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1. INTRODUCTION 

1.1. Ristorical aspects 

The high-power uses of ultrasonics are generally believed to be rooted to the invention 
of sonar in 1917 (Langevin). The spectacular effects of high-power ultrasonics on 
various processes as first described by Wood and Loomis in 1927, induced many 
scientific research activities on dispersion, coagulation action, chemica! and biologica! 
effects and cavitation. Not until 1950 did a burst of activity in high-power ultrasonîcs, 
such as cleaning and machining, advance from Iabaratory phenomena to industrial 
applications (Graff (1977)). A great breakthrough was made possible by the develop· 
ment of piezo-electrical crystals and of the modern efficient transducer which converts 
electrical power into mechanica! power (the prestressed sandwich transducers). 
Another major actvancement was the use of tapered halfwavelength resonators for the 
magnification of the amplitude of vibrations of the piezo-electric transducers. 
The most important applications ofhigh-intensity ultrasonics that came in accelerated 
development for industrial use since then, are drilling, cleaining, soldering, metal 
welding and plastic welding. 

High-power ultrasonics extend from somewhat above the range of human hearing into 
the megahertz range. Most industrial applications have an operating frequency 
between 20 and 60kHz with power densities at the output surface ranging from a 
few W /cm2 to several thousands of W/cm2

• At the output surface the vîbrational 
amplitudes are between 1 and 50 ~m (Hulst (1973), Thews (1975)). 

Some examples: cleaning is done at 0.5 to 3 W/cm2
, plastic welding at 10 to 50 W/cm 2 , 

drilling at 10 to 100 W/cm2 , and metal welding at 600 to 6000W/cm2 

Power ultrasonics has grown in terrus of commercial use by the seventies, although it 
was still mainly restricted to a few processes. Ultrasonic cleaning has become the 
major application (Graff ( 1977)). Unheralded by scientific publications ultrasonic 
plastic welding has become a large-scale industrial process, whereas the considerably 
researched metallurgical and me tal working processes have resulted in little (Shoh ( 1975); 
Fitzgerald ( 1980)). 

The basic studies on ultrasonic cleaning were published between 1940 and 1950. Wîth 
respect to the widespread industrial use nowadays, it is hard to envision any break­
throughs in this field (Shoh (1975)). Basic research on plastic welding has hardly been 
publisbed until 1970 (Potente ( 1971 )). Since then there appears to be a generalJack 
of interest in academie research on these applications of high power ultrasonics. One 
of the reasans was that in dustry lived very wel! with the stand of technology. lt can 
be observed in the last five years that the continuing technological developments are 
reaching the boundaries of the potentials of the ultrasonic techniques as they have 
been available up to now. Th ere is need for more baskal understanding of the 
processes and the operation of the equipment to fulfill the requirements of today. 

1.2. Principles of ultrasonic plastic welding equipment 

The essential elements of an ultrasonîc welding apparatus can beseen in Fig. l.I. 
These are: a generator, the welding press, the transducer, the boosterand the resonator 
("hom" or "sonotrode"). The generator, or power supply, converts electrical energy 
into mechanica! vibratory energy at an ultrasonic frequency by means of piezo-electric 
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elements, rigidly clamped between two metal parts in a sandwich construction. This 
type of modern transduceris wel! described in literature (Hulst (1972); Neppiras 
(1973); Maropis (1969)). The transduceris driven in a resonance frequency and the 
vibrations are generated in the length direction. The transduceris designed to vibrate 
in the fundamentallongitudinal mode, the half-wavelength mode (f../2) (this mode wil! 
bedescribed in chapter 2). The piezo:.electric elements are located adjacent the nodal 
plane where the amplitudes of motion are minimum. For welding applications the 
amplitudes of vibrations of the transducer are far too low (about I to 5 J!m). A 
booster is used to produce an amplificatîon of the amplitudes, the amount of which is 
determined by its shape (mostly the amplitudegainis between I and 4). The booster 
also is designed to vibrate in the fundamentallongitudinal mode (half-wavelength) at 
the same frequency as the transducer. They are coupled mechanically. The booster is 
fitted with a special support means at the nodal plane to allow a damping of the 
resonating system to the welding press with minimum losses (the vibrations in the 
system are nothindered by the fact that it is supported). Once the resonance 
frequency is chosen, the dimensions of the transducerand booster are fixed and so 
the location of the nodal plane. 

The resonance frequencies of ultrasonic welding systems have been standardized to 
obtain a limited range of resonating systems acco;rding to their dimensions and the 
power capability. For powers up to 3000 W the 20kHz range is used (frequency some 
value between 19 and 22kHz). For powers between 50 and 500 W the 40kHz range 
is used (frequency between 35 and 40kHz). For Iow power applications of 0.1 to 
5 W the 60kHz range is suited (frequency between 58 and 62kHz). A commercial 
ultrasonic welding system will be provided with a resonating system of one of these 
ranges and the exact resonance frequency will depend on the suppliers choice. 

The mechanica) vibratory energy is transmitted from the booster to the products to be 
welded by means of the resonator. lt is shaped and profiled such as to amplify and 
concentrate the mechanica! energy, and transruit it to the product parts in such a way 
that energy absorption in the plastic is optimised. This resonator is designed for each 
application individually according to the product shape. It is clamped to the booster 
by mechanica! means (steel bolt) and can be exchanged easily. The resonator also is 
driven in a resonance mode. lts resonance frequency must fairly well coincide with 
that of the transducer-booster assembly. If not, the resonance frequency of the 
complete system will change and the support of the booster will no Jonger be Jocated 
in the noctal plane and vibrations will be induced into the welding press (in practice a 
frequency shift of 1% can be tolerated). The design of these resonators is the subject 
of the present work. 

The resonating system is fixed in the welding press. A pneumatically controlled 
carriage system applies the resonator with some predetermined pressure to the parts to 
be welded, which are positioned into a jig or fixture. The design of adequate jigs 
greatly determines weid quality. After the pressure is applied (depending on the 
application some value between 10 and 2000 N), ultrasonic energy is generated during 
a fixed welding time, in which the thermoplastic is heated in the weid area (generally 
0.1 to 1.5 sec.). After this the parts are held tagether during the hold time to 
allow solidification of the plastic (about 0.3-1 sec.). 
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Fig. 1.1 Elementsof an ultrasonic welding system (scale about 1: 10); the lower 
drawing shows the projection of the longitudinal vibrational mode in the 
resonating systems and the location o[nodal planes; the resonator length is I. 
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The absorption of energy in the plastics is proportional to the square of the vibrational 
amplitude at the output area of the resonator (Potente ( 1971 ); Becker ( 1973)). 
Therefore at all places where the resonator is in contact with the plastic parts, the 
amplitude should be asequalas possible to guarantee a uniform energy absorption 
(deviations of maximum 10% are found acceptable). The amplitude largely 
determines the welding time needed, and it is therefore of economical interest to have 
large amplitudes. The basical problem in the present workis to design resonators 
producing uniform output amplitudes along the output surface. 

The pressure has only a smal! influence on the welding time, but rather deterrnines the 
coupling between resonator and product, and so the effectiveness of energy 
transmission (Kröbe (1980); Denys (1967)). 

The energy absorption in the thermoplastic parts is proportional to the frequency of 
the generated vibrations (Potente (1971)). Once a welding system has been chosen out 
of the range 20, 40 or 60 kHz, the frequency is within a I 0% range a bout these values. 
Therefore the actual resonance frequency is nota critica! design parameter for the 
welding process. 

As a conclusion, the design of resonators is concemed with the vibrational mode from 
the point of view ofthe welding process and energy transmission, and with the 
resonance frequency from the point of view of a loss-free coupling of the vibrating 
system to the welding press through the support of the booster. 

1.3. Aim of the present work 

In ultrasonic plastic welding the most vita! part is the welding tooi (orten called 
resonator, hom, sonotrode or velocity transformer). Each tool is designed specifically, 
based on the required application. The design of half-wavelength resonating tools has 
been extensively described in literature up to now, as far as the lateral dimensions are 
smal! as compared to the length which is determined by the wavelength in that specific 
material (sec Figure !.1) (Merkulov (1957); Neppiras (1977) (1963); Coy (1974)). 
One of the problems encountered in tooi design is the occurrance of unwanted 
supurious vibrational modes when any of the lateral dimensions exceeds the half­
wavelength (r .. /2) (Crawford ( 1969); Stafford ( 1979)). 

In the present work all resonators having at least one of the lateral dimensions (more 
speciftcally the dimensions of the output surf ace) exceeding one third of the wave­
length C/1./3), will be called resonators with wide output cross-sections. 

The design of resonators with wide output cross-sections is hardly described in 
literature. An attempt was made by Stepanenko ( 1979) to calculate the resonance 
condition fora set of mechanically coupled resonators, producing thus very wide 
output cross-sections (output surface of 8100 mm width). It is, however, not 
generally applicable for designing ultrasonic resonators, because the theory is not 
basedon the requirements as to obtain a uniform output-amplitude (the measured 
difference between minimum and maximum amplitude was 30%) (see appendix 3). 

Although widely used in plastic welding applications, the design of these tools remains 
the domain of a few very experienced people, resulting in statements like in 
J akubowski's paper "Translating an art into sound design principles" ( 1972). 



Shoh (1975) stated that further developments in ultrasonic plastic welding were to be 
expected in the area of hom impravement to ex pand size and wear. 

Problems that are often met in resonator design are: 
impraper weldingor poor energy transmission to the process; 
short toollife (failure due to fatigue); 
noise produced during welding is unacceptable; 
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the Jack of thorough knowledge of design principles tums the devicing of resonators 
into a very expensive business. 

The present study is based on the conviction that ultrasonic plastic welding is still a 
very promising technology and wil! remain sa for a long time. lntegration of it in 
modern manufacturing processes can only tally with quality impravement programs 
when there is sufficient knowledge of the processitself and of allaspects of tooi design. 

The aim of this study is the description of the problems encountered in tooi design and 
elaboration of the design principles that will take away the limitations which prevent 
full exploitation of the technology. 

In all papers on resonator design, the vibrations in the resonator are studied for the 
case where there is na load applied (the freely vibrating resonator). Under welding 
conditions the vibrations are damped due to the load of the welding process. There is, 
however no realistic model available to describe the complex situation under laad. 
From own experiments on the measurement of the amplitudes of vibrations in a 
resonator under welding conditions, it is observed that the amplitude sametimes can 
deercase (it also depends on the power supply that is used). Ho wever, the mode of the 
vibrations ofthe resonator does nat change, so that it can be considered identical to 
that of the freely vibrating resonator. In the next only freely vibrating 
resonators will be analyzed. 

In chapter 2 the basic theory of half-wavelength resonators will be discussed and some 
remarks are made to the analysis of ultrasonic vibrations. 

In chapter 3 the dimensions and shapes of resonators that are currently used will be 
classified. Based on own experiences, an analysis of the problems encountered when 
designing resonating tools is set up in termsof the vibrational modes and resonance 
frequencies. 

The in formation on the design principles for wide output resonators that is available 
from patent literature is summarized in chapter 4. Of interest is to learn what kind of 
geometry changescan be used to imprave the performance of a resonator. 

In chapter 5 and 6 the applicability of solid cylindrical and rectangular resonators is 
studied extensively. It is investigated both analytically and experimentallyup to 
what dimensions resonators of these basical shapes can be used for welding 
applications without providing slots, cut-outs etc. The literature on the vibrations in 
cylindrical and rectangular resonators will be reviewed and formula will be derived 
from it to calculate the resonance conditions for the fundamentallongitudinal mode. 
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Above certain dimensions the resonators have to be slotted or provided with cut-outs 
to obtain a vibrational mode with a constant output amplitude. In chapter 7 the 
optimization of a specific resonator wil! be discussed. The overall dimensions were 
determined from the information available from the slender rod resonators and the 
patent literature. First, the geometry will be optimised on an experimental approach 
by providing various cut-outs based on the interpretation of the vibrational modes and 
frequencies as measured. Secondly a frnite element analysis is used to study the 
vibrational characteristics of the same resonator and it will be shown that at other 
dimensions a resonator can be designed which shows a constant output amplitude 
without providing additional cut-outs. 

In chapter 8 a model wiJl be presented to calculate the overall dimensions for wide 
output resonators of blade-like, block-like and cylindrical shape, which are provided 
with slots. The model is set up to predict the resonance condition in these resonators 
for which a vibrational mode can be expected with a constant output amplitude. 
The predictions of the model are found to be in good agreement with the experiments. 

The possibility to predict the optimum geometry to obtain the desired mode at a given 
resonance frequency, does not imply that all probieros have been overcome. In a wide 
output resonator many resonance modes are possible, and sametimes they do interfere 
with the desired mode. The complex shape of slotted resonators does not allow an 
analytica! analysis of all modes. In chapter 9 a fini te element analysis is used to derive 
mode charts for one resonator type with various slotlengths. These charts show the 
resonance frequencies of various vibrational modes as function of the slotlength. They 
allow to predict critica! dimensions at which modes do interfere. Interpretation of the 
calculated modes reveals that for some slotlengths no mode with a constant output 
amplitude can be obtained. 

Finally, in chapter I 0 the design of multiple resonator systems is discussed. Wide 
output resonatorsoften are successfully used to transruit vibratory energy to several 
half-wavelength resonators which are coupled to its output surface. They are used for 
welding products of complex shape in which great differences in height levels of the 
weid area are present and where different amplitude levels of the resonator may be 
needed. The so-called funnel-shaped resonator wiJl be investigated to explore its 
capability to serve as half-wave!ength resonator of prescribed length and prescribed 
amplitude gain. 
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2. HALF-WAVELENGTH RESONATORS AND VIBRATION ANALYSIS 

2.1. Resonating tools 

In ultrasonic engineering tools are design cd to vibrate in a resonance condition. For 
the main part of the applications the tools are resonating in the fundamental 
longitudinal mode (half-wave). There are a number of design requirements to take into 
account. The desired frequency and the resonator material determine the overall 
dirneusion such as the length. The stress-distributions along the resonator must be 
directed such as to guarantee a reasanabie life expectancy. For most applications an 
amplitude amplification is desired. 
Generally, bar-type resonators are used with a va1iable cross-section along the length. 
Such a tapered resonator wiJl produce an amplitude gain towards the smaller end­
portion (the standing wave of the longitudinal vibration has an output amplitude (u2 ) 

higher than the input amplitude (u 1 ) : u2 > u1 ). S";e figure 2.1. 

As long as the lateral dimensions are smallas compared to the wavelength, the 
problem is governed by the one dimensional wave equation for the propagation of 
longitudinal waves in the bar and solutions are available forsome resonator profil es. 

Analytica! solutions have been derived for exponential, conical, Gaussian-shaped 
resonators e.o. A large number of papers on this subjects has been published. 
(Merkulov (1957); Neppiras (1963); Vetter (1966-1968); Makarov (1964)). For most 
shapes, however, no analytica! solutions can be found and numerical procedures are 
used (Eisner ( 1963); Kleesattel ( 1970); Scheiben er ( 1971)). 

input 
surface output surface 

Fig. 2.1 Half-wavelengtiJ resonator with a tapered shape towards the output end. 
( cylindrical cross-section); input amplitude u 1 and output amplitude u 2• 

As an example the bar-type resonator with constant cross-section as shown in tigure 
2.2 will be explained. The material is isotropie and the wavepropagation is uniform in 
a cross-sectien of the resonator, it is loss-free and linear elastic. The wave equation for 
longitudinal waves propagating in the axial direction is: 

(2.1) 
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where u is the displacement in the x-direction; it is a function of both time t and 
coordinate x; cis the propagation velocity for longitudinal waves in slender rods. 
The solutions of equation (2.1) for harmonie vibrations are as follows: 

(2.2) 

where A 1 and A2 are constants; wis the angular frequency of the vibrations and k is 
the wave number: 

k 
w 
c 

x 

- u( x) 
------------·-1--

i-- a( x) 

Fig. 2.2 Half-wavelength resonator of length l with a constant cross,section; 
deftnition of the displacement u( x), stress a( x) and the modulus of 
the mechanica/ impedance Z(x). 

(2.3) 

We will only consider the time-independent part of the solution of equation (2.2): the 
displacement function u( x). For the half-wave length resonator as shown in figure 2.2 
the boundary conditions follow from the requirements that the ends are stress-free: 

du(x)/ = 0 
dx 

x=o 

du(x)/ 0 
dx 

x=l 

(2.3) 



9 

Therefore the displacement function u(x) can be written as follows: 

u(x) uo cos (kx) (2.4) 

where u0 is the maximum amplitude of motion at the en ds. This vibration mode is 
called the fundamentallongitudinal mode. 
From equations (2.3) and (2.4) also follows that: 

kl rr or l =.!!... 
k 

(2.5) 

This frequency equation relales the resonator length 1 to the resonance frequency f by 

1 = _:!!_ 
k 

rrc 
w 

(where w 2rrf). The length I is very often presenled as il}2 (half-wavelength). 
The mechanica! stress in the x-direction a(x) is related to the strain e(x) and the 
displacement u(x) as follows: 

a( x) E e(x) = E dx 

(2.6) 

(2.Î) 

Using c =P-, where pis the specifïc mass of the resonator materialandE is Young's 
p 

modulus, equation (2.7) gives: 

a( x) = -wpc u0 sin(kx) (2.8) 

The stress-function is shown in figure 2.2. It is maximum in the midplane of the 
resonator where the amplitude is zero (this is called the nodal plane). The maximum 
stress in a resonator is determined by the frequency, the material properties and the 
maximum amplitude. At distance x in the resonator, the partiele velocity ti in the 
x-direction follows: 

au · . = ü(x) elwt at · (2.9) 

As we only consider time-independent solutions, the partiele velocity ü(x) is calculated 
from equations (2.2), (2.4) and (2.9): 

u( x) = j WU 0 COs(kx) (2.10) 

At distance x the axial tensile force F(x) is defined as (A is the cross-sectionararea): 

F(x) A a(xl (2.11) 

A quantiy that is essential to wave phenomena in solid materialsis the mechanica! 
impedance Z(x), which is defined as the quotientof the force F(x) and the partiele 
velocity u( x) fora given cross-section: 

Z(x) = u(x) (2.12) 

Using equations (2.1 0) and (2.11) Z(x) becomes: 

Z(x) = Apc tan(kx) (2.13) 
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The modulus of Z(x) is shown in figure 2.2. 
It is zero at the ends (F(x) = 0 for x= 0 and x l) and becomes infinite in the nodal 
plane û(x) = 0 at x= l/2). The quantity Z(x) will be used later on to calculate the 
effect of variations in the cross sections on the wave propagation. 

The theory presented here is only valid as long as the displacement is uniform along a 
cross-section. When the wavelength is no Jonger large as compared to the dimensions of 
the cross-section, the wave propagation is distorted by the effect of lateral motions 
(perpendicular to the wave propagation) on account of the Poisson constant v (see 
chapter 5 and 6). It will result in a non-uniform output amplitude. 

2.2. Resonator materials 

In selecting matcrials for resonators there are several facts to bear in mind. 
As they are driven in a resonance condition, there is the mechanica! stress level that 
de termines the failure rate due to fatigue. The mechanica! stress is determined by the 
resonator characteristics such as shape, the material properties (density, Young's 
modulus) the amplitude of motion and frequency (see equation 2.8). Limitations in 
high power ultrasonics arealso found for reasons of theelastic lossin the resonator. 
The power dissipation strongly dictates the material choice, because it wil! decrease the 
fatigue stress. A third fact, that is related to each application involved, is the wear 
resistance of the material. 
The mechanica! damping factor of the material is a very important parameter. lt can be 
described as hysteresis loss or internal friction. Excessive heat built-up in the 
resonating parts of an ultrasonic system can be a result of it. 

The power dissipation in a resonating rod (as shown in figure 2.2) is determined by the 
mechanicailoss-factor llm of the materiaL The mechanicalloss-factor is defined as the 
quotient of the dissipated energy in a volume element per period of vibration and 21r 
times the maximum stored potential energy of the vibrating rod in the same volume 
element. (Skimin (1964)): 

0 
_ ( dissipated energy) in one period 

m - 21r *(max. stored energy) 
(2.14) 

The reciproke of llm is also known as the mechanica! quality factor Q. 

The stored potential energy Up which is a function of time can be calculated from the 
local stress and strain in the resonator: 

Up fudê 

By using equations (2.7) and (2.8) the maximum stored energy Ûp in one period 
in a volume element at distance x becomes: 

ft 1 
Up = 2 E k2 u0

2 cos2(kx) 

(2.15) 

(2.16) 

To get from encrgy to power, equation (2.16) has to be multiplied by the frequency f. 
Re-writing equation (2.16) it follows with equation (2.8) and equatîon (2.14) for the 
power dissipation per unit volume PJ088(x): 

Iw 
PJoss(x) = 2 a2 (x) llm (2.17) 
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The power dissipation in a resonator is notconstant over the length and is concentrated 
in the nodal plane. It is proportional to the square of the stress. In order to evaluate 
the power dissipatîon in a half-wavelength resonator equation (2.1 7) has to be 
integrated. Fora resonator of cross-sectional area A, the power loss P!oss (f../2) 
becomes: 

I 11" 2 2 P!oss (À, 2) = 4 pc w Auo om 

Typically for an aluminium 20kHz resonator of diameter d 
amplitude u0 = 30 11m the power dissipation becomes (om 

c = 5200 m/s): 

PJoss (À/2) = 15,3 W 

(2.18) 

50 mm, vibrating at an 
sw·s, p 2700 

(2.14) 

For general applications at 20kHz at amplitude levels of 30 11m, the power dissipation 
in a half-wavelength resonator of cylindrical cross-sectionis in the order of 10-30 W. 
For reason of a lower om, alloys of aluminium and titanium are wide1y used in 
ultrasonic engineering (om< 5 w-5 ) •. 

For chromium steels om can be as high as 100.10-s. Usually, steels or alloys ofit 
are rarely used, especially not at high stress levels. 

In general om is nat easily measured. Measurements of actual ultrasonic resonators 
activited at high amplitude levels show that óm is not only a material constant, but 
increases with the stress level (Hulst ( 197 5)). 

Of great importanceis also the machineability of the materiaL Resonators with wide 
output cross-sections, with dimensions above 80 mm (at 20kHz) are mainly made of 
aluminium alloys, and very occasionally of titanium alloys. In the present work the 
main part of the resonators is made of a Duraluminium. The material properties have been 
analyzed and are summarized in table 2-1 (accuracy for the elastic properties ± 0,5%). 

p E c V Ufatique 

ckgjm3) (N/m2) (m/s) (~) (Nfm2) 

Al 2.71 103 0.73 1011 5200 0.335 120 106 

Ti 4.41 103 1.08 1011 4930 0.305 200 106 

Table 2.1 l'vlaterial properties of Al- and Ti-alloy as used for the fabrication of 
resonators. 

The dimensions of a specific resonator at a certain design frequency, are determined by 
the propagation velocity of the longitudinal wave. c. Once a resonator has been 
fabrîcated of a certain material, the dîmensions clearly are not valid anymore when 
another material wîll be chosen. As an example figure 2.3 shows the effect of the 
material choiee on the overall dimensîons of a 20kHz resonator. This type of 
resonator will be diseussed into more detail in chapter I 0. The dimensions of both the 
cylindrical parts at the input and the output end are kept constant. The strong effect 
on length I is seen. 
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c = 3520 m;s 

c = 4130 Infs 

I 1 = 104.0 mm .. 

c = 4930 mts 

~----~-----------
,.. I= 135.4 mm 

c = 5200 Infs 

Fig. 2.3 The effect of the value of the propagation velocity c ( various materials) on 
the resonator length 1 as calcU.lated. (Design frequency 20kHz, the lengths 11 

and 12 as wellas the diameters d 1 and d 2 of the cylindrical parts are kept 
constant). 

To conclude this introduetion into the analysis of a vibrating rod the energy trans­
mission through the resonator will be discussed. 
An ultrasonic system is operated at resonance and mechanica! energy is stared into it 
( which is periodically converted from kinetic to potential energy and vice versa). The 
stored vibrational energy can be calculated from equation (2.16) and (2.18). 
Normally an ultrasonic system consists of three resonators. At 20kHz typically 
1000 W electrical energy is converted into mechanica! energy in the resonator and 
transmitted to the load. From equation (2.18) one can calculate the stored power 
capacity in the resonator. In the case of three resonators (50 mm diameter, material 
aluminium, mean amplitude 30 j.!m) the stored power amounts 300 kW. As the 
loadpower is l 000 W, one can conclude that in an ultrasonic system the stored 
mechanica! energy is very much larger than the energy transmission to the load. 
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It can be understood from this that the resonating system can be kept in resonance under 
load conditions. In applications for which the transmitted energy is no Jonger small as 
compared to the stared energy, one wil! see that the system no longer can be kept in 
resonance ("stalling" -effect). 

2.3. Vibration analysis 

The most important parameters to characterize ultrasonic resonators are the resonance 
frequencies and the corresponding vibrational modes. A quick impression of the 
resonating body can be obtained from the Jocation of nodal patterns. The use of fine 
sand which moves towards the velocity minima on a vibrating surf ace, was used for this 
purpose. 
A point-by-point analysis of the vibrations was found to bemost practical when using 
a "Fotonic Sensor" a non-{;ontact optica! proximity detector (Documentation Ref. 67). 
Only motion perpendicular to the surface can be measured. Up to frequencies of 
I 00 kHz, amplitudes down to 0.1 Ji.m can be measured on spots as smallas 0.5 mm 2 

The Fotonic Sensor was found to be more accurate than Eddy-{;urrent displacement 
detectors or mechanica! contacting elements. Overall measurement of the vibrational 
amplitudes of a resonator is possible with holographic analysis (Herrmann ( 1982) (ref. 
65); Tuschak (1975)). However, for the purpose of this study it doesnotshow many 
advantages over the point-by-point methods. For the measurements in the present 
work the amplitudes have an accuracy of± 0.2 Jl.m. 

Two ways of frequency measurement were used. The resonance frequency of the 
resonator itself was measured using piezoelectric elements. A variabie frequency 
oscillator is used to drive one element (at constant voltage) which, in contact with the 
resonator to be studied, transmits mechanica! vibrations through the resonator, which 
again are detected by the second element (which acts as receiver in contact with the 
resonator). The output voltage of the receiver-element is proportional to the 
amplitude measured, which is maximum in case of resonance in the resonator. 
A spectrum analyzer (0-300 kHz) was used to find the resonance frequencies. 
The second methad is to couple the resonator under study to a transduceras used in 
a conventional welding equipment. The transducer has a fixed resonance frequency 
for the longitudinal vibration, say 20 kHz. 
The resonance frequencies of the assembly are found when at the electrical terminals 
of the transducer a minimum driving impcdanee is measured (again with the aid of a 
spectrum analyzer with oscillator). This is equivalent to the mechanica! resonance 
frequency of the system (as measured mechanically by the first method) when the 
electrical terminals are short circuited. 
Wh en the resonance frequency of the system is measured withopen electrical terminals, 
a shghtly higher frequency will be measured, which is called the anti-resananee 
frequency. In the present work only the resonance frequency will be considered, 
because most of the commercial equipment operates in the resonance frequency. All 
frequency measurements have an accuracy of 10Hz (in the range of 20kHz). 
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3. OBSERVATIONS ON A RANGE OF RESONATORS 

3.1. General design requirements 

When using half-wavelength resonators of the slender rod-type, the maximum output 
area is limited (the lateral dimensions aresmallas compared to the wavelength). At 
20kHz the half-wavelength is between 110 and 135 mm so that the lateral dimensions 
may not exceed 70-80 mm, and the output area typically is restricted between 500-
2000 mm2

• Many applications, however, do require a much larger output area (up to 
50000 mm2). For each application the lateral dimensions of a resonator will have to 
be adjusted to the product dimensions, e.g. in case of ultrasonic welding of thermo­
plastics. A resonator was called wide when at least one of the lateral dimensions 
exceeds one third of the wavelength Cl\/3) of the longitudinal wave at the design 
frequency (À= y). The resonator with a wide output cross-section also has to be 
designed to vibrate in resonance and the desired vibrational mode is mostly described 
as "longitudinal" mode. The vibrational mode of the resonator is called "longitudinal" 
when the amplitude of motion at the input and output surface is uniform in magnitude 
along the surface and has a direction perpendicular to these surfaces. The amplitudes 
at the input and output surface are 1800 out of phase, and the amplitude is zero in 
the nodal plane, located a bout halfway the distance between the output and the input 
surface. Generally the actual mode will only approximate these characteristics of the 
"longitudinal" mode. The differences in the output amplitude will seldom besmaller 
than 10%, neither can the component of the output amplitude in the plane of the 
output surface be obtained smaller than I 0% of that amplitude. 

It will be clear that there is an enormous variety of shapes possible which do fulfil 
these requirements with respect to the longitudinal mode. The basic requirements are 
shown in figure 3.1 for an arbitrary shaped resonator. The output surface must be 
matebed to the dimensions of the products to be welded. The input surface must be 
such that the resonator can be coupled to the vibrations generating part of a welding 
apparatus. The desired amplitudes of vibration at input and output surface are shown. 
The resonance frequency for the longitudinal mode must coincide with the operating 
frequency of the welding apparatus. It is the task of the ultrasonic engineer to choose 
the resonator shape so that it fuifiJs these requirements. Below some additional criteria 
fora good resonator design will be discussed. 

3 .2. Classification of resonator shapes 

The general approach to make a resonator is very straight forward. Referring to figure 
3.2 a briefdescription will be given now. The lateral dimensions are matebed to the 
productparts to be welded. The resonator length is chosen somewhat langer than the 
Jength of the half-wave of the longitudinal vibration mode in that specific resonator 
material and at the design frequency. 
All the resonators are in some way provided with slots, bores, holes or cutouts to 
satisfy the conditions for which they will be able to resonate in a "longitudinal" mode. 
(These will be discussed in chapter 4). 

The locations of slots, bores etc. will be such that alllateral dimensions in the zone of 
maximum stress produced by the longitudinal wave (nodal plane) does not exceed t../4 
to compensate for cross-coupling, and to correct for distartion of the longitudinal 
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end of a 

welding apparatus 

coupling screw input surface 

resonator 

output surface 

parts to be welded 

Figure 3.1 Basic design requirements fora resonator with a wide output cross-sectîon 
(three -dimensional body, not necessarily a body ofrevolution); the arrows 
indicate the amplitude ofvibration. 

wave. (This wil be discussed in chapter 5 and 6). Secondly the resonator length will be 
shortened by smal! steps until the measured resonance frequency coincides with the 
design frequency. 

A study of various resonator shapes as used in practice, reveals some generality in the 
ge ometry. On the basis of their geometrical shape, resonators with wide output cross­
sections can be classified into three groups. These groups are shown in figure 3.3. 
The resonator types are: 
I. cylindrical type, diameter> t../3; 
2. blade-like type, only one dimension > À/3; 
3. block-like type, bath dimensions > À/3. 

Ca pitals wîll be used for the overall dimensions of these resonator types only. 
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material remova1 causes a 
decrease of the resonance frequency 

\ 
\ 

projection of the amplitude of the 
longitudinal mode 

' ' 

material remaval causes an increase 
of the resonance frequency 

Fig. 3.2 Generallay-out of a wide resonator and methods to alter the resonance 
frequency. 

At 20kHz the width of the blade-Iike resonators ranges from 80 to 400 mm; block-Iike 
resonators are between 1 OOx 100 and 200x200 mm2 ; cylindrical resonators usual1y are 
between 100 and 200 mm diameter, occasionallyup to 300 mm; the resonator length I 
is in the range of 110 to 135 mm (close to the half-wavelength in a slender rod 
À/2 Ir 130 mm for aluminium). 
In resonators of the cylindrical or blade-like type an amplitudegainis often built in, 
created by a discontinuity of the cross-section in the zone of the nodal p1ace, see 
fig. 3.3, nr. 2. Block-like resonators are never provided with an amplitude gain. 

The wide output resonators are mostly used for direct energy transmission to the load. 
Sametimes they are used as a base resonator, where small half-wavelength resonators 
are attached to it (they serve as an energy distributor), see tigure 3.3, nr. 4. 
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B = 190mm 

Fig. 3.3 nr. 3 Block-like resonator ( typical dimensions); 
width B, thickness R and length L. 
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The output area will not always be a plane. Often it is profiled to match the product 
shape to assure optimum energy transmission. Generally the profiles are much less 
than 'A/4 deep. 
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As the resonator dimensions are matched toeach application individually, no 
"standard" dimensions, but rather a wide variety of resonator dimensions will be 
encountered. For high power applications the operating frequency of an ultrasonic 
apparatus is some fixed value between 20 and 22kHz, depending on the choice of the 
manufacturer or supplier. This means that for each type of equipment other 
dimensions are required. Equipment operatingat 30,36 and 40kHz has become of 
realinterest of late. Therefore the variety of resonator dimensions has been enlarged 
enormously. Although the probieros in designing are identical for all these frequencies, 
there are no sealing laws available to predict the resonance behaviour for all these 
frequencies from one reference value. In thc present work resonators in the 20 kHz 
range will be studied. 

As mentioned before, the resonator material usually is an aluminium alloy, only for 
relatively small resonators a titanium alloy is used (at 20kHz for dimensions 
< 100 mm). Although superior to aluminium, the titanium alloy is unfavourable 
above these dimensions for reasen of its bad machineability and the price of the raw 
materiaL 

3.3. Analysis of some resonators 

In order to quantify the probieros encountered in devicing wide output resonators, 
an analysis of 3 7 existing resonators was set up. They cover the whole range of 
dimensions as commonly used in ultrasonic plastic welding applications at 20kHz. 
The most important characteristics measured are: frequency spectrum and modes of 
vibration. Of interest are the resonance frequency of the "longitudinal" mode (if 
existing) and the shape of this mode. The presence of other resonances near the 
operating frequency indicates the risk that the resonator is used in another mode than 
the desired one, or that coupled vibrational modes are present. All resonators, insome 
way tuned as close to the optimum as possible, were coupled to a welding apparatus. 
The vibrational modes were measured optically in unloaded condition (the ultrasonic 
generator is activaled but the welding head does not contact any laad, it is freely 
vibrating). Only the amplitudes perpendicular to the surface are measured, along the 
contours of the resonator. In this way enough information can be obtained for 
interpretation of the vibrational mode. 
Special attention is paid to the amplitudes along the output surface. The uniformity 
is indicated by the differences in amplitude as related to the maximum amplitude. 

In tables 3 .I, 3 .II and 3 .III the restllts of the study are summarized. No detailed 
in formation on vibrational modes and corresponding resonance frequencies are given here. 
The main dimensions of !he resonatorshare are listed as well as the number of 
resonances within the range of 18 to 22 kHz. 

The number slots provided in each resonator (see figure 3.3) is an important 
characteristic. The evaluation of the analysis is presented by four judgments. 
"Tuning problems" does not mean that it is difficult to let co'ncide the resonance 
frequency of the longitudinal mode with the design frequency. It also can mean that 
there are spurious resonance frequencies close to the frequency of the longitudinal 
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mode which could not be eliminated. If the longitudinal mode is coupled tosome 
spurious mode it is classified as "coupled modes". The unifonnity of the output 
amplitude is a very important parameter. In the tables the maximum difference of the 
output amplitudes (as measured) is given. Differences smaller than I 0% are not listed. 

As an example the vibrational modes and cortesponding frequencies for one specific 
resonator are shown in more detail in figure 3 .4, forsome val u es of the resonator 
length. The length obviously has a great influence on the vibration mode that is 
excited when the resonator is coupled to an ultrasonic welding apparatus. At the 
output surf ace, the energy transmission will be far from optimum if the !ength is not 
chosen proper!y. 

As a result of this study and from experiences with resonator designing for production 
apparatus in genera!, the observations can be summarized as follows: 

Within the range of 18 to 22kHz the number of resonance frequencies detected is 
between 2 and 5, one of which is the desired frequency of the "longitudinal" mode. 
In most cases the "longitudinal" vibrational mode is not optima!; amplitude 
differences along the output surface from I 0-80% are observed, resulting into 
unequal energy transmission during welding. Even nodes (no motion) and a phase 
shift in amplitude are observed, which does notresembie a longitudinal mode at alL 
The longitudinal mode is sometimes coupled toanother ("spurious") mode; the 
effect is mostly a distortion of the longitudinal mode with a non-uniform amplitude 
along the output surface as a result. 
At the output surface of a resonator the vibrational mode very often has both an 
amplitude perpendicular to the surface and an amplitude in the plane of the surface. 
The latter causes small resonators attached to it (in the case of a base resonator 
(figure 3.4, nr. 4) to vibrate both in a longitudinal (where it was designed for) and a 
flexural mode. The flexural mode has very large amplitudes when its resonance 
frequency coincides with that of the longitudinal one. The flexural mode is not desired 
and often causes a failure of the damping screw due to excessive mechanica! stress. 

With the aid of vibration mode analysis and the measurement of the frequency 
spectrum, in many cases an optimum operation of the resonator can be reached, on 
account of the interpretation of these modes and adequate varlation of the 
dimensions. 
During these optimization procedures ( called "tuning") various striking effects were 
observed: 

Tuning is to reach a condition in which a specific resonator is vibrating in the 
desired mode at the design-frequency, by successive material removal on 
strategically chosen places; optimization of frequency and vibrational mode do not 
necessarily go in the same proportions or direction as a result of a change in 
dimensions. 
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Fig. 3.4 Vibrational modes and resonance frequencies of a cylindrical-type resonator 
of I 25 mm diameter ( material aluminium, design frequency 20kHz). 
Shown here are those modes which could be excited on the ultrasonic 
welding apparatus used, for various values of the resonator leng tiJ. 
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- Although an attempt will be made to reach the optimum in carefut smal! steps, 
overshooting is not unrealistic; consequently a shift in the reverse direction may 
become extremely difficult. 

- While changing the desired mode, also all other modes and their corresponding 
resonance frequencies wil! change; this can interfere with the attempts to optimize the 
desired mode. 

- The amount of changes after material removal is not easy to predict. 
-- The optimum is reached, but the resonance frequency of some spurious mode is very 

close to the frequency of the desired mode (say within the operating range of the 
ultrasonic generator) so that it is not possible to discrimina te between both; for 20kHz 
equipment no spurious modes are allowed within a bandwidth of 600 to I 000 Hz on 
both sides of the operating frequency; the elimination of this spurious mode without 
changing the optimum, is extremely difficult, if not impossible. 

The condusion has to be that, only by systematical analysis of resonance frequencies and 
vibrational modes as a function of the resonator shape, perfectly operating resonators can 
be obtained. Devicing a resonator on atrialand error base is time consuming and results 
in material waste and unrealistically high costs for the resonator as compared to the total 
costs of a welding apparatus (sometimes up to 50% of the total amount). 



dimensions (mm) 
Nr. width, depth, length 

B R L 

l 90 x 30 x 124 
2 100 x 35 x 126 
3 100 x 69 x 123 

! 4 103 x 40 x 125 
5 124 x 40 x 136 I ···--· 

6 

I 
130 x 35 x 130 ! 

7 130 x 55 x 129 I 

8 

I 

131 x 35 x 122 i 

9 138 x 40 x 123 

i 
10 140 x 50 x 120 

11 145 x 35 x 124 
12 150 x 40 x 132 
13 150 x 40 x 123 
14 152 x 40 x 123 I 
15 180 x 55 x 124 

I n~mberof 
number of slolls i resonances 

18-22kHz 

I 
I 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 

2 
2 
2 
4 
4 

4 
4 
5 

I 
3 
I 

3 

5 

2 
2 
1 

3 

I I [no problems 
i 

x 
x 

x 

x 

x 

i 

x 

~~:1:o~pled I output 
problems 1 modes difference 

I 
40% 

I 
x 

I 
x 

x 80% 

x 80% 
70% 

I 
10% 
60% 

x 20% 
25% special cutouts 

i 20% i 

10% 

Table 3.1: Resonators of blade-like type (all aluminium. only nr. 12 Titanium; (-) denotes not measured); see figure 3.3 nr. 2. 



Nr. I dimensions (mm) 
number of slots 

numberof 
tuning I coupled output amplitude I width, depth, length (in 2 directions) 

resonance noproblems 
probieros modes difference 

B R L 18-22kHz i 

24 l90xl05xl13 2 and 0 3 x 

25 185 x 112 x 113 2and 2 4 10% 

26 180 x 125 x 120 2 and 1 4 x 10% 

27 179 x 100 x 119 (B) 2 and I 3 x 30% 

28 152 x 120 x 120 (B) 2 and l 3 x 25% 

29 185 x 120 x 121 2 and 1 2 x 

30 160 x 160 x 121 2 and 2 3 

I 
x x 

J 

I 

31 190 x 180 x 120 (B) 2 and 2 2 x 50% 
I 

Table 3.!/: Resonators ofblock-like type (aluminium, B base resonator); see figure 3.3, nr. 3. 



1=1'''' dimensions (mm) 
number of 

number of 
tuuing output amplitude 

diameter, length resonances i no problems 
i i D L 

slots 
18-22kHz 

probieros difference 

32 152 x 126 none 2 x Jongitudinal mode 

33 152 x 98 none 2 80% distartion of 
1ongitudinal mode 

34 152 x 123 6 3 x x bell-shaped 
(hollowed resonator) 

35 160 x 119 6 3 x 60% 

125 x 116 6 3 x 10% 

3 x x ~U<Iillp«J 
hallowed resonator) 

~~···~-~···- ···--------------.. --------.. -

Table 3./II: Resonators of cylindrical type (aluminium); see figure 3.3, nr. 1. 
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4. SURVEY OF PATENT LITERATURE (PATENTS AND PATENT APPLICATIONS) 
ON RESONATORS WITH WIDE OUTPUT CROSS-SECTIONS 

4.1. Introduetion 

Most of the infonnation on the design of ultrasonic resonators having large dimensions in 
planes perpendicular to the direction of the longitudinal vibrations to be transmitted, can 
be obtained from patent literature. After all, the design of well functioning resonators 
(horn) requires much skill and experience. Therefore most of the knowledge will be kept 
company confidential, resulting in a very limited number of publications on this item. 
The available patents and applications can be categorized into three groups: the first 
group describes design principles, the second gives means by which the mode of vibration 
can be influenced, and the third group describes the coupling of resonators to a multiple 
resonator system. Without pretending to fully cover the patents and applications published 
until now, below the most significant features encountered wiJl be discussed. 

4.2. Design principles 

In a resonator which is designed to resonate in the longitudinal mode, generally the 
maximum dimensions in the planes perpendicular to the direction of the vibrations may 
not exceed one quarter to one third of the wavelength of these vibrations, when a plane 
wave front is to be obtained. If these dimensional limits are not observed, the amplitude 
of the vibrations at the output surface is greater at the center than at the periphery 
(amplitude fall-off). Attempts to obtain a plane wave front at the output surface using a 
number of transducers at places on the input surface at distances smaller than the limiting 
dimensions mentioned above, failed. For reason of cross-coupling of waves (caused by 
Poisson's constant v) to the generated vibrations at the nodal planes caused complex 
vibrations so that no in phase vibration and no uniform amplitude at the output could be 
obtained. (Kleesattel (1963)). 
The invention of Kleesattel e.o. is to provide the resonator with slotsextending there­
through at right angles to the input and output surfaces so that the slots break the 
cross-coupling between the sec ti ons of the resonator. The sections act as individu al 
resonators with lateral dimensions not exceeding the design lirnits. 
A resonator with one large output dimension (blade-like) is shown in figure 4.1 a. 
The sections are connected by narrow connecting bridges adjacent to the output and 
input surfaces. If the resonator is in the fonn of a rectangular block with large side 
dimensions, then the slots for breaking the cross-couplings can be in a grid arrangement 
(see figure4.lb). (Kleesattel (1963)). 

In Kleesattel's pubHeation a transduceris connected to each of the sections to transmit 
vibrational energy. However in most in dustrial applications today, only one transducer 
is coupled at the center of the input surface (see for example tigure 4.5). 

The maximum width of a blade-like resonator is limited. Forsome applications a very 
wide working dimension may be needed. Ho wever, when increasing the effective working 
dimension of the resonator beyond a certain value, the costs of producing such a 
resonator increase disproportionally to become prohibitive (Long (1973)), Kleesattel's 
salution gives practical solutions from three inchestoten inches (75-250 mm). 
More convenient is the use of a plurality of resonators of relatively small dimensions as 
shown in figure 4.2. 
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transducers 

resonator 
slots 

output surface 

Fig. 4.1 a: Resonator provided with slots to avoid cross-coupZing ( Kleesattel ( 1963)). 

Q 
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Fl transducer - -

- L 
resonator 
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Fig. 4.1 b: Resonator with large dimensions in two directions; slots in a grid arrangement 
(Kieesattel (1963)). 

I 
~------------------------~ 

resonator 

Fig. 4.2: Arrangement of six resonators to cover very wide working dimensions (Long (1973)). 
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The use of slots to interrupt cross-couplings wil! not always be a solution of practical 
value. In practice it is sometimes found, that it is not only difficult to machine slots of 
the type as suggested before, but when using certain materials such as titanium, the 
machining of slots is time consuming and expensive. It has been suggested to provide 
a less expensive means for breaking cross-couplings by internal holes or bores parallel 
to the direction of the longitudinal vibration and ex tending across the nodal plane of 
the resonator (see figures 4.3a and 4.3b). (Biro (1971 )). 

,.. input surface 
~mp 

I : I : 
I 
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I I I I 
I I I I 
I I I 

I 

I I 

:o~ '01 I I I I 
I I I I 

~---
' I 
__ , 

ut surface 

Fig. 4.3a: lnternal 
bores to break cross­
couplings (Biro (1971)). 

output surface L 

Fig. 4.3b: Resonator with reduction 
in the cross.,<;.ection to increase the 
output amplitude (Biro (1971)). 

output surface 

The resonator is designed so that its dimensions from the input surface to the opposite 
output surface correspond to an integral number of half wavelengtbs of the vibration. 
However, no information is given with respect to the positioning of the bores. Instead 
of one large bore, a multiple set of small bores is said to be possible. Figure 4.3b gives 
an example of a resonator with an increased output amplitude; a bore results intoaslot 
in the reduced cross sectional area. 

In the same way as described hitherto cylindrical resonators can be made to resonate in 
a longitudinal mode. Above a certain diameter slots and/or holes are to be provided to 
avoid cross-couplings. An example of such a resonator is shown in figure 4.8b. 

4.3. Infiuencing the output vibration amplitude 

Up to now blade-like and rectangular block resonators have been discussed. Where for 
example plastic welding along a circular ring is needed with a resonator having a 
diameter larger than a quarter to a third of the wavelength of the vibration, such 
expedients as hollowing out the resonator to provide a bell-shaped structure having 
longitudinal slots through the bell wal! and extending along the length of the bell are 
used (see figure 4.8b). Great difficulÜes are encountered in obtaining a uniform 
distribution of vibration amplitude over the output surface of the resonator. 
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ft was suggested by Davis ( 1978) that asolid cylindrical resonator with large diameters 
can be used without the use of slattingor other expensive machining operations. 
Generally asolid resonator will show a smaller amplitude in the peripheral area 
compared to the center of the cylinder. By providing a groove in the outer surface of a 
large solid resonator extending a bout the body, preferably near the middle zone of the 
resonator length, the amplitude at the peripheral area can be increased. 
The so·called "accordion·hom" is shown in figure 4.4a. 
The width and depth of the groove is small in comparison with a quarter wavelength at 
the operating frequency. Figure 4.4b shows the influence of the location of the groove 
on the amplitude distribution at the output surface. As an example, at 20kHz 
resonators with a diameter between I 00 and 175 mm suffer a non-uniform amplitude 
distribution. The groove is said to compensate for this effect. 

11 

Fig. 4.4a: 
"Accordion horn" 
with a groove in 
the outer surface 
(Davis (1978)). 

~Ok:J BE5UU 
" 
liJn~'-'~ -A- Af\ 

Fig. 4.4b: The influence ofgroove location on the 
amplitude at the output surface (Dav is ( 1978)). 

In general the designer of a resonator will aim at obtaining a unifonn amplitude 
distribution at the output surface. The use of slotsas taught in Kleesattel's patent 
( 1963) is a main contribution to this purpose. Ho wever, sametimes it is desired to 
have smaller amplitudes at certain regionsof the output surf ace. As an example, an 
apparatus for simultaneously welding and cutting textile material (Grgach ( 1976)), 
requires a small amplitude at the lateral edge regionsof the resonator to reduce wear 
problems and to greatly reduce in magnitude audible chatter. Here the aim is a blade· 
like resonator which exhibits a non-uniform motional amplutide along its output 
surface (see figures 4.5a and 4.5b). 
The reduction of amplitude as shown in figure 4.5b is achieved by providing two 
notches at the input surface of the resonator, one on each side. The significant 
reduced amplitude is 20 to 30 percent of the amplitude in the center portion. 

In figure 4.5c an alternative way is shown where in the rear portion of the resonator is 
provided with a cutout section extending a quarter wavelength from the input surface. 
Additionally two slots are provided ex tending from the output surface, a quarter 
wavelength toward the input surface. A resonator, 216 mm long, showed an amplitude 
at the edges of a bout a quarter of the center region amplitude (Grgach ( 1976)). 
However, the results of the slotsis that flexural vibrations are generated in the studs in 
a direction perpendicular to the direction of the longitudinal motion. There are means 
to damp these flexural vibrations by mechanica! actions (Grgach (1976)). 
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tr:=:l 
§ I I 

Fig. 4.5a: Notches at the input surface 
reduce the amplitude at the output surface 
(blade-like resonator) (Grgach (1976)). 

0 transducer 

r" 

Fig. 4.5c: Narrow slots at the edges 
and cutout sections are provided to 
reduce the output amplitude near the 
edges (Grgach (1976)). 

I 
Fig. 4.5b: Reduction of the 
amplitude at the lateral edges 
( shown is the amplitude 
dis tribution along the width 
of the resonator of fig. 4.5a. 
(Grgach (1976)). 

When using blade-like resonators, above a certain width, it is said to be impossible to 
obtain a uniform amplitude distribution along the output surface. As an example at 
20kHz a resonator of 500 mm width, shows a uniform amplitude along 200 mm 
symmetrical to the centrai axis, and a significant reduction at the outer regions 
(Scotto (1974)). During welding operations bad energy transmission is observed at the 
outer regions. By providing mechanica! filters of half-wavelength onto the resonator 
the amplitude reduction can be eliminated (see figure 4.6a and 4.6b). 
These filters are preferably positioned in the region of amplitude reduction, either by 
screwing, weldingor glueing. The filters may be of any shape or material, provided 
that their resonance frequencies of the longitudinal mode do coincide with those of the 
wide resonator and the transducer. 

' 
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filter 

resonator 

Fig. 4.6a: The useofmechanicalfilters or half 
wavelength resonators to eliminate amplitude 
re duetion (Scotto ( 19 74)). 

Fig. 4.6b; Cross section of 
fig. 4.6a. 

Ultrasonic plastic sealing techniques use vibrational motion perpendicular to the 
surface of thematenals to be joined; relatively little heat is produced by such motion 
in the joint and the seal is effected at low temperature and high pressure. In contrast in ultra­
sonie me tal welding large heat build-up occurs due toa shear mode of vibration (in the 
same plane as the surface of the matcrials to be joined). For sealing thin sheets of 
plastic matenals it is advantageous to combine both types of motion simultaneously 
(in shear and perpendicular to the surface). 
A resonator providing the desired bi-directional ultrasonic vibration is described 
(Balamuth (1966)). Figure 4.7a shows a resonator with the well-known slots, but 
formed to provide a seal along a S-shaped configuration. The lower section is provided 
with a relatively thin lip portion ex tending along the entire width of the resonator and 
in such a way as to produce an asymmetry or mass unbalance with respect to the 
vertical plane through the centrc of the resonator (figure 4.7b). The result of this 
unbalance is an elliptical vibration at the tip, the magnitude of the amplitudes 
depending on the mass. According to the sameprinciple a cylindrical resonator is 
provided with a plurality ofslots evenly spaeed about the circumference (figure 4.7c). 

Blade-like resonators which suffer an amplitude fall-off at the outer edges, are the 
subject of the in vention presented by Holze ( 1982). A stepped resonator is designed to 
produce a large output amplitude, the amplitude gain being somehow proportional to 
the masses at both sides of the nodal plane of the longitudinal vibratîon in the 
resonator. It is suggested that the amplitude gain should be increased along the 
resonator width to compensate for the amplitude fall-off. The way to achleve this is 
shown in figure 4 .I 0. The masses of the upper portion at the lateral si des are enlarged 
by actdition of an extra mass at the input surface. This salution is said to rednee a 
fall-off from 15% to only 2% for resonators of 150 to 230 mm wid th. The studs can 
be up to 12 mm high. lt is mentioned that the resonance frequency of the resonator 
wil! change, and a tuning procedure is necessary. 

4.4. Coupling of resonatorstoa multiple resonator system 

The lateral dimensions of blade-like, block-like and cylindrical resonators are 
limited. At 20kHz ultrasonic frequency resonators with widths above 350 mm and 
diameters above 300 mm are difficult to produce. 
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Fig. 4. 7a: S-shaped resonator with 
lip portions at the output surface 
(Balamuth (1966)). 

slots 

Fig. 4. 7c: Cylindrical resonator with 
a plurality ofslots to produce 
bidirectional motion ( Balamuth ( 1966)). 

lip 

Fig. 4. 7b: Mass unbalance causes 
elliptical motion near the welding 
area (amplitudes depend on the mass 
of the lip (Balamuth ( 1966)). 

Using more ultrasonic resonator systems, pieces with large dimensions can be welded. 
To overcome this problem partly it is suggested to use a multiple resonator system 
(Scotto (1974)). Characteristic is an extra resonator with wide output cross section to 
the output surface ofwhich two or more large resonators are coupled. They are 
resonating in the longitudinal mode at the same frequency. Figure 4.8a shows a 
coupling of blade-lîke resonators. The resonator assembly in figure 4 .8b is composed 
of a blade-Iike resonator with two cylindrical resonators coupled to it, covering an area 
of 500 x 225 mm2 if e = 280 mm. 

transducer 

Fîg.4.8a: Coupling a blade-like resonator to cover wide working areas 
(Scotto (1974)). 
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Fig. 4.8b: Arrangement of a blade-like resonator 
with two cylindrical resonators (bell-11haped) 
(Scotto (1974)). 

Fig. 4.8c: Coupling ofmany small resonators 
(of different length) toa wide blade-like 
resonator (Scotto (] 974)), 
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Fig. 4.9: Blade-like resonators with addîtional masses at the input surface to 
compensate tor amplitude fall-off (Holze ( 1982)). 

The cylindrical resonators are provided with slots, slightly different from Kleesattel's 
proposals, and an in tema! bore. lt is also possible to use a wide blade-like resonator to 
transruit ultrasonic energy toa multiple set of resonators with different lengthand 
lateral dimensions, but resonating at the same frequency (see figure 4.8c). Such an 
apparatus is adequate for welding at various heights in one single product. 
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4.5. Some remarks 

The designer of resonators for ultrasonic high power applications may employ one of 
the principles mentioned above, to influence either vibrational modes or the energy 
transmission to the output surfaces. In practice many more, mostly unpublished 
techniques for providing slots, bores or cutt-offs into a resonator at arbitrary places, 
will be encountered. It is believed, however, that the survey given convers the basic 
principles most commonly to be dealt with. 
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5. SOLID CYLINDRlCAL RESONATORS 

S.t. Introduetion 

The use of slender rods as half-wavelength resonators has been discussed in chapter 2. 
When the lateral dimensions are no Jonger small as compared to the wavelength, the 
wave propagation is not uniform in a cross-section perpendicular to the direction of the 
wave propagation. This results in non-uniform output amplitudes when designing 
resonators. A second result is that the wave propagation velocity deercases due to this 
dispersion effect. In the next chapter the solid cylindrical resonator will be studied to 
evaluate its applicability in ultrasonic high power applications. Of practical interest 
are cylindrical resonators for which the diameter to length ratio is between zero and 
unity. It is the objective to find formula to calculate the resonance conditions for the 
longitudinal mode in the cylinder. The presence of other vibrational modes which 
could interfere with the longitudinal one is to be investigated. 
Finally, a number of cylindrical resonators have been analyzed experimentally. The 
coupling of a resonator to a transducer of a welding apparatus will cause its resonance 
frequencies to shift. Some frequencies wiJl even disappear. Amplitude measurements 
are carried out to measure the uniformity of the amplitude of the output surf ace, and 
from it conclusions are drawn up to what diameters the deviations are within the 
acceptable range(< 10%). 

5,2. Literature review 

The studies ofvibratîons in solid cylindersof finite lengthare often related to practical 
problems. The application of solid cylindersin underwater transducers requires the 
understanding of the frequency characteristics in that range in which the cylinders 
themselves have natura! modes ofvibration and cannot be considered as lumped mass 
anymore (McMahon (1964)). A secoud example is the need for understanding the 
modes of vibration in cylinders for gravitational wave detectors ( weighing several tons) 
(Rasband (1975)). In the present work the understanding of the modes is essential for 
designing eftïcient ultrasonic resonators. 
In general we wil! have to solve the three dimensional equations of the linear theory of 
elasticity when we want to study smal! vibrations of elastic rods. This will notlead to 
difficulties when the rod is of infinite length. Equations giving a salution we re first 
formulated by Pochhamroer (1876) and Chree (1884) and an exploration of these 
equations was first undertaken by Bancroft ( 1941). 
Bancroft present cd the deercase of the wave propagation velocity c as function of the 
diameter to wavelengtil ratio in the in fini te cylinder forsome values of Poisson 's ratio. 
The only experimental work that has been referred to in literature on the vibrations of 
solid cylindersof finite length has been worked out thoroughly by McMahon (1964). 
Until then no existing theoretica! analysis was adequate to predict the natura! 
frequencies of soli ct cylinder of fini te length with diameter to length ratios up to unity. 
The introduetion of a method for axisymmetric solutions was done by Hutchinson 
(1967) (1972). His procedure is basedon choosing a series of functions with unknown 
coefficients which satisfy the governing equations and boundary conditions. Even for 
the simplest cases of asolid cylînder the metbod is cumbersome. A method for 
approximate solutions was presented by Rumerman (1971) to compute natura! 
frequencies in both solid and hollow cylinders, based on the expansion of the 
displacementsin series of funetions which correspond to the modes to be be expected 
in the cylinder. 
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The first paper on non-axisymmetric vibrations of finite cylinders was presented by 
Rasband ( 1975). However, no numerical data are available here. Finally, the complete 
discription ofvibrations in solid cylinders was publisbed by Hutchinson ( 1980). 
The numerical results show complete agreement with the experimental results of 
McMahon (1964). 

All theoretica! analyses mentioned above are far from easy in analytic formulation and 
the generation of numerical results requires much computer time. For practical use 
these exact solutions are inaccessible. Fortunately, the finite element analysis packages 
available today are a good altemative. 

For the design of ultrasonic resonators the longitudinal mode in the solid cylinder is of 
interest. In the next an approximate, simple formula wiJl be derived to calculate the 
resonance frequency of this mode for a given cylinder. It is based on assumptions 
suggested by Mori ( 1977) that the actuallongitudinal mode can be considered to be 
the result of a coupling of the longitudinal wave solutions in slender rods to those for the 
radial vibrations in thin discs. 

5.3. Cylinder dimensions of interest 

In chapter 3 it was discussed that the diameter d of cylindrical resonators is between 0 
and 200 mm at an operating frequency of 20kHz. Up to diameters of 60 à 80 mm the 
length 1 of the cylinder equals the half-wavelength 'A./2. Depending on the material 
1 120 à 130 mm. Above d = 80 mm the resonators very oftenare slotted and a 
resonance condition is found at length 1 = 110 à 130 mm. At other frequencies 
( 40 or 60kHz) similar limitations to the dimensions are found. 

Using the wavenumber k {see equation 2.3) the cylinder dimensions of interest can be 
presented in a non-dimensional notation. At 20kHz the diameter range of interest is: 
60 < d < 200 mm, and the length is in the order of 1 = 130 mm. 
So the non-dimensional frequency parameter (which is referred to the diameter) kd is 
between: 1 .5 < kd < 5 and the length to diameter ratio 1/d is between: 0.6 < 1/d < 2. 

5 .4. Experimental studies of the vibrations of solid cylinders by McMahon ( 1964) 

The vibrations of twenty of the graver modes in solid aluminium and steel cylinders 
were studled experimentally by McMahon ( 1964), covering cylinders having length to 
diameter ratios between 0 < 1/d < 1.7 and for frequency parameters between 
1.2 < kd < 6.2. These values almost completely do cover the range of interest for the 
design of ultrasonic cylindrical resonators. 

The cylinder characteristics are shown in figure 5 .1. Referring to the cylindrical 
coordinates r, IJ and z, the cylindrical surface is at r = d/2 and the plane surfaces are at 
z ± 1/2. The radial, tangentlal and axial disp1acements are u, v and w respectively. 
The mode of the longitudinal vibration is shown in figure 5.2 (on an enlarged scale). 
The modes of the vibrations observed by McMahon are presented in figure 5.3. The 
modes are classified according to the circumferential and longitudinal symmetry of the 
vibrations. Radial disp1acements are proportional to cos (niJ) and the circumferentia1 
order n indicates the symmetry with respect to rotation about the axis of the cylinder. 
Modes are 1ongitudinally symmetrieoranti-symmetrie if the radial and tangential 
displacements are symmetrical u(z) =u( -z) or anti-symmetrical u(z) = -u( -z) a bout 
the median plane of the cylinder. 
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Fig. 5.1 Cylinder of length l 
and diameter d; 
definition of symbols 

u 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
\ 
\' 

Fig. 5.2 Mode of the longitudinal 
ribration in the cylinder 
(axially symmetrie) 

McMahon denotes symmetrie modesbyeven numbers and anti-symmetrie modes by 
odd numbers. 
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Figure 5.3 shows the approximate form of the vibrations at a diametrical cross-section. 
Heavy Jin es represent nodes on the surface of the cylinder and arrows show the 
directions along which fine sand (sprinkled on the horizontally placed cylinder surface) 
moves toward the nodallines. Where no arrows are shown it moves directly to the 
nodes. 
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Fig. 5.3 Mode chart showing the approximate farm of the vibrational modes of 

cylinders at a diametrical cross-section and the nodal lines on the surfaces. 
The circumferential order n indicates symmetry in radial direction. Even 
mode numbers are symmetrie and odd mode numbers are anti~lymmetric 
about the median plane of the cylinder (McMahon). 
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Figures 5.4, 5.5, 5.6 and 5.7 show the frequency spectra determined experimentally 
by McMahon. For all modes ofvibrations according to the numbers in figure 5.3 the 
non-dimensional frequeney parameter kd is presented versus the length to diameter 
ratio 1/d. These frequency spectra are valid for aluminium cylinders, where 
v ~ 0.344 and c ~ 5150 m/s (McMahon). 

We wil! now use these results to cbserve the problems that can be encountered when 
designing a solid cylindrical resonator for ultrasonic welding applications. All modes, 
except mode 2, show at least one nodal line at the output surface and therefore do not 
meet the requirement that fora well-designed resonator the output amplitude along 
the surface must be as uniform as possible. The longitudinal mode in the cylinder as 
shown in figure 5.2 is denoted in figure 5.3 as mode number 2. The frequency 
spectrum of figure 5.4 shows mode branch 2. For smal! values of the length to 
diameter ratio (!/ d < 0.2) this mode corresponds to the radial mode of vibrations in thin 
discs (kd ~ 4.4). For large values ofl/d (1/d > 1.5) this mode is the half-wavelength 
longitudinal mode in slender rods (see chapter 2). Here the mode branch converges in 
the spectrum to kd ~ = 11' (following equation 2.6). As the range of interest 
(0.6 < 1/d < 2) is almast complete1y covered by McMahons work, the resonance 
frequency for any cylinder dirneusion for the longitudinal mode can be determined 
from figure 5.4. 

From the frequency spectra one can find those cylinder dimensions 1/d for which mode 
branch 2 is crossing any other branch, and where interf erenee of these modes will 
occur in the cylinder. From figure 5.4 it is clear that for~ "'0.77 mode 2 will 
interfere with mode I ( see figure 5 .3). 
Other crossings are found for modes 7 (1/d ~ 1.25), mode 16 (1/d ~ 0.97), mode 15 
(1/d ~ 1.18), mode 20 (1/ d ~ 0.2) and mode 19 (1/d "'0.66). 
Figure 5.5 also reveals that modes 7 and 8 are closely coupled tomode 2 over a large 
range. This means that when designinga resonator at least three resonance frequencies 
will be measured very close to each other. 
To conclude, there is no value of 1/d for which the difference between the resonance 
frequency of the longitudinal mode and that of any other is Jarger than I 0%. If in a 
specific resonator the resonance frequency of any of the unwanted (spurious) modes is 
too close to the longitudinal one (according to own experiences when the difference is 
less than 5%) the frequency spectra can be very helpfull to 1eam what dimensions have 
to be changed to imprave the situation. 

In the next formula wil! be presented to calculate the resonance frequency of the 
longitudinal mode for any length to diameter ratio. 

5.5 Ray1eigh's correction to the wave propagation velocity 

The propagation velocity c of longitudinal waves in cylinders will decrease for 
increasing diameters. Lord Rayleigh presented a correction formula for the wave 
propagation velocity in cylinders that compensates for the finîteness of the diameter. 
The formula is accurate up to diameter to wavlength ratlos of 0.4. lt will be used here 
to calculate part of the mode branch 2 in figure 5.4. The corrected propagation 
velocity c' (see appendix 2 for the derivation) fora cylindrical resonator equals: 
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Fig. 5. 4 Frequency spectra for modes of circumferential order n = 0, mode numbers 
according to figure 5.3 (McMahon). 
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Fig. 5.5 Frequency spectra for modes of circumferential order n = 1, mode numbers 
according to figure 5.3 OHcMahon) 
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Fig. 5. 7 Frequency spectra for modes of circumferential order n = 3, mode numbers 
according to figure 5.3 (McMahiJn) 
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c' c (1 (5.1) 

where: v : Poisson 's ratio ( ~) 
d: diameter of cylinder (m) 
f: frequency of the vibration (s-1) 

In figure 5.4 (curve A, dotted line) the calculated resonance frequency with equation 
(5.1) is shown. A similar correction formula exists for the radial vibrations in discs 
(curve B in figure 5.4). 
In order to campare this correction formula with the results which will be presented in 
the next, equation (5 .I) is rewritten in non-dimensional form, re lating the cylinder 
length I and the diameter d. 
The cylinder length 1 for the longitudinal mode equals (using equations (2.6) and (5 .I)): 

1 = 

Using the wavenumber k = ~ and equation (2.6), the non-dimensionallength klis 
related to the non-dimensional diameter kd as follows: 

kl 

(5.2) 

(5.3) 

Figure 5.8 shows this correction to the resonator !ength versus the diameter (Poisson 's 
ratio v 0.344 in order to campare it to MeMahan's results). 

5.6. Approximate theory for the calculation of the resonance frequency of the 
longitudinal mode 

McMahon ( 1964) investigated the relation between the cylinder length and diameter 
experime.ntally whereas Hutchînson ( 1980) elaborated analytic solutions with large 
computer effort. An approximate theory to calculate the resonance conditions for the 
longitudinal mode in a cylinderfora wide range of the length to diameter ratios, 
resulting in simple formula would be of great value for practical use. Mori ( 1977) 
suggested a way to derive such a formu!a. Mori presented the results graphically and 
did only derive part of the approximate theory in his paper. We wi!l now present the 
approximate theory and derive the formula. 

Mori's theory is basedon the assurnption that the actual vibrational mode of the 
longitudinal wave in a cylinder for which the diameter to length ratio is near unity, can 
be considered as an interaction of two orthogonal waves. One being the longitudinal 
wave in slender rods, the other the radial extensional wave in thin discs. 
The interaction of the two waves is reaiized by introducing a wave coupling factor m, 
which is basedon certain assumptions to the stresses in the cylinder, which are 
explained below. 

The resonant length of the cylinder for small diameters was derived in chapter 2 
(equation 2.6): 

kl 1T 

where k w~ the wavenumber. 

(5 .4) 
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The wave equation for harmonie vibrations in thin discs, according to the definitions in 
figure 5.1 equals ( Gladweil (1967)) (where u is the radial amplitude). 

(5.5) 

Wh ere the wavenumber kr for radial vibrations is defined by kr = w j p( l-v
2

) 

Solutions for the axisymmetric radial vibrations in thin discs, for the funlamental radial 
extensional mode, yield the following equation: 

~ 10 (k~ d~ = 0 _ v) 11 (k~ d~ (5.6) 

Where Jo and J 1 are the zero and l-st order Bessel functions of the first kind. The first 
root of equation (5 .6) is (Kleesattel ( 1968)): 

a 

The solutions fora depend on Poisson's ratio. In Kleesattels paper a is presented 
graphically. It can be approximated by: 

a 1.84 + 0.68v 

(5.7) 

(5.8) 

Now we have to find a theory to couple the solutions of equations (5.4) and (5.7). 
For the denvation of equation (5.4) it was assumed that in the slender rod both radial 
and tangentlal stresses are zero (ar= 0 and ao = 0). It is proposed by Mori that with 
increasing diameters, ar and ao will increase and can be approximated by: 

1 
Ur m Uz 

I 
(5.9) 

G8 = m Uz 

Using Hooke's law, the axial strain €z then follows: 

I 
€z E (Uz- V (ar+ ao)) or 

(5 .10) 

Ez =i Uz (I :) 

According to Mori an apparent elasticity for the vibrations in axial direction is defined 
by: 

E' = E 0 _2v)"'1 
m 

(5 .ll) 

In fact, this is identical to a decrease of the wave propagation velocity. The corrected 
resonator length due to this apparent elasticity follows from equation (5.4): 

kl='lr(l 2v)·l/2 
m 

(5.12) 
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For the radial vibrations in thin discs it was assumed that the axial stress Uz 0. 
Again, Mori suggests to approximate the axial stress Uz (with increasing thickness of 
the disc) using the same wave coupling factor rn by: 

az = mar (5.13) 

Using Hooke's law the radial and tangentlal strain er and eo follow: 

I 
er E (ar (1 rnv) - va(J) 

(5.14) 
1 eo = E(ae var (1 +rn)) 

The radial stress ar is related to er and e(J by: 

(5.15) 

The apparent elasticity for the radial vibrations is defined by camparing this stress 
relation to that far the case where Uz = 0. 
Far the thin disc (az = 0 and m = 0) the radial stress would produce: 

(3.16) 

So carnbining equations (5.15) and (5 .16), the apparent elasticity for radial vibrations 
becomes: 

( 5 .17) 

The corrected diameter would follow frorn equation (5.7} by intraducing (5.17). Far 
convenience the nan-dimensional cylinder diameter is defined using the wave number k 
(instead of kr)- Frorn equations (5 .7), (5 .16) and (5 .17) it follows: 

(5.18) 

Elimination of the wave coupling factor rn from equations (5.12) and (5.18) results in 
arelation between cylinder length I and diameter d: 

(5 .19) 

In order to campare this approximate theory with MeMahan's ex perimental results, the 
salution of equation (5.19) is plotteel in figure 5.8 for Poisson's ratio v = 0.344. 
MeMahan's results as shown in figure 5.4 (mode branch 2) are translated into figure 5.8 
as welL C!early, the apparent elasticity methad deviates from McMahon 's results, the 
mean difference is 3 à 6%. 
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Fig. 5.8 Non-dimensional representation of the cylinder length l versus the diameter d 
(Poisson 's ratio v = 0.344, *are points from McMahon). 

The salution of equation (5.19) has two as):mtotic values which were already discussed 
ck:-+ 0 gives the slender rod vibration and 1fd....,. 1.41 gives the radial disc vibration). 
Mori's theory gives a too short cylinder when designing an ultrasonic resonator, which 
would result into too high resonance frequencies. However, the formula fairly wel! 
approximates the experiments and is easy to handle for pr-actical applications. 

The influence ofPoisson's ratio on the cylinder dimensions are shown in figure 5.9. 
The nature of wave coupling is present by favour ofPoisson's ratio; it is obvious that it 
strongly influences the solutions of equation (5.19). 

According to Mori's approximate theory the length of aluminium cylindrical resonators 
has been calculated as function of the diameter for the longitudinal mode of vibration 
at frequencies of 20, 36, 40 and 60kHz (these are frequently encountered in ultrasonic 
high power applications such as welding). The properties of the aluminium can be 
found in table 2.1. 
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Fig. 5.9 lnfluence of Poisson ~ratio v on the cylinder length land diameter d for the 
longitudinal vibrational mode ( according to Mori's theory, equation ( 5.19 )) 
(v = 0.25, 0.30, 0.35). 

Figure 5 .I 0 shows the length to diameter relation for various resonance frequencies. 
The effect of varia ti ons in the wave propagation velocity cis shown in figure 5.4 at a 
frequency of 20 kHz. 

5.7 Resonance frequency measurement of five cylinders 

Five aluminium resonators have been designed in order to study the resonances in the 
solid cylinder. Table 5.I summarizes the dimensions of the cylinders which are 
designed to be in resonance in the longitudinal mode at 20kHz. From the actual 
cylinder dimensions the resonance frequency was calculated from Mori's approximate 
theory, using equation (5 .19). The deviation of the measured frequencies to the 
calculated on es is listed in tab ie 5 .I. Clearly the approximate theory gives frequencies 
of 1-2% below the measured ones (this is in accordance with the analysis above). 
The ex perimental values of McMahon are used to predict the frequencies of the 
cylinders with aid of figure 5 .4. Although MeMahan's results arebasedon v = 0.344, 
they still may be used for comparison. According the equation (5 .19) the frequencies 
with v = 0.344 wil! be ± 0.3% lower with respect to those calculated with v = 0.355. 
The deviation of the measured frequencies to the results of McMahon are listed in 
table 5.1. If the differences ofPoisson's ratio are considered, one can conclude that the 
approximate theory, MeMahan's results and the own measurements are in good 
agreement. 
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The material is aluminium c = 5200 m/s, v 0.335 (equation (5.19)) 
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Fig. 5 .I! Resonator length I versus the diameter d for various va!ues of the wave 
propagation velocity c (103 rn/s). The frequency f= 20kHz, v = 0.335. 
(equation (5.19)) 
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. d :~; (k;z}ld .. 
, ev~ation I McMahon · ev1ahon 

i 

80 126 1.57 20.20 19.86 + 1.7% 20.00 + 1 % 

2 100 122 1.22 20.26 19.92 + 1.7% 20.09 + 0.8% 

3 130 19.80 19.50 + 1.5% I 

4 160 20.05 19.82 

5 165 

Table 5.! Resonance frequencies for the longitudinal mode in 5 cylinders; comparison of 
own measurements to Mori's theory and McMahon s experiments: 
material aluminium c 5200 m/s, v = 0.335. 
(McMahons results are tor v = 0.344). 

5.8 The effect of coupling toa transducerand spurious modes 

In the solid cylinder various modes of vibration can occur. For eertaio cylinder diameter 
to length ratio's modes are coupled to the longitudinal mode. Spurious modes are all 
modes whicll occur in the cylinder and that are not the longitudinal design mode. For tlle 
5 cylinders studied before (tab ie 5 .1) the resonance frequencies of all spurious modes 
wllich are close to the design frequency of 20kHz, are determined from MeMallon's 
results (figures 5.4 to 5.7), see table 5.II. MeMallon's results were obtained experimentally. 
Tlle vibrational mode shapes are classified according to the definitions in figure 5.3, and 
are given between parenthesis. 

2 

100 

16.33 (I) 

17.80 (7) 17.04 (7) 

17.80 (8) 18.06 (8) 16.75 (8) 

19.60 (7) 18.30 (16) 18.27 (19) 19.73 (7) 

I frequency 20.00 (2) 20.09 (2) 19.72 (2) 20.11 (2) 20.63 (2) 

20.14 (15) 22.6 (1) 22.45 (20) 21.92 (20) 

Table 5.11 Resonance frequencies of spurious modes determined from lvfcMahon s 
experimentsas listed in figures 5.4 to 5. 7. 
The numbers between parenthesis are the mode numbers. 
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The spurious modes were also determined by own experiments. The results are listed 
in table S.III. Again the cylinder dimensions are those in table 5.1. It can be concluded 
that these measurements are in agreement with MeMahan's results from table 5.11 
(again one has to remember that MeMahan's data are for v = 0.344). Identîficatîon of 
the vibrational modes was difficult and not always unambiguous. Some modes could 
noteven be detected. The number of modes near the 20kHz is largest of the larger 
diameters. For diameters d < 80 mm no spurious modes are present when designing 
solid cylindrical resonators. 

I cylinder I 2 3 4 s I 
diameter 80 100 130 160 165 

! 

(mm) 

17.14 

17.26 17.84 16.75 

19.47 17.70 19.48 19.37 

frequency 20.20 20.26 19.80 20.05 20.48 
(kHz) 21.56 ! 22.26 22.00 23.73 21.83 

I 22.38 

Table 5.!/l Measurement of spurious modes in the aluminium resonators as defined in 
table 5.1. 

When a resonator is coupled to the transducerand booster of a welding apparatus (see 
figure 5 .12), some of the vibrational modes in the resonator will nat be possible. The 
resonator-booster-transducer system will show resonances at frequencies corresponding 
to vibrational modes that are possible in the complete system only. When the 
resonator is coupled its boundary conditions differ from those of the free resonator. 
Only those modes in the resonator for which the mechanica! impcdanee does match to 
that of the transducer-booster assembly, will also appear in the coupled resonator. 

In table 5 .IV the resonance frequencies of three coupled cylinders are given. The 
cylinders were coupled to a transducer-booster assembly which vibrates in the 
longitudinal mode at 20.30 kHz. Vibrational modes (1) and (2) according to 
MeMahan's defmition could he identified by sprinkling sand on the vibrating surfaces 
which moved to the nodallines. From table S.IV we can learn that all solid cylinders 
have been designed as good resonators in which the unwanted spurious modes are not 
close to the operating frequency of 20 kHz (it was discussed in chapter 1 and 3 that 
for optimum operation no spurious modes are allowed in a 1 kHz range about 20 kHz). 
However this result would nothave been predicted from table S.Il. Obviously many 
modes disappear when the cylinders are coupled. 

Camparing table 5.II and S.IV one may conclude that only modes of order n = 0, 
which have no nodallines crossing the contact area of coupled cylinder to the booster, 
preferably wil! be excited. However, one can imagine the transducerand booster 
vibrating in a flexural mode rather than the longitudinal mode. In that case modes of 
order n = 1 with one nodalline in the contact area will be possible in the complete 
system. 



frequency 
(kHz) 

13.76 

(2) 

4 

160 

16.52 (1) 

20.05 (2) 

5 

165 

15.31 

20.46 (2) 

23.75 

Table 5./V Resonance frequencies in the resonator-booster-transducer system; the 
vibrational mode number between parenthesis (booster-transducer have 
a resonance frequency at 20.3 kHz). 

5.9 Amplitude measurements 
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Resonators are used totransruit vibrational energy. It is important to knowhow 
uniform the vibrational amplitudes are over their output surfaces. The five cylinders 
as presented in tab ie 5 .I were coupled to the transducer of a welding apparatus. The 
amplitudes along the cylinder surfaces were measured (with an optica! detector, see 
chapter 2, with accuracy of± 0.2 J.(m) while it was activated in its resonance frequency 
at an input amplitude w0 10 J.(m. 
Figure 5.13 shows the typical shape of the longitudinal mode. A maximurn amplitude 
is reached at the centre ofthe cylinder at the input and output surface (w0 ) and at the 
midplane of the cylindrical surfaces (u0 ). These maxima decrease towards the edges 
(w0 __,.We and u0 -7 ue, see figure 5.13). The dotted lines indicate the vibrational 
maxima at the positive and negative phase (half a period phase shift). 

Both radial amplitudes u and axial amplitudesware shown in figure 5.14 and 5.15 
respectively. The amplitudes are normalised to the maxima u0 and w0 respectively. 

With increasing diameter the output amplitude strongly decays from the centre 
towards the outer diameter. The available amplitude at r ~as compared to the input 
amplitude is surnrnarized in table 5 .V ( we/w0 ). "' 

If an amplitude decay of maximum 10% is acceptable, the maximum diameter for 
solid cylindrical resonators would be 60-70 mrn at 20kHz ( extrapolation of the 
results in tahle 5 .V). 
In figure 5.14 il can be seen that for the largest diameters the amplitude shows an 
extremely sharp fall-off towards the outer diameter, resulting into a relatively smal! 
area of the output surface that can he used effectively. It certainly would be of no 
use to design cylindrical resonators of larger diameters to reach the largest 
effective area that is possible. For instanee at d 130 mm only 12% (up tod= 45 mm) 
of the area has an amplitude higher than 90% of the input amplitude, whereas at 
d 80 mm this amounts to 65% (up tod= 65 mm). 

The degree of coupling of the radial to the axial vibrations is expressed by in 
table 5 .V. Strong radial amplitudes are measured for the largest diameters. 
This is in agreement with the observation in the frequency spectra for the longitudinal 
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Fig. 5.12 CoupZing of a resonator (solid cylinder) toa boosterand transducer. 
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Table 5. V Typical amplitude ratlos as measured for the longitudinal mode in 
cylindrical resonators. 
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mode as derived by McMahon and theoretically. For large diameters the spectrum 
approaches asymptotically the solutions for radial vibrations in thin discs. At 20kHz 
the thin disc of aluminium is in radial resonance at d = 180 mm (see figure 5.8), or 
equation (5 .19). 

5.10 Other modes of vibrations 

Finally, it was concluded that the longitudinal mode in the solid cylîndrical resonator 
only is possible up to diameters of± 1 65 mm. Above this diameter other vibratîonal 
modes would be needed when devicîng resonators. However, in this case nodal circles 
at the output surface wiJl always be observed, according to McMahon's frequency 
spectra. Two resonators were designed with aid of figures 5.4 to 5.7 at d = 220 mm 
and d = 300 mm, showing one and two noctal circles respectively when coupled toa 
welding apparatus. The vibrational modes are axisymmetrical (the dimensions and 
frequencies were: d = 300 mm, l = 145 mm, f 20.65 kHz and d = 220 mm, 
I 130 mm, f = 20.20 kHz). 
In both cases the modes showed an amplitude ratio at the output surface of We = --1 

w ~ 
(d 220) and w~ I (d = 300). Althougil it was possible to make weids at a restricted 
area near the outer diameter, problems did arise in order to keep the complete system 
in resonance (the ultrasonic generator would notloek to the resonance frequency). 
It is not the objective of the present work to explore other vibrational modes than the 
longitudinal one. 

5.11 Conclusions 

Solid cylindrical resonatorscan be used effectively up to diameters of 60-70 mm at 
20kHz, provided that an amplitude fall-off at the output surface of maximum I 0% is 
acceptable. Ho wever, when only restricted areasof the output surface are to be used 
(for example a small part near the outer diameter) diameters up to 165 mm are 
possible, however with only 20% of the input amplitude available. 

The approximate theory to calculate the resonance conditions in the cylinders for the 
longitudinal mode is very useful and ofreasonable accuracy. MeMallon's frequency 
spectra are of importance to de termine the presence of spurious modes and the 
coupling of them to the longitudinal one. Wh en designing solid cylindrical resonators 
never spurious modes will be present for diameters d < 80 mm (at 20kHz). The 
coupling of these resonators to a welding apparatus results into disappearance of many 
spurious modes, but for the larger diameter still modes are present near 20kHz. 
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6. SOLID RECTANGULAR RESONATORS 

6.1 Introduetion 

For ultrasonic high power applications the resonator with a rectangular cross-section 
perpendicular to the propagation direction of the longitudinal wave into it is very often 
used (see figure 6.1). At 20kHz the output surface has typically dimensions in the 
range of 50 x 50 mm2 to 50 x 150 mm2 , mostly one dimension not exceeding 50 mm. As 
discussed in the previous cbapters these dimensions are typical for wide output 
resonators (dimensions > t../3). Their dimensions arealso of tbe order of t../2, the 
half-wavelengthof tbe longitudinal wave, so that the detennination of the resonance 
frequency of the resonator is more comp!icated than as would be predieled by the 
fundamental theory for longitudinal waves in slender rods. As discussed in chapter 3, 
very wide output resonators of tbe blade-like and block-like type are separated tbrougb 
slottingin half-wavelength resonators of rectangtllar cross-sections. Therefore it is 
important to know the characteristics of the rectangular resonators for determination 
of the number of slots needed and their location and dimensions. lt is to be studied in 
this chapter up to what dimensions solid rectangular resonators can be used effectively, 
regarding tbe unifonnity of the output amplitude. 
Available literature on tbe subject will be reviewed. From it correction fonnulae for 
the wave propagation velocity in tbe rectangular resonator are presented. In a very 
sim i! ar way as Mori ( 1977) used tbe apparent elasticity method for solid cylinders, in 
this chapter the resonance conditions of the Jongitudinal mode wiJl be derived. Using 
the Rayleigh metbod, the resonance conditions will also be derived wbile certain 
assumptions on tbe sbape of tbe longitudinal mode are made. The calculated mode 
shape and tbe resonance frequency will be compared witb own experiments. Otber 
modes (spurious modes) will not be discussed as extensively as was done for the 
cylindrical resonator. Some infonnation on it can be derived from very recent papers 
ofHutchinson and Zillmer (1983) and Leissa and Zbang (1983), but not on an even 
elucidative way. 

6.2 Literature review 

For small resonator dimensions (lateral dimensions < t../4) approximate tbeories for the 
decrease of tbe wave propagation velocity of tbe longitudinal wave have been derived 
(tbe basical workof Love, and in publications of Morse (1959), Kynch (1957) and 
Redwood (1960)). Very recently Hutcbinson and Zillmer (1983) and simultaneously 
Leissa and Zhang ( 1983) publisbed papers on the vibrations in rectangular 
parallelepipeds. In botb, complex numerical manipulations are needed to derive tbe 
resonance frequencies. Hutchinson derives the lowest order modes forsome 
dimensions and bis results are converging to tbe elementary solutions exactly. Leissa 
uses the Ritz method to derive tbe frequencies for the 5 lowest modes, based on 
assumptions for the displacement functions. Some mode shapes are presented. 
Ho wever, Leissa's idealisation regarding the zeros for the displacements at one face of 
the parallelelepiped makes his results not useful for tbe design of resonator. 
Hutchinson's paper, however, deals witb free parallelepipeds. His results do not 
contain mode charts or descriptions of tbe actual mode shapes, in relation to frequency 
spectra, to enable the study of the preserree of spurious modes of vibration in tbe 
rectangular resonator wbich could be coupled to the longitudinal one. 



Wh en the thickness and width of the resonator comes in the order of the 
half-wavelengtil of the longitudinal wave, strong lateral resonances will be observed, 
coupled to the Iongitudinal mode. Itoh and Mori ( 1971) studied experimentally this 
effect and showed that it is possible to design directional converters, in which 
ultrasonic vibratory energy can be transmitted in perpendicular directions. Ho wever, 
to u se them effectively, the output area is Iimited to those of slender rod resonators. 
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Stepamenko {1979) developed an approximate theory to calculate the resonance 
frequencies of rectangular resonators for which only one of the lateral dimensions is 
small. while the other is of the samemagnitude as the wavelength of the longitudinal 
mode. Stepamenko created very wide output resonators by coup!ing several rectangular 
resonators by favour of the presence of lateral resonances (see appendix 3). The 
validity of his model will be compared to those of others. From measurements by 
Stepanenko, it foliowed that these resonators did notshow a uniform output 
amplitude (differences up to 30% are observed). 

6.3 Corrections to the wave-propagation velocity 

There exist two propagation modes for the longitudinal waves in resonators of 
rectangular cross-sections. The extensional character of this wave causes a cross-section 
perpendicular to the propagation direction to expand or contract in the width 
direction (width-mode) or in the thickness direction (thickness-mode). These are shown 
in figure 6 .I on an enlarged scale (cross-sec ti on through the midplane of the resonator, 
z = 0). Morse { 1950) studied both modes. In the range of practical interest for ultrasonic 
applications the thickness-mode has much higher a propagation velocity than the width 
mode. The width mode wil! normally be observed when designing resonators. 

b d 

I l--1-4:=:;::---- input 
w 

z 

output 

[ 
-------

J 
thickness-mode width-mode 

Fig. 6.1 Solid reetangu/ar resonator of length l, width band thickness d; two 
propagation modes for the longitudinal wave are shown; the thickness-mode 
has much higher a propagation velocity than the width-mode (the modes 
shownare a cross-section through the rnidplane z 0). 
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The resonance frequency for the longitudinal mode of the half-wavelength (À/2) 
resonator of length I for smalllateral dimensions (b < À/4 and d < À/4) (see figure 6. I) 
follows from: 

I = ~ orkl = 1T 
2f 

(6.1) 

With increasing width and thickness the longitudinal wave propagation is to be 
corrected for the effect of lateral inertia, caused by Poisson effects. Love derived a 
theory to calculate a correction for resonators of rectangular cross-section (sec also 
Kynch (1957) and Leissa (1983)): 

c' = c 0 +v2 k2 K2rl/2 

where k wave number, K = polar radius of gyration ofthe cross-section. After 
linearisation of equation (6.2), it follows for the rectangular resonator: 

c' 

(6.2) 

(6.3) 

Again, for comparison with the results below, the actual resonator length I is calculated 
as function of the width b. Using equations (6.1) and (6.3), in non-dimensional form, 
it follows: 

kl 
(6.4) 

1T 

Often the deercase of the propagation velocity is calculated from a modified Rayleigh 
approximation taking into account Poisson's ratio and the cross-sectional area rather 
than its actual shape and dimensions by use of the radius of gyration. This 
modification is basically not correct. The deviation to equation (6.4) is compared in 
figure 6.2, amongst the other theories (where d/b = 0.3). 
The corrected velocity equals (see also equation 5 .I): 

c' = c (I v2 k2 bd) 
41T 

(6.5) 

Within the range of validity, (d < À/4 and b < À/4 or ~ < 0.5), the difference is less 
than 0.5%. The deviations from the elementary value ofthe wave propagation velocity 
is small (for which ~ I). From figure 6.2 it follows that up to width to lenfth 
ratios b/1- 0.7 the deviations of the corrected velocity is less than 1% (b/1"" kf). 

The effect of the thickness to width ratio d/b on the propagation velocity following 
equation (6.4) is shown in figure 6.3, by camparing the resonance length I versus the 
resonator width b. Within the range of validity, the difference between ~ 0,2 and 
~ = I arnounts a bout I%. 

6.4 Apparent elasticity metbod 

In a very similar way as was shown for the cylindrical resonator, the apparent elastieity 
methad can be used todetermine the resonant lengthof a resonator with a rectangular 
cross-section. In the following only one dimension wil! be small as compared to the 
others (d <I and d < b) (fig. 6.1). We will assume the plain stress case. The resonator 
is supposed to resonate in the z-direction in the longitudinal mode. Due to Poisson's 
contraction the largest lateral motions are to be expected in the x-direction. 
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Stepanenko 
( equation 6.15) 

Rayleigh Ritz salution 
( equation 6.24) 

Rayleigh approximation 
(equation 6.5) (d/b 0.3) 

Love approximation 
(equation 6.4) (d/b = 0.3) 

apparent elasticity 
( equation 6 .14) 

Fig. 6.2 Non-dimensional representation of the length lof a reetangu/ar resonator 
versus its width b; comparison ofvarious theories (v 0.335); own 
experiments are marked with asterles (*). 

We will now derive the resonance conditions in the resonator in a very similar way as 
Mori did for the cylindrical resonator. The equations of motion fa both x- and z­
direction are coupled by introducing the wave coupling factor m. Consider two 
extreme situations, first the slender rod resonator in z-direction (I > b and l > d), 
secondly the slender rad resonator in x-direction (b >I and b > d). 
The resonance conditions for the half-wavclength mode are respectively: 

kJ = 1f (I;';> b, 1 ;';> d) 

kb rr (b > I, b > d) 

The governing equation was discussed in chapter 2 (equation 2.1 ). 

(6.6) 

(6.7) 
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Fig. 6.3 The effect of the thickness to width ratio d/b on the resonant length l versus 
the width b fora reetangu/ar resonator ( correction on the wave propagation 
velocity according equation (6.4)) (v = 0.335). 

For the first situation (kl = 1r) both stresses a x and ay are zero. For increasing width b 
the stress in x-direction will increase. For reason of d < b and d <I ay will be zero. 
It is assumed that ax is related to az by: 

(6.8) 

In z-direction, Hooke's law gives the stress-strain relation: 

I 
€z E (az - vax) or (6.9) 

(6.10) 

The apparent elasticity in z-direction is defined by E': 

( 6.11) 

The second situation (kb w), yîelds to exactly the sameapparent elasticîty in the 
x-direction (where ay 0). The resonant length I and width b (equatîons (6.6) and 
( 6. 7)) are calculated by introducing E' instead of E. 

d 
b 



kl 

and 

Elimination of the wave coupling factor m from these equations, results in the 
frequency equation relating the elastic properties and the dimensions of the 
rectangular resonator: 

1f 
(1 

kl 

59 

(6J 2) 

(6.13) 

(6.14) 

Clearly this solution is independent on the resonator thickness d. The salution of 
equation (6.14) is shown in figure 6.2. In the case of! b, the resonance frequency 
relation becomes~! 0.865 for v 0.335. From figure 6.2 it is clear that this theory 
gives much lower resonance-frequencies than those obtained from the corrections to 
the wave propagation velocity. The agreement with own experiments (which are 
explained below) is excellent. For small width the tileory converges to tile slender 
rod solution, as expected. So, it can be concluded that the tileory is adequate for 
Iarger widths whereas tile corrections to the wave propagation velocity are noL 

6.5 Resonance conditions according to Stepanenko 

Stepanenko*) ( 1979) derived a theory to calculate the resonance condition in a resonator 
of rectangular cross-section where one dimension was smal! compared to the others. 
In his model both length I and width bare oftile same magnitude, resulting in astrong 
coupling of the lateral vibrations to the longitudinal mode. A complete derivation of 
the theory can be found in Stepanenko's paper. The theory holds only fora smal! 
range of the width b. Using the non-dimensional notation mentioned above, the 
resonance condition becomes for the half-wavelengtil longitudinal mode: 

1f 
(2 (I +v) (6.15) 

Wid th b has to fulfill the following limitations: 

n=; 
vi~;';< < l+v 1r 

(6.16) 

For v 0.335, these limitations are 0.71 < k: < 1.23. The salution of equation (6.15) 
is silown in figure 6.2. Clearly. tilis theory strongly deviates from the apparent 
elasticity metilod, or from the experiments. There is only a smal! range wilere tilis 
salution coincides with the apparent elasticity solution, namely for those values of I 
and b for which {;is near unity (~ = 0.865). It is intilis range that Stepanenko 
designed his ultrasonic resonators. 

*) (see appendix 3 ). 
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6.6 Rayleigh-Ritz metbod todetermine the resonance frequency and mode of 
vibration 

In order to calculate the resonance frequency of the longitudinal mode in the 
rectangular resonator. we will derive the resonance conditions while an assumption is 
made for the displacement function, which best fits the actual vibratienat mode. By 
equating the maximum kinetic energy and the maximum potential energy during a 
cycle ofvibration in the resonator, the resonance condition is found, yielding the 
frequency equation. The displacement function, which wiJl bedescribed below, 
contains one unknown variable. The unknown variabie is found from the requirement 
that it must minimize the calculated resonance frequency. This methad is known as 
the Rayleigh-Ritz method. The results obtained will give a frequency higher than the 
exact value. 

Figure 6.4 shows the rectangular resonator and the relevant definitions of coordinates 
and disp!acements. The modeshapeis plotted in the same figure. We wi!l assume the 
resonator thickness d to be small as compared to the other dimensions. The stress in 
y-directions is zero: ay 0 (see also figure 6.1 ). The resonator width to length ratio 
wil! be varled between 0 < f< I, for reason of symmetry. The displacement functions 
u (x,z) and w (x,z) related tothemode of vibration that is expected are chosen as fellows: 
(again time-independent so!utions are discussed, the vibrations are harmonie): 

u (x,z) u0 sin(~ x) cos (yz) (6.17) 

W (X,Z) = Wo COS (fx) sin (fz) (6.18) 

The displacements are independent of the thickness d. The unknown variabie in 
equations (6.17) and (6.18) is 17 ~~' which equals the ratio of the maximum lateral 
amplitude u0 to the maximum axial amplitude w0 . As aresult of the ana!ysis the 
frequency and 11 will be found. 

When body forces are absent, the maximum potential energy Ûp, and the maximum 
kinetic energy Ûk, for the two-dimensional problem are: 

~ I 1 Up 2 (ax €x + az Ez + 'xz 'Yxz) dV 
vol 

Ûk =! J w 2 p (u2 (x,z) + w2 (x,z)) dV 
vol 

The stress-strain relations are related to the displacements by (for convenience 
displacements are denoted by u and w): 

Ez 

OU 
ex= ox 

(6.19) 

(6.20) 

(6.21) 



The con tribution of the displacementvin the y-direction would contribute to the 
kinetic energy equation (6.20). By neglecting the displacements v, the calculated 
frequency will be somewhat higher; the effect of the displacementvis identical to 
the results of the correction formula which were derived for the wave propagation 
velocity (equation 6.3)). 

Combination of equations (6. 1 9), (6.20) and (6.21) and Hooke's law, the maximum 
potential energy and kinetic energies become: 
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, I [ { E au au aw aw ] E aw au ~} U - ~[(-)2+2v- :-- +(-)2 +--. [--+-] dV 
P 2 

1
1-v àx óx àz ilx 2(l+v) ilx ilz 

( 6.22) 
vo 

(6.23) 

The frequency equation resulting in w follows from the equation of equations (6.22) 
and (6.23). Aftersome mathematica! operations, it follows: 

Wh ere the constauts a and a 1 to as are defined by: 

I 
a= b 

a1 I+ !I/a sin Cf(! + 1/a)) 

I - 1/a)) 

a3 = 1 c!l:j 
1f a 

2 
~ 1f (a 1 + 

2 
as = 1f (a 1 - a2) 

In the frequency equation (6.24) w must be minimised with respect to 7). 

So it follows: 

(6.24) 

( 6.25) 
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By elimination of w from equations (6.24) and (6.25) a re lation for 11 is obtained: 

(6.26) 

A special solution of equation {6.26) is found for I= b or a 1. In that case 11 =-I. 
The resonance frequency follows from equation (6.24): 

kl =J61+
1 

, or !s!.. = 0.865 for v = 0.335 (sec section 6.5 of this chapter; it is identical 
'Ir ll 'Ir 
to the solution of Stepanenko's theory). 
For small values of the width b the solutions will converge to the half-wavelength 
solution for the slender rod. For11 ""'0 equation (6.24) results in~""' 1.05. So, the 
theory presented here will result in ± 5% too high frequencies. 
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Fig. 6.4 The longitudinal mode in a rectangular resonator of :;unall thickness; definition 
of the displacement functions; the maximum axial amplitude is w0 and the 
maximum lateral amplitude is u0 . 

Equation (6.26) has two solutions for 1), with a negative and positive number. As 
discussed before, the actual mode shape corresponds to the mode shown in figure 6.4, 
so the negative soJution for 11 is to be evaluated. 
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The results of this theory are shown in figure 6.2 giving the resonator length I and the 
width b in non-dimensional notation. In 6.5 the solutions for the amplitude 
ratio 7) ~~%as well as the amplitude ratio are shown, versus the resonator width b. 
(v ~ 0.335). The degree of uniformity of output amplih1de is expressed here by 
the amplitude at the edges We. If only 10% amplitude fall off is tolerated, the 
maximum resonator width is k: ~ ± 0.3. The maximum lateral amplitude u0 can also 
be derived from figure 6.5. 

The intlucnee of Poisson's ratio v on the solutions of the theory presenled hereis 
shown in figure 6.6. For smal! width b the intlucnee on the resonant length I is small, 
whereas, it is great for large valnes of the width b. The influence on the amplitude 
ratio 7) is great for the whole width range. 

6.7 Dimensioning of rectangular resonators 

Using the apparent elasticity methad (equation (6.14), the dimensions of rectangular 
resonators for the longitudinal mode were calculated forsome resonance frequencies. 
Figure 6.7 gives the length I of the resonator versus its width b for the most commonly 
used frequencies between 20 and 60kHz (material aluminium, see chapter 2). 
F i gure 6.8 gives the resonant length l versus the width b for various val u es of the wave 
propagation velocity c ( 4.0 to 5.2 103 m/s) at a design frequency f =20kHz. 

6.8 Comparison with measurements 

Four resonators of rectangular cross-sec ti on were made fora resonance frequency of 
± 20 kHz to investigate the results as obtained from the various theories. The thickness 
of the resonators are smal! compared to the other dimensions: d = 30 mm. The 
material was aluminium, c ~ 5200 m/s, v 0.335. The actual dimensions ofthe 
resonators are presented in table 6.I. 
Resonators 1, 2 and 3 were provided with a threaded hole at the input surface to 

enable a coupling to an ultrasonic transducer of a welding apparatus for amplitude 
measurements. The resonance frequency of the longitudinal mode was measured 
while the resonator was suspended into thin wires (see also chapter 2), they are listed 
in table 6.I, column A. Due to the presence of a threaded hole at the input surf ace, the 
resonance frequency is higher than for the same resonator without a hole. 
A correction for the resonance frequency can be approximated from the mass 
difference due to the hole. The volume of the hole is translated into a resonator 
volume along the input surface of width b and thickness d. The result is a small 
increase in the resonator length. The frequency correction is proportional to the 
change in length (1{ ~ -11 = bJf, where V =volume of the hole, V = 3000 mm 3

). 

The corrected frequencies are listed in table 6.1, column B. From the apparent 
elasticity theory (equation (6.14)), the resonance frequency was calculated for the 
actual resonator dimensions. The results are listed in table 6.1, column C. The 
measured frequencies are cornpared to the calculated ones in column D (the corrected 
frequency was used for resonators I, 2 and 3). The deviations are smal!, from 0,5 to 
I%. As expected the measured frequencies are higher than the calculated on es. 
Finally, the non-dimensionallength and width are calculated from the measurements 
to compare them with the theories (see table 6.I, column E and F). The measurements 
are shown in figure 6.2. 
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Fig. 6. 7 Length lof the reetangu/ar resonator versus the width b forsome frequeneies 
(kHz). ( Material aluminium c 5200 m/s and v = 0.335) ( equation (6.14)}. 
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A B c D E F 
I 

i 
i measured correction calculated 

b I f f deviation kl kb :Nr. i f -·- -

I 
1f 1f 

(mm) (mm) (kHz) (kHz) (kHz) 

! I 70 * 130 19.94 19.64 i 19.53 +0.6% 0.982 0.529 

2 95 * 137 18.47 18.27 18.19 +0.5% 0.963 0.668 

3 109 * 112 20.71 20.50 20.36 +0.7% 0.883 0.859 

4 110 * 130 18.66 - 18.45 + 1.0% 0.933 0.789 

Table 6.! Measured resonance frequencies of 4 solid rectangular resonators ( material 
aluminium c = 5200 m/s, v 0.335, d 30 mm). Comparison to the 
calculated frequencies ( equation ( 6.14)). Column B is a corrected frequency 
for the threaded hole in the resonator. 

The actual vibration mode of resonators I, 2 and 3 were measured after that the 
resonator was coupled to an ultrasonic transducer. 
Fig. 6.8 shows the measured amplitudes and those as calculated from the Rayleigh­
Ritz method. There is a good agreement with the theory. The amplitudes plotted here 
are strongly enlarged values, the actual maximum amplitude was 15 J.Lm. The resonance 
frequency of the resonator-transducer assembly differs from the measured frequencies 
in table 6.1. The transducer itself had a resonance frequency of the longitudina1 mode 
at 20.10 kHz. So, when coupling a resonator with another frequency, some 
intermediate value wil! be measured. 
lt is observed that the amplitude measurements for the wide resonator fits best to the 
calculated ones. The vibration modes of the smaller resonators are influenced by the 
coupling to the transducer with a diameter of 40 mm. This causes some stiffening and 
therefore a smaller amplitude fall-off at the input surface (see fig. 6.8). 
The uniformity of the output amplitude is denoted by the ratio we/wo (which was 
defined in figure 6.4). Resonator I (70 mm wide) already has 15% amplitude fall-off. 

6.9 Conclusions 

The longitudinal vibrational mode in solid rectangular resonator was studied. For small 
width and thickness the resonator length at a given frequency can be approximated by 
the correction formula for the wave propagation velocity (figure 6.3). The validity 
holds up to width to length ratiosof 0.3 to 0.4 (see figure 6.2), or at 20kHz to width 
b""0,4* 130,.,50mm. 
For the range 50 < b < I 00 mm, a longitudinal mode is possible in the resonator, and 
the resonance conditions are very well predictabie by equation (6.14), following the 
apparent elasticity method. The deviations from the measurements are < 1%. The 
methad presented by Stepanenko ( 1979), is only valid for resonators of width to length 
ratlos near unit. The equations derived with the Rayleigh-Ritz method show similar 
results as the apparent elasticity, however the calculated frequencies are higher 
( ± 5%). The mode shape, which is calculated with this method, fairly well approaches 
the measured mode shape. At 20 kHz the uniformity of the output amplitude is 
better than 90% for width b < 70 mm. Above it, the amplitude at the edges strongly 
falls, to become zero at b ± I 00 mm, and the rectangular resonator is not suited 
when a constant energy transmission along the output surface is wanted. 
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The design of resonators at other operating frequencies than 20 kHz was not discussed. 
Ho wever with aid of the non-dimensional representation in the figures shown, the 
resonance conditions of a resonator at any operating frequency can be determined 
easily. 
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Fig. 6.9 Vibrational modes of resonators 1, 2 and 3 when coupledtoa welding 
transducer of 40 mm diameter. The input amplitude was 15 j.lm. Measured 
amplitudes are denoted by "0 ". The calculated mode shape from the 
Rayleigh-Ritz methad ( equation ( 6.24)) is presented by dotted lines. 
The resonance frequencies as measured, the unifomzity of the output 
amplitude (we/wo) and the wave coupling (uo/wo) are listed 
(see also figure 6.4). 
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7. OPTIMIZATION OF A RESONATOR: EXPERIMENTALL V AND WITH 
FINITE ELEMENT ANAL YSIS 

7.1 Introduetion 

In the previoets chapters solid cylindrical and rectangular resonators were discussed. 
The resonance conditions for the longitudinal mode in these resonators could be 
determined analytical!y, with results in non-dimensional form. The objective of the 
presentworkis to study wide output resonators, with dimensions exceeding the limits 
for the cylindrical and rectangular resonators. In order to have wide resonators 
vibrating in a mode with a uniform output amplitude, commonly slots are provided in 
a way as was described in chapter 4 (patent literature). Clearly, analytica! solutions for 
the vibrations in such resonators of complex shape wil! not be possible. 
In this chapter the design of one specific wide output resonator of the blade-like type 
will be studied. First, it will be optimized to meet the design-requirements, on an 
ex perimental approach on account of the interpretation of the measurements of 
resonance frequencies and vibrational modes. Secondly, a finite element analysis 
method is used to study the characteristics of the resonator, and it wil! be shown that 
it yields a more successful optimization procedure. 

Gladwen ( 1975) reports very briefly a fini te element analysis of two practical resonator 
shapes as used in ultrasonic welding (axisymmetric cylindrical and a bell-shaped 
resonator), using a finite element methad which was publisbed earlier for the analysis 
of thin disc and ring-type ultrasonic resonators ( Gladweil (1967)). Only the mode 
shape of the resonator vibrating at 20 kHz is described and it is observed that locally 
there are strong radial amplitudes (not desired). Glad wel! concluded to state that the 
major design problem remains to find a resonator shape which shows only smalt radial 
vibrations as compared to the longitudinal on es. Generally, the problem is to find 
basical design rules which result in a resonator shape very close to the final optimum 
shape. These are not given by fini te element analysis. The presence of other resonance 
frequencies near the operating frequency (spurious modes) is not mentioned in 
Gladwell's paper, so that no information on the reliability of the resonator under 
operating conditions can be obtained. 

7.2 Descrlption of the resonator shape 

From experiences of suppliers of ultrasonic equipment it is known that designing 
blade-like resonators of about 130 to 150 mm width at 20 kHz can be troublesome. 
Below, a 131 mm wide and 35 mm thick resonator wiJl be studied. Generally, a 
resonator having at least one lateral dimension exceeding a quarter of the wavelength 
(X/4) will be provided with slots or cut-outs to compensate for Poisson coupling (see 
chapter 4 ). It is attempted in this way to have the resonator vibrating in a 
"longitudinal" mode. The description "longitudinal" mode very oftenis used to 
denote that the mode must show a uniform amplitude along the output surf ace. By 
providing slots the wide resonator is separated in slender rod-like resonators in which a 
pure longitudinal mode is generated, which shows in deed a uniform output amplitude. 
From it originates the description "longitudinal" mode when the wide resonator is 
meant. 
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Figure 7 .I shows the resonator and its dimensions, provided with two slots, thus 
representing three slender-rod resonators which are coupled at the ends. This eoupling 
is effectuated in a zone where the lateralstrain in the resonator is minimum (see 
chapter 2, vibration analysis). The mutual disturbance of the longitudinal wave in each 
part wil! be minimized as a result. The choice of the width of the slotsis not critica!, 
but will be kept as smal! as possible. For reason of machineability these slots usually 
are 8 to 12 rnrn wide for 20kHz resonators. The lengthof the slotsis a campromise 
between two arguments. To have a good decoupling of the parts, the length wil! be 
maximized. Ho wever through the remaining bridging elements mechanica! power has 
to be transmitted. So mechanica! stresses and the overall stiffness of the resonator 
would demand larger dimensions of these coupling elements. Usually, the slot length is 
such that the remaining bridging elements are I 0 to 25 mm high. There are no strict 
criteria for the location and number of slots to be provided. Usually, the width of the 
elementsis between À/8 and )1./4, so that the number of slots depends on the resonator 
width. The location airoost always is such that the width of the elementsis nearly 
identical for all elements. In the next chapter this subject will be discussed more 
extensively. 
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Fig. 7.1 A blade-like resonator of 131 mm width and 35 mm thickness designed to 
resonate in a longitudinal mode at 20 kHz ( dimensions in mm). Part of the 
vibrational mode that is to be expected is shown. Amplitudes are presented 
on a strongly enlarged scale. 

The resonator material is alumiurn (see chapter 2 for the properties), so the half­
wavelengtil at 20kHz for the longitudinal mode in a rod-type resonator equals: 

130mm 
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As the wide resonator is composed of slender-rod resonators, it should be resonant at 
a length l, which is a bout l"" 130 mm. 
The actual resonator length is chosen i = 128 mm. The amplitudes of vibration, as 
desired, at the output surface, are illustrated in tigure 7 .I too. The overall vibrational 
mode which can be expected because of the Poisson contraction in each element is 
shown (only part of mode is shown). 

7.3 Optimization on an experimental approach 

A resonator wasdevicedas shown in figure 7 .1. In the range of 20kHz, four resonance 
frequencies could be detected (the measuring method is described in chapter 2): 
ft= 18.50 kHz, f2 = 19.42 kHz, f3 20.63 kHz, f4 = 21.57 kHz. The resonator was 
coupled to a transducer of a welding apparatus, of which the resonance frequency of 
thelongitudinalmodewasmeasured to be 20.30 kHz. After coupling, in the same 
frequency range only two resonances cou1d be detected: n 19.3 0 kHz and 
f2 = 19.52 kHz. The coupling causes two frequencies to disappear. 

When the transducer-resonator system is mounted in the apparatus so that the output 
surface faces upwards, the vibrational mode of this output surface can be studled using 
fine dry sand. When the transduceris connected to a low power frequency oscillator, 
the sand moves towards nodallines (if present) in case of excitation in a resonance 
frequency. In this way f} and f2, were excited, and no difference in sand pattems was 
observed. At the output surface no nodallines were detected, and therefore no 
discriminatien between these modes was possible. 
On the welding apparatus only f2, could be tuned to ( the frequency range of the 
generator is always very limited, in this case from 19.50 to 20.30 kHz). 
The overall vibrational mode of the resonator was measured while it was activated at an 
output amplitude of JO pm at a frequency f2, = 19.52 kHz (this corresponds toabout 
I 00 W output power of the generator). The amplitudes were measured optically (see 
chapter 2, Fotonic Sensor measurements). The mode is shown in tigure 7 .2. 

The amplitude at the output surface is far from constant. At the edges only 23% of 
the centre amplitude is available. This resonator showed poor welding results, 
especially near the edges (for good welding the difference must be less than I 0%). 
The amplitudes at the side surf aces, along the length are not those to be expected from 
the longitudinal mode (compare with 7.1). There seems to be a coupling of a lateral 
resonance to the longitudinal mode, resulting in a distortien of the latter. As the width 
is 131 mm, it is not unrealistic to expect a lateral resonance in the input- and output 
portion of the resonator, because the width is very close to the half-wavelength at 
20 kHz. The mode shown in figure 7.2 is not acceptable, and measures have to be 
taken to improve the mode shape. 

By providing various cut-outs (2 mm wide and 11 mm deep) intheupper and lower 
resonator portions, it was attempted to break the lateral resonance mode (all other 
dimensions are kept constant, see figure 7 .I). The elimination of this (spurious) mode 
was stuclied in three steps, as shown in figures 7.3, 7.4 and 7.5. 
The resonance frequency of the resulting modes is hardly influenced (this sounds 
reasonable because of the smal! amount of mass that is removed). However, astrong 
change in vibrational mode can be observed, resulting in a difference of less than 3% 
in amplitude at the output surface (~) when three cut-outs are provided, two at the 
input surface, one at the output surface, see figure 7 .5. 
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Fig. 7.3 f~ 19.51 kHz, one cut-out at the 
output surface 

We = 0. 78 
Wo 

Fig. 7.5 f~ 19.51 kHz, three cut-outs provided 
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The side surface still shows some spurious mode, but of a relatively low amplitude as 
compared to the longitudinal one. 
As for good welding a uniform output amplitude is required, this resonator should be 
adequate for welding applications. Experiments revealed that the welding results with 
this resonator were strongly improved. 

So, on account of the interpretation of the frequency spectrum and the vibrational 
modes in four steps the resonator was optimized to an optimum vibrational mode. 
Fora better frequency match to the transducer of the welding apparatus, finally a little 
increase of the resonance frequency may be realized. 

7.4. Finite element analysis 

The experimental approach gave a reasonable solution. Still, it can be considered 
whether there are resonator dimensions for which the "longitudinal" mode can be 
obtained without additional cut-outs, at a resonance frequency of about 20kHz. 
Using computer programsbasedon a finite element method, the resonance frequencies 
and the corresponding vibrational modes in an arbitrarily shaped resonator can be 
calculated. The resonator is a three-dimensional body, in which vibrational modescan 
exist having amplitudes into three directions. The resonator under study, however, can 
beregardedas a two-dimensional body for the vibration analysis (plain stress problem). 
The thickness of 3 5 mm dictates that all resonance frequencies in this direction are at 
least 4 times higher as compared to the height and width direction. 

Shear modes or plate vibrations with motions perpendicular to the plane of the 
resonator have relatively Iow resonance frequencies. Therefore only the in-plane 
vibration will be studied. 
Figure 7.6 shows the resonator of which only a quarter bas been divided into elements, 
for reasons of symmetry (no cut-outs are analyzed). All vibrational modes are 
symmetrical or anti-t>ymmetrical with respect to the axes of symmetry. In this way the 
amount of computer time can be reduced. By adequate choice of the boundary 
conditions regarding the displacements on the axes of symmetry all modescan he 
calculated. 
The resonator is not supported, so all rigid body motions have to be included in the 
analysis. The material is isotropie and the elastic properties are defined by Y oung's 
modulus E, Poisson's ratio v and the density p (see table 2.1). The accurary of the 
computer calculations is determined by the number of elements and the mesh density, 
the number of frequencies to be calculated and the number of iterations. Five 
iterations were suftkient to obtain an acceptable convergence using the ASKA-package 
and QUAM-9 elements (Ref. 66). 
Table 7 .I gives the resonance frequencies of the 12 lowest vibrational modes (the three 
rigid body motions excluded). Within a 4 kHz range around 20 kHz, four frequencies 
are calculated (modes 7, 8, 9 and 10). Figure 7.7 shows the vibrational modes (a 
quarter of the resonator). 
To obtain the mode of the complete resonator, the modes shown have to be trans­
formed according to the symmetry or antisymmetry. For reason ofsymmetry, the 
output and input surface do vibrate in an identical way. 

From figure 7.7 one can conclude that several modes will not be suited because of the 
presence of nodallines, resulting into zero amplitudes, and a non-uniform amplitude of 
the output surface. Vibrational mode no. 8 is very simtlar tothemode measured in 
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Fig. 7.6 A quarter of the resonator divided înto QUA11-1-9 elements. (All dimensions in 
mm). E 0. 73.10 11 N/m 2

, v 0335. p = 2710 . thickness = 35 mm. 

Mode Resonance frequencies Resonance frequencies Deviation 
110. calculated (kHz) measured (kHz) (%) 

(finite elements) 

1 6.58 6.80 3 

2 7.32 7.50 2.3 

3 8.04 8.30 3 

4 9.88 10.38 5 

5 14.32 14.45 0.9 

6 14.97 15.18 1 

7 19.16 19.15 0.07 

8 19.38 19.38 0.03 

9 19.86 19.98 0.6 

10 21.31 21.32 0.07 

11 24.56 24.67 0.43 

12 26.98 26.95 0.1 

Table 7.! Resonance frequencies calculated by finite element analysis and measured 
and the deviations; resonator dimension following figure 7.6. 
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Fig. 7. 7( 1) Vibrational modes and corresponding frequencies as calculated from the 
finite element analysis. Only one quarter of the resonator is shown 
(modes are symmetrie or antisymmetrie with respect to the axis of 
symmetry ofthe resonator as shown infigure 7.6). 
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figure 7.2, showinga large amplitude near the centre and no motions at the edges. 
However, vibrational mode no. 7 has an amplitude distribution, which is very fami!iar 
to the desired "longitudinal" mode. It has even higher amplitudes near the edges. 

From these calculations it can be concluded that it should be possible to have this 
131 mm wide resonator vibrate in a "longitudinal" mode at 20kHz without 
additional cut-outs etc. 
Below measurements are presented to support these findings. 

7.5 Experimental verification of the computer calculations 

In order to investigate the accuracy of the frequencies as predicted by the calculations, 
a resonator was deviced having the same dimensions as used in the finite elment 
analysis. Two piezo-electrical vibration detectors and a spectrum analyzer were used to 
measure the frequencies (see chapter 2). 
Figure 7.8 shows two frequency-spectra of the resonator. One of the detectors is used 
as transmitter and is connected toa variabie frequency oscillator with constant output 
voltage. The second detector acts as a receiver and converts mechanica! vibrations into 
an electrical signal. This signa! is shown in fig. 7.8 on a linear scale. Each peak 
corresponds toa resonance condition. The transmission of mechanica) energy and 
therefore the strength of the detected signa! depends on the location of the transmit­
ting elements. Clearly, when placed on a nodalline, no signa! will be transmitted. 
Fig. 7.8 shows the spectra for two locations of the detectors which are indicated by 
arrows. Obviously, some frequencies do disappear, or do result in a low signa! 
transmission. Using this principle all vibrational modes could be identified and 
compared to those calculated. The frequencies detected in this way are summarized in 
table 7 .I. (the accuracy of measurement is± I 0 Hz, see chapter 2). 
A qualitative picture of the vibrational mode can be drawn using this method (vibration 
maxima, zeros etc. can be measured easily). It is not possible to obtain a phase relation 
for the various locations on the resonator. 
Figure 7.9 shows the amplitudes of modes nr. 7, 8 and 9 as measured. For convenience 
these modes are shown in the same resonator, each representing a quarter of the 
complete mode. 
The measurements are in good agreement with the calculations. For the lowest 
frequencies the deviation is 2-3%, but for the highest frequencies less than 0.5%. The 
computer calculations are therefore of sufficient accuracy. 

7.6 Final optimization of the resonator 

From the finite element analysis it was concluded that mode 7 has to be identified as 
the desired "longitudinal" mode. The resonance frequency of 19.16 kHz, ho wever, is 
too low to assure a good coupling and high efficiency when coupled to the transducer 
of a welding apparatus. The resonator can be tuned to 20 kHz by shortening the 
length in the same proportion as the desired frequency change. The length at 20 kHz 
should therefore be: 

19.16 I = 20.00 128 = 122.6 mm 

The resonator of figure 7.4 was shortened to 122 mm in such a way as to guarantee a 
symmetrie location of the slots. Figure 7.11 a shows the frequency spectrum of the 
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Fig. 7.8 Frequency spectrum for two locations of the detectors ( vertically the detected 
signa! is plottedon a linear scale, horizontally the frequency (kHz)), resonator 
dimensions according to figure 7.6. 
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the resonator. The longitudinal mode is now in resonance at f = 20.57 kHz. This 
frequency is higher than 20kHz because of the shorter length (influence- 250Hz). 
The presence of the threaded hole at the input surface causes a higher resonance 
frequency (see chapter 5 and 6 where the influence was discussed briefly), the shift is 
about ISO Hz (hole 20 mm deep, 16 mm diameter). 

The resonator was coupled to a transducer which has a resonance frequency of the 
longitudinal mode at 20.14 kHz (see figure 7.11 b). The frequency-spectrum shows the 
admittance of the transducer when connected to a constant voltage souree of variabie 
frequency (see chapter 2); the admittance is proportional to the transducer current. 
There are no spurious modes detected in a I kHz range around this frequency. Figure 
7.11 c shows the spectrum of the resonator-transducer assembly. The "longitudinal" 
mode is found at 20.06 kHz. Comparison of figures 7 .I la and 7.11 c reveals that many 
resonances do disappear. Secondly it is found that coupling of two resonator systems 
results in a resonator assembly having a resonance-frequency which is lower than those 
of the components. The mass which is added by the coupling bolt causes a deercase of 
the resonance frequency. The only spurious mode detected at 19.59 kHz is of very 
low efficiency and could not be excited on the welding apparatus. It therefore does 
not influence the resonance behaviour of the Jongitudinal mode. 
Figure 7.10 shows the amplitudes on the resonator surfaces measured, while the 
transducer was activated at high power level, comparable to that during welding. A 
very constant amplitude at the output surface is obtained indeed. This resonator 
showed good welding results. 

7. 7 Condusion 

It was shown that the design of resonators on an experimental approach not always 
results in the optimum solution. The success of it strongly depends on how good is the 
frrst "shot" to determine the overall dimensions of the resonator. 
With finite element analysis the optimum was found in a much more effective way. 
However, there are still precautions to be regarded in the interpretation of the finite 
element calculations, because the coupling to a transducer causes frequencies to 
disappear and other to shift. The design of a 131 mm wide resonator presents no 
difficulty, in con tradietion to the information from the suppliers of equipment. The 
resonator could be tuned to 20 kHz, without any disturbances due to coupling of some 
spurious modes. 

In the following chapter an analysis will be presented to determine approximately the 
overall dimensions of the resonator for the "longitudinal" mode at a given design 
frequency. 
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Fig. 7.11 a Frequency spectrum of the final resonator of 122 mm length; horizontally 
frequency (kHz); vertically the detector signa[ (linear scale). 

20.14 

Fig. 7.11 b Frequency spectrum of the transducer; horizontally the frequency (kHz); 
vertically the admittance of the transducer Oogarithmic scale). 
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~ 
23.02 

Fig. 7.11 c Frequency spectrum of the transducer-resonator assembly; horizontally the 
frequency (kHz),' vertically the admittance of the transducer 
(logarithmic scale). 
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8. A SIMPUFlED MODEL TO CALCULATE THE RESONANCE CONDITIONS 
FOR THE LONGITIDUNAL VIBRATIONAL MODE IN WIDE RESONATORS 

8.1 Introduetion 

In the previous chapter, the resonant lengthof a wide-output resonator was shown to 
be considerably smaller than the half-wavelength in a stender rod. To enable an 
efficient optimization, it was necessary tostart with a resonator geometry close to the 
optimum geometry that will meet the design requirements. Some design rules wil! now 
be derived to approximate the optimum geometry. Although the wide resonator is 
separated into small resonators by slotting, there is the mass of the bridging elements 
that has tobetaken into account. Below a simplified model will be presented to 
calculate the effect of this mass on the resonance frequency. The three resonator types 
as discussed in chapter 3 (blade-like, block-like and cylindrical-type) will be studied. 
The resonator is characterized by its overall dimensions, the length L, the width B, the 
thickness R orde diameter D, the number of slots, their location, lengthand width. 
Capitals are used here exclusively for the overall dimension. 

Figure 8.1 shows a blade-like resonator ofwidth Band length L, provided with three 
slots equally distributed over the width. The resonator thickness Ris small as 
compared to the length (R < À/3). The analysis will be restricted toslotsof the shape 
as shown in fig. 8.1. The slot length (number of slots n, width t) is such that the 
bridging elements are s 1 and sz high respectively. A resonator can be divided 
hypothetically into a number of elements, each of which has exactly the same 
resonance frequency for the longitudinal mode. Figure 8.2 shows these elements, each 
to be considered as a stender rod with an additional mass at both ends fora blade-lîke 
resonator with two slots. The additional mass is identical for all elements. The 
number of slots usually will be chosen such that the width of these elements bis smal! 
as compared to the wavelength, but sufficiently wide to guarantee an acceptable overall 
stiffness of the resonator (À/8 < b < À/4). The separation into elementsis such that 
each resonator has the same resonance frequency. After coupling, the complete 
resonator wiJl have exactly the same resonance frequency as one of these separate 
elements. 

SJ 
r------

L 

sz 

B LJ 
Fig. 8.1 Blade-like resonator with three slots ofwidth tand length (L-sz-s2). 
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Fiig. 8.3 Comparison of the slender rod (2) to an element with additional masses ( 1). 

In this model it is assumed that the vibrational mode of the resonator is not influenced 
by the coupling, so that at the output surface the vibration amplitude will be uniform 
as a result. (In chapter 6 it was demonstrated up to what width b the amplitude over 
the output surface remains constant). 
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8.2 The blade-Iike resonator 

For the blade-like resonator of total width B, the width of the elements b follow from 
the number ofslots n and their width t (see figure 8.2): 

B-nt 
b = n.+l (8.1) 

The separation into elements is such that the total mass of each of the bridging 
elementsis identical, no matter how it is distributed over the cross-section. We will 
assume for now that SJ = s2 = s. 
From geometry the bridge seetion x follows: (see ftgure 8.2): 

nt 
x = 

At the design frequency f, the resonant length I of a slender rod with constant 
cross-section follows from (see figure 8.3.2.): 

1 = _SE_ 
2f 

(8.2) 

(8.3) 

At the same resonance frequency f, the resonant length Lof one resonator element is 
smaller than 1, for reasons of the added mass at the ends (see figure 8.3.1.). By equating 
the mechanica! impedance (see ehapter 2) of the longitudinal wave in the resonator 
element at distance s from the free end to the impcdanee in the slender rod resonator at 
distanee y from the free end, a relation between y and s can be obtained. 
From this the length L ean be calculated. At distance y and s the modules of the 
mechanica! impcdanee Z(y) and Z(s) are (see equation 2.13): 

Z(y) b R pc tan(ky) 

Z(s) (b+x) R pc tan(ks) 

Both resonators are of identical matcrials so (8.4) and (8.5) give: 

b+x 
tan(ky) = b tan(ks) 

From figure 8.3 it follows: 

L = I 2 (y-s) 

(8.4} 

(8.5) 

(8.6) 

(8.7) 

Combining equations (8.2), (8.3), (8.6) and (8.7) gives the resonant length Lof the 
wide resonator: 

L = 2 [ nt ] + 2s -k arctan (I + B-nt) tan(ks) (8.8) 

In chapter 6 the resonator of rectangular cross-section was diseussed. The wave 
propagation velocity c depends on the ratio of the width and thickness to the half­
wavelength, due to dispersion effects. It was shown that up to width to length ratios 
of 0.5 the resonant length can be calculated with sufficient accuracy with aid of the 
corrected value of the wave propagation velocity ( equation 6 .3). 



By slatting the width ofthe elements wiJl always be kept smal!(< À/4) to keep the 
dispersion effecttoa minimum. Using equation (6.3) the correction to the wave 
propagation velocity c' follows (using equation 8.1 )): 
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(8.9) 

The wave number k and the velocity cf as used in equation (8.8) have to be 
corrected for the velocity c' (k' = 2 c'lf ). 

For reasans of geometry it can be shown that for the case SJ s2 equation (8.8) 
becomes: 

c' 1 [ { nt } L = 2f + s1 + s2 -k' arctan (1 + B-nt) tan (k' SJ) + 

arctan { (1 + B~~t) tan (k' s2) }] (8.10) 

As an example figure 8.5 shows the re sonant length L of a blade-like resonator versus 
its width B, with the number of slotsas a parameter. The resonance frequency is 20 
kHz, the resonator thickness is 35 mm, the slotwidth is I 0 mm and the height of the 
bridging elementsis equal for both ends s = 20 mm. Clearly the length L differs 
considerably from the half-wavelength À/2 ( 130 mm). At B = 90 mm the difference 
between a resonatorwithno slots (n = 0) and two slots (n 2) is a bout 6 mm or 5%. 

In figure 8.4 the width bof the elementsof the resonator is shown versus the number 
of slots. Generally, this width is chosen maximum b ~ À/4 and minimum b ~ À/8. 
For 20kHz in aluminium or titanium resonators the choice is 30 < d < 60 mm. 
When no s1ots are made, the maximum width is± 70 à 80 mm (chapter 6). 
Using figures 8.4 and 8.5 one can easily deterrnine how many slots are needed and 
what resonant 1ength wil! be needed to have the resonator vibrating in a "longitudinal" 
mode at 20kHz. 

The maximum resonator width B in practice is a bout 300 mm at 20kHz. Suppliers of 
ultrasonic equipment maintain that there are forbidden zones for the resonator width 
B. The range of 130 < B < ISO mm and 190 < B < 220 mm are such for bidden zones 
(Ref. 64), either because no mode could be found with a uniform output amplitude or 
because the resonators would always fail due to cracking. Others only apply an even 
number of slots. For odd numbers, the resonator wil! be coupled to the transducer 
right above such a slot. Strong arguments for these principles are not given. 

Figure 8.5 reveals that in the case of only even slot numbers, the 80 < B < 110 mm 
range cannot be used. At B ~ 190 mm there is a transition range, with only the two 
extremes for b. For wider resonators, the choice for the number of slotsis less critical. 
The influence of the height of the bridging elements s and the slot width t on the 
resonant 1ength L can be calculated from equation (8.1 0). For various resonators 
width B, the length L was calculated fora blade-Jike resonator of thickness R = 35 mm, 
slot width t = 10 mm and the number of s1ots being n = 3. See figure 8.6. The effect 
of this height sis little for wide resonators, butstrong for the small on es. One can 
calculate from these how much the resonance frequency of an existing resonator can 
be raised when the height sis decreased. Conversely the frequency can be 1owered by 
wirlening of the slot with t. The influence of t is shown in figure 8. 7. As an examp1e 
when t is widened from 8 to 10 mm, while all other dimensions are kept the same, the 
resonance frequency falls a bout300Hz (I ,5%) (B = 140 mm, n = 3). 



84 

f 

1:: 
BB 

b 
(mm) 7B 

6B 

SB 

40 

3B 

20 

IE! 

I I 

/ I / / 
V I 

/ 

I V y / I 

V V V 
V _....v / 

/ / /, V,.., 
/ V L 

I V 1/r v. ~ 
/ / 

l I / // v ~ v.--/ 

V / /V rs-~ ' 

i 

/ / / 
N- B = I N= 2 = 3, N=.4 = 5! 

I I ·-

I I i I 
0 20 40 60 80 !BB 120 140 160 180 200 220 240 260 280 300 

B(mm)--• 

Fig. 8.4 The width b ofthe elementsin a blade-lilre resonator versus the resonator width 
Bas aftmetion ofthe numberofslots n. (f"" 20kHz, c ""5200 m/s, 11 0.335, 
s ""20 mm, t"" 10 mm, r 35 mm). (equation 8.10))_ 

I 130 

128 

L 126 
(mm) 

124 

122 

120 

11 B 

116 

114 

112 

110 

r-1--
~ 

I I 
I I 

......... 

1:::--l'l 

V i -- I 

/ V - f--- -:j / / / ---- -,--

I I .// /, -- ~· 

/ / /I i 

I 
V /V V V i I 

N= ! I / / 

I I / 
/i I 

! 

I / 

~--
N 2 ( I ,/ I 

i I 
r "' N= l 

N- rs l i I 
i 

! 

I I 
! I 

i I 
0 20 40 60 BB 100 120 140 160 180 200 220 240 260 280 300 

B(mm) .,. 

Fi.g 8.5 The resonance lengthof a blade-like resonator ofwidth Bas a functlon of the 
number ofslots n (same conditlans as in fig. 8.4). (equation (8.10)). 



85 

Figure 8.8 shows the effect of changing the resonator thickness R. This effect is small as 
compared to that of t or s. 
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Eight existing blade-like resonators were analysed. 
Table 8.! summarizes the results. The resonance frequency ofthe Iongitudinal mode 
was measured. In order to check the validity of equation (8.10), the resonator length 
L' was calculated from (8.10) using the measured resonance frequency fres as design 
parameter. This length L' is compared to the actuallength L. The ratio L'/L is given 
in table 8.1. In almost all cases the deviation is Iess than 0.5%. Bearing in mind that a 
toleranee on the fabrication of the resonator of± 0.5 mm already results in a frequency 
deviation of ?3Ö * 100 = 0,38%, one can conclude that equation (8.10) is accurate 
enough to ca1cu1ate the resonant 1ength of blade-like resonators. 

n R * B * L t SJ,S2 fres L'/L 

(-) (mm3 ) (mm) (mm) (kHz) (-) 

Nr. 1 1 35*100*125 10 20 20.00 1.002 

Nr. 2 2 35*145*124 10 20 20.02 0.997 

Nr.3 2 27* 105 * 125 8 20 19.98 0.990 

Nr.4 2 63 * 100 * 121 9 16 20.10 1.004 20 

Nr. 5 2 72* 189* 125 8 18 19.78 1.005 20 

Nr.6 2 49 * 184 * 125 8 19 19.92 1.004 20 

Nr. 7 2 35*130*127 10 20 19.30 1.004 

Nr. 8 5 35 * 229 * 123 10 20 19.85 1.004 

Table 8.1 Analysis of 8 blade-like resonators of thickness R, width Band length L 
and slot number n; the measured resonance frequency fres, is compared to 
the calculated one by equation (8.10) through L '/L. 
( Material Aluminium c = 5200 m/s, v 0.335). 

8.3 The block-like resonator 

The analysis of the block-like resonator is identical with that of the blade-like one. 
Figure 8.9 shows such a resonator. The difference is the large dirneusion in the thick. 
ness direction. The lateral dimensions B and R are provided with n 1 and n2 slots 
respectively. For completeness the resonant length ofthis resonator type will be 
determined for different height of the bridging elements (s 1 and s2). Using equation 
(8.9) and (8.10) it follows: 

c 
(8.11) 

c' 

I 
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c' 
L = 2r + SJ + s2 l rarctan j(l + -~1!._) (I+ R1121 ) tan (k'sJ)l + 

] B-n1 t -n2t 

l nJ t ll2l ' l] + arctan ( 1 + ..................... _) (I + ---l tan Ck s2 l 
B-n 1 t R-n2t' . . j 8.12 

As an example, the length L fora20kHz resonator of R = ISO mm having one slot in 
this direction (n2 = I) is calculated (sec figure 8.1 0). The width B varies over wide 
range, with 0 to 5 slots into it. The actual resonant length considerably differs from 
the half-wavelength. The length difference is± I 0-20 mm (1 0-15% !). 
Figure 8.11 gives the results fora40kHz resonator. From these figures one can 
delermine what number of slotsis needed and what length L wiJl be found. 

The design of block-like resonators is more complicated as the results shown before 
would suggest. The resonant Jength L can be calculated, but the presence of spurious 
modes camlot be predicted. In appendix I, the design of one specific block-like 
resonator is discussed to illustrate how spurious modes can be coupled to the 
longitudinal one, and how they can be eliminared on account of the measurement of 
resonance frequencies and vibrational modes. 

In the following chapter the finite element metbod wiJl be used, as an example, to 
study the effect of slot length varia ti ons on the vibrational characteristics of a blade­
like resonator. With aid of mode charts that can be derived, one can predict the effect 
of changes in geometry on the presence of spurious modes, and how to eliminate them 
without influencing the "longitudinal" mode. 

L 

Fig. 8.9 A block-like resonator; width B, thickness R with n 1 2 and n 2 = 1 slots 
respectively. 
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Fig. 8.10 Resonant lengthof a block-like resonator at 20kHz for various numbers of 
slotsasafunctionofits width B (R 150 mm, n2 = 1, t =JO mm, s = 20 mm, 
c = 5200 m/s, v = 0.335) (equation (8.12)). 
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8.4 The cylindrical-type resonator 

Resonators of the cylindrical type are provided with slotsin radial direction all over 
the diameter in a similar way as the other types. The number of slotsis chosen such 
that the portions at the circumference, separated by the slots do not exceed /l.i4. As 
shown in figure 8.12, the cross-section of the resonator is divided into n pie-elements 
of area A. By providing slots this area is reduced toA': 
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A' = 1r D2 [l 
4 n 

I . ( t ] - arcsm -). 
tr D 

t2 +------ (8.13) 
4 tan (~) 

n 

The propagation velocity of longitudinal waves into rods of quasi triangular cross­
sectien is not easily calculated. As its dimensions are kept small as compared to the 
wavelength, it is assumed that the dispersion effect of the Jongitudinal wave can be 
estimated by using the Rayleigh correction in which !he contribution of the cross­
sectional area is taken rather than the actual shape (equation (6.5)). The resonant 
length again is calculated using the mechanica) impedance transformation (equation 
(8.4)). The bridging elements are SJ and s2 high. Using equations (8.9). (8.13) it 
follows: 

c' 

c c 

c' 
L = 2f + SJ+ S2 

A' 
(8.14) 

t (arctan 1: tan (k's!l)+ arctan { },- tan (k's2)}] (8.15) 

D 

Fig. 8.12 Resonator ofthe cylindrical-type of diameter D and length L; the number of 
slots n is symetrically distributed along the circumference. 
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The minimum number of slotsis n = 3, if the circumferential dimension of the 
elementsis at least smaller than the diameter. It wil! be clear that the resonator 
diameter must not exceed 2 times 'll/3 in order to guarantee any dimension of the 
cross.,section being smaller than 'll/3. At 20 kHz this implies a maximum diameter of 
± 160 mm. Above this diameter the presence of the slots wil! not be suff'icient to 
brake the Poisson coupling, unless other slots or cut-outs in the circumferential direction 
are provided. As an example figure 8.13 gives the length L for various diameters versus 
the number of slots. 

The effect of variations of the length L on the resonance frequency for the longitudinal 
mode is seen in figure 8.14. This kind of relations can be very helpful to predict the 
effect of a length decrease when tuning up a specific resonator to raise its resonance 
frequency. 

1 

13El 

126 

122 L 
(mm) 

118 

114 

3 - !---

~ 
~ 

• -- !--- -~ --- i----

s -- -- ----
c..-- --~ ----/ 

-------
........ .....-- ..........-~ 

!IEl 
6 / / / 

-----/ / V 
Hl6 

7 / / V 
/ / 

ll!l2 
8 / / 

i / 
9 /i 

98 
80 90 100 I H'l 120 130 140 150 160 17El 180 

D(mm)~----­

Fig. 8.13 Resonant length Lof a 20kHz cylindrical-type resonator for various 
numberofslots (t =JO mm, s = 20 mm, c 5200 m/s, v 0.335) 
(equation (8.15)) 

8.5 Conclusions 

The method described here to calculate the resonant length of wide-output resonators 
with slots, is very straightforward. However, comparison with some experiments 
showed the validity ofthis approximate theory. With the formula presented above one 
can determine how the resonator dimensions should be if a "longitudinal" vibrational 
mode must be possible at a given design frequency. Although the overall dimensions 
are correct for the "longitudinal" mode, it does not exclude the presence of spurious 
modes, as was shown in appendix 1 fora block-like resonator. However, the formula 
will be very helpful to pre di ct how the change of some dimensions ( to elimin a te the 
spurious modes) will influence the resonance frequency of the "longitudinal" mode. 
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9. FINITE ELEMENT ANAL YSIS OF THE EFFECT OF SHAPE V ARIA TI ONS 
FORSOME RESONATORS 

9.1 Introduetion 

In the previous chapters a simplified model was presented to calculate the resonance 
conditions for three classes of wide resonators. Only the resonance frequency for the 
desired ("longitudinal") mode was chosen as a design parameter. By providing slots it 
was pursued to obtain a mode with a flat amplitude dis tribution at the output surf ace. 
However, the model is of no value to predict the optimum slot dimensions or locations 
with respect to the vibrational mode to be obtained. Neither can it be predicted when 
spurious modes will interfere with the desired one. In this chapter the effect of slot 
dimensioning fora blade-Jike resonator will be discussed with respect to the resonance 
frequencies, the shape of the '1ongitudinal" modes and the presence of spurious 
modes. Questions that will be answered are: does the "longitudinal" mode exist at all; 
are there critica) slot dimensions; may the effect of slot Iength variations on the 
resonance frequency and the vibrational mode lead to Contradietory requirements? 

9.2 Two types of slotsin a blade-Iike resonator 

In chapter 6 the solid rectangular resonator was studied. When both width and length 
dimensions are in the order of the half-wavelength, the vibrational mode showsastrong 
distartion (see tigure 6.8). Below such a resonator will be provided with two types of 
slots to compensate for the distortion. The first (A) as shown in figure 9.1, is identical 
with those discussed in chapter 8. The second (B) as shown in figure 9.2 is a slot with 
an open end at the output surface. This type has notbeen analyzed up to now, but it 
is often met with in practical resonators. Both wiJl influence the resonance frequencies 
and the vibrational modes of the resonator. Of slot type A the effect of its length will 
be studied by varlation of the thickness of the bridging element s ( tigure 9.1 ). For slot 
type B the variations of the length h will be studied (figure 9 .2). In both cases the 
resonator is designed to resonate near 20kHz in the "longitudinal" mode. The overall 
dimensions will be kept constant (length 130 mm, width = 110 mm, thickness 
35 mm, slot width = 10 mm). The material is aluminium (see table 2.1). 

9.3 Finite element analysis 

A standard finite element package was used to anlayze the vibrational modes and 
corresponding resonance frequencies of the two resonator types described above. For 
reasous of symmetry, only part of the resonator needs to be analyzed (see figure 9.3) 
and in case of slot type B only half of the resonator is analyzed (see figure 9.4 ). By 
proper choice of the boundary conditions all modes which will occur in the total 
resonator can be calculated. The blade-like resonator wil! be considered as a two­
dimensional problem (plain stress). No vibrational modes with motions perpendicular 
to the surface of drawing (see tigure 9.3 and 9.4) will be calculated. It was 
demonstrated before that this assumption holds for practical resonator designs. 
Secondly, only those modes wil! be analyzed which do have an axis of symmetry 
coinciding with that of the resonator through the center of the input and output 
surface. In chapter 7 it was shown that modes which are not symmetrical with respect 
to this axis are not likely to be excited when the resonator is coupled to a transducer. 
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Figure 9.3 and 9.4 show the division into elements. The number of element is so that 
at least 2 elements cover a half-wavelengthof any mode to be calculated. In order to 
obtain valuable information from the calculations, all modes with a resonance 
frequency up to 30kHz have to be calculated. In all cases the determination of the I 0 
Jo west resonance frequencies was sufficient. The convergence of the solutions in 
solving the eigen value problem, generally was very fast, normally requiring only 4 
iterations. The accuracy of the frequencies resulting from the finite element analysis 
was compared with experiments. In table 9.1 the analysis of the solid rectangular 
resonator is summarized (see also chapter 6, table 6.1, no. 4), with the measurements of 
the resonance frequencies. The vibrational modes are shown in figure 9.5. Comparison 
of measurements and calculations yields a deviation of about I%. As compared to the 
results discussed in table 7 .I these results are somewhat Jess accurate, but still very well 
acceptable. 

Frequencies (kHz) 

Mode Calculated Measured Deviation 

l 18.46 18.66 + 1.06% 

2 20.08 19.88 - 1.04% 

3 21.94 21.81 - 0.64% 

Table 9.1 Comparison of calculations and measurements [or the solid reetangu/ar 
resonator (resonator 110 * 130 * 35 mm3 ); the mode number is according 
to figure 9.5. 
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f= 18.46 kHz f= 20.08 kHz f= 21.94 kHz 

Fig. 9.5 Vibrational modes of the solid rectangular resonator for the resonance 
frequencies near 20kHz. All modes are symmetrie to the axis x-x ( only half 
of the resonator is shown, dimensions 110 * 130 * 35 mm 3 ). 

9.4 Varlation ofthe slotlengthof type A (figue 9.1) 

The influence of the slot length of the resonator as shown in figure 9.1 and 9.3, is 
studied through the varlation of the thickness sof the bridging elements. The case 
where there is noslot was shown in figure 9.5. The results of the tinite element 
analysis are summarized in table 9 .II. The lowest modes are presented, covering the 
frequency range from 0 to 35kHz. There are always two or three frequencies near 
the design frequency of 20kHz. The conesponding modes are shown in tigures 9.6 to 
9.9. In order to obtain the vibrational mode of the total resonator, the results have to 
be transformed according to the axis of symmetry. Th ere are symmetrie and anti­
symmetrie modes. From these modes the effect of slot length variations can be 
understood. As an example, the first three modes in figure 9.6 (s = 55 mm), are similar 
to those in figure 9.5. Clearly the small slot length hardly influences the mode shapes. 
The resonance frequencies of the tirstand third mode are lowered, while that of the 
second mode is increased. Finally, this small slot length does not improve the 
resonator so that a flat amplitude distribution near the output surface is obtained. 
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·~ 10 20 3S ss 6S 

1 5.96 7.69 11.38 17.11 18.46 

2 13.45 16.97 19.39 20.19 20.08 

3 19.14 19.33 19.99 21.01 21.94 

4 19.54 21.63 22.84 24.68 26.08 

5 23.33 22.96 23.98 26.53 26.78 

6 

I 
32.13 32.21 35.53 34.86 

I 
7 35.36 35.54 35.71 

I 
35.98 -

Table 9.1! Calculated resonanee frequeneies (kHz) tor the resonator of slot type A 
(see figure 9.1) as a tunetion of the thiekness s (mm) of the bridging 
elements for the 7 lowest modes (s = 65 mm eorresponds to the solid 
reetangu/ar resonator). 

On account of the interpretation of the modes one can set up a frequency spectrum for 
the resonator, relating the resonance frequency of a specific mode shape as a function 
ofthe slot length. Figure 9.10 is such a frequency spectrum showing the branches for 
the 5 lowest modes. 
Starting from the solid resonator (no slot) all frequencies decrease with increasing slot 
lengths. Only one mode has an almost stationary frequency fors= 10 up tos= 35 mm. 
Ofvery great importanceis the observation that forsome values of s two branches are 
crossing each other. In the frequency range of interest mode 'Y is crossing mode fJ three 
times! Near those crossing points clearly interferences of these modescan be expected 
when devicing a resonator. If no spurious modes are to be allowed in a I kHz band­
width around the design frequency of 20kHz, only a very limited choice of the slot 
length is possible. 

Up to now no attention has been paid to what mode branch meets the design require­
ments for applicatîon as a welding tooi. As a flat amplitude dîstribution at the output 
surface is desired, the choice of the slot length is restricted again. Close observation of 
the modes reveals that only three are found acceptable. These are marked in figure 
9.1 0; fors 35 mm, s = 20 mm and s = 10 mm respectively (all on mode branch"(). 
All slot lengtbs for values of I 0 < s < 35 mm will be a good choice. Fors> 35 mm 
no acceptable mode shape if found. Ho wever, combination of the requirements of no 
spurious modes in a I kHz bandwidth and the latter results in a slot length range of 
IS<s<2Smm. 

Mode branch a (figure 9.1 0) for s = 65 mm corresponds to the longitudinal mode for 
the so!id resonator. From the definition this mode is called the fundamental 
"longitudinal" mode (chapter 6). It has no flat amplitudes distribution at the output 
surface (in consequence of distortion due to Poisson's coupling). As can beseen in 
figure 9.10 those modes which have a uniform amplitude distribution at the output 
surface are on the 'Y branch. These are therefore not originating from the fundamental 
JongitudinaJ mode in the solid resonator, but rather from a second order higher mode. 
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Fig. 9.10 Frequency spectrum ofthe resonator of slot type A (see figure 9.1) as 
determined from the finite element analysis (branches a through e are 
according to figures 9.5 to 9.9);frequency {versus thickness s ( * denotes a 
calculated frequency; 0 denotes a mode with a constant output amplitude). 

For this reason it would be better not to use the description "longitudinal" mode for 
that desired mode with a uniform amplitude distribution at the output surface. One 
should preferably use the "mode withaflat output amplitude". 

The blade-like resonator studied here was of 130 mm length. In order to raise the 
resonance frequency of the "constant output mode" to 20 kHz exactly, the length has 
to be shortened by a bout 3 mm. Other mode branches in the spectrum wiJl also shift. 
However no striking effects are to be éxpected regarding the coupling to spurious 
modes in the range of 15 < s < 25 mm. 
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9.5 Varlation ofthe slotlengthof type B (figure 9.2) 

As shown in figures 9.2 and 9 .4, the second slot typeBis characterized by an open end 
at the output surface. This slot type is often used to influence the mode shape when 
some distortion is present. As a function of the slot length h resonance frequencies 
and modes were calculated. The results are summarized in tab1e 9 .HL The case h = 0 
corresponds to the solid resonator. In all cases the third and fourth mode are in the 
frequency range of interest. 
Not all vibrational modes which have been calculated will be presented here. Figure 
9.11 shows the second to the fifth mode for the resonator of slot length h = 110 mm. 
Clearly the fourth mode at f 19.72 kHz corresponds toa "constant output mode", 
although the amplitude is not exactly constant. The third mode at f 19.10 kHz has 
a flat amplitude distribution at the input surface and can therefore easily be excited 
when such a resonator is coupledtoa transducer. Ho wever, this mode has zero output 
amplitude at the output surface near the center of the resonator and high amplitudes at 
the edges. It is of no value for welding applications. The frequency difference with 
the 19.72 kHz mode is about 600Hz(- 3%), which is generally too small for safe 
operation, due to the risk of interferences, or by an impraper tuning procedure of the 
ultrasonic generator (tuning to the wrong mode). 

A close study of all modes again reveals some similarities in the mode shapes. All 
modes are familiar to flexural vibrations in beams. Only few modes show an amplitude 
distribution at the output surface which would be acceptable for welding purposes. 
Figure 9.12 shows for all values of slot length h analyzed, those modes which do 
approxirnate the "constant output amplitude" requirements. The other modes have at 
least one nodal point at the output surface. 

~ 0 20 40 60 90 100 110 

I 18.46 12.90 7.34 4.50 2.17 1.54 0.95 

2 20.08 18.71 18.53 16.50 11.65 10.35 9.22 

3 21.94 21.14 20.99 20.09 19.45 19.40 19.10 

4 26.08 25.20 23.41 21.94 21.63 21.09 19.72 

5 26.78 26.85 26.25 26.08 23.89 

I 
22.84 22.82 

6 34.87 34.88 35.18 33.30 32.98 32.53 

Table 9./l/ Caleulated resonanee frequeneies (kHz) for the resonator of slot type B 
( see figure 9.2) as a [u netion of the slot length h ( mm) for the 6 lowe1;t 
modes. (h = 0 eorresponds to the solid reetangu/ar resonator). 

The effect of a small slot length on the amplitude distartion of the fundamental 
longitudinal mode in the solid resonator is seen in figure 9 .12. Up to h = 40 mm the 
effect is very smal! and can be neglected as a positive way to improve such a resonator. 
There is only a small increase in the resonance frequency. Up to h = 60 mm no modes 
are judged acceptable for devicing a good resonator for welding purposes. Only for 
h 90 to h = 110 mm acceptable mode shapes are to be found. 
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requirements ( only one axis of symmetry) 
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Fig. 9.13 Frequency spectrum of the resonator of slot type B (see figure 9.2) as 
determined from the finite element analysis {mode branches a to e}; 
frequency fversus slot length h ( * denotes a calculated frequency; 0 denotes 
a mode which approximates the "constant output amplitude" requirements). 

From these results a frequency spectrum can be set up relating the resonance 
frequency ofvarious modes totheslot Iength h. Fîve mode branches are shown in 
ligure 9 .13. All modes have a decreas!ng resonance frequency with an încreasing slot 
length. The modes shown in figure 9.12 are marked in figure 9.13 by "0". Clearly they 
belong to three different branches. 
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Surprisingly their resonance frequencies are very close to the design frequency of 20 
kHz. Only one branch crossing is found at h 5 mm. Over a wide range of the slot 
1ength the frequency difference between the branches near 20 kHz is greater than 
1 kHz. From the analysis it follows that resonators with slot type B can be used for 
slot lengths of 90 < h < 105 mm. 

From the frequency spectrum (figure 9.13) it follows again that the acceptable modes 
are on the"' or ö branch and are not originating from the longîtudinal mode of the 
solid resonator (branch (J). 

Finally a striking effect is to be exp1aîned, which is often encountered when tuning a 
resonator on a trial and error base. Suppose one has deviced a resonator with a slot 
length h = 40 mm. From the mode shape ( tigure 9 .12) it follows that at the outer 
portion of the output surface there is no motion. In order to imprave the mode shape 
one would machine the resonator to enlarge the slot length to say h = 60 mm. Now 
some surprising observations can be made. Firstly the resonance frequency of the 
mode ((J) will fall about 2 kHz (11 %), and no improverneut of the mode shape will 
result from it, but rather a deterioration (the new modeshapeis not shown). The 
second observation would be that at a higher frequency a mode (branch"() will be 
found of a shape very similar to that from the prior resonator (h 40 mm). 
However, the mode shape now reveals a very smal! amplitude at the center portion of 
the output surface. No impravement wîll be reached as a result. Only a further 
increase of the slot length toabout h 90 mm will yield a better mode shape. Note 
that the resonance frequency of mode branch"' varles slowly with increasing slot 
length. 

9.6 Stress analysis 

In the present work no attention has been paid to the stresses in the resonator which 
greatly detennine the toollife and the maximum attainable amplitude ofvibration. In 
slender rod type resonators the stresses can be calculated analytically. In resonators of 
complex shape like the wide output resonators studied here stress concentrating 
factors such as slots and cut-outs are to be considered. Secondly, the stresses have to 
be detennined for the loaded resonator when both static forces (needed to guarantee a 
good acoustical coupling between the resonator and the products to be welded) and 
the stresses resulting from the forced vibrations into it are present. Brinkmann ( 1971) 
already showed that the analysis of freely vibrating resonators not always provides 
realistic infonnation with respect to the level and 1ocation of maximum stresses. 
Ho wever, there is no theoretica! model available to describe the interaction of the 
welding process and the mechanica! stresses in the resonator. 

Being a ware of the limitations we carried out some stress analysis for the freely 
vibrating resonator. The stress is calculated from the deflections of the resonator as 
calculated from the frequency analysis. As an example the resonator with slot type B 
is presented. In a slender rod with maximum amplitude u, the maximum stress 7J 
occurs in the nodal plane (chapter 2, equation 2.8). Taking the sameinput amplitude 
ü for the resonators the locations and levels of the maximum stresses were detennined. 
Figure 9.14 shows the results forslot lengths h = 60, h = 90 and h = 110 mm. As a 
conc1usion, the slot 1ength not only is crudal for obtaining an acceptable vibrational 
mode, but above all can result in high stress concentrations. 
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Clearly a slot length h 110 mrn will be too critica!, because the stresses in the bottorn 
of the slot are 1.45 tirnes higher than those in the noctal plane. The slot length h = 60 
rnrn was already excluded for reasans of the poor amplitude distribution. The stresses 
are far too high in this resonator. F or slot length h = 90 rnm, the maximurn stress is u, 
identical to that in a slender-rod resonator. At the top of the slot, the maximum is 
only 0.85*a, so that this resonator would be acceptable regarding the 
stress-distributions in it. 

maximmn 
arn plitude u 

2.1 (j / 

h 60mm 

r- 2.3 u 

maximurn 
amplitude u 

0.85 (j';J 

h= 90mm 

Îa 

maximum 
amplitude u 

1.45 a "" 

h= llOmm 

Fig. 9.14 Resonators of slot type B (see figure 9.2); locations of points of maximum 
stresses in the resonator with a maximum input amplitude u and with a 
vibrational mode as shown in figure 9.12 ( the stress-level is referred to the 
stender rod stress amplitude a at the sameinput amplitude u). 

9.7 Conclusions 

The finite element analysis has shown that both slot types A and B are suited to design 
resonators having a nearly constant output amplitude. However, the freedorn in 
choosing the slot dirnensions is very limited. At first only fora specific range of slot 
dirnensions an acceptable output amplitude distribution can be obtained. Secondly, 
this range is lirnited again by the presence of spurîous mode withîn a I kHz bandwidth 
around the working frequency. Although not studied extensively, the mechanica! 
stresses under load, will certainly imply otr1er restrictions. The set-up of a frequency 
spectrum is an invaluable tooi to understand the probierus that can be expected in 
resonator design. 
The predicted resonance frequencies ofthe modes which meet the design requirements 
coincide fairly wel! with the simplified model as presenled in chapter 8. 
Finally, it is suggested not to use the description "longitudinal'' mode for the required 
one, but rather the "flat output amplitude mode". 

-a 
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In this chapter only the slot length variations were studied. Asymmetrical slots or 
slot width variations could also be studied. Ho wever, the present results showed that 
both slot types A and B do yield acceptable resonators, slot type A would be preferred 
regarding the uniformity of the output amplitude and a smooth output surface 
geometry. 
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10. MULTIRESONATOR SYSTEM FOR ULTRASONIC PLASTIC ASSEMBLY 

10.1 Introduetion 

A very important application for wide output resonators will be discussed now. The 
u se of resonators with wide output cross-sections in ultrasonic plastic welding, staking 
and rivetting makes it possible to transmit vibrational energy over large areasin one 
operating cycle. A higher throughput of weldcd area per welding machine is the result. 
However, therc are restrictions with respect to height variations in the product parts 
to be joined. There is an interesting number of applications in which these resonators 
are employed as a "base" to transruit vibrational energy to a plurality of tools 
attached to it (Scotto (1974), see figures 4.8c and 10.1). 

Reasons to choose these con!lgurations are: multiple weldingor staking opera ti ons in 
products at inaccessible places, at different height levels or across obstacles or jigs. 
Extra high vibrational amplitudes may be needed insome cases, which cannot be 
achieved in the large resonator itself due to high stress levels. 

The most practical solution would be to attach the tools to the base resonator by 
screwing (fig. JO. la); ifso, the dimensions are limited by the inertia farces which 
would raise the mechanica! stress levels in the screw well beyond the fatigue strength. 
As an example the dynamic stress amplitude in the coupling bolt for the case of a 
cylindrical tooi attached to the base resonator wil! be: 

(l 0.1) 

where d = tool diameter, I the length, pits material densîty, f the operating frequency 
of the resonator, u the output vibrational amplitude and Ab the effective cross area of 
the bolt. Fora most practical application (where: f =20kHz, u 25 J.Lm, d = 25 mm, 
p = 7800 kg/m 3

, a steel bolt M 10 with Ab = 58 mm 2 and a dynamic fatiguc strength 
a 200 N/mm 2

) the maximum allowed toollength would be restricted toabout 
I ""8mm. 
Furthermore any mass attached to the "base" wil! tend to decrease its resonance 
frequency (Young (1970)). The allowed frequency shift is small (± 1 ,5%), which wil! 
lead to practical probierus when many tools are attached. Adding or leaving out a tooi 
later on, once the system has been tuned, requires a re tuning of the "base" to the 
working frequency. It will be obvious that in doing so the advantages of ultrasonic 
welding will bc overruled by the costs of resonator design. 

A more suitable solution is to use the tools in the forrn of a half-wavelength resonator 
(fig. 10.1 b). For efficient operation each part has to be designed to resonate in the 
frequency corresponding with the optimum operating conditions of the transducerand 
base resonator assembly. The Jatter results into a !ow-stress coupling (only a prestress 
is used to assure good acoustical coupling between the resonating tooi and the base). 
An inconvenience is that the toollength wil! mostly become much Jonger than 
necessary for most of the applications. 

The design of the base resonator requires perhaps even more care than in the case of a 
resonator for welding only. The vibrational mode at the design frequency should be 
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Fig. 10.1 Multiple resoTUJtor system comprising a "base" resonator with a plurality of 
tools attached to tt; 
a: smal! tools 
b: resonating tools 
( typtcal dimenston fora 20 kHz system) 
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such that at the output surface, where the tools are attached, the amplitude of motion 
along the surface is as uniform as possible. In that case all attached tools will have an 
equal input amplitude. If the amplitude of the base is notuniform but distributed 
along the surface rather in a curved way, the attached tools will be excited in a 
combined longitudinal and tlexural vibrational mode. In the worst case the tools may 
even become resonant in the flexural mode, generally causing failure of the damping 
bolt due to excessive stresses. 

Typical dimensions of a base resonator output surface are in the range of 60-200 mm 2 

to 200-200 mm2
• For weldingor staking up to 20 attached tools are used. 

The designer of a multiple resonator system (as described above) will be asked to 
devise a resonator tooi with a specified amplitude gain and with a predetermined length 
at a fixed operating frequency. Depending on the applications involved, some of the 
other dimensions like the diameter at the input or output end will be specifïed too. 
The resonator material wil! be specîfied too, e.g. low acoustical damping, high wear 
resistance, high fatigue strength. It wil! be clear that in all cases an optimization of the 
tool configuration is needed. 

10.2 The funnel shaped resonator 

Many publications are available in which the resonators geomeiry is optimized with 
respect to the stress distribution. There are conical, exponential, catenoïdal, stepped 
cylindrical, Fourier and Gaussian shaped resonators (Merkulov ( 1957)). The Gaussian 
bottleshaped, resonator is found to produce maximum output amplitude at minimum 
mechanica! stress. The design of these thin halfwave length resonators requires the 
solution of the one-dimensional wave equation for the longitudinal motion (see chapter 
2). 
In ultrasonic engineering, ho wever, most of these resonators although theoretically 
superior, are rarely used. Other reasons such as easy manufacturing, simple computer 
programming for design and easy tuning possibilities do explain the wide use of 
conical, exponential and stepped cylindrical shaped resonators. A resonator type 
which was found to be very suitable for application into a multi-resonator system will 
bedescribed in more detail below. 

None of the resonator shapes described above wil! give the designer enough freedom to 
easily produce tools with a predetermined length and predetermined amplitude gain at 
a given operating frequency. A three-element cylinder-cone-cylinder shaped resonator 
("funnel-shaped", Neppiras (1977)) can be optimized such as to approach the 
properties of the Gaussian shaped one (sce figure I 0.2). Resonators of this type are 
easy to design and manufacture. 

It is proposed here that these funnel shaped resonators give the designer enough 
freedom to satisfy more design conditions. By varia ti on of the lengtbs and diameters 
of the cylindrical parts it is possible to satisfy the resonance condition for the half­
wavelength longitudinal vibrational mode at a predetermined totallength and a fixed 
amplitude gain. It will be clear that in this way the stress distribution cannot be kept 
as favourable as in the GaussJan resonator. For many applications, however, an 
acceptable campromise can be found, giving a resonator superior to the stepped 
cylindrical and conical shaped ones. 
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Fig. 102 Funnel-shaped resonator; amplitude u of the longitudinal vibrational mode 
and stress dis tribution a ( axial vibrations); amplitude gain M = u 2/u 1; tot al 
length I. 
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Fig. 10.3 Th ree separated sections of the jitnnel shapped resonator; definition of 
coordinates, dimensions and displacements (axisymmetric cross-sections). 
(I= IJ +l2+lJ). 

10.3 Frequency equation, amplitude gain and shape factor 

The one-dimensional equation for the longitudinal motion in a resonator with variabie 
cross-section written in terms of the motion amplitude u (x) along the axial ordinate x 
is as follows (it is an extension of equation (2.1)): 

d2 dA (x) 
(dx2 + A (x) dx dx + k

2
) u( x) = 0 (I 0.2) 
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As we deal with harmonie vibrations, the time-independent displacement functions 
u( x) can be considered only. A( x) is the area of the cross-sectionat distance x, 
k ~ wavenumber. 

In figure 10.3 the three elementsof the funnel shaped resonator are separated. In each 
section the solution of equation (I 0.2) can be found in terrns of the displacement u( x), 

v(y) and w(z). 
The boundary conditions and continuity of axial farces and axial displacements at the 
interfaces have to be satisfied. The displacement function in each of the elements 1, 2 
and 3 can be written as follows: 

u(x) = a 1 cos(kx) + a2 sin(kx) 

v(y) -
1 

m [a3 cos(ky) + a4 sin(ky)] 
-my 

w(z) as cos(kz) + a6 sin(kz) 

In equation (10.4) the factormof the conical element (length !3) equals: 

m 

N = d 

Nl 
N 

Wh ereN is the ratio of the diameter of the cylindrical elements. 

(10.3) 

(I 0.4} 

(10.5) 

(10.6) 

(I 0.7) 

The desired vibrational mode is the fundamentallongitudinal mode; therefore the 
input and output surfaces are stressfree, so: 

du(l<Q / = 0 and dw(z~ / = 0 
dx / x=O dz / z=O 

Continuity of displacement between the elements 1 and 3, 2 and 3 follows: 

u(x)/x=l v(y) / y=O 

v(y) /y=13 = ~w(zVz=l2 

Continuity of the forces at the interfacescan be satisfied when: 

dv(}] / 
dy /y=O 

dw(z) I 
dz I z=l2 

(1 0.8) 

(I 0.9) 

(1 0.1 0) 

The boundary conditions of equation (I 0.8), when applied to equations ( 1 0.3) and 
(I 0.5) give a2 = 0 and a6 = 0. When the input amplitude is defined as u( x) lx=O u 1 
and the output amplitude w(zVz=O = u2, we find: 

1 
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a1 = u1 and as u2 (see fig. 10.2 and 10.3) 

Combination of equations (10.9) and (10.10) applied to equations (10.3), (10.4) and 
(1 0.5) will give the frequency equation. Aftersome mathematica! manipulation, it 
follows: 

~ [sin (kOt + l3)) + ~ cos(kiJ) cos(kl3)] (10.11) 

This is the so-called frequency equation. Fora given resonator geometry {IJ, 12, !3, 
d 1 and d2) from equation (1 0.11) the waveuurober k can be solved. In our case the 
resonance frequency is a design requirement, so one can choose the dimensions so as 
to satisfy the frequency equation. 

The remaining constauts a3 and as are found to be: 

cos(kll) 
UJ -m--

[
sin(kll) + cos(kkli >] 

~ = -UJ --m-

(I 0.12) 

(10.13) 

The amplitude gain in the resonator is given by M = 1u2 1, being the ratio of the output 
UJ 

amplitude to the input amplitude. M can be calculated from equations (1 0.3) through 
I 0.13): 

- ~ sin(kl3) cos(kl J)] (I 0.14) 

The mechanica! stress in the resonator can be determined from Hooke's law. The 
strain at any distance follows from the displacement functions, as given by equations 
(10.3), (10.4) and (10.5). In each ofthe resonator elements the stresses are: 

<11 (x) = -u 1 k.E sin(kx) (l 0.15) 

+ U JEk(~)[- cos(kli) sin(ky) _ j sin(klJ) + cos(klt) I cos(ky)] (10.I 6) 
1-f!lly m m k f 

az(z) = -u2kE sin(kz) (I 0.17) 



In a cylindrical resonator, resonating in the fundamentallongitudinal mode, the 
maximum stress 7i occurs in the nodal plane and equals (see equation (2.8)): 
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ä=ukE (1 0.18) 

Where ii is the maximum motional amplitude in the resonator, kis the wave number 
and E is Y oung's modulus. 

The reason why in practical engineering the mechanica! stresses are to be calculated, 
will be obvious. In general a tapered resonator wil! produce an output amplitude at a 
lower stress level than a cylindrical resonator does with the sameoutput amplitude. 
The maximum possible output amplitude partly is limited by the dynamic fatigue 
strength of the resonator materiaL In order to evaluate the performance of the 
resonator shape chosen as compared to the cy!indrical shape, the shape factor has been 
defined (Neppiras (1963), Scheibener (1971)). 

ä 
0 max 

ükE 
0 max 

(10.19) 

Where <Tmax is the maximum stress in the resonator to be evaluated with an output 
amplitude u. The higher a shape factor, the better the performance of the resonator 
with respect to the cylindrical one. Practical values of iP are between 1 ( cylindrical) 
and 3,5 (Gaussian). 
Typical values forsome common resonator shapes are: 

cylindrical 
- exponential 
- conical 
-- Gaussian 
- funnel-shaped 

V)= I 
f/J = 1.5-2 
V) 1.5-2 
f/J 3.5 
f/J = 2-2.5 

So, fora conical resonator up to 2 times higher output amplitudescan be used as 
compared to the cylindrical one. For the funnel-shaped resonator the shape factor 
has to be calculated numerically for each dimension specifically from equations 
(l 0.15), (10.16), (l 0.17) and (10.19). 

10.4 Dimensioning of funnel-shaped resonators 

The solutions of the frequency equation, the amplitude gain and the shape factor can 
be computed numerically. Normally one will calculate the resonator length I, the 
amplitude gain M and the shape factor, while the diameter ratio N and lengtbs IJ and 
12 of the cylindrical parts, the design frequency f and the elastic properties of the 
material are given. It is of great advantage to represent the solutions graphically with 
non-dimensional parameters, useful fora broad range of the parameters. 

Alllength dimensions can be normalized with respect to the length of the half-wave­
length resonator of cylindrical shape (I= ft or I = f) (see chapter 2). 

In this way both material properties and frequency vanish. 
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In figures 10.4 and 10.5 the non-dimensional resonator length!.lis shown versus the 
length of the second cylindrical part 1r 

~~ for various values of the diameter ratio N (N= I to 8). 
1f 

The Jength of the frrst cylindrical part~ is kept constant. 
1f 

In figure (10.4)~ 0.2 and in figure (10.5) ~ = 0.35. 
1r 1r 

In the same figures the amplitude gain M and the shape factor ijl are shown too. With 
the aid of these figures one can easily find the resonator dimensions in order to 
optimize the shape factor <P. The resonator Jength and the amplitude gain can be 
chosen over a large range. It was found in practice that with only a few fixed values 

~ the designer has enough freedom to find adequate resonator parameters for his 
1f 

application. 
The maximum shape factor attainable is a bout 0 2.6, which confirms the superiority 
of the funnel-shaped over the cylindrical or stepped cylindrical shaped resonators. 

10.5 Experimental verifications 

To verify the calculations, a multiple resonator system was designed comprising 4 
funnel-shaped resonators. Figure 10.6 shows these four resonators (material 
Aluminium c = 5200 m/s, frequency f 20kHz). The lengthand diameter of the first 
cylindrieal part was kept constant, while the diameter ratioN and the 1ength of the 
seeond eylindrical part were varied. The differenee in length is up to 47 mm, while 
the amplitude gain of all of them is 4. The resonance frequency of these resonators 
was measured; the difference with respect to the design frequency can be explained by 
the presence of a threated hole at the input side, by means of which they are coupled 
to the base resonator (the shift was calculated to be about 800Hz). 
The measurements of the amplitude gain showed M = 4 for all resonators. 
The results are summarized below (table IO.I). 

I 

Resonator I Diameter 

I

• ratio 
(-) 

I I 3.75 

2 

3 

4 

3.0 

2.31 

2.31 

Totallength Amplitude 
gain 

(mm) (-) 

160.0 3.94 

153.3 

134.6 

113.0 

4.04 

4.05 

4.05 

Shape factor 4t I Measured I 
frequency 

(-) (kHz) 

2.0 

1.82 

1.12 

I 

20.77 

20.91 

20.69 

20.65 

Table 1 O.I Calculated length, amplitude gain and shape factor for 4 funnel-shaped 
resorultors designed for 20 kHz application; the measured frequencies are 
listed. 

The shape factor f/J is between 1 and 2, indicating that it is not possible to optimize the 
resonatortomeet the design requirements, and to keep the shape factor optimum too. 
The shape of resonator 1 allows twice as high amplitudes as the shape of resonator 4, 
with respect to the maximum mechanica! stress. 
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Fig. 10.4 Non-dimensional representation of the funnel-shaped resonator parameters 

for various values of the diameter ratioN = :z . The cylindrical part of 
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Fig. 10.6 Four resonators with different length (in mrn) and equal amplitude gain 
(diameter dz = 30 mm and length lz 25 rnrn for all; the length 12 are: 
15 mm, 24 mm, 43 mrn and 63 mm respectively ). 

10.6 Additional tuning of the resonators 
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Finally, it is to be discussed how a resonator can be tuned once it has been made. 
Sometimes, the actual resonance frequency is below the operating frequency of the 
welding apparatus (whether by coincidence or by the designers choice). In other cases 
one wants to know what effect is to be expected when the resonator is shortened 
during the design or as a result of wear effects. Figure 10.7 shows the change in 
resonance frequency and amplitude gain when the cylindrical parts of the resonator 
are shortened by an amount Al, as calcu1ated from equations (10.11) and (10.14). 
Shortening of the cylinder with the smallest diameter results into the strengest 
frequency raise and decrease of the amplitude gain. Shortening of the cylinder with 
the large diameter hardly does change the amplitude gain, and has a much smaller 
effect on the frequency raise. 
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Fig. 10. 7 Effect of shortening the cylindrical partsof the funnel-shaped resonator by an 
amount ~~on the amplitude gain M. (~-): srnall cylinder (- - - ): large cylinder. 
(Aluminium c = 5200 m/s, f = 20 kHz, l1 = 30 rnm, Z2 = 30 rnrn, d 1 40 rnm, 
d2 = 13 mrn) (see figure 10.3). 

10.7 Conclusions 

The funnel·shaped resonator is very adequate for application in multiple resonator 
systems. lts geometry allows the designer enough freedom tomeet the design require­
ments of specified frequency, length and amplitude gain. The results were presented 
graphically with non-dimensional parameters. The theory is accurate, so that no 
additional tuning of the resonators is required. 
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SUMMARY 

Ultrasonic welding is a widely used technique for the assembly of thermoplastic 
product parts. A weid is created by local melting by the absorption of mechanica! 
vibrations at an ultrasonic frequency (mostly 20kHz) with amplitudes of 10 to 50 p.m. 

A tooi is used to transmit the vibrations from the transducer of a welding apparatus 
to the product parts. Tools are very often shaped as tapered rods and are designed to 
resonate in the length direction in the fundamentallongitudinal mode of vibration 
(half-wavelength resonator). The design causes no problems if the lateral dimensions 
are small compared to the length. Usually, for cylinders the length to diameter ratio is 
L/D = 2.5 à 4, and the maximum productsize is then limited to 50-60 mm diameter. 
There is however, a great number of important applications that requires much larger 
tooi dimensions, and then difficulties are encountered in designing tools properly. 

It is the aim of the present work to study and describe the problems encountered in 
designing ultrasonic resonators with large dimensions {wide output cross-sections) and 
to elaborate design principles that can overcome at least part of the present limitations 
which prevent a full exploitation of the technique of ultrasonic plastic welding. Up to 
now resonators are almost always designed at a trial and error approach, and the results 
are not always very successful. 

For an optimum eperation a resonator has tomeet the followîng design requirements. 
The shape of the products to be welded prescribes the dîmensions of the output surface. 
The resonance frequency must coincide with the operating frequency of the welding 
apparatus. In order to transmît vibrational energy to the welding process adequately, 
the resonator must vibrate in a mode with a uniform amplitude along the output 
surface to guarantee a constant energy input (at least 90% uniformity is required). 
The same holds for the area of the input surface at which it is coupled to the 
transducer. 

As appeared from the analysis of a large number of existing resonators, it foliowed that 
wide output resonators are typically not operated inthemode ofvibration 
corresponding to the lowest resonance frequency. Mostly a very specifie higher order 
vibrational mode will meet the design requirements and sametimes an acceptable mode 
does not exist at all. For reliable opera ti on of the vibrating system, the resonance 
frequency of other modes should not be in a 1 kHz bandwidth around the operating 
frequency. If not, interferences of modescan occur and difficulties are met in tuning 
the ultrasonic generator to the eperating frequency. 

The wide variety of resonator geometry that is used, could be classified into three 
basical shapes: the blade-like, the block-like and the cylindrical type resonator. These 
shapes have been analysed in the present work. 

To begin with, the vibrational characteristics of solid resonators of elementary shape 
(cylinder and reetangular block) have been studied to evaluate up to what dimensions 
they can be used as resonators that meet the design requirements. Approximate 
theories have been derived to calculate the resonance conditions for the fundamental 
longitudinal mode ofvibration. At 20kHz cylinders up to 70 mm diameter show a 
uniformity of the output amplitude of at least 90%. Above this dirneusion the 
resonator has to be provided with slots, bores or eut-outs to compensate for Poisson's 
coupling to obtain a uniform output amplitude. 
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For wide resonators various measures can be taken. As there is no literature 
available, patent publications have been reviewed. Valuable information can be 
derived from it on design principles and on how to improve the uniformity of the 
output amplitude. 

To study the problems in desîgning a wide output resonator, the optimization of a 
131 mm wide blade-iike resonator has been described. On account of the 
interpretation of the measurements of resonance frequencies and modes of vibration, 
the resonator was optimized by providing slots and various cut-outs. 
The effect of coupling the resonator to the transduder of a welding apparaturs, on the 
presence ofunwanted (spurious) modes has been demonstrated. 
A finite element analysis was used to optimize the same resonator, in order to study 
the practicalability of this method. Although the fini te element analysis was in 
excellent agreement with the experiments (and finally resulted into a well-designed 
resonator), the successof it strongly depends on how good the first "shot" is to 
determine the overall dimensions of the resonator. 

Therefore, formulae have been derived to calculate the resonance conditions for the 
desired mode of vibration in the wide output resonators of the three basical shapes. 
Experiments confirmed the validity of the approximate theory. Once the overall 
dimensions are determined, the finite element analysis must be used to calculate the 
resonance frequencies of other modes of vibration, close to the operating frequency. 
Results show that there are critica! dimensions for the slotsin a blade-Iike resonator. 
Th ere is only a specific range of slot dimensions for which an output amplitude of 
acceptable uniformity can be obtained and for which the frequency of spurious modes 
is out ofthe 1 kHz range about the operating frequency. 

Finally, an interesting field of applications for wide output resonators is discussed. 
They often are used to serve as a "base" to transmit vibrational energy to a plurality 
of tools (halfwavelength resonators of the slender rod type) attached to it. Mostly 
they are used for welding in products at different height levels or with different 
amplitudes. The so-called "funnel-shaped" resonator can be designed as a half­
wavelength resonator with a specified amplitude gain and a specified length at a fixed 
resonance frequency. The results of the calculations have been presented graphically 
with non-dimensional parameters allowing use in a broad range of app!ications. 

This study has demonstrated that the design of ultrasonic resonators with wide output 
cross-sections is of such a complexity that creating an efficient resonator at a trial and 
error approach will always besome kind of an art. The design, however, can be 
checked by calculation. Despite many unexpected problems encountered in resonator 
design, the phenomena always can be described in terms of resonance frequencies, 
modes of vibrations and mechanica! stresses, no matter the complexity of the resonator 
geometry. With basic knowledge of the vibrations of bodies and the effect of 
coupling resonators to a transducer of a welding apparatus, the fini te element metbod 
is an invaluable tooi for designing resonatorsatan acceptable cost level. 
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SAMENVATTING 

Het ultrasoon lassen van produktdelen uit thermoplastische kunststoffen wordt al 
twee decennia op industriele schaal toegepast. Een las wordt gevormd door locale 
verweking van de kunststof t.g.v. de absorptie van mechanische trillingen met een 
frequentie in het ultrasone gebied (meestal 20kHz) en bij amplitudes tussen 10 en 50 
flm. De mechanische trillingen worden gegenereerd in de transducer van een 
ultrasoon lasapparaat. Een speciaal gereedschap (meestal sonotrode of resonator 
genaamd) geleidt de trillingen van de transducer naar de te lassen produkt delen. 
Verreweg de meeste sonotrodes hebben de vorm van een taps uitlopende slanke staaf, 
welke in de lengterichting in the laagste trillingsvorm wordt aangestoten. De 
aanstootfrequentie is de resonantiefrequentie van deze trillingsvorm (de sonotrodes 
noemt men vaak halve-golflengte resonatoren). Het ontwerpen van sonotrodes levert 
geen problemen op wanneer de dwarsafmetingen klein zijn t.o.v. de lengte. 
Cylindrische sonotrodes hebben veelal een lengte-diameter verhouding L/D 2 à 4, en 
de maximale diameter die nog bruikbaar is bedraagt 50 à 60 mm. Er is echter een 
groot aantal toepassingen waarvoor veel grotere sonotrode afmetingen vereist zijn. 
Juist het optimaal vormgeven van sonotrodes met grote dwarsafmetingen geeft veel 
problemen. 

In dit proefschrift worden de problemen die kunnen optreden bij het ontwerpen van 
sonotrodes met grote dwarsafmetingen bestudeerd. Hierbij wordt er naar gestreefd om 
m.b.v. ontwerpregels in ieder geval een deel van de huidige beperkingen weg te nemen 
die een optimaal gebruik van het ultrasoon kunststoflassen in de weg staan. Tot op 
heden worden sonotrodes via trial and error ontworpen; dit leidt zelden tot een 
bevredigend resultaat. 

Een optimale sonotrode moet aan de volgende ontwerpcriteria voldoen. De vorm van 
de te lassen produktdelen bepaalt de dimensies van het lasvlak van de sonotrode 
(uitgangsoppervlak). De resonantiefrequentie moet gelijk zijn aan die van de 
transducer van het lasapparaat. Voor een gelijkmatige overdracht van trillingsenergie 
van de sonotrode naar de te lassen produktdelen, moet de sonotrode resoneren in een 
eigentrillingsvorm waarvan de trillingsamplitude over het gehele lasvlak constant van 
grootte is (tenminste 90% uniformiteit is vereist). Ook aan het koppelvlak van de 
sonotrode met de transducer moet de sonotrode een vlakke amplitudeverdeling 
hebben. 

Uit de analyse van een groot aantal bestaande sonotrodes kan worden geconcludeerd 
dat voor sonotrodes met grote dwarsafmetingen zelden de trillingsvorm wordt gebruikt 
die behoort bij de laagste resonantiefrequentie. Meestal voldoet slechts één zeer 
bepaalde hogere orde trillingsvorm aan de ontwerpcriteria en soms blijkt bij een 
gegeven sonotrodevorm geen geschikte trillingsvorm te bestaan. Het blijkt dat de 
stabiliteit van het ultrasoon resonerend systeem ( transduceren sonotrode) gewaar­
borgd is wanneer de sonotrode geen andere resonantiefrequenties heeft binnen een 
bandbreedte van ± 1 kHz rond de werkfrequentie. Zo kan worden voorkomen dat 
trillingsvormen interfereren of moeilijkheden ontstaan bij het afstemmen van de 
ultrasone frequentiegenerator op de resonantiefrequentie van het resonerend systeem. 

Er is een grote varieteit aan sonotrodevormen welke in drie basisvormen kunnen 
worden ingedeeld: de balk-vorm (blade-like), de blok-vorm (block-like) en de 
cylindrische vorm (cylindrical-type). Deze drie basisvormen worden in dit proefschrift 
besproken. 
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Zowel analytisch als experimenteel is uitvoerig onderzocht tot welke afmetingen 
sonotrodes met een cirkelvormige en rechthoekige doorsnede gebruikt kunnen worden 
in overeenstemming met de ontwerpcriteria. Er zijn benaderingsfonnules afgeleid 
waannee de resonantiefrequentie voor de longitudinale trillingsvorm in deze sonotrodes 
kan worden berekend. Cilindrische sonotrodes geven tot een diameter van 70 mm bij 
een frequentie van 20kHz, aan het lasvlak een uniformiteit van de trillingsamplitude 
van tenminste 90%. Voor grotere diameters moeten geometriewijzigingen aangebracht 
worden in de vorm van sleuven, gaten of zaagsnedesteneinde de trillingsvorm zodanig 
te beïnvloeden dat een uniforme uitgangsamplitude verkregen wordt. 

Diverse maatregelen kunnen getroffen worden om de trillingsvorm te beïnvloeden. 
Aangezien over dit onderwerp géén literatuur bekend is, zijn patentpublicaties 
geanalyseerd. Hier kan bruikbare informatie worden afgeleid t.a.v. ontwerpmethodes. 

Aan de hand van de optimalisatie vàn een 131 mm brede balk-vormige (blade-like) 
sonotrode, zijn de problemen die optreden bij het ontwerpen ervan uitvoerig 
beschreven. Op grond van de interpretatie van de gemeten resonantiefrequenties en 
de bijbehorende trillingsvonnen, kon een goed werkende sonotrode gemaakt worden 
door het aanbrengen van sleuven en diverse zaagsnedesin het sonotrode oppervlak. 
Ook het effekt van het koppelen van een sonotrode a;m een transducer van een las­
apparaat op de aanwezigheid van ongewenste resonantiefrequenties in de buurt van de 
werkfrequentie is onderzocht. Met behulp van een eindige elementen analyse zijn van 
dezelfde sonotrode de frequenties en trillingsvonnen berekend. Ofschoon de resultaten 
van de eindige elementen analyse zeer goed overeenstemden met de experimenten, en 
ofschoon ook hiermee uiteindelijk een optimale sonotrodevorm werd verkregen, is het 
succes van deze analyse er sterk afhankelijk van hoe goed men in eerste instantie er 
in slaagt de globale sonotrode afmetingen te bepalen. 

Voor de drie basisvormen van sonotrodes met grote dwarsafmetingen zijn formules 
afgeleid waannee de resonantiecondities voor de gewenste trillingsvonn voor een 
willekeurige werkfrequentie kunnen worden bepaald. Experimenten bevestigen de 
geldigheid van de gepresenteerde formules. Wanneer de hoofdafmetingen van de 
sonotrodes berekend zijn, moeten met een eindige elementen analyse de resonantie­
frequenties van andere trillingsvormen worden bepaald om te kunnen beoordelen of 
deze te dicht bij de werkfrequentie liggen. Een analyse van de invloed van de sleuf­
lengte in een balk-vormige sonotrode (blade-like) laat zien dat er kritische sleufafme­
tingen zijn. Slechts voor enkele sleufafmetingen verkrijgt men een trillingsvonn met 
een uniforme uitgangsamplitude, waarbij bovendien de resonantiefrequenties van 
ongewenste trillingsvonnen buiten de I kHz bandbreedte rond de werkfrequentie 
liggen. 

Tenslotte wordt een belangrijk toepassingsgebied voor sonotrodes met grote 
dwarsafmetingen behandeld. Dergelijke sonotrodes worden vaak gebruikt als 
"moeder"-sonotrode (base), waaraan meerdere slanke sonotrodes gekoppeld zijn 
(halve-golflengte resonatoren). Deze worden gebruikt: om te lassen in produkten 
waarin grote hoogteverschillen overbrugd moeten worden, of wanneer plaatselijk veel 
grotere trillingsamplitudes gewenst zijn. De zogenaamde "funnel-shaped" sonotrode 
biedt de mogelijkheid halve-golflengte resonatoren te construeren waarvoor de 
amplitude transformatie en de lengte voorgeschreven kunnen worden bij een gegeven 
werkfrequentie. De resultaten van berekeningen zijn grafisch weergegeven met daarin 
dimensieloze parameters, zodat deze geschikt zijn voor het dimensioneren van 
sonotrodes voor een breed toepassingsgebied. 



Uit deze studie volgt dat het ontwerpen van sonotrodes met grote dwarsafmetingen 
zodanig complex is, dat het optimaliseren van een sonotrode op een trial and error 
benadering stellig als een niet overdraagbare vorm van vakmanschap kan worden 
beschouwd. Ondanks de vele onverwachte problemen die men tegenkomt bij het 
optimaliseren van grote sonotrodes, is het zeer wel mogelijk de verschijnselen te 
beschrijven in termen van resonantiefrequenties, trillingsvormen en mechanische 
spanningen, ongeacht de complexiteit van de sonotrodegeometrie. 
Wanneer voldoende basiskennis aanwezig is over het trillingsgedrag van constructies 
waarvan de afmetingen in ordegrootte gelijk zijn aan de golflengte van de erin 
opgewekte trillingen, en over het effekt van het koppelen van een sonotrode aan de 
transducer van een lasapparaat is een analyse met behulp van de eindige elementen­
methoden van grote waarde om sonotrodes te kunnen ontwerpen tegen acceptabele 
kosten. 
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APPENDIX 1 

The design of a block-like resonator 

As discussed in chapter 8, the resonance conditions fora block-like resonator, vibrating 
in a longitudinal mode, can be calculated from equation (8.12). The actual design and 
optimization of such a resonator wil! be discussed in more detail here. The product 
size requires a block-like resonator of about 100 mm thickness and 175 mm width. As 
it has to be designed for application at 20 kHz, the length will be a bout 120 mm 
( equation 8 .12). In order to match the output surface to the shape of the product 
parts to be welded, a profile is needed, 5 mm high, I 0 mm wide, along the 
circumference of the output surface, and with a totallength of 500 mm. See figure 
A.I. The resonator will be machined starting from a blockof I 10 * 182 * 125 mm3 , 

provided with slots 12 mm wide and 71 mm long (two in the thickness direction, one 
in the width direction). The resonator is an aluminium aHoy (see table 2.I). 

The resonance frequencies of the resonator were measured with the aid of two 
vibration detectors, placed opposite to each other near the centre of the input and 
output surface respectively. In a 5 kHz range around 20kHz, 4 frequencies are 
detected: fJ = 17.14, f2 = 19.18, f3 = 21.20 and f4 = 21.33 kHz. 
The longitudinal mode is resonating at 19.18 kHz. When the profile at the output 
surface is machined, the mass of the removed material causes an increase of the 
frequency, which amounts to: ± (5 .110.182 5.500.10)/(110.182.125) * 19.18 = 
576Hz. 
The measurement showed: ft= 17.65, f2 19.74, f3 = 21.55, f4 = 22.84 kHz. The 
increase of f2 coincides fairly well with the predieled value. 
When the resonator is coupled to the transducer of a welding apparatus of 20.3 kHz, 
again 4 resonance frequencies (measured at the electrical terminals of the transducer) 
can be detected: f1c = 17.38, fzc = 19.75, fc3 20.03 and f4c = 21.90 kHz. Only 
fc2 = 19.75 kHz could be tuned to. At f3c 20.03 kHz the resonance is accompanied 
by a very high dam ping. Bath ftc and f4c are out of the range of the generator. 
In order to raise the longitudinal mode frequency close to 20 kHz the length was 
shortenedby I mm(length= 119mm). Thefrequenciesbecameft 17.70, 
f2 19.99, f3 21.62 and f4 = 22.82 kHz. Again, when coupled to the transducer, 
on1y the longitudinal mode could be tuned to; there are: ftc = 17 .48, f2c 19.86, 
f3c= 19.98.f4c=21.88kHz. 
Although the resonance frequency f3c = 19.98 kHz could not be tuned to, it has to be 
expected that it can influence the 1ongitudinal mode because the frequency difference 
between the two is small. lt certainly will determine the stability of the system during 
welding. For, in genera!, the system resonance frequency changes under the variabie 
load and an interference can occur. 

The vibrational mode of the longitudinal vibration at 19.86 kHz was measured 
optically with a Fotonic Sensor, while the resonator was activated at 10 Mm input 
amplitude. This way of measurement gives only the components of the amplitude 
perpendicular to the surface. In order to visualize and facilitate the interpretation of 
the modes, they were calculated by interpolation between a limited number of 
measurements. Fignre A.2 shows the vibrational mode of the three surfaces as 
measured. From the measurements it foliowed that in this case the amplitudes on the 
surfaces were symmetrical with respect to the axes of symmetry of the resonator. 
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The modes of figure A.2 can be used to campose the overall vibrational mode of the 
resonator. See figure A3. For convenience and better interpretation projectionsof 
this overall mode are shown in figure A.4. From this analysis one can conclude that 
the resonator is vibrating in a "longitudinal" mode in deed. However, there is some 
spurious mode coupled to it, resulting in the amplitudes observed on the side surfaces. 
At output surface 3 the amplitudes are not constant; the difference between the 
smallest and largest value is 40%, which is too high. At side 2 (figure A.2) a mode with 
a compressional phase and an extensional phase is observed, whereas at side 1, an 
almast completely compressional mode is present. These are not observed for a 
normal "longtudinal" mode. As the amplitudes are large as compared totheinput 
amplitude (37% and 60% resp. for sides I and 2) this resonator is not acceptable for 
good operation. 

As described above, the frequencies are measured using two vibration detectors, 
placed opposite toeach other near the centre of the input and output surface. 
However it was demonstrated in chapter 7, that in this way some vibrational modes 
can be overlooked. In order to check the presence of more resonances, the resonator 
was suspended onto thin wires, while its frequency spectrum was measured with the 
vibration detectors placed at various locations on the input and output surface and on 
the lateral surfaces. 

At some locations resonance frequencies did disappear, at others they were presentand 
showed strong amplitudes. Now, frequencies could be detected at: ft = 17.70, 
f2 = 18.13, f3 = 19.52, f4 = 19.80, fs = 19.99, f6 = 20.98, f? = 21.62 kHz. Clearly, 
some frequencies had been overlooked in the previous analysis. Figure A.S shows 
schematically what kind of modes correspond to the frequencies in the range of 
interest. Obviously the modes at f4 = 19.80 and fs = 19.99 kHz do interfere when the 
resonator is coupled to the transducerat f = 19.86 kHz ( campare figures A3 and A4 to 
AS). 

The mode at f4 = 19.80 kHz has no significant amplitudes of motion at the input 
surf ace, and therefore cannot be activated with the transducer as such (it can neither 
be detected by the vibration detectors when placed at the input and output surfaces). 
The same holds for f3 = 19.52 kHz. 

The next step in the tuning procedure was to eliminate the mode as shown in 
figure A.5b. Clearly its resonance frequency depends on the resonator thickness, as it 
is a compressional mode in this direction. At both width-sides 3.5 mm of material was 
removed. The thickness was reduced to 103 mm. The frequencies detected are: 
ft= 18.03, f2 = 19.20, f3 = 20.00, f4 = 20.30, fs = 20.78 and f6 = 21.43 kHz. 
At f3 = 20.00 kHz, the "longitudinal" mode is in resonance (figure A.5c). 
At f4 = 20.3 kHz a mode of complex shape is observed with no motion at the input 
surface, identical with that in figure A.Sa. When coupled to a transducer, the 
frequency spectrum revealed no twin-resonances in the 18 to 22kHz range; there are: 
ftc = 19.96 kHz and f2c = 21.19 kHz. Measurements ofthe overall mode at ftc = 
19.96 kHz at 10 J.Lm input amplitude, only small amplitudes at theside surface could be 
measured (maximum 12% of the input amplitude). At the output surface the 
difference in amplitude was smaller than 20%. The mode at f4 = 20.30 kHz did not 
couple to the one at f3 20.00 kHz. 
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As a conclusion, by changing the thickness from 110 to 103 mm, the coupling of a 
spurious mode to the "longitudinal" one was eliminated, whilst the resonance 
frequency of the latter hardly changed, and other modes did not move towards this 
one. 

In general the length dimensions of the resonator after tuning will fairly well coincide 
with those predicted from he elementary theory (chapter 8). The coupling of spurious 
modes however, depends on the overall dimensions and the presence of profiles and 
such. For each application individually, it has to be analysed how close spurious 
modes are to the '1ongitudinal" mode and what distartion of this mode is the result. 

0 
N 

~ 71 

Fig. A.l A block-like resonator of 110 * 182 mm 2 output surface, with a profile, 
5 mm high, 10 mm wide and 500 mm long. The slots are 12 mm wide and 
71 mmhigh. 
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Fig. AA Projectionsof the mode shape of the surfaces as determined from fig. A.3. 



a. f3= 19.52kHz 

b. 

c. fs= 19.99kHz 

Fig. A.5 Modes of vibration for various resonance frequencies (schematically) 
obtained trom a point by point analysis of the frequency spectrum of the 
resonator ( the resonator overall dimensions are length L = 119 mm, 
width B = 182 mm, thickness R 103 mm). 
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APPENDIX 2 

Rayleigh's correction to the wave propagation velocity 

The propagation of longitudinal waves in slender rods was explained in chapter 2. 
As long as the wavelength of the propagating wave is long as compared to the lateral 
dimensions of the rod, the finiteness of these dimensions are not taken into account. 
Lord Raylejgh presented a formula for the calculation of the wave propagation 
velocity which corrects for the effect of lateral motion. Due to Poisson's contraction 
the wave propagation is accompanied by lateral motion resulting into a decrease of 
this velocity. The derivation of the correction formula is presented here. 

Raylejgh's energy methad leams that the resonance frequency of a vibrating system 
can be approximated from the consideration that the total energy in the system remains 
constant. So the maximum kinetic energy and the maximum potentlal energy must be 
equal (in the case of the harmonie vibrations assumed for the vibrating rod): 

The kinetic energy stared in the vibrating rod as shown in figure (A2.I) (see also 
chapter 2) follows from the displacement function of the axial motion w(z). 

(A2.1) 

The partiele velocity in axial direction follows from w(z) by multiplification with the 
angular frequency w. 

The axial displacement equals (see equation 2.4): 

w(z) w0 cos(kz) (A2.2) 

Where w0 is the maximum amplitude of motion. The maximum kinetic energy fol!ows 
from integration over the rod: 

or: 

I d/2 I 
f J 2p21Trw2 w2 (z)drdz 
0 0 

1 
-1Tpw2 d2 lw 2 

16 ° 
ldentically it can be shown that the maximum poterttial energy equals: 

Equating (A2.4) and (A2.5) results into the well-known relation k ~· 

(A2.3) 

(A2.4) 

(A2.5) 

We will now consicter the con tribution of radial motions to the kinetic and potential 
energy. 
The radial stresses ar in the vibrating rod of radius f and length I (figure A2.I) are 
neglectable compared to the axial stresses Oz. From Hooke's law it follows that at 
distance z the radial strain Er(z) is related to the axial strain Ez(z) by: 

er(z) =- v Ez(z) (A2.6) 
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u(z,r) 

r ~Uz ~~ . ---·' ' 
z Lw(z) 

!------_____[_j 
I. .I 

Fig. A2.1 Slender rod resonator of constant crosNeetion of diameter d and length l 

The radial displacement u(z,r) at distance z and radius r can be approximated by: 

u(z,r) = çr(z) . r (A2.7) 

So, in radial direction the motion does contribute to the kinetic energy of the vibrating 
rod. Because of the zero radial stress, there is no con tribution to the potentlal energy. 
The displacement in radîal direction can be calculated from (A2.2), (A2.6) and (A2.7). 

u(z,r) = v r k w0 sin(kz) (A2.8) 

The con tribution of the radîal motion to the kinetic energy dÛk follows by integration 
over the rod: 

(A2.9) 

or 

• 1 4 
dUk = - p 1r v2 w 2 k2 d I w 2 

128 ° (A2.10) 

By equating the potential and kinetic energy (Ûp = Ûk + dÛk), the angular frequency 
w' can be calculated from (A2.4), (A2.5) and (A2.10): 

(A2.11) 

C1early the radial motion results into a decrease of the resonance frequency of the 
vibrating rod. Fora given rod of length I, the relation between angu1ar frequency w, 
wave propagation velocity c and 1ength l are (equations 2.3 and 2.5): 

W = 'lrC 
I 

(A2.12) 
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A decrease of the resonance frequency is physically identical to a decrease of the 
velocity c. The corrected velocity c' due to radial motion in the vibrating rod follows 

from (A2.11) and (A2.12) (using k = ~and c =~: c p 

c' w' 
c w 

This equation can be linearized by the fact that tp2 k2 d2 is smal! for the half­
wavelength resonator(d 4; 1). So, (A2.13) can be re-written: 

c' 
-= 1 
c 

(A2.13) 

(A2.14) 

This equation gives the Rayleigh correction to the wave propagation velocity of 
longitudinal waves in rods. 
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APPENDIX3 

Wide output resonator according to Stepanenko (1979) 

A very wide output resonator of the b1ade-like type as described by Stepanenko, is 
shown in the fJgure below. The resonators consist of a number of half-wavelength 
resonators of width b ± 100 mm, and of length I = ± 120 mm. The resonators are 
coupled through bridging elements at both free ends, and in the midplane where the 
lateral motion is maximum. Each resonator is provided with a transducer, the 
Jocations of which are shown in the figure below. A total width of± 800 mm was 
achieved. 

coupling of ultrasonic transducers 

I 
I 

I 

--'--
I . 

input 
surface 

---1---
---'--

I 
--y--

I 

e e 
0 
('! -
+i 
11 -

I: b=±IOOmm •I 
± 800mm outout surface 

Fig. AJ.l Resonator for generating longitudinal vibtations, with a very wide output 
cross-section (typical dimension for f= 20kHz); transducers are p/aced as 
shown over the entire input surface. 
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STELLINGEN 
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1. De laszijde van een ultrasoon lasgereedschap moet (ten behoeve van een 
optimale werking) over het gehele gebruikte oppervlak een amplitude hebben 
die nagenoeg constant van grootte is en in fase. De aanduiding "longitudinale" 
trillingsvorm voor de hierbij behorende toestand is uiterst misleidend, wanneer 
dit gereedschap grote dwarsafmetingen heeft. Veellogischer is de aanduiding 
"trillingsvorm met een uniforme uitgangsamplitude". 

Dit proefschrift, hoofdstuk 9 

2. De door Stepanenko voorgestelde methode om sleuven aan te brengen in een 
ultrasoon lasgereedschap met grote dwarsafmetingen is principieel ongeschikt 
om een uitgangsamplitude te verkrijgen die constant van grootte is over het 
gehele oppervlak. 

Stepanenko, A. V.: Russian Ultrasoncis, 
1979, pp. 178-182 

3. Bij het ultrasoon metaallassen maakt men vaak gebruik van een lasgereedschap 
dat in een buigtrillîngsvorm wordt aangestoten. In tegenstelling tot hetgeen 
noodzakelijk is bij het ultrasoon kunststoflassen, dient bij deze vorm van 
metaallassen het lasgereedschap bij voorkeur niet in één van de resonantie­
frequenties te worden aangestoten. 

Derks, P.: Tool design for ultrasonic me tal we/ding, 
Seminar Welding lnst., Coventry, 1982 

4. De conclusie van Potente, dat zeer dunne kunststoffolies (< 100 JLm) alleen 
goed ultrasoon lasbaar zijn, indien tussen de folie en het ondersteunend 
gereedschap (lasmal) een dempende laag aangebracht wordt, is in zijn 
algemeenheid onjuist. 

Potente, H.: Untersuchung der Schweissbarkeit 
thermoplastischer Kunststofte mit Ultraschall, 
Dissertatie, Aachen, 1971 

5. De overeenkomst tussen het tunen van een ultrasoon lasgereedschap en het 
tunen van een klok houdt niet in dat het resultaat even mooi klinkt. 

Perrin, T. and Charnley, T.: Normal modes of the 
modem English church bell, Journalof Sound and 
Vibration, 90 ( 1983) 1, pp. 29-40. 

Calon, G.: Afstudeerverslag, HTS Eindhoven, 1984 



6. Dit proefschrift heeft ertoe bijgedragen dat ultrasone lasgereedschappen op een 
efficientere wijze kunnen worden ontworpen, dan volgens deze variant op 
Wyskowski's tweede wet: "Any resonator can be made to work, if you fiddle 
withit long enough". 

Arthur Bloch: Murphy 's law and other reasans why 
things go wrong (1983) 

7. Bij het reinigen van produkten op industriële schaal is de keuze voor een ultra­
soon reinigingssysteem geen excuus voor een gebrek aan kennis van het 
reinigingsprobleem zelf. 

8. Uit historisch oogpunt is het onjuist water-, wind-en zon ne-energie aan te 
duiden als altematieve energiebronnen. 

9. Een weggebruiker is zinvoller geïnformeerd over de ellende bij een verkeers­
knooppunt door een schatting van de tijd die extra nodig is om dat punt te 
passeren dan door de lengte van de file. 

Dagelijkse verkeersinfomwtie 


