45 times higher than those in the nodal plane. The slot length h =60
mm was already excluded for reasons of the poor amplitude distribution. The stresses
are far too high in this resonator. For slot length h = 90 mm, the maximum stress is @,
identical to that in a slender-rod resonator. At the top of the slot, the maximum is
only 0.85%35, so that this resonator would be acceptable regarding the
stress-distributions in if.

maximum maximum maximum

amplitude u amplitude © amplitude @

f 3 F

4

1455 7
08557
- 230 e T o F
2.1G
h =60 mm h=90 mm h=110 mm

Fig. 9.14 Resonators of slot type B (see figure 9.2); locations of points of maximum
stresses in the resonator with a maximum input amplitude @ and with a
vibrational mode as shown in figure 9.12 (the stress-level is referred to the
slender rod stress amplitude G at the same input amplitude u).

9.7 Conclusions

The finite element analysis has shown that both slot types A and B are suited to design
resonators having a nearly constant output amplitude. However, the freedom in
choosing the slot dimensions is very limited. At first only for a specific range of slot
dimensions an acceptable output amplitude distribution can be obtained. Secondly,
this range is limited again by the presence of spurious mode within a 1 kHz bandwidth
around the working frequency. Although not studied extensively, the mechanical
stresses under load, will certainly imply other restrictions. The set-up of a frequency
spectrum is an invaluable tool to understand the problems that can be expected in
resonator design.

The predicted resonance frequencies of the modes which meet the design requirements
coincide fairly well with the simplified model as presented in chapter 8.

Finally, it is suggested not to use the description ”longitudinal” mode for the required
one, but rather the "flat output amplitude mode™.
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In this chapter only the slot length variations were studied. Asymmetrical slots or

slot width variations could also be studied. However, the present results showed that
both slot types A and B do yield acceptable resonators, slot type A would be preferred
regarding the uniformity of the output amplitude and a smooth output surface

geometry.
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10. MULTIRESONATOR SYSTEM FOR ULTRASONIC PLASTIC ASSEMBLY
10.1 Introduction

A very important application for wide output resonators will be discussed now. The
use of resonators with wide output cross-sections in ulfrasonic plastic welding, staking
and rivetting makes it possible to transmit vibrational energy over large areas in one
operating cycle. A higher throughput of welded area per welding machine is the result.
However, there are restrictions with respect to height variations in the product parts

to be joined. There is an interesting number of applications in which these resonators
are employed as a “base” to transmit vibrational energy to a plurality of tools
attached to it (Scotto (1974), see figures 4.8c and 10.1).

Reasons to choose these configurations are: multiple welding or staking operations in
products at inaccessible places, at different height levels or across obstacles or jigs.
Extra high vibrational amplitudes may be needed in some cases, which cannot be
achieved in the large resonator itself due to high stress levels.

The most practical solution would be to attach the tools to the base resonator by
screwing (fig. 10.1a); if so, the dimensions are limited by the inertia forces which
would raise the mechanical stress levels in the screw well beyond the fatigue strength.
As an example the dynamic stress amplitude in the coupling bolt for the case of a
cylindrical tool attached to the base resonator will be:

% d* 1277 u

Opolt = —'*‘*;g'*—“* (10.1)

where d = tool diameter, 1 the length, p its material density, f the operating frequency
of the resonator, u the output vibrational amplitude and Ay, the effective cross area of
the bolt. For a most practical application {(where: f=20kHz, u= 25 um, d = 25 mm,
o = 7800 kg/m?, a steel bolt Mg with A = 58 mm? and a dynamic fatigae strength
o =200 N/mm?) the maximum allowed tool length would be restricted to about

I = 8 mm.

Furthermore any mass atfached to the “base” will tend to decrease its resonance
frequency (Young (1970)). The allowed frequency shift is small (+ 1,5%), which will
lead to practical problems when many tools are attached. Adding or leaving out a tool
later on, once the system has been tuned, requires a retuning of the “base” to the
working frequency. It will be obvious that in doing so the advantages of ultrasonic
welding will be overruled by the costs of resonator design.

A more suitable solution is to use the tools in the form of a half-wavelength resonator
(fig. 10.1b). For efficient operation each part has to be designed to resonate in the
frequency corresponding with the optimum operating conditions of the transducer and
base resonator assembly. The latter results into a low-stress coupling (only a prestress
is used to assure good acoustical coupling between the resonating tool and the base).
An inconvenience is that the tool length will mostly become much longer than
necessary for most of the applications.

The design of the base resonator requires perhaps even more care than in the case of a
resonator for welding only. The vibrational mode at the design frequency should be
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Fig. 10.1 Multiple resonator system comprising a “base” resonator with a plurality of
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(typical dimension for a 20 kHz system)
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such that at the output surface, where the tools are attached, the amplitude of motion
along the surface is as uniform as possible. In that case all attached tools will have an
equal input amplitude. If the amplitude of the base is not uniform but distributed
along the surface rather in a curved way, the attached tools will be excited in a
combined longitudinal and flexural vibrational mode. In the worst case the tools may
even become resonant in the flexural mode, generally causing failure of the clamping
bolt due to excessive stresses.

Typical dimensions of a base resonator output surface are in the range of 60-200 mm?
to 200-200 mm?. For welding or staking up to 20 attached tools are used.

The designer of a multipie resonator system (as described above) will be asked to
devise a resonator tool with a specified amplitude gain and with a predetermined length
at a fixed operating frequency. Depending on the applications involved, some of the
other dimensions like the diameter at the input or output end will be specified too.
The resonator material will be specified too, e.g. low acoustical damping, high wear
resistance, high fatigue strength. It will be clear that in all cases an optimization of the
tool configuration is needed.

10.2 The funnel shaped resonator

Many publications are available in which the resonators geomeiry is optimized with
respect to the stress distribution, There are conical, exponential, catenoidal, stepped
cylindrical, Fourier and Gaussian shaped resonators (Merkulov (1957)). The Gaussian
bottleshaped, resonator is found to produce maximum cutput amplitude at minimum
mechanical stress. The design of these thin halfwave length resonators requires the
solution of the one-dimensional wave equation for the longitudinal motion (see chapter
2).

In ultrasonic engineering, however, most of these resonators although theoretically
superior, are rarely used. Other reasons such as easy manufacturing, simple computer
programming for design and easy tuning possibilities do explain the wide use of
conical, exponential and stepped cylindrical shaped resonators. A resonator type
which was found to be very suitable for application into a multi-resonator system will
be described in more detail below.

None of the resonator shapes described above will give the designer enough freedom to
easily produce tools with a predetermined length and predetermined amplitude gain at
a given operating frequency. A three-element cylindercone-cylinder shaped resonator
(”funnel-shaped”, Neppiras (1977)) can be optimized such as to approach the
properties of the Gaussian shaped one {sce figure 10.2). Resonators of this type are
easy to design and manufacture.

It is proposed here that these funnel shaped resonators give the designer enough
freedom to satisfy more design conditions. By variation of the lengths and diameters
of the ¢ylindrical parts it is possible to satisfy the resonance condition for the half-
wavelength longitudinal vibrational mode at a predetermined total length and a fixed
amplitude gain. It will be clear that in this way the stress distribution cannot be kept
as favourable as in the Gaussian resonator. For many applications, however, an
acceptable compromise can be found, giving a resonator superior to the stepped
cylindrical and conical shaped ones.
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Fig, 10.2 Funnel-shaped resonator, amplitude u of the longitudinal vibrational mode
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Fig. 10.3 Three separated sections of the funnel shapped resongtor; definition of
coordinates, dimensions and displacements (axisymmetric cross-sections).
(I=1) +iz+i3)

10.3 Frequency equation, amplitude gain and shape factor

The one-dimengional equation for the longitudinal motion in a resonator with variable
cross-section written in terms of the motion amplitude u (x) along the axial ordinate x
is as follows (it is an extension of equation (2.1)):

@1 AW d o
(dx2 * A(x) dx dx * k5 uk) =0 (10.2)
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As we deal with harmonic vibrations, the time-independent displacement functions
u{x) can be considered only., A(x) is the area of the crosssection at distance x,
k = wavenumber.

In figure 10.3 the three elements of the funnel shaped resonator are separated. In each
section the solution of equation (10.2) can be found in terms of the displacement u(x),
v(y) and w(z).

The boundary conditions and continuity of axial forces and axial displacements at the
interfaces have to be satisfied. The displacement function in each of the elements 1, 2
and 3 can be writfen as follows:

u(x) = ajpcostkx) + ap sintkx) (10.3)
wy) = —len-}- laz costky) + ag sin(ky)] (10.4)
w(z) = a5 cos(kz) + ag sin{kz) (10.5)

where ay, a3, a3, ag, a5 and ag are constants.

In equation (10.4) the factor m of the conical element (length 13) equals;

1 N1

m =T (10.6)
d]

N 45 (10.7)

Where N is the ratio of the diameter of the cylindrical elements.

The desired vibrational mode is the fundamental longitudinal mode; therefore the
input and output surfaces are stressfree, so:

du(x) _ dw(z) -

Continuity of displacement between the elements | and 3, 2 and 3 follows:

u(X)/x:I - V(y)/yxa

(10.9)
v(y}/yzls = —w(z)} 1y
Continuity of the forces at the interfaces can be satisfied when:
du(x) . dv(y)
dx / x=ly dy /y=0
(10.10)
dv(y}_ - dw(z)
dy /y= 13 dz /z=lp

The boundary conditions of equation (10.8), when applied to equations (10.3) and

(105) givear =0 and ag = 0 When the input amplitude is defined as u(X)/X:O =y

and the output amplitude w(z / =0 = U2, we find:
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a) = uj and ag = uy (see fig. 10.2 and 10.3)
Combination of equations (10.9) and (10.10) applied to equations (10.3), (10.4) and

(10.5) will give the frequency equation. After some mathematical manipulation, it
follows:

K 1 .
[(E tan(k1y) + TrrTa] [cos(k (1 +13) — 51‘(3 sin(k13) cos(k1 1)] =
K[
< [sm (K (y +13) + 2 costy) cos(kl;)] (10.11)

This is the so-called frequency equation. For a given resonator geometry (13, 12,13,
d{ and d3) from equation (10.11) the wavenumber k can be solved. In our case the
resonance frequency is a design requirement, so one can choose the dimensions so as
to satisfy the frequency equation.

The remaining constants a3 and ag are found to be:

az =uj c-qs—(n!](-@ (10.12)
_ sin(kly) | cos(kly)
ag = - 1[__m 4 oD ] (10.13)

The amplitude gain in the resonator is given by M = I%l, being the ratio of the output

amplitude to the input amplitude. M can be calculated from equations (10.3) through
10.13):

~ b2, . 1 1 i .
M }ETI osE i) ————l—mlg [cos(kll) cos(klz) — sin(klg) sin(kly)

- i-]-sin(kl3) cos(kll}] (10.14)

The mechanical stress in the resonator can be determined from Hooke’s law. The
strain at any distance follows from the displacement functions, as given by equations
(10.3), (10.4) and (10.5). In each of the resonator elements the stresses are:

o1(x) = —utk.E sinkx) (10.15)

o3) = wiE (e [k

sin(k1]) cos(k]l) }
m

cos(ky) — [ sm(ky)]

cos(kiy)
m

sin(ky) — cos(ky)] (10.16)

m sin(kl]) | cos(kly)
+“1Ek(1-nny)[“ m |k }

a7(z) = —ugkE sin(kz) (10.17)
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In a cylindrical resonator, resonating in the fundamental longitudinal mode, the
maximum stress & occuss in the nodal plane and equals (see equation (2.8)):

6=0kE (10.18)

Where 11 is the maximum motional amplitude in the resonator, k is the wave number
and E is Young’s modulus.

The reason why in practical engineering the mechanical stresses are to be calculated,
will be obvious. In general a tapered resonator will produce an output amplitude at a
lower stress level than a cylindrical resonator does with the same output amplitude.
The maximum possible output amplitude partly is limited by the dynamic fatigue
strength of the resonator material. In order fo evaluate the performance of the
resonator shape chosen as compared to the cylindrical shape, the shape factor has been
defined (Neppiras (1963}, Scheibener (1971)). -

q) = g ukE

{10.19)
Omax  %max

Where omax is the maximum stress in the resonator to be evaluated with an output
amplitudet. The higher a shape factor, the better the performance of the resonator
with respect to the cylindrical one. Practical values of (1) are between 1 (cylindrical)
and 3,5 (Gaussian).

Typical values for some common resonator shapes are:

- ¢ylindrical 9=1

— exponential B=152
- conical 9=152
— Gaussian 0=35

— funnelshaped 9=2-2.5

So, for a conical resonator up to 2 times higher output amplitudes can be used as
compared to the cylindrical one. For the funnel-shaped resonator the shape factor
has to be calculated numerically for each dimension specifically from equations
(10.15), (10.16), (10.17) and (10.19).

104 Dimensioning of funnel-shaped resonators

The sotutions of the frequency equation, the amplitude gain and the shape factor can
be computed numerically. Normally one will calculate the resonator length 1, the
amplitude gain M and the shape factor, while the diameter ratio N and lengths 1} and
17 of the cylindrical parts, the design frequency f and the elastic properties of the
material are given. It is of great advantage to represent the solutions graphically with
non-dimensional parameters, useful for a broad range of the parameters.

All length dimensions can be normalized with respect to the length of the half-wave-
length resonator of cylindrical shape (1= 2%: orl= %} (see chapter 2).
In this way both material properties and frequency vanish.
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In figures 104 and 10.5 the non-dimensional resonator length—l;—lis shown versus the
length of the second cylindrical part

}(;«2— for various values of the diameter ratio N (N=1 to 8).
The length of the first cylindrical part kwl is kept constant.

. xl ,
In figure (10.4)71- =02 and in figure (1045).]‘—:71 =035.

In the same figures the amplitude gain M and the shape factor $ are shown too. With
the aid of these figures one can easily find the resonator dimensions in order to
optimize the shape factor & The resonator length and the amplitude gain can be
chosen over a large range. It was found in practice that with only a few fixed values
kI
K3
application.

The maximum shape factor attainable is about § = 2.6, which confirms the superiority
of the funnel-shaped over the cylindrical or stepped cylindrical shaped resonators.

the designer has enough freedom fo find adequate resonator parameters for his

10.5 Experimental verifications

To verify the calculations, a multiple resonator system was designed comprising 4
funnel-shaped resonators. Figure 10.6 shows these four resonators (material
Aluminium ¢ = 5200 m/s, frequency f = 20 kHz). The length and diameter of the first
cylindrical part was kept constant, while the diameter ratio N and the length of the
second cylindrical part were varied. The difference in length is up to 47 mm, while
the amplitude gain of all of them is 4. The resonance frequency of these resonators
was measured; the difference with respect to the design frequency can be explained by
the presence of a threated hole at the input side, by means of which they are coupled
to the base resonator (the shift was calculated to be about 800 Hz).

The measurements of the amplitude gain showed M = 4 for all resonators.

The results are summarized below (table 10.1).

Resonator | Diameter | Totallength | Amplitude | Shape factor ¢ | Measured
ratio gain | frequency

(-} (mm) () =) {kHz)

1 375 160.0 394 2.0 20.77

2 20 1533 4.04 1.82 2091

3 2.31 1346 4,05 1.12 20.69

4 231 113.0 4.05 1 20,65

Table 10.1 Caiculated length, amplitude gain and shape factor for 4 funnel-shaped
resonators designed for 20 kHz application; the measured frequencies are
listed.

The shape factor 0 is between 1 and 2, indicating that it is not possible to optimize the
resonator to meet the design requirements, and to keep the shape factor optimum too.
The shape of resonator | allows twice as high amplitudes as the shape of resonator 4,
with respect to the maximum mechanical stress.
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Fig. 10.4 Non-dimensional representation of the funnel-shaped resonator parameters

for various values of the diameter ratio N = fii The cylindrical part of
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Fig. 10.4 Non-dimensional representation of the funnel-shaped resonator parameters

for various values of diameter vatio N =

%; the cylindrical part of length 1} is

kept constant: %1— = (.35, the amplitude gain M; shape factor é
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Fig. 10.6 Four resonators with different length (in mm) and equal amplitude gain
(diameter dj = 30 mm and length 1] = 25 mm for all; the length 13 are:
15 mm, 24 mm, 43 mm and 63 mm respectively).

106 Additional tuning of the resonators

Finally, it is to be discussed how a resonator can be tuned once it has been made.
Sometimes, the actual resonance frequency is below the operating frequency of the
welding apparatus (whether by coincidence or by the designers choice). In other cases
one wants to know what effect is to be expected when the resonator is shortened
during the design or as a result of wear effects. Figure 10.7 shows the change in
resonance frequency and amplitude gain when the cylindrical parts of the resonator
are shortened by an amount Al, as caleulated from equations (10.11) and (10.14).
Shortening of the cylinder with the siallest diameter results into the strongest
frequency raise and decrease of the amplitude gain. Shortening of the cylinder with
the large diameter hardly does change the amplitude gain, and has a much smaller
effect on the frequency raise.
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Fig. 10.7 Effect of shortening the cylindrical parts of the funnel-shaped resonator by an
amount Al on the amplitude gain M, (——): small cylinder (— — —): large cylinder.
(Aluminium ¢ = 5200 mjs, =20 kHz, I} = 30 nun, 1> = 30 mm, d; = 40 mm,
dp =13 mm) (see figure 10.3).

10.7 Conclusions

The funnel-shaped resonator is very adequate for application in multiple resonator
systems. Its geometry allows the designer enough freedom to meet the design require-
ments of specified frequency, length and amplitude gain. The results were presented
graphically with non-dimensional parameters. The theory is accurate, so that no
additional tuning of the resonators is required.
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SUMMARY

Ultrasonic welding is a widely used technique for the assembly of thermoplastic
product parts. A weld is created by local melting by the absorption of mechanical
vibrations at an ultrasonic frequency (mostly 20 kHz) with amplitudes of 10 to 50 um.
A tool is used to transmit the vibrations from the transducer of a welding apparatus

to the product parts. Tools are very often shaped as tapered rods and are designed to
resonate in the length direction in the fundamental longitudinal mode of vibration
(half-wavelength resonator). The design causes no problems if the lateral dimensions
are small compared to the length. Usually, for cylinders the length to diameter ratio is
L/D =25 44, and the maximum productsize is then limited to 50-60 mm diameter.
There is however, a great number of important applications that requires much larger
tool dimensions, and then difficulties are encountered in designing tools properly.

It is the aim of the present work to study and describe the problems encountered in
designing ultrasonic resonators with large dimensions (wide output cross-sections) and
to elaborate design principles that can overcome at least part of the present limitations
which prevent a full exploitation of the technique of ultrasonic plastic welding. Up to
now resonators are almost always designed at a trial and error approach, and the results
are not always very successful.

For an optimum operation a resonator has to meet the following design requirements.
The shape of the products to be welded prescribes the dimensions of the output surface.
The resonance frequency must coincide with the operating frequency of the welding
apparatus. In order to transmit vibrational energy to the welding process adequately,
the resonator must vibrate in a mode with a uniform amplitude along the output
surface to guarantee a constant energy input {at least 90% uniformity is required).

The same holds for the area of the input surface at which it is coupled to the
transducer.

As appeared from the analysis of a large number of existing resonators, it followed that
wide output resonators are typically not operated in the mode of vibration
corresponding to the lowest resonance frequency. Mostly a very specific higher order
vibrational mode will meet the design requirements and sometimes an acceptable mode
does not exist at all. For reliable operation of the vibrating system, the resonance
frequency of other modes should not be in a 1 kHz bandwidth around the operating
frequency. If not, interferences of modes can occur and difficulties are met in tuning
the ultrasonic generator to the operating frequency.

The wide variety of resonator geometry that is used, could be classified into three
basical shapes: the blade-ike, the block-like and the cylindrical type resonator. These
shapes have been analysed in the present work.

To begin with, the vibrational characteristics of solid resonators of elementary shape
(cylinder and rectangular block) have been studied to evaluate up to what dimensions
they can be used as resonators that meet the design requirements. Approximate
theories have been derived to calculate the resonance conditions for the fundamental
longitudinal mode of vibration. At 20 kHz cylinders up to 70 mm diameter show a
uniformity of the outpui amplitude of at least 90%. Above this dimension the
resonator has to be provided with slots, bores or cut-outs to compensate for Poisson’s
coupling to obtain a uniform output amplitude.
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For wide resonators various measures can be taken. As there is no literature
available, patent publications have been reviewed. Valuable information can be
derived from it on design principles and on how to improve the uniformity of the
output amplitude.

To study the problems in designing a wide output resonator, the optimization of a
131 mm wide blade-ike resonator has been described. On account of the
interpretation of the measurements of resonance frequencies and modes of vibration,
the resonator was optimized by providing slots and various cut-outs.

The effect of coupling the resonator to the transduder of a welding apparaturs, on the
presence of unwanted (spurious) modes has been demonstrated.

A finite element analysis was used to optimize the same resonator, in order to study
the practicalability of this method. Although the finite element analysis was in
excellent agreement with the experiments (and finally resulted into a well-designed
resonator), the success of it strongly depends on how good the first “shot™ is to
determine the overall dimensions of the resonator.

Therefore, formulae have been derived to calculate the resonance conditions for the
desired mode of vibration in the wide output resonators of the three basical shapes.
Experiments confirmed the validity of the approximate theory. Once the overall
dimensions are determined, the finite element analysis must be used to calculate the
resonance frequencies of other modes of vibration, close to the operating frequency.
Results show that there are critical dimensions for the slots in a blade-like resonator.
There is only a specific range of slot dimensions for which an output amplitude of
acceptable uniformity can be obtained and for which the frequency of spurious modes
is out of the 1 kHz range about the operating frequency.

Finally, an interesting field of applications for wide output resonators is discussed.
They often are used to serve as a "base” to transmit vibrational energy to a plurality
of tools (halfwavelength resonators of the slender rod type) attached to it. Mostly
they are used for welding in products at different height levels or with different
amplitudes. The so-called “funnel-shaped” resonator can be designed as a half-
wavelength resonator with a specified amplitude gain and a specified length at a fixed
resonance frequency. The results of the calculations have been presented graphically
with non-dimensional parameters allowing use in a broad range of applications,

This study has demonstrated that the design of ultrasonic resonators with wide output
cross-sections is of such a complexity that creating an efficient resonator at a trial and
error approach will always be some kind of an art. The design, however, can be
checked by calculation. Despite many unexpected problems encountered in resonator
design, the phenomena always can be described in terms of resonance frequencies,
modes of vibrations and mechanical stresses, no matter the complexity of the resonator
geometry. With basic knowledge of the vibrations of bodies and the effect of

coupling resonators to a transducer of a welding apparatus, the finite element method
is an invaluable tool for designing resonators at an acceptable cost level.
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SAMENVATTING

Het ultrasoon lassen van produktdelen vit thermoplastische kunststoffen wordt al
twee decennia op industriele schaal toegepast. Een las wordt gevormd door locale
verweking van de kunststof t.g.v. de absorptie van mechanische trillingen met een
frequentie in het ultrasone gebied (meestal 20 kHz) en bij amplitudes tussen 10 en 50
pm. De mechanische trillingen worden gegenereerd in de transducer van een
ultrasoon lasapparaat. Een speciaal gereedschap (meestal sonotrode of resonator
genaamd) geleidt de trillingen van de transducer naar de te lassen produktdelen.
Verreweg de meeste sonotrodes hebben de vorm van een taps uitlopende slanke staaf,
welke in de lengterichting in the laagste trillingsvorm wordt aangestoten, De
aanstootfrequentie is de resonantiefrequentie van deze trillingsvorm (de sonotrodes
noemt men vaak halve-golflengte resonatoren). Het ontwerpen van sonotrodes levert
geen problemen op wanneer de dwarsafmetingen klein zijn t.o.v. de lengte.
Cylindrische sonotrodes hebben veelal een lengte-diameter verhouding L/D =2 44, en
de maximale diameter die nog bruikbaar is bedraagt 50 2 60 mm. Er is echter een
groot aantal toepassingen waarvoor veel grotere sonotrode afmetingen vereist zijn.
Juist het optimaal vormgeven van sonotrodes met grote dwarsafmetingen geeft veel
problemen.

In dit proefschrift worden de problemen die kunnen optreden bij het ontwerpen van
sonotrodes met grote dwarsafmetingen bestudeerd. Hierbij wordt er naar gestreefd om
m.b.v. ontwerpregels in ieder geval een deel van de huidige beperkingen weg te nemen
die een optimaal gebruik van het ultrasoon kunststoflassen in de weg staan. Tot op
heden worden sonotrodes via trial and error ontworpen; dif leidt zelden tot een
bevredigend resultaat.

Een optimale sonotrode moet aan de volgende ontwerpcriteria voldoen. De vorm van
de te lassen produktdelen bepaalt de dimensies van het lasviak van de sonotrode
(uitgangsoppervlak). De resonantiefrequentie moet gelijk ziin aan die van de
transducer van het lasapparaat. Voor een gelijkmatige overdracht van trillingsenergie
van de sonotrode naar de te lassen produktdelen, moet de sonotrode resoneren in een
eigentrillingsvorm waarvan de trillingsamplitude over het gehele lasvlak constant van
grootte is (tenminste 90% uniformiteit is vereist). Ook aan het koppelviak van de
sonotrode met de transducer moet de sonotrode een vlakke amplitudeverdeling
hebben.

Uit de analyse van een groot aantal bestaande sonotrodes kan worden geconcludeerd
dat voor sonotrodes met grote dwarsafmetingen zelden de trillingsvorm wordt gebruikt
die behoort bij de laagste resonantiefrequentie. Meestal voldoet slechts één zeer
bepaalde hogere orde trillingsvorm aan de ontwerpcriteria en soms blijkt bij een
gegeven sonotrodevorm geen geschikte trillingsvorm te bestaan. Het blijkt dat de
stabiliteit van het ultrasoon resonerend systeem (transducer en sonotrode) gewaar-
borgd is wanneer de sonotrode geen andere resonantiefrequenties heeft binnen een
bandbreedte van * 1 kHz rond de werkfrequentie. Zo kan worden voorkomen dat
trillingsvormen interfereren of moeilijjkheden ontstaan bij het afstemmen van de
ultrasone frequentiegenerator op de resonantiefrequentie van het resonerend systeem.

Er is een grote varteteit aan sonotrodevormen welke in drie basisvormen kunnen
worden ingedeeld: de balk-vorm (blade-like), de blok-vorm (block-like) en de
cylindrische vorm (cylindrical-type). Deze drie basisvormen worden in dit proefschrift
besproken. :
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Zowel analytisch als experimenteel is uitvoerig onderzocht tot welke afmetingen
sonotrodes met een cirkelvormige en rechthoekige doorsnede gebruikt kunnen worden
in overcenstemming met de ontwerpcriferia. Er zijn benaderingsformules afgeleid
waarmee de resonantiefrequentie voor de longitudinale trillingsvorm in deze sonotrodes
kan worden berekend. Cilindrische sonotrodes geven tot een diameter van 70 mm bij
een frequentie van 20 kHz, aan het lasvlak een uniformiteit van de trillingsamplitude
van tenminste 90%. Voor grotere diameters moeten geometriewijzigingen aangebracht
worden in de vorm van sleuven, gaten of zaagsnedes teneinde de trillingsvorm zodanig
te beinvioeden dat een uniforme uitgangsamplitude verkregen wordt.

Diverse maatregelen kunnen getroffen worden om de trillingsvorm te beinvloeden.
Aangezien over dit onderwerp géén literatuur bekend is, zijn patentpublicaties
geanalyseerd. Hier kan bruikbare informatie worden afgeleid t.a.v. ontwerpmethodes.

Aan de hand van de optimalisatic van een 131 mm brede balk-vormige (blade-like)
sonotrode, zijn de problemen die optreden bij het ontwerpen ervan uitvoerig
beschreven. Op grond van de interpretatie van de gemeten resonantiefrequenties en
de bijbehorende trillingsvormen, kon een goed werkende sonotrode gemaakt worden
door het aanbrengen van sleuven en diverse zaagsnedes in het sonotrode oppervlak.
0ok het effekt van het koppelen van een sonotrode aan een transducer van een las-
apparaat op de aanwezigheid van ongewenste resonantiefrequenties in de buurt van de
werkfrequentie is onderzocht. Met behulp van een eindige elementen analyse zijn van
dezelfde sonotrode de frequenties en trillingsvormen berekend. Ofschoon de resuitaten
van de eindige elementen analyse zeer goed overeenstemden met de experimenten, en
ofschoon ook hiermee uiteindelijk een optimale sonotrodevorm werd verkregen, is het
succes van deze analyse er sterk afhankelijk van hoe goed men in eerste instantie er

in slaagt de globale sonotrode afmetingen te bepalen.

Voor de drie basisvormen van sonotrodes met grote dwarsafmetingen zijn formules
afgeleid waarmee de resonantiecondities voor de gewenste trillingsvorm voor een
willekeurige werkfrequentie kunnen worden bepaald. Experimenten bevestigen de
geldigheid van de gepresenteerde formules. Wanneer de hoofdafmetingen van de
sonotrodes berekend zijn, moeten met een eindige elementen analyse de resonantie-
frequenties van andere trillingsvormen worden bepaald om te kunnen becordelen of
deze te dicht bij de werkfrequentie liggen. Een analyse van de invioed van de sleuf-
lengte in een balk-vormige sonotrode (blade-like) laat zien dat er kritische sleufafme-
tingen zijn. Slechts voor enkele sleufafmetingen verkrijgt men een trillingsvorm met
een uniforme uitgangsamplitude, waarbij bovendien de resonantiefrequenties van
ongewenste trillingsvormen buiten de | kHz bandbreedte rond de werkfrequentie
liggen.

Tenslotte wordt een belangrijk toepassingsgebied voor sonotrodes met grote
dwarsafmetingen behandeld. Dergelijke sonotrodes worden vaak gebruikt als
“moeder”-sonotrode (base), waaraan meerdere slankeisonotrodes gekoppeld ziin
(halve-golfiengte resonatoren). Deze worden gebruikt om te lassen in produkten
waarin grote hoogteverschillen overbrugd moeten worden, of wanneer plaatselijk veel
grotere trillingsamplitudes gewenst zijn. De zogenaamde " funnel-shaped” sonotrode
biedt de mogelijkheid halve-golfiengte resonatoren te construeren waarvoor de
amplitude transformatie en de lengte voorgeschreven kunnen worden bij een gegeven
werkfrequentie. De resultaten van berekeningen zijn grafisch weergegeven met daarin
dimensieloze parameters, zodat deze geschikt ziin voor het dimensioneren van
sonotrodes voor een breed toepassingsgebied.
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Uit deze studie volgt dat het ontwerpen van sonotrodes met grote dwarsafmetingen
zodanig complex is, dat het optimaliseren van een sonotrode op een trial and error
benadering stellig als een niet overdraagbare vorm van vakmanschap kan worden
beschouwd. Ondanks de vele onverwachte problemen die men tegenkomt bij het
optimaliseren van grote sonotrodes, is het zeer wel mogelijk de verschijnselen te
beschrijven in termen van resonantiefrequenties, trillingsvormen en mechanische
spanningen, ongeacht de complexiteit van de sonotrodegeometrie.

Wanneer voldoende basiskennis aanwezig is over het trillingsgedrag van constructies
waarvan de afmetingen in ordegrootte gelijk zijn aan de golflengte van de erin
opgewekte trillingen, en over het effekt van het koppelen van een sonotrode aan de
transducer van een lasapparaat is een analyse met behulp van de eindige elementen-
methoden van grote waarde om sonotrodes te kunnen ontwerpen tegen acceptabele
kosten.
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APPENDIX 1

The design of a block-like resonator

As discussed in chapter 8, the resonance conditions for a block-like resonator, vibrating
in a longitudinal mode, can be calculated from equation (8.12). The actual design and
optimization of such a resonator will be discussed in more detail here. The product
size requires a block-like resonator of about 100 mm thickness and 175 mm width. As
it has to be designed for application at 20 kHz, the length will be about 120 mm
(equation 8.12). In order to match the output surface to the shape of the product
parts to be welded, a profile is needed, 5 mm high, 10 mm wide, along the
circumference of the output surface, and with a total iength of 500 mm. See figure
A.1. The resonator will be machined starting from a block of 110 * 182 % 125 mm?,
provided with slots 12 mm wide and 71 mm long (two in the thickness direction, one
in the width direction). The resonator is an aluminium alloy (see table 2.1,

The resonance frequencies of the resonator were measured with the aid of two
vibration detectors, placed opposite to each other near the centre of the input and
output surface respectively. In a 5 kHz range around 20 kHz, 4 frequencies are
detected: f] = 17.14, f3 = 19.18, f3 = 21.20 and f4 = 21.33 kHz.

The longitudinal mode is resonating at 19.18 kHz. When the profile at the output
surface is machined, the mass of the removed material causes an increase of the
frequency, which amounts to: + (5.110.182 — 5.500.10)/(110.182.125) * 19,18 =
576 Hz. .

The measurement showed: {1 = 17.65, f3 = 19.74, f3 = 21.55, f4 = 22.84 kHz. The
increase of f coincides fairly well with the predicted value.

When the resonator is coupled to the transducer of a welding apparatus of 20.3 kHz,
again 4 resonance frequencies (measured at the electrical terminals of the transducer)
can be detected: f1, = 17.38, fo. = 19.75, f,3 = 20.03 and {4, = 21.90 kHz. Only

fe2 = 19.75 kHz could be tuned to. At f3; = 20.03 kHz the resonance is accompanied
by a very high damping. Both f}. and f4. are out of the range of the generator.

In order to raise the longitudinal mode frequency close to 20 kHz the length was
shortened by 1 mm (length = 119 mm). The frequencies became {1 = 17.70,
f7=19.99,f3=21.62 and f4 = 22.82 kHz. Again, when coupled to the transducer,
only the longitudinal mode could be tuned fo; there are: . = 17.48, fy. = 19.86,
f30.=1998,f4,=21.88 kHz.

Although the resonance frequency f3, = 19.98 kHz could not be tuned to, it has to be
expected that it can influence the longitudinal mode because the frequency difference
between the two is small. It certainly will determine the stability of the system during
welding. For, in general, the system resonance frequency changes under the variable
load and an interference can occur.

The vibrational mode of the longitudinal vibration at 19.86 kHz was measured
optically with a Fotonic Sensor, while the resonator was activated at 10 um input
amplitude. This way of measurement gives only the components of the amplitude
perpendicular to the surface. In order to visualize and facilitate the interpretation of
the modes, they were calculated by interpolation between a limited number of
measurements. Figure A.2 shows the vibrational mode of the three surfaces as
measured. From the measurements it followed that in this case the amplitudes on the
surfaces were symmetrical with respect to the axes of symmetry of the resonator.
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The modes of figure A.2 can be used to compose the overall vibrational mode of the
resonator. See figure A3. For convenience and better interpretation projections of
this overall mode are shown in figure A.4. From this analysis one can conclude that
the resonator is vibrating in a “’longitudinal” mode indeed. However, there is some
spurious mode coupled to it, resulting in the amplitudes observed on the side surfaces.
At output surface 3 the amplitudes are not constant; the difference between the
smallest and largest value is 40%, which is too high. At side 2 (figure A.2) a mode with
a compressional phase and an extensional phase is observed, whereas at side 1, an
almost completely compressional mode is present. These are not observed for a
normal ”longtudinal” mode. As the amplitudes are large as compared to the input
amplitude (37% and 60% resp. for sides 1 and 2) this resonator is not acceptable for
good operation.

As described above, the frequencies are measured using two vibration detectors,
placed opposite to each other near the centre of the input and output surface.
However it was demonstrated in chapter 7, that in this way some vibrational modes
can be overlooked. In order to check the presence of more resonances, the resonator
was suspended onto thin wires, while its frequency spectrum was measured with the
vibration detectors placed at various locations on the input and output surface and on
the lateral surfaces.

At some locations resonance frequencies did disappear, at others they were present and
showed strong amplitudes. Now, frequencies could be detected at: f1 = 17.70,

fy =18.13,13 =19.52, f4 = 19.80, f5 = 19.99, fg = 20.98, f7 = 21.62 kHz. Clearly,
some frequencies had been overlooked in the previous analysis. Figure A.5 shows
schematically what kind of modes correspond to the frequencies in the range of
interest. Obviously the modes at f4 = 19.80 and f5 = 19.99 kHz do interfere when the
resonator is coupled to the transducer at f = 19.86 kHz (compare figures A3 and A4 to
A5).

The mode at f4 = 19.80 kHz has no significant amplitudes of motion at the input
surface, and therefore cannot be activated with the transducer as such (it can neither
be detected by the vibration detectors when placed at the input and output surfaces).
The same holds for f3 = 19.52 kHz.

The next step in the tuning procedure was to eliminate the mode as shown in

figure A.5b. Clearly its resonance frequency depends on the resonator thickness, as it
is a compressional mode in this direction. At both width-sides 3.5 mm of material was
removed. The thickness was reduced to 103 mm. The frequencies detected are:

f1 =18.03,fy =19.20, f3 =20.00, f4 = 20.30, f5 = 20.78 and fg = 21.43 kHz.

At f3 = 20.00 kHz, the “longitudinal” mode is in resonance (figure A.5c).

At f4 = 20.3 kHz a mode of complex shape is observed with no motion at the input
surface, identical with that in figure A.5a. When coupled to a transducer, the
frequency spectrum revealed no twin-resonances in the 18 to 22 kHz range; there are:
f1¢=19.96 kHz and f), = 21.19 kHz. Measurements of the overall mode at f =
19.96 kHz at 10 um input amplitude, only small amplitudes at theside surface could be
measured (maximum 12% of the input amplitude). At the output surface the
difference in amplitude was smaller than 20%. The mode at f4 = 20.30 kHz did not
couple to the one at f3 20.00 kHz.
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As a conclusion, by changing the thickness from 110 to 103 mm, the coupling of a
spurious mode to the "longitudinal’” one was eliminated, whilst the resonance
frequency of the latter hardly changed, and other modes did not move towards this
one.

In general the length dimensions of the resonator after tuning will fairly well coincide
with those predicted from he elementary theory (chapter 8). The coupling of spurious
modes however, depends on the overall dimensions and the presence of profiles and
such. For each application individually, it has to be analysed how close spurious
modes are to the “longitudinal” mode and what distortion of this mode is the result.

output surface

]/
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// 12
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g B= 182

Fig. A.1 A block-ike resonator of 110 * 182 mm? output surface, with a profile,
5 mm high, 10 mm wide and 500 mm long. The slots are 12 mm wide and
71 mm high.
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Fig. A4 Projections of the mode shape of the surfaces as determined from fig. A.3.
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a. f3=19.52 kHz
b. f4=19.80 kHz
c. fs = 19.99 kHz

Fig. A.5 Modes of vibration for various resonance frequencies {(schematically)
obtained from a point by point analysis of the frequency spectrum of the
resonator (the resonator overall dimensions are length L = 119 mm,
width B = 182 mm, thickness R = 103 mm).
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APPENDIX 2

Rayleigh’s correction to the wave propagation velocity

The propagation of longitudinal waves in slender rods was explained in chapter 2.

As long as the wavelength of the propagating wave is long as compared to the lateral
dimensions of the rod, the finiteness of these dimensions are not taken into account.
Lord Rayleigh presented a formula for the calculation of the wave propagation
velocity which corrects for the effect of lateral motion. Due to Poisson’s contraction
the wave propagation is accompanied by lateral motion resulting into a decrease of
this velocity. The derivation of the correction formula is presented here.

Rayleigh’s energy method learns that the resonance frequency of a vibrating system

can be approximated from the consideration that the total energy in the system remains
constant. So the maximum kinetic energy and the maximum potential energy must be
equal (in the case of the harmonic vibrations assumed for the vibrating rod):

Up = Uy (A2.D)

The kinetic energy stored in the vibrating rod as shown in figure (A2.I) (see also
chapter 2) follows from the displacement function of the axial motion w{(z).

The particle velocity in axial direction follows from w(z) by multiplification with the
angular frequency w.

The axial displacement equals (see equation 2.4):

w(z) = wg cos(kz) (A2.2)

Where w, is the maximum amplitude of motion, The maximum kinetic energy follows
from integration over the rod:

1d/2

U= f 7T %—p 2ar w? w¥(z) dr dz ' (A2.3)
00

or

Uy = l—lé—s:poﬁ a2 1wg? (A2.4)

Identicalty it can be shown that the maximum potential energy equals:

Up = flg 7 EK? d? Jwy? (A2.5)
Equating (A2.4) and (A2.5) results into the well-’known relation k = %

We will now consider the contribution of radial motions to the kinetic and potential
energy.

The radial stresses o; in the vibrating rod of radius %— and length | (figure A2.1) are
neglectable compared to the axial stresses ,. From Hooke’s law it follows that at
distance z the radial strain e{z) is related to the axial strain ¢2(2) by:

er(z) = — v €2(z) (A2.6)
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Fig. A2.1 Slender rod resonator of constant cross-section of diameter d and length |

The radial displacement u(z,r) at distance z and radius r can be approximated by:

u(zr) = efz) . r (A2.7)
So, in radial direction the motion does contribute to the kinetic energy of the vibrating
rod. Because of the zero radial stress, there is no contribution to the potential energy.
The displacement in radial direction can be calculated from {A2.2), (A2.6) and (A2.7).
u(z,r) = — vk wgsin(kz) (A2.8)

The contribution of the radial motion to the kinetic energy df!k follows by integration
over the rod:

X 1 d/2,
dUg =/ [ 5p2mrwiui(z) drdz (A2.9)
00
or
Uy = I;—Sp 70 w?k? d* 1wy? (A2.10)

By equating the potential and kinetic energy (Up = ﬁk + dUk), the angular frequency
w’ can be calculated from (A2.4), (A2.5) and (A2.10):

o _ Ek?

1

e (A2.11)
94_8_‘092 k2 d2

Clearly the radial motion results into a decrease of the resonance frequency of the
vibrating rod. For a given rod of length 1, the relation between angular frequency w,
wave propagation velocity ¢ and length 1 are (equations 2.3 and 2.5):

w =T (A2.12)
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A decrease of the resonance frequency is physically identical to a decrease of the
velocity c. The corrected velocity ¢” due to radial motion in the vibrating rod follows

from (A2.11) and (A2.12) (using k = “-and c = %):

it

ele

’ I
- e A2.13
e A ety

cl“,

This equation can be linearized by the fact that L2 &2 42 is small for the half-
wavelength resonator (d €1). So, (A2.13) can be re-written:

== 1 -—ilgvz k* @2 (A2.14)

This equation gives the Rayleigh correction to the wave propagation velocity of
longitudinal waves in rods.
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APPENDIX 3

Wide output resonator according to Stepanenko (1979)

A very wide output resonator of the blade-like type as described by Stepanenko, is
shown in the figure below. The resonators consist of a number of half-wavelength
resonators of width b = = 100 mm, and of length I = 120 mm. The resonators are
coupled through bridging elements at both free ends, and in the midplane where the
lateral motion is maximum. Each resonator is provided with a transducer, the
locations of which are shown in the figure below. A total width of * 800 mm was

achieved,

. . input
coupling of ultrasonic transducers surface

I {M“ﬁ‘"“—
T ——
f
]
]
i
I
1=% 120 mm

D e -

_%-
5
|
i

+ 800 mm slots | _output surface

Fig. A3.1

Resonator for generating longitudinal vibiations, with a very wide output
cross-section (typical dimension for f = 20 kHz); transducers are placed as
shown over the entire input surface.
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De laszijde van een ultrasoon lasgereedschap moet (ten behoeve van een
optimale werking) over het gehele gebruikte oppervlak een amplitude hebben
die nagenoeg constant van grootte is en in fase. De aanduiding "longitudinale
trillingsvorm voor de hierbij behorende toestand is uiterst misleidend, wanneer
dit gereedschap grote dwarsafmetingen heeft. Veel logischer is de aanduiding
“trillingsvorm met een uniforme uitgangsamplitude”.

»y

Dit proefschrift, hoofdstuk 9

De door Stepanenko voorgestelde methode om sleuven aan te brengen in een
ultrasoon lasgereedschap met grote dwarsafmetingen is principieel ongeschikt
om een uitgangsamplitude te verkrijgen die constant van grootte is over het
2ehele opperviak,

Stepanenko, A V.. Russian Ultrasoncis,
1979, pp. 178-182

Bij het ultrasoon metaallassen maakt men vaak gebruik van cen lasgereedschap
dat in een buigtrillingsvorm wordt aangestoten. In tegenstelling tot hetgeen
noodzakelijk is bij het ultrasoon kunststoflassen, dient bij deze vorm van
metaallassen het lasgereedschap bij voorkeur nief in één van de resonantie-
frequenties te worden aangestoten.

Derks, P.: Tool design for ultrasonic metal welding,
Seminar Welding Inst., Coventry, 1982

De conclusie van Potente, dat zeer dunne kunststoffolies (< 100 um) alleen
goed ultrasoon lasbaar zijn, indien tussen de folie en het ondersteunend
gereedschap (lasmal) een dempende laag aangebracht wordt, is in zijn
algemeenheid onjuist.

Potente, H.: Untersuchung der Schweissbarkeit
thermoplastischer Kunststoffe mit Ultraschall,
Dissertatie, Aachen, 1971

De oversenkomst tussen het tunen van een ultrasoon lasgereedschap en het
tunen van een klok houdt niet in dat het resultaat even mooi klinkt.

Perrin, T. and Charnley, T.: Normal modes of the
modern English church bell, Journal of Sound and
Vibration, 90 (1983) 1, pp. 29-40.

Calon, G.: Afstudeerversiag, HTS Eindhoven, 1984



Dit proefschrift heeft ertoe bijgedragen dat ultrasone lasgereedschappen op een
efficientere wijze kunnen worden ontworpen, dan volgens deze variant op
Wyskowski's tweede wet: “Any resonator can be made to work, if you fiddle
with it long enough”.

Arthur Bloch: Murphy s law and ether reasons why
things go wrong (1983)

Bij het reinigen van produkien op industriéle schaal is de keuze voor een ulira-
soon reinigingssysteem geen excuus voor een gebrek aan kennis van het
reinigingsprobleem zelf.

Uit historisch oogpunt is het onjuist water-, wind-en zonne-energie aan te
duiden als alternatieve energiebronnen.

Een weggebruiker is zinvoller geinformeerd over de ellende bij een verkeers-
knooppunt door een schatting van de tijd die extra nodig is om dat punt te
passeren dan door de lengte van de file.

Dagelijkse verkeersinformatie



