Threading Technology GH InnoForm InnoFor VA Innoform InnoForm Z InnoForm InnoForm W

InnoForm Cold-forming Taps Chipless production of internal threads

Contents

3	Introduction
4 - 5	The InnoForm tool programme
6 - 13	IInnoForm cold-forming taps
14	Material groups and circumferential speeds
15	Cold forming as a production process
16	The construction of a cold-forming tap
17	Hard surface and anti-friction coatings
18	The workpiece
19	Cold forming and torque
20	The tolerance of cold-forming taps
21 - 22	Preparatory diameters for cold-forming taps
23	Gauging and tolerances of cold-formed threads
24	Cooling and lubrication
25 - 26	Tool clamping

Always in Top Form with EMUGE InnoForm

EMUGE is the first threading tool manufacturer worldwide to introduce a programme of cold-forming taps specially designed for the machining of specific materials or material groups. While this was possible only for cutting tools in the past, we have now succeeded in designing cold-forming taps especially for the special properties of single materials and material groups, sometimes increasing performance in a dramatic way.

Conventional cold-forming taps were made for the use in all ductile materials: potential performance features in defined applications were simply wasted in the process. EMUGE has made extensive investigations into the mechanisms of cold forming for years, and developed an entirely new tool generation from the results.

In order to highlight the uniqueness of this highly innovative programme of cold-forming taps, we have thought of a new name:

InnoForm

The geometry abbreviations of the different designs fit in seamlessly with those already used by EMUGE, so that the single tools can be easily recognized. For instance, there is a new cold-forming tap type InnoForm 1-Z, the application possibilities of which correspond generally to those of our well-known cutting tap Rekord 1B-Z.

The InnoForm programme at one view

Cold-forming taps with and without lubrication flutes (here called "SN" for German "Schmier-Nuten") form part of the InnoForm programme as well as tools with and without internal coolant supply IKZ/IKZN. InnoForm cold-forming taps of the ÖKO design are available in the geometry types "Z" and "GAL." For the machining of sheet metal components, we have developed the InnoForm-BL type. All InnoForm tools are provided with a hard surface coating and sometimes an additional anti-friction coating suited for their special application.

As a consequence, some materials which could not be economically machined with a conventional coldforming tap can now be easily cold-formed with the new InnoForm tools.

InnoForm cold-forming taps are available ex stock in the thread standards

- ISO Metric coarse thread DIN 13
- ISO Metric fine thread DIN 13
- Unified coarse thread UNC ASME B1.1
- Unified fine thread UNF ASME B1.1
- Whitworth pipe thread DIN EN ISO 228

With this new tool generation, EMUGE is well prepared, and "in top form", for the continuously rising demand for cold-forming taps.

InnoForm

The standard design of the InnoForm cold-forming taps has been conceived for a general application in steel materials. The optimised geometry, combined with a titanium-nitride hard surface coating, makes the excellent performance of this cold-forming tap possible. In comparison with conventional standard products, this new tool will yield up to 500% more performance in C45k.

Number of threads M10-6H, C45, emulsion lubrication, blind hole

The application range of this tool includes wrought aluminium alloys and non-ferrous metals. Under the usual lubrication conditions, e.g. emulsion lubrication, these materials show a strong inclination to adhesion in the cold forming of threads. In order to obtain satisfactory work results in spite of these unfavourable material properties, this tap was provided with a coating that offers excellent friction characteristics and, as a result, a perfect degree of process safety.

InnoForm-W

This cold-forming tap should be used for thread production in the softer steel types. The specially adjusted cold-forming geometry will provide an optimal formation of the thread profile. An additional titanium-nitride hard surface coating offers perfect wear protection in combination with very good friction characteristics.

InnoForm-GAL

Cast aluminium materials, especially those with a high percentage of silicon, exert a very strong abrasive stress on the forming wedges of a cold-forming tap during work. In addition, the ductile properties of these rather brittle materials must be regarded as relatively poor: often, the quality of surfaces or of the whole thread comes out rather poor. In order to achieve easier thread production and better wear resistance even under these bad conditions, we have given this tool type a specially adjusted geometry and an additional hard surface coating.

InnoForm-VA

This cold-forming tap was specially designed for the use in stainless steels. These materials tend to rather strong adhesion on one hand, resulting in cold-welding effects and sometimes, when increased forces come into play, in the forming wedges being actually welded into the workpiece material. On the other hand, these materials show an inclination to increase their strength during a cold-forming process, which leads to increased stress on the forming wedges. In order to counter these two main characteristics, we had to develop a geometry that can meet the extreme challenges regarding stability. In addition, a combination of a special hard surface coating with an anti-friction coating offers perfect protection against wear and reduces the inclination to adhere to the workpiece material at the same time.

InnoForm-H

This tool was designed for the cold forming of materials with restricted ductile properties, e.g. GGV. The special tool geometry, combined with an appropriate hard surface coating, provides excellent quality of the finished threads and very good wear resistance.

InnoForm-Z

This tool type is definitely made for the highest requirements. Its application range includes tough and high-strength steel materials and their alloys. In the specification of the tool geometry and in the choice of the hard surface coating, a top priority was set on controlling the extreme forming forces in these materials with a high degree of process safety, and reducing the resulting friction and heat development on the forming wedges as effectively as possible.

InnoForm-GAL-ÖKO and InnoForm-Z-ÖKO

Cold-forming taps which are meant to meet even higher requirements regarding friction and thermal stress, as they occur for example with minimum-quantity lubrication, must be provided not only with a material-specific optimised geometry, but require other, additional measures. For this purpose, anti-friction coatings are applied to the tool and an internal coolant-lubricant supply is introduced for the safe cooling and lubrication of the forming area.

When introducing a new tool, the combination of these two construction features provides considerably improved run-in characteristics in spite of the unfavourable lubrication conditions, permitting safe thread production and with it a clear increase of efficiency.

InnoForm-BL

The InnoForm-BL tools are based each on an appropriate basic InnoForm tool, depending on the choice of material. Their special features include an extra long lead taper for a safer centering of the tool, and increased thread length for safe reversal, even with less exact reversing cycles.

InnoForm design variants

The basic types of the InnoForm tool series are complemented by a number of additional variants. In the construction of such variants, special features of the individual application case are observed. For instance, lubrication grooves may be introduced in order to guarantee safe transport of the lubrication medium to the forming area. Another possibility is to provide a tool with an internal coolant-lubricant bore for improving conditions in the machining of blind holes, or to specially adjust the length of the lead taper if extra short thread run-outs are necessary.

InnoForm special tools

If our comprehensive InnoForm programme of cold-forming taps does not include a suitable tool design for a specific application, we will be happy to furnish a custom-made, special InnoForm tool designed for the work conditions and according to the workpiece drawing of the individual customer. Such special designs can be made in special thread sizes and tolerances, with special thread profiles and dimensional specifications, or for special processes involving combined thread cutting and cold forming.

Cold-forming taps DIN 2174						
				1 ² =17 x P		
Hole type						
Hole type Thread depth b _{max}			1) <u>3</u>	x d ₁		
Hole type Thread depth b _{max} Coolant-lubricant (page 24)	E/0/P	E/0/P	1) 3 E/0	x d ₁ E / 0 / P	E/0/P	E/0/P
Hole type Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2 2.4	E/0/P 1.2-4 2:2.4	1) 33 E/0 1.2-4 2.2.4	x d ₁ E/O/P 1.2-4 2.2.4	E/0/P	E/0/P
Hole type Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2, 4 3.4	E/0/P 1.2-4 2.2,4 3.4	1) E/0 1.2-4 2.2,4 3.4	x d ₁ E/O/P 1 .2-4 2 .2, 4 3 .4	E/0/P 3 .1-2	E/0/P 3 .1-2
Hole type Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4	E/0/P 1.2-4 2.2,4 3.4	1) 3. E/O 1.2-4 2.2,4 3.4	x d ₁ E/O/P 1.2-4 2.2, 4 3.4	E/0/P 3.1-2 5.1-2	E/0/P 3.1-2 5.1-2
Hole type Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4 7.1-2	E/0/P 1.2-4 2.2,4 3.4 7.1-2	1) 3: E/0 1.2-4 2.2,4 3.4 7.1-2	x d ₁ E/O/P 1.2-4 2.2, 4 3.4 7.1-2	E/O/P 3.1-2 5.1-2	E/O/P 3.1-2 5.1-2
Hole type Thread depth bmax Coolant-lubricant (page 24) Range of application (page 14)	E / O / P 1.2-4 2.2, 4 3.4 7.1-2 6HX	E/0/P 1.2-4 2.2,4 3.4 7.1-2 6HX	1) 3. E / 0 1.2-4 2.2, 4 3.4 7.1-2 6HX	x d ₁ E / O / P 1.2-4 2.2, 4 3.4 7.1-2 6HX	E / 0 / P 3.1-2 5.1-2 6HX	E/0/P 3.1-2 5.1-2 6HX

ISO Metric coarse thread DIN 13

Tool ident									B519P300	B521P300	B523P300	B535P300	B519S800	B521S800
Cat. No.									B974	B975	B976	B978	B101	B102
ø d ₁ mm	P mm	I ₁	l ₂	l ₃	ø d ₂			Dimens Ident	InnoForm 1 TIN	InnoForm 1 SN TIN	InnoForm 1 SN-IKZ TIN	InnoForm 1 BL/D TIN	InnoForm 1 AL GLT-8	InnoForm 1 AL-SN GLT-8
M 3	0.5	56	6	18	3.5	2.7	2.8	0030	•	•		•		
4	0.7	63	7	21	4.5	3.4	3.7	0040	•	•		•		
5	0.8	70	8	25	6	4.9	4.65	0050	•	•	•	•	•	•
6	1	80	10	30	6	4.9	5.6	0060	•	•	•	•	•	•
8	1.25	90	14	35	8	6.2	7.45	0080	•	•	•	•	•	•
10	1.5	100	16	39	10	8	9.35	0100	•	•	•	•	•	•
5 6 8 10	0.8 1 1.25 1.5	70 80 90 100	8 10 14 16	25 30 35 39	6 6 8 10	4.9 4.9 6.2 8	4.65 5.6 7.45 9.35	0050 0060 0080 0100	•	•	•	•	•	•

ISO Metric fine thread DIN 13

Tool ident		B523P300		
Cat. No.		B977		
	Dimens Ident	InnoForm 1 SN-IKZ TIN		
M 8 x 1 90 10 35 8 6.2	7.6 0251	•		
10 x 1 90 10 35 10 8	9.6 0276	•		

1) Cold forming of threads in through holes is possible only with external cooling/lubrication

SN = lubrication grooves

1)	Ţ			1)				1)		
				3:	k d ₁					
E/0	E/0	E/O/P	E/0/P	E/0	E/O	E/O/P	E/O/P	E / 0	E/0	
		1.1-2	1.1-2	1.1-2	1.1-2					
3 .1-2	3 .3, 5	3 .3, 5	3 .3, 5	3 .3, 5						
5 .1-2	5 .1-2	5 .1	5 .1	5 .1	5 .1	5 .2-4	5 .2-4	5 .2-4	5 .2-4	
6HX	6HX	6HX	6HX	6HX	6HX	6HX	6HX	6HX	6HX	
C/2-3	E/1.5-2	C/2-3	C/2-3	C/2-3	E/1.5-2	C/2-3	C/2-3	C/2-3	E/1.5-2	

B523S800	B531S800	B5198400	B5218400	B5238400	B5318400	B519Q200	B521Q200	B523Q200	B531Q200	
B103	B105	B979	B980	B981	B982	B107	B108	B109	B113	
InnoForm 1 AL-SN-IKZ GLT-8	InnoForm 1 AL/E-SN-IKZ GLT-8	InnoForm 1 W TIN	InnoForm 1 W-SN TIN	InnoForm 1 W-SN-IKZ TIN	InnoForm 1 W/E-SN-IKZ TIN	InnoForm 1 GAL TICN	InnoForm 1 GAL-SN TICN	InnoForm 1 GAL-SN-IKZ TICN	InnoForm 1 GAL/E-SN-IKZ TICN	1 He
٠	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

Cold-forming taps DIN 2174						
Hole type						
Thread depth b _{max}		<u> </u>		< d ₁		
Thread depth b _{max} Coolant-lubricant (page 24)	E/0/P	E/0/P	1) 3) E/O	(d ₁ E/O/P	E/0/P	E/0
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1 .10-11	E/0/P 1 .10-11	1) 3) E/O 1 .10-11	(d ₁ E/0/P 1 .2 2 .2-4	E/0/P 1.2 2.2-4	E/0 1.2 2.2-4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1 .10-11	E/0/P 1.10-11	1) 3) E/O 1 .10-11	(d ₁ E/O/P 1 .2 2 .2-4	E/0/P 1.2 2.2-4	E/O 1.2 2.2-4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/O/P 1.10-11	E/0/P 1.10-11	1) E/O 1.10-11	(d ₁ E/O/P 1 .2 2 .2-4 5 .3-4	E/O/P 1.2 2.2-4 5.3-4	E/O 1.2 2.2-4 5.3-4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/O/P 1 .10-11	E/0/P 1 .10-11	1) 3) E/O 1 .10-11	(d ₁ E/O/P 1 .2 2 .2-4 5 .3-4	E/0/P 1.2 2.2-4 5.3-4	E/O 1.2 2.2-4 5.3-4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.10-11	E/0/P 1.10-11	1) E/O 1.10-11	<pre>(d1 E / 0 / P 1.2 2.2-4 5.3-4</pre>	E/0/P 1.2 2.2-4 5.3-4	E/O 1.2 2.2-4 5.3-4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/O/P 1 .10-11 6HX	E/0/P 1.10-11 6HX	E/O 1.10-11 6HX	<pre></pre>	E/0/P 1.2 2.2-4 5.3-4 6HX	E/O 1.2 2.2-4 5.3-4 6HX

ISO Metric coarse thread DIN 13

Tool ident									B519N000	B521N000	B523N000	B519E600	B521E600	B523E600
Cat. No.									B983	B984	B985	B997	B998	B999
ø d ₁ mm	P mm	I ₁	l ₂	I ₃	ø d ₂			Dimens Ident	InnoForm 1 VA GLT-7	InnoForm 1 VA-SN GLT-7	InnoForm 1 VA-SN-IKZ GLT-7	InnoForm 1 H TICN	InnoForm 1 H-SN TICN	InnoForm 1 H-SN-IKZ TICN
M 3	0.5	56	6	18	3.5	2.7	2.8	0030						
4	0.7	63	7	21	4.5	3.4	3.7	0040						
5	0.8	70	8	25	6	4.9	4.65	0050	•	•	•	•	•	•
6	1	80	10	30	6	4.9	5.6	0060	•	•	•	•	•	•
8	1.25	90	14	35	8	6.2	7.45	0080	•	•	•	•	•	•
10	1.5	100	16	39	10	8	9.35	0100	•	•	•	•	•	•

ISO Metric fine thread DIN 13

Tool ident				
Cat. No.				
ød ₁ P	Dimens			
mm mm I_1 I_2 I_3 ød ₂ \Box				
M 8 x 1 90 10 35 8 6.2	7.6 0251			
10 x 1 90 10 35 10 8	9.6 0276			

1) Cold forming of threads in through holes is possible only with external cooling/lubrication

 $\mathsf{SN} = \mathsf{lubrication} \ \mathsf{grooves}$

		1)				1)			
			3 >	(d ₁					
E/O/P	E/O/P	E/O	E/O	E/M	E/M	E/O	E/O		
1.3-5, 10-12	1.3-5, 10-12	1.3-5, 10-12	1.3-5, 10-12	1.3-5, 10-12		1.3-5, 10-12	1.3-5, 10-12		
3 .4	3 .3, 5	3 .4	3 .4						
4 .1-2	5 2-4	4 .1-2	4 .1-2						
					0.2 1				
7 .1-2		7 .1-2	7 .1-2						
6HX	6HX	6HX	6HX	6HX	6HX	6HX	6HX		
C/2-3	C/2-3	C/2-3	E/1.5-2	C/2-3	C/2-3	C/2-3	E/1.5-2		

B519A800	B521A800	B523A800	B531A800	B536N900	B536Q200	B523P900	B531P900		
B987	B988	B989	B993	B991	B111	B995	B996		
InnoForm 1	VHM	VHM		1.1.1					
Z	Z-SN	Z-SN-IKZ	Z/E-SN-IKZ	Z-OKO-SN	GAL-OKO-SN	InnoForm 1-Z	InnoForm 1-Z/E		
TIN-T1	TIN-T1	TIN-T1	TIN-T1	IKZN-GLT-7	IKZN-TICN	SN-IKZ-TIN-T1	SN-IKZ-TIN-T1		
•	•								
•	•				-				
•	•	•	•	0	0	•	•		
•	•	•	•	0	0	•	•	i den	
•	•	•	•	0	0	•	•		
•	•	•	•	0	0	•	•		

	B523A800				
	B990				
	InnoForm 1 Z-SN-IKZ TIN-T1				
	•				
	•				

Cold-forming taps DIN 2174						
$\begin{array}{c} h \\ \hline 12 $						
						
Hole type						
		\square			<u> </u>	
Thread depth b _{max}				(d ₁	<u> </u>	1)
Thread depth b _{max} Coolant-lubricant (page 24)	E/0/P	E/0/P	1) 32 E/O	<d1 E/0/P</d1 	E/0/P	<u> </u>
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4	E/0/P 1.2-4	E / 0 1.2-4	(d ₁ E / O / P 1 .3-5, 10-12	E / 0 / P 1 .3-5, 10-12	E/0 1 .3-5, 10-12
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4	E/0/P 1.2-4 2.2,4 3.4	1) 3: E/0 1.2-4 2.2,4 34	(d ₁ E/O/P 1 .3-5, 10-12	E/0/P 1.3-5, 10-12	E/O 1 .3-5, 10-12 3 4
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2, 4 3.4	E/0/P 1.2-4 2.2,4 3.4	E / 0 1.2-4 2.2,4 3.4	(d ₁ E/O/P 1 .3-5, 10-12 3 .4 4 .1-2	E/0/P 1.3-5, 10-12 3.4 4.1-2	E/O 1.3-5, 10-12 3.4 4.1-2
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4	E/0/P 1.2-4 2.2,4 3.4	1) E/O 1.2-4 2.2,4 3.4	(d ₁ E/O/P 1. 3-5, 10-12 3. 4 4 .1-2	E/0/P 1. 3-5, 10-12 3. 4 4 .1-2	E/O 1 .3-5, 10-12 3 .4 4 .1-2
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4 71-2	E/0/P 1.2-4 2.2,4 3.4	E / 0 1.2-4 2.2,4 3.4 7 1.2	(d ₁ E/O/P 1 .3-5, 10-12 3 .4 4 .1-2 7 1-2	E/0/P 1.3-5, 10-12 3.4 4.1-2	E/O 1 .3-5, 10-12 3 .4 4 .1-2 7 1-2
Thread depth b _{max} Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2, 4 3.4 7.1-2	E/O/P 1.2-4 2.2,4 3.4 7.1-2	E / 0 1.2-4 2.2, 4 3.4 7.1-2	(d ₁ E / O / P 1 .3-5, 10-12 3 .4 4 .1-2 7 .1-2	E/O/P 1.3-5, 10-12 3.4 4.1-2 7.1-2	E/O 1.3-5, 10-12 3.4 4.1-2 7.1-2
Thread depth bmax Coolant-lubricant (page 24) Range of application (page 14)	E/0/P 1.2-4 2.2,4 3.4 7.1-2 6HX	E/O/P 1.2-4 2.2,4 3.4 7.1-2 6HX	E / 0 1.2-4 2.2,4 3.4 7.1-2 6HX	<pre></pre>	E / O / P 1. 3-5, 10-12 3. 4 4. 1-2 7. 1-2 6HX	E / 0 1 .3-5, 10-12 3 .4 4 .1-2 7 .1-2 6HX

ISO Metric coarse thread DIN 13

Tool ident	t							C519P300	C521P300	C523P300	C519A800	C521A800	C523A800
Cat. No.								C695	C696	C697	C952	C953	C954
ø d ₁ mm	P mm	I ₁	l ₂	ød ₂			Dimens Ident	InnoForm 2 TIN	InnoForm 2 SN TIN	InnoForm 2 SN-IKZ TIN	InnoForm 2 Z TIN-T1	InnoForm 2 Z-SN TIN-T1	InnoForm 2 Z-SN-IKZ TIN-T1
M 12	1.75	110	18	9	7	11.25	0112	•	•	•	•	•	•
16	2	110	22	12	9	15.1	0116	•	•	•	•	•	•

ISO Metric fine thread DIN 13

Tool ident									C523P300		C523A800
Cat. No.									C698		C955
ød ₁ mm i	P mm	I ₁	I ₂	ø d ₂			Dimens Ident		InnoForm 2 SN-IKZ TIN		InnoForm 2 Z-SN-IKZ TIN-T1
M 12 x ⁻	1.5	100	15	9	7	11.35	0303		•		•
14 x ⁻	1.5	100	15	11	9	13.35	0331		•		•
16 x ⁻	1.5	100	15	12	9	15.35	0359		•		•

1) Cold forming of threads in through holes is possible only with external cooling/lubrication

SN = lubrication grooves

Cold-forming taps \approx DIN 2174	
ное туре	
Thread depth b _{max}	
Range of application (page 14)	1 .3-5, 10-12
	3 .4 4 .1-2
	7.1-2
Tolerance	2BX
DIN form/threads	C/2-3

UNC Unified coarse thread UNC ASME B1.1

Tool iden	ıt									B521A800		
Cat. No.										B118		
ø d ₁		Р	1.1						Dimens	InnoForm 1		1.1.1
inch	inch	Thr./1"	I ₁	l ₂	l ₃	${\rm ø}{\rm d}_2$			Ident	Z-SN TIN-T1		1111111
No. 4	0.1120	40	56	6	18	3.5	2.7	2.55	5003	•		
No. 6	0.1380	32	56	7	20	4	3	3.15	5005	•		
No. 8	0.1640	32	63	8	21	4.5	3.4	3.8	5006	•		
No. 10	0.1900	24	70	10	25	6	4.9	4.35	5007	•		
1/4	0.2500	20	80	13	30	7	5.5	5.75	5009	•		
⁵ /16	0.3125	18	90	14	35	8	6.2	7.3	5010	•		
3/8	0.3750	16	100	16	39	10	8	8.8	5011	•		

UNF Unified fine thread UNF ASME B1.1

Tool iden	nt									B521A800		
Cat. No.										B119		
ø d ₁ inch	inch	P Thr./1"	I ₁	l ₂	l ₃	ød ₂			Dimens Ident	InnoForm 1 Z-SN TIN-T1		
No. 6	0.1380	40	56	7	20	4	3	3.2	5039	•		
No. 8	0.1640	36	63	8	21	4.5	3.4	3.85	5040	•		
No. 10	0.1900	32	70	10	25	6	4.9	4.45	5041	•		
1/4	0.2500	28	80	10	30	7	5.5	5.95	5043	•		
⁵ /16	0.3125	24	90	10	35	8	6.2	7.45	5044	•		
3/8	0.3750	24	90	10	35	10	8	9.05	5045	•		

 $\mathsf{SN} = \mathsf{lubrication} \ \mathsf{grooves}$

Cold-forming taps \approx DIN 2174	
Ø d1 xmu ymu ymu ymu ymu ymu ymu ymu y	
Hole type	
Thread denth b	
Coolant-lubricant (page 24)	E/O/P
Range of application (page 14)	1 .3-5, 10-12
	3 .4 4 .1-2
CONTRACTOR OF	7.1-2
Tolerance	2BX
DIN form/threads	C/2-3

UNC Unified coarse thread UNC ASME B1.1

Tool ident								C521A800		
Cat. No.						-M-		C966		
ø d ₁ inch inch	P Thr./1"	I ₁	I ₂	ø d ₂			Dimens Ident	InnoForm 2 Z-SN TIN-T1		
⁷ / ₁₆ 0.4375	14	100	18	8	6.2	10.25	5012	٠		
¹ / ₂ 0.5000	13	110	20	9	7	11.8	5013	•		
7/ ₁₆ 0.4375 1/ ₂ 0.5000	14 13	100 110	18 20	8 9	6.2 7	10.25	5012 5013	•		

UNF Unified fine thread UNF ASME B1.1

Tool ident									C521A800		
Cat. No.									C967		
ø d ₁ inch	inch	P Thr./1"	l ₁	I ₂	ød ₂			Dimens Ident	InnoForm 2 Z-SN TIN-T1		
⁷ /16	0.4375	20	100	13	8	6.2	10.55	5046	•		
1/2	0.5000	20	100	13	9	7	12.15	5047	•		

 $\mathsf{SN} = \mathsf{lubrication} \ \mathsf{grooves}$

Cold-forming taps DIN 2189		
Hole type		
Thread depth b _{max}		
Coolant-lubricant (page 24) Range of application (page 14)	E / O / P 1 .3-5. 10-12	
	3 .4 4 .1-2	
	7.1-2	
Tolerance	ISO 228 "X"	
DIN form/threads $I_A = $	C/2-3	

G Whitworth pipe thread DIN EN ISO 228

То	ol ident									C521A800		
Са	it. No.									C968		
N	ominal size	ød ₁	Р						Dimens	InnoForm 2		1.1.1.1.
	ød ₁	mm	Thr./1"	l ₁	l ₂	ød ₂			IUEIII	TIN-T1		11111
G	1/8	9.73	28	90	18	7	5.5	9.25	4035	•		
	1/4	13.16	19	100	22	11	9	12.55	4036	•		
	³ /8	16.66	19	100	22	12	9	16.05	4037	•		
	1/2	20.96	14	125	25	16	12	20.1	4038	•	State State	

SN = lubrication grooves

Circumferential speed

The speeds which can be achieved in the cold forming of threads depend on the forming properties of the material, on lubrication, and on the size of the thread to be produced. In general, the circumferential speed will be higher than that which would be recommended in thread cutting.

Material groups

	•					coaled	UKU	Solid Calible
1	Steel materials							
11	Cold-extrusion steels		0-St37-3	1 0123				
	Magnetic soft iron	≤ 400 N/mm ²	B-Fe80	1 1014		10 - 50	-	-
12	Free-cutting steels		QSMnPh28	1.1014	500-700 N/mm2			
1.2	Conoral construction stools	≤ 600 N/mm ²	2+27 2	1 0027	240.470 N/mm2	10 - 50	-	-
10	Free outting steels Construction steels		St37-2	1.0037	700.000 N/mm2			
1.3	Free-culling steels, construction steels,	≤ 850 N/mm ²	51/0-2	1.0070	700-900 N/IIIII2	10 - 30	5 - 20	15 - 45
	Alloyed steels, Steel castings		GS-25CrW04	1.7218	650-950 N/mm ²			
1.4	Cementation steels,		16MnCr5	1./131	500-700 N/mm ²			
	Heat-treatable steels,	≤ 1100 N/mm ²	Ck45	1.1191	600-800 N/mm ²	5 - 20	2 - 10	15 - 40
	Nitriding steels, Cold work steels		100Cr6	1.3505	700-900 N/mm ²			
1.5	Heat-treatable steels, Nitriding steels,		42CrMo4V	1.7225	1200-1400 N/mm ²			
	Hot work steels,	< 1/00 N/mm2	X30WCrV5-3	1.2567	1100 N/mm ²	2 - 10	1 - 5	10 - 25
	Hardened steels up to 44 HRC,	≤ 1400 W/IIIII-	X38CrMoV5-3	1.2367	900-1100 N/mm ²	2 - 10	1- 5	10 - 25
	Cold work steels		X155CrVMo12-1	1.2379	900-1100 N/mm ²			
1.6	Hardened steels > 44 - 55 HRC		55NiCrMoV6	1.2713	47-52 HRC	-	-	-
1.7	Hardened steels > 55 - 60 HRC		45WCrV7	1.2542	56-57 HRC	-	-	-
1.8	Hardened steels > 60 - 63 HRC		X155CrVMo12-1	1.2379	60-63 HRC	_	-	-
1.9	Hardened steels > 63 - 66 HBC		X210CrW12	1,2436	63-64 HBC	-	-	_
1 10	Corrosion-proof steels		X10NiCrAITi32-20 [INCOL 0Y800]	1 4876	610-850 N/mm ²			
	Acid-proof steels	< 850 N/mm2	X12CrNiTi18-9	1 4878	500-700 N/mm ²	5 - 20	2 - 10	10 - 25
	Heat-resistant steels		X6CrNiMoTi17-12-2	1 4571	500-730 N/mm2	0 20	2 .0	10 20
1 1 1	Corrosion_/Acid_proof steels Heat_resistant steels	< 1100 N/mm2	X45SiCrA	1 4704	900-1100 N/mm2	5 - 15	1 - 8	10 - 25
1 1 2	Correction_/Acid_proof steels, Heat_resistant steels	< 1/00 N/mm2	Y5NiCrTi26-15	1 /080	1200 N/mm2	2 - 10	1 - 5	2 - 10
1.12	Contosion-/Actu-proor steels, neat-resistant steels	≤ 1400 W/IIIII2	ForraTiC	1.4900	1200 N/IIII12	2 - 10	1= 0	2 - 10
1.15	opecial steel materials	≤ 1400 N/mm ²	HordovE00		1200 1400 N/mm2	-	-	-
0	On standardala		Hardoxooo		1300-1400 N/IIIII2			
2	Cast materials		00.00	0.0000	100.000.00			
2.1	Cast iron		GG 20	0.6020	120-220 HB	_	_	_
			GG 30	0.6030	220-270 HB			
2.2	Cast iron with nodular graphite		GGG 40	0.7040	400 N/mm ²	10 - 25	_	_
			GGG 70	0.7070	700-1050 N/mm ²	10 20		
2.3	Cast iron with vermicular graphite		GGV (80% Perlit)		220 HB	10 - 25	_	_
			GGV (100% Perlit)		230 HB	10 - 25	_	
2.4	Malleable cast iron		GTW 40	0.8040	360-420 N/mm ²	10 20		
			GTS 65	0.8165	580-650 N/mm ²	10 - 30	-	-
2.5	Hard castings up to 400 HB				-400 HB	-	-	-
3	Copper, Copper alloys, Bronze, Brass							
0.4	Due and a state of the state of	500 N//mm2	E Cu	0.0000	050 050 N//	10 50		
3.	Pure copper and low-alloved copper	$\leq 500 \text{ N/mm}^2$	E-Cu	2.0000	250-350 N/mm ²	10 - 50	- 1	-
3.1	Copper-zinc alloys	≤ 500 N/mm²	CuZn40 [Ms60]	2.0060	250-350 N/mm ² 340-490 N/mm ²	10 - 50	-	_
3.1	Copper-zinc alloys (brass_long-chinping)	<u>≤ 500 N/mm²</u>	CuZn40 [Ms60] CuZn37 [Ms63]	2.0060	250-350 N/mm ² 340-490 N/mm ² 310-550 N/mm ²	10 - 50	-	-
3.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping)	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Ph2 [Ms58]	2.0060 2.0360 2.0321 2.0380	250-350 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ²	10 - 50	_ _ 10 - 40	-
3.1 3.2 3.3 3.4	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Conper-siluminum alloys (alubroraze long-chipping)	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA110hi	2.0060 2.0360 2.0321 2.0380 2.0966	250-350 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ² 500-800 N/mm ²	10 - 50 10 - 50 10 - 50	_ _ 10 - 40	-
3.1 3.2 3.3 3.4	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-til allows (brazs, long-chipping)	<u>≤ 500 N/mm²</u>	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni	2.0060 2.0360 2.0321 2.0380 2.0966	250-350 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ² 500-800 N/mm ²	10 - 50 10 - 50 10 - 50 5 - 20	_ 	_ _ _ 5 - 20
3.1 3.2 3.3 3.4	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn37 Pls63] CuZn39Pb2 [Ms58] CuAl10Ni	2.0060 2.0360 2.0321 2.0380 2.0966	250-350 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ² 500-800 N/mm ²	10 - 50 10 - 50 10 - 50 5 - 20	_ 	_ _ _ 5 - 20
3.1 3.2 3.3 3.4 3.5	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA10Ni GCUSn5ZnPb [Rg5] CCuSn5ZnPb [Rg5]	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096	250-330 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ² 500-800 N/mm ² 150-300 N/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30	_ 	_ _ _ 5 - 20 _
3.1 3.2 3.3 3.4 3.5	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Corpiel compared to a constant of the compared to the compared	< 500 N/mm ²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA110Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7]	2.0060 2.0360 2.0321 2.0380 2.0966 2.1090	250-330 N/mm ² 340-490 N/mm ² 310-550 N/mm ² 380-500 N/mm ² 500-800 N/mm ² 150-300 N/mm ² 150-300 N/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30	 	_ 5 - 20
3.1 3.2 3.3 3.4 3.5 3.6 2.7	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Copper-ting alloys	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco16	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090	250-350 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30 -	_ 	- - 5 - 20 - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018	< 500 N/mm ²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30 -	_ 	- - 5 - 20 - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Special copper alloys, over Q18 Nickel/Cobatt alloys	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30 - -	_ 	- - - 5 - 20 - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, up to 018 Nickel/Cobalt alloys Nickel/Cobalt alloys heat-resistant	≤ 500 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCu30Fe [MONEL400]	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4360	250-350 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/m ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 5 - 20 \\ 5 - 20 \\ 5 - 20 \\ $	- - 10 - 40 2 - 10 5 - 20 - - - 2 - 10	- - 5 - 20 - - - 5 - 20
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys heat-resistant	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm²	CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718]	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4360 2.4668	250-350 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 500-800 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 630 W/mm ² 420-610 W/mm ² 850-1100 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ \end{array} $	- - 10 - 40 2 - 10 5 - 20 - - - - 2 - 10 1 - 5	- - 5 - 20 - - - - 5 - 20 -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ²	L-CU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAI10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbM0 [INCONEL718] Haynes 25 (L605)	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.1090 2.4360 2.4360	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/mm ² 1550-2000 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ $	 	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, over Q18 Special copper alloys, over Q18 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys igh-heat resistant Aluminium alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Cu2n50	2.0060 2.0360 2.0321 2.0320 2.0966 2.1096 2.1090 2.4360 2.4360 2.4668	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 630 W/mm ² 420-610 W/mm ² 850-1190 W/mm ²	10 - 50 10 - 50 10 - 50 5 - 20 10 - 30 - - 5 - 20 2 - 10 -	- - 10 - 40 2 - 10 5 - 20 - - - 2 - 10 1 - 5 -	- - 5 - 20 - - - - 5 - 20 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys heat-resistant Aluminium wrought alloys	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuZn10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] CuSn72nb	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4360 2.4668	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ \end{array} $	- - 10 - 40 2 - 10 5 - 20 - - - - 2 - 10 1 - 5 -	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant Aluminium alloys Aluminium vrought alloys	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ²	L-CU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39]	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4360 2.4668 3.0255 3.1325	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/mm ² 850-1190 W/mm ² 1550-2000 W/mm ² 100-250 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ \end{array} $	 	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Special copper alloys, over Q18 Nicket/Cobalt alloys Nicket/Cobalt alloys heat-resistant Nicket/Cobalt alloys high-heat resistant Nicket/Cobalt alloys high-heat resistant Aluminium alloys Aluminium alloys Aluminium cast alloys, Si ≤ 5%	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn5ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCu30Fe [MONEL400] NiCr19NbM0 [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 100-250 W/mm² 130-190 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ \end{array} $	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ - \\ 10 - 20 \\ \end{array} $	- - 5 - 20 - - - - 5 - 20 - - - - 20 - 60
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys heat-resistant Aluminium alloys Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, 5% $<$ Si \leq 12%	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAI10Ni GCuSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AIMg3 GD-AISi9Cu3 G	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 130-190 W/mm² 240-310 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 1$	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ 10 - 20 \\ 10 - 20 \\ \end{array} $	- - 5 - 20 - - - - 5 - 20 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.2 4.3 5.1 5.2 5.3	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, long-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys Aluminium alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 12%	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-Cu CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi12	2.0060 2.0320 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/mm ² 850-1190 W/mm ² 1550-2000 W/mm ² 130-500 W/mm ² 240-310 W/mm ² 240-310 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50$	 	- - 5 - 20 - - - - - - - 20 - 60 20 - 60
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.1 5.2 5.3 5.4	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Special copper alloys, over Q18 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys Aluminium alloys Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, 5% $<$ Si \leq 12% Aluminium cast alloys, 12% $<$ Si \leq 17%	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ²	L-00 CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi12 G-AlMg3 GD-AlSi12 G-AlSi12	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4668 3.0255 3.1325 3.1325 3.3541 3.2163 3.2582	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/mm ² 1550-2000 W/mm ² 100-250 W/mm ² 130-500 W/mm ² 240-310 W/mm ² 220-300 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ \end{array} $	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ \end{array} $	- - 5 - 20 - - - - - 20 - 60 20 - 60 -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 6	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys sheat-resistant Nickel/Cobait alloys sheat-resistant Nickel/Cobait alloys sheat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Nickel/Cobait alloys heat-resistant Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, 5% $<$ Si \leq 12% Aluminium cast alloys, 12% $<$ Si \leq 17% Magnesium alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	E-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi9Cu3 GD-AlSi12 G-AlSi17Cu4	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 130-190 W/mm² 240-310 W/mm² 220-300 W/mm² 180-250 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ \end{array} $	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ 10 - 20 \\ 10 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.1 5.2 5.3 5.4 6	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Nickel/Cobatt alloys, over 018 Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys high-heat resistant Nickel/Cobatt alloys high-heat resistant Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, Si \leq 12% Aluminium cast alloys, 12% $<$ Si \leq 17% Magnesium alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	E-cu CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuA10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AIMg3 GD-AISi9Cu3 GD-AISi12 G-AISi17Cu4	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.4360 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 500-800 W/mm² 150-300 W/mm² 150-300 W/mm² 600 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 130-190 W/mm² 240-310 W/mm² 240-310 W/mm² 180-250 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ \\ - \\ - \\ 10 - 30 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\$	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ \hline 5 - 20\\ -\\ -\\ -\\ -\\ -\\ 10 - 20\\ 10 - 20\\ 10 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	- - - 5 - 20 - - - - - 20 - 60 20 - 60 - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys Aluminium alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 12% < Si ≤ 12% Magnesium vrought alloys Magnesium vrought alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-CU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi12 G-AlMg3 GD-AlSi12 G-AlSi17Cu4	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582	250-330 W/mm ² 340-490 W/mm ² 310-550 W/mm ² 380-500 W/mm ² 500-800 W/mm ² 150-300 W/mm ² 630 W/mm ² 630 W/mm ² 600 W/mm ² 420-610 W/mm ² 420-610 W/mm ² 1550-2000 W/mm ² 100-250 W/mm ² 300-500 W/mm ² 300-500 W/mm ²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- - 5 - 20 - - - - - - 20 - 60 20 - 60 - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 6 6.1 6.2 7	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Aluminium unough alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 12% < Si ≤ 12% Magnesium alloys Magnesium wrought alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAI10Ni GCuSn5ZnPb [Rg5] GCUSn5ZnPb [Rg7] Ampco16 Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AIMg3 GD-AISi12 G-AISi12 GAIS17Cu4 MgAI6 GMgAI9Zn1 Magametric	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.1096 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582 3.5562 3.5912	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 220-300 W/mm² 300-500 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- - 10 - 40 2 - 10 5 - 20 - - - 2 - 10 1 - 5 - - 10 - 20 10 - 20 10 - 20 - - - - - - - - - - - - -	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.3 6 6 6.1 6.2 7 7	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (copper-aluminium alloys (alubronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys heat-resistant Nickel/Cobatt alloys high-heat resistant Nickel/Cobatt alloys high-heat resistant Nickel/Cobatt alloys solver 018 Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, Si \leq 5% Aluminium cast alloys, 12% $<$ Si \leq 12% Magnesium alloys Magnesium cast alloys Magnes	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm²	L-GU CuZn40 [Ms60] CuZn37 [Ms63] CuZn37 [Ms63] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCUSn57nPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbM0 [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AISi9Cu3 GD-AISi12 G-AISi9Cu3 GD-AISi12 G-AISi97Cu4 MgAl6 GMgAl9Zn1 Ti3 [Ti99 4] Cuanter Content of	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.4360 2.4360 2.4360 2.4368 3.0255 3.1325 3.3541 3.2163 3.2582 3.5662 3.5912 3.7055	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 150-300 W/mm² 600 W/mm² 600 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 2300-500 W/mm² 300-500 W/mm² 300-500 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ $	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ 5 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 6 6.1 6.2 7	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium cast alloys Magnesium cast alloys Pure ttanium, Titanium alloys Pure ttanium, Titanium alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm²	L-CU CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi12 G-AlSi17Cu4 MgAl6 GMgA19Zn1 Ti3 [T199.4] Ti3 [T199.4]	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.1090 2.4360 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.3541 3.2163 3.35912 3.5055 3.7164	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 240-300 W/mm² 300-500 W/mm² 300-500 W/mm² 700 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ 5 - 15 \\ \end{array} $	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ 5 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	- - 5 - 20 - - - - - - - - 20 - 60 20 - 60 - - - - - - - - 20 - 60 20 - 60 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.1 5.1 5.2 5.3 5.4 6.1 6.2 7 7.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Aluminium urought alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 5% < Si ≤ 12% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Magnesium cast alloys Titanium, Titanium alloys Titanium, Titanium alloys	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ² ≤ 900 N/mm ² 900 - 1250 N/mm ²	E-cu CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA10Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi12 G-AlSi2 G-A	2.0060 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.1096 2.4360 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2582 3.3541 3.2582 3.35662 3.5912 3.7055 3.7164 3.7055	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 240-310 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ - \\ - \\ 5 - 15 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 5 - 15 \\ 2 - 10 \\ - \\ -$	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ 2 - 10 \\ 1 - 5 \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 1 - \\ - \\ - \\ 1 - \\ 8 \\ 1 - \\ 8 \\ 1 - \\ 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- - - 5 - 20 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.1 5.2 5.3 5.4 6 6 6 6 6 7 7.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Special copper alloys, over Q18 Nicket/Cobalt alloys Nicket/Cobalt alloys Nicket/Cobalt alloys high-heat resistant Nicket/Cobalt alloys high-heat resistant Nicket/Cobalt alloys Aluminium alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 12% Magnesium alloys Magnesium alloys Pure titanium, Titanium alloys Pure titanium, Titanium alloys Titanium alloys	≤ 500 N/mm ² ≤ 850 N/mm ² 850 - 1400 N/mm ² > 1400 N/mm ² ≤ 900 N/mm ² 900 - 1250 N/mm ²	L-00 CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuA110Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AIMg3 GD-AISi9Cu3 GD-AISi12 G-AISI12 G-AISI12	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4668 3.0255 3.3541 3.2163 3.2582 3.5662 3.5912 3.7055 3.7164 3.7185	250-350 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 100-250 W/mm² 130-190 W/mm² 240-310 W/mm² 240-310 W/mm² 240-310 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 700-900 W/mm² 700-900 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 1$	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ - \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ - \\ - \\ - \\ 1 - \\ 8 \\ 1 - 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{c} - \\ - \\ 5 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4.1 4.2 4.3 5.1 5.1 5.2 5.3 5.4 6 6.1 6.2 7 7.1 7.2 8	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 12% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Magnesium alloys Titanium, Titanium alloys Pure titanium, Titanium, Titanium alloys Pure titanium, Titanium alloys	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	L-UU CUZn40 [Ms60] CUZn37 [Ms63] CUZn39Pb2 [Ms58] CUAI10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] GD-AlSi9CU3 GD-AlSi9CU3 GD-AlSi9CU3 GD-AlSi12 G-AlSi12 G-AlSi17Cu4 MgAl6 GMgAI9Zn1 TiAlGV4 TiAlGV4 TiAlGV4	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2468 3.3541 3.2582 3.35912 3.5662 3.7055 3.7164 3.7185	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 150-200 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 240-300 W/mm² 300-500 W/mm² 300-500 W/mm² 700 W/mm² 700-900 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 1$	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ 5 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$ \begin{array}{c} - \\ - \\ 5 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.7 5.1 5.2 5.3 5.4 6 6.1 6.2 6.1 6.2 7 7.1 7.1 7.2 8 8	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-in alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Aluminium unough talloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 5% < Si ≤ 12% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Magnesium cast alloys Titanium, Titanium alloys Titanium, Titanium alloys Synthetics Duroplastics (short-chipping) Theresenetics (short-chipping)	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	E-cu CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA110Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 GALSI17Cu4 MgAl6 GMgAl9Zn1 Ti3 [Ti99.4] TiAl6V4 Ti3 [Ti99.4] TiAl6V4 DASS2	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582 3.3562 3.5662 3.5912 3.7055 3.7164 3.7185	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 220-300 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 700-900 W/mm² 900-1250 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50$	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ \hline 5 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	- - - 5 - 20 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.1 5.2 5.3 5.4 6 6.1 6.2 7.1 7.2 8.1 8.2	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (shornze, long-chipping) Copper-tin alloys (bronze, short-chipping) Special copper alloys, up to Q18 Special copper alloys, over Q18 Nickel/Cobalt alloys Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Magnesium alloys Titanium, Titanium alloys Titanium, Titanium alloys Synthetics Duroplastics (short-chipping) Thermoplastics (long-chipping)	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	E-00 CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AIMg3 GD-AISi9Cu3 GD-AISi9Cu3 GD-AISi12 G-AISi12 G-AISi12 G-AISi12 G-AISi12 G-AISi12 G-AISi12 GALSI17Cu4 MgAI6 GMgAI9Zn1 Ti3 [Ti99.4] TiAI6V4 TiAI4Mo4Sn2 BAKELIT HOSTALEN	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4668 3.0255 3.1325 3.3541 3.2163 3.2582 3.5662 3.5912 3.7055 3.7164 3.7185	250-350 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 1550-2000 W/mm² 130-190 W/mm² 240-310 W/mm² 240-310 W/mm² 240-310 W/mm² 2300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 700-900 W/mm² 900-1250 W/mm² 900-1250 W/mm² 80 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ 5 - 15 \\ 2 - 10 \\ - \\ $	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ - \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ - \\ - \\ 10 - 8 \\ 1 - 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{c} - \\ - \\ 5 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5.1 5.2 5.3 5.4 6 6.1 7.1 7.2 8.1 8.2 8.3	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium alloys Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 12% < Si ≤ 12% Magnesium alloys Magnesium alloys Titanium, Titanium alloys Pure ttanium, Titanium, Titanium alloys Synthetics Duroplastics (bort-chipping) Thermoplastics (long-chipping) Thermoplastics (long-chipping) Fibre-reinforced synthetics	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	L-UU CUZn40 [Ms60] CUZn37 [Ms63] CUZn39Pb2 [Ms58] CUAI10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] GD-AISi9CU3 GD-AISi9CU3 GD-AISi9CU3 GD-AISi12 G-AISi17Cu4 MgAI6 GMgAI92n1 Ti3 [Ti99.4] TiAI6V4 TiAI4Mo4Sn2 BAKELIT HOSTALEN CFK / GFK / AFK	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1090 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2468 3.3541 3.2582 3.35912 3.5662 3.7164 3.7185	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 150-300 W/mm² 630 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 150-200 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 240-310 W/mm² 240-310 W/mm² 300-500 W/mm² 300-500 W/mm² 700 W/mm² 900-1250 W/mm² 800-1500 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 20 \\ - \\ $	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ 5 - 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$ \begin{array}{c} - \\ - \\ - \\ 5 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.1 4.2 4.3 5 5.1 5.1 5.2 5.3 5.4 6 6 6 6 6 6 7 7.7 7.1 7.2 8 8 8.3 9	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-in alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, 5% < Si ≤ 12% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Magnesium wrought alloys Pure titanium, Titanium alloys Pure titanium, Titanium alloys Synthetics Duroplastics (short-chipping) Thermoplastics (short-chipping) Therrail for special applications	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	E-00 CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms58] CuA110Ni GCuSn5ZnPb [Rg5] GCuSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 GAIS17Cu4 MgAl6 GMgAl9Zn1 Ti3 [Ti99.4] Ti3 [Ti99.4] TiAl6V4 Ti3 [HMO4Sn2 BAKELIT HOSTALEN CFK / GFK / AFK	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1096 2.1096 2.4360 2.4360 2.4668 3.0255 3.1325 3.3541 3.2468 3.0255 3.1325 3.3541 3.2163 3.2163 3.2582 3.5662 3.5912 3.7055 3.7164 3.7185	250-330 W/mm² 340-490 W/mm² 310-550 W/mm² 500-800 W/mm² 500-800 W/mm² 630 W/mm² 630 W/mm² 630 W/mm² 600 W/mm² 420-610 W/mm² 850-1190 W/mm² 1550-2000 W/mm² 100-250 W/mm² 100-250 W/mm² 240-310 W/mm² 220-300 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 900-1250 W/mm² 900-1250 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ 5 - 15 \\ 2 - 10 \\ - \\ $	$ \begin{array}{c} -\\ -\\ 10 - 40\\ 2 - 10\\ \hline 2 - 10\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	- - - 5 - 20 - - - - - - - - - - - - - - - - - - -
3.1 3.2 3.3 3.4 3.5 3.6 3.7 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 6 6.1 6.2 7 7.1 8.8 8.2 8.3 9.9 9.1	Pure copper and low-alloyed copper Copper-zinc alloys (brass, long-chipping) Copper-zinc alloys (brass, short-chipping) Copper-tin alloys (bronze, long-chipping) Copper-tin alloys (shornze, long-chipping) Copper-tin alloys (bronze, long-chipping) Special copper alloys, up to 018 Special copper alloys, over 018 Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys heat-resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys high-heat resistant Nickel/Cobalt alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 5% Aluminium cast alloys, Si ≤ 12% Aluminium cast alloys, 12% < Si ≤ 17% Magnesium alloys Titanium alloys Titanium alloys Titanium alloys Synthetics Duroplastics (short-chipping) Thermoplastics (long-chipping) Fibre-reinforced synthetics Materials for special applications Graphite	≤ 500 N/mm² ≤ 850 N/mm² 850 - 1400 N/mm² > 1400 N/mm² ≤ 900 N/mm² 900 - 1250 N/mm²	E-00 CuZn40 [Ms60] CuZn37 [Ms63] CuZn39Pb2 [Ms63] CuAl10Ni GCUSn5ZnPb [Rg5] GCUSn7ZnPb [Rg7] Ampco16 Ampco20 NiCu30Fe [MONEL400] NiCr19NbMo [INCONEL718] Haynes 25 (L605) Al 99,5 [F13] AlCuMg1 [F39] G-AlMg3 GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi9Cu3 GD-AlSi12 G-AlSi12 G-AlSi12 G-AlSi12 GALSI17Cu4 MgAl6 GMgAl9Zn1 Ti3 [Ti99.4] TiAl6V4 TiAl4Mo4Sn2 BAKELIT HOSTALEN CFK / GFK / AFK	2.0360 2.0360 2.0321 2.0380 2.0966 2.1096 2.1090 2.4360 2.4668 3.0255 3.3541 3.2163 3.2582 3.5662 3.5912 3.7055 3.77185	250-350 W/mm² 340-490 W/mm² 310-550 W/mm² 380-500 W/mm² 500-800 W/mm² 500-800 W/mm² 630 W/mm² 630 W/mm² 630 W/mm² 420-610 W/mm² 420-610 W/mm² 1550-2000 W/mm² 1550-2000 W/mm² 130-190 W/mm² 240-310 W/mm² 240-310 W/mm² 220-300 W/mm² 300-500 W/mm² 300-500 W/mm² 300-500 W/mm² 700-900 W/mm² 900-1250 W/mm² 110 W/mm² 80 W/mm² 800-1500 W/mm²	$ \begin{array}{r} 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 5 - 20 \\ 10 - 30 \\ - \\ - \\ 5 - 20 \\ 2 - 10 \\ - \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 50 \\ 10 - 30 \\ - \\ - \\ 5 - 15 \\ 2 - 10 \\ - \\ $	$ \begin{array}{c} - \\ 10 - 40 \\ 2 - 10 \\ 5 - 20 \\ - \\ - \\ - \\ - \\ - \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ 10 - 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- - - 5 - 20 - - - - - - - - - - - - - - - - - - -

The process

The cold forming of threads, according to DIN 8583-5, belongs to the pressure-forming processes. The internal thread is produced by the impression of a helical sequence of thread teeth into the formerly prepared thread hole, the desired profile is formed by pressure.

A cold-forming tap is provided with a lead taper and a cylindrical guiding part. The thread helix runs on through both parts. If you look at a cross-section of the tool, there is a polygon shape to be recognized at a right angle to the tool axis. This polygon shape provides forming wedges which carry the effective thread profile.

The lead portion of a cold-forming tap is made as a lead taper, in which the helical thread line is continuously increasing in diameter. In the coldforming process, the lead taper produces the thread, the forming wedges penetrating the workpiece successively in a radial direction by forming the thread. During this process, the workpiece material "flows" from the thread crests along the thread flanks into the area of the minor thread diameter. This creates smooth flank surfaces and, in the minor diameter area, the typical "claw."

The cylindrical guiding part of the cold-forming tap makes the surface of the produced thread even smoother, and serves to firmly guide the tool axially.

Depending on the workpiece material, the essential advantages of cold forming include excellent surface quality but also increased static and dynamic strength of the thread. The length of the thread to be produced is not limited by chips which need to be removed, so process safety is extremely good.

The excellent self-guiding characteristics of a cold-forming tap prevent axial "miscutting". The extraordinary stability of the tools is very helpful, especially with small diameters.

The construction of a cold-forming tap

Geometric construction of a cold-forming tap

The polygon form of a cold-forming tap is decisive for the so-called contact or touch zone along the forming wedges. These have by far the greatest influence on the friction characteristics of the tool, and determine the flowing speed and the flowing behaviour of the workpiece material. With our InnoForm tools, the polygon form and the number of forming wedges are designed according to the special properties of the workpiece material.

Lead taper forms and lead taper lengths for cold-forming taps acc. DIN 2175

Lead taper length 2-3.5 threads

Lead taper length 3.5-5.5 threads

Lead taper length ≤ 2 threads

Coatings

All InnoForm cold-forming taps are provided with hard surface and/or anti-friction coatings specially selected for their specific application. These coatings are:

TIN

Titanium nitride (gold colour)

The hardness of approx. 2300 HV, the good sliding properties and the coating adhesion yield considerable tool life increase. This mono-layer coating will remain resistant up to approx. 600 °C.

Titanium nitride (gold colour)

The hardness of approx. 3000 HV is achieved by the multi-layer coating structure, among other factors.

TICN

Titanium carbonitride (blue-grey)

The hardness is approx. 3000 HV. The TICN coating will resist up to approx. 400 °C.

GLT-7

Hard surface coating with anti-friction layer (black-grey)

The hardness is approx. 3000 HV. The combination of a multi-layer-graded hard surface coating with a superimposed anti-friction layer provides excellent chip flow and wear resistance. This layer will remain resistant up to approx. 400 °C.

GLT-8

Diamond-like, amorphous carbon coating (black-grey)

The hardness is approx. 2500 HV. This mono-layer coating is an excellent choice for the machining of non-ferrous metals and aluminium with a low silicon content (< 9% Si). Thanks to the low friction, material adhesion is drastically reduced. This coating will remain resistant up to approx. 350 °C.

Difference between a cut thread and a cold-formed thread

With a cut thread, the permissible stress values are limited due to the fact that the grain structure of the material is cut. Also, flank angle errors can occur easily; these will cause a very unfavourable distribution of stress on the thread and limit its holding strength. With a cold-formed thread, the grain of the material is not cut or interrupted, and the material itself shows increased strength, due to its having been compressed by cold-forming. Flank angle errors which are quite common in cut threads are prevented by the material being formed, without any play, along the thread flanks of the tap. The incomplete minor diameter, typical for cold-formed threads, has no influence on the stripping resistance of the thread.

Cold forming causes material strengthening on the thread flanks and especially in the root area of the thread. This strengthening of the material structure has a very positive influence on the vibration properties and the general resistance of the thread under dynamic stress.

Grain structure in a cut thread

Maximum thread depth, maximum thread pitch

strengthening in the root area / on the major diameter which is especially exposed to the danger of crack formation increases resistance

The maximum thread depth to be achieved and the fastest possible thread pitch to be produced by cold-forming are a topic about which a general statement is impossible. The possible thread depth is definitely larger than it could be with a cutting tap. In practical work, it depends primarily on the quality of cooling/lubrication, and is limited by the constructional length of the tool.

The maximum thread pitch in cold forming is limited by the workpiece material properties. A pitch of approx. 3.5 mm is normally the upper limit.

Technical data of the workpiece material

Not all materials are suitable for cold forming. For that, they must show a minimum value of ductility and must not exceed a certain maximum strength. Suitable materials usually have a tensile strength of less than 1400 N/mm² and a minimum fracture strain of 5%. In addition, different materials and their alloys lead to very specific flow properties and strengthening characteristics. Obviously, wrought aluminium, high-strength steel or stainless materials will react in very different ways.

Torque

Torque, in the cold forming of threads, depends mostly on the workpiece material, the thread size, lubrication and preparatory diameter, as well as on the geometry and the coating of the tool. The influence of the preparatory diameter on torque is shown in the following diagram.

The following diagram demonstrates the difference in torque between thread cutting and cold forming.

Tolerance of the thread part

The thread part of a cold-forming tap is generally produced with an increased tolerance since the workpiece material will always contract after the plastic forming process, depending on its elasticity.

Consequently, the produced thread is always smaller than the thread part of the cold-forming tap. You will never be able to screw the cold-forming tap back into the thread manually after the cold-forming process, as would be possible without any problem with a cut thread and a cutting tap. For this reason, it is necessary to manufacture the thread part of a cold-forming tap closer to the upper tolerance limit of the internal thread.

Nominal pitch diameter (basis)

The influence of the preparatory diameter

If the preparatory diameter is too small the workpiece material is overformed in the thread root and there are excessive process forces. If the preparatory diameter is too large the thread root is not sufficiently formed, the minor diameter is too small. In order to preclude such negative effects, the tolerance of cold-forming taps is narrowed down from the start. In some cases where the forming characteristics are very extraordinary it may be necessary to go without a standard preparatory diameter entirely, and to find the correct diameter by testing.

It is important to know that the preparatory diameter has a decisive influence on the minor diameter of the nut thread, as the following example shows. Every lack of precision, every kind of surface roughness will be mirrored in the finished internal thread and its minor diameter.

Cold-formed thread M8-6HX in corrosion- and acid-proof material, e.g. material no. 1.4571 or 1.4401, with different preparatory diameters.

Nut height = 2 x d $v_c = 6.4$ m/min n = 255 rpm

Coolant-lubricant: EMUGE thread cutting oil no. 5

While the observation of the pitch diameter tolerance of the internal thread, e.g. ISO metric thread 6H, offers no problems usually, deviations in the minor diameter of the internal or nut thread must be expected, as demonstrated above.

The extended minor diameter tolerances for cold-formed internal threads are specified in DIN 13-50. This standard allows a 7H tolerance for the minor diameter of the nut thread, with a pitch diameter tolerance of 6H.

Preparatory diameters for cold-forming taps

Recommended preparatory diameters

Sometimes, the recommended preparatory diameter must be adjusted to the existing work conditions.

ISO Metric coarse thread DIN 13					
Thread specification		Preparatory diameter			
	min.	max.	mm		
M 3	2.79	2.82	2.8		
4	3.69	3.73	3.7		
5	4.64	4.68	4.65		
6	5.55	5.60	5.6		
8	7.41	7.48	7.45		
10	9.28	9.37	9.35		
12	11.16	11.25	11.25		
16	15.02	15.14	15.1		

MF ISO Metric fine thread DIN 13

Thread specification	Preparatory diameter			
	min.	max.	mm	
M 8x1	7.55	7.60	7.6	
10 x 1	9.55	9.60	9.6	
12 x 1.5	11.29	11.38	11.35	
14 x 1.5	13.29	13.38	13.35	
16 x 1.5	15.29	15.38	15.35	

UNC Unified coarse thread UNC ASME B1.1

Thread specification	Preparatory diameter			
	min.	max.	mm	
No. 4 - 40	2.54	2.58	2.55	
No. 6 - 32	3.12	3.17	3.15	
No. 8 - 32	3.79	3.83	3.8	
No. 10 - 24	4.31	4.36	4.35	
1/4 - 20	5.72	5.79	5.75	
⁵ /16 - 18	7.23	7.31	7.3	
³ /8 - 16	8.73	8.82	8.8	
⁷ / ₁₆ - 14	10.20	10.30	10.25	
1/2 - 13	11.71	11.82	11.8	

UNF Unified fine thread UNF ASME B1.1					
Thread specification	Preparatory diameter				
	min.	max.	mm		
No. 6 - 40	3.21	3.24	3.2		
No. 8 - 36	3.83	3.87	3.85		
No. 10 - 32	4.45	4.49	4.45		
1/4 - 28	5.92	5.97	5.95		
⁵ /16 - 24	7.43	7.49	7.45		
³ /8 - 24	9.02	9.08	9.05		
7/16 - 20	10.49	10.56	10.55		
1/2 - 20	12.08	12.15	12.15		

Thread pecification		Preparatory diameter	
	min.	max.	mm
G ¹ /8	9.25	9.32	9.25
1/4	12.48	12.56	12.55
3/8	15.99	16.06	16.05
1/2	20.02	20.12	20.1

Twist drills

As a service offer to our customers, we can supply twist drills and stepped drills for the more common thread sizes M3 to M16 ex stock.

The diameters of these drills have been chosen to meet our preparatory diameter recommendations for the cold forming of threads.

Thread gauging – Combination of tolerance classes

Thread gauging in the pitch diameter is done with the usual go/no-go thread plug gauges as specified in the well-known thread standards. It should be noted that for cold-formed metric threads the specifications for tolerances according DIN 13-50 apply.

1. Application range

This standard specifies thread tolerances for internal threads to be produced by cold forming (see DIN 8583-5).

The production process cold forming is to be used, preferably, for coarse threads M3 to M16 and for fine threads M8 x 1 to M30 x 2 according DIN ISO 262 and DIN ISO 965-2.

2. Tolerances

For internal threads of screw-in class N according DIN ISO 965-1, which are to be produced by cold forming, the following tolerance zones have been specified according to DIN ISO 13-50:

- for the pitch diameter 6H (as in DIN ISO 965-1)
- for the minor diameter 7H (DIN 13-50)

Note: For thread tolerances which are not specified in DIN 13-50, it is usually recommended to proceed in an analogue way, i.e. to raise the minor diameter tolerance in relation to the pitch diameter tolerance – normally by one tolerance step. However, in such cases the user has to check first if the raised tolerance is acceptable in the workpiece to be produced.

3. Designation, drawing specification

In addition to the specifications in DIN ISO 965-1, a cold-formed internal thread with the tolerances as outlined in paragraph 2 is described in the following manner:

Example: Fine thread M20 x 2:	M <u>20 x 2</u> – <u>6H</u> 7 <u>H</u> – cold-formed
Thread specification letter for ISO Metric thread	
Thread size (major diameter x pitch)	
Tolerance zone for the pitch diameter	
Tolerance zone for the minor diameter	

Extract from DIN 13-50

	Limit allowances
Μ	ISO Metric coarse thread DIN 13

Thread specification	Pitch diameter for tolerance 6H		Minor diameter for tolerance 7H			
	min.	max.	min.	max.	Tolerance in µm	
M 3	2.675	2.775	2.459	2.639	180	
4	3.545	3.663	3.242	3.466	224	
5	4.480	4.605	4.134	4.384	250	
6	5.350	5.500	4.917	5.217	300	
8	7.188	7.348	6.647	6.982	335	
10	9.026	9.206	8.376	8.751	375	
12	10.863	11.063	10.106	10.531	425	
16	14.701	14.913	13.835	14.310	475	

and tolerances

MF ISO Metric fine thread DIN 13

Thread specification	Pitch diameter for tolerance 6H			Minor diameter for tolerance 7H		
	min.	max.	min.	max.	Tolerance in µm	
M 8x1	7.350	7.500	6.917	7.217	300	
10 x 1	9.350	9.500	8.917	9.217	300	
12 x 1.5	11.026	11.216	10.376	10.751	375	
14 x 1.5	13.026	13.216	12.376	12.751	375	
16 x 1.5	15.026	15.216	14.376	14.751	375	

Lubrication

The choice of the lubrication medium and its supply mode requires special attention. Due to the high friction which is quite common in cold forming, a high-quality lubricant is necessary in order to achieve high performance. We especially recommend high-quality oils, but work is also possible with emulsion or minimum-quantity lubrication systems.

In order to achieve high circumferential speeds and obtain clean thread surfaces and long tool life, we recommend the use of our lubricants or of similar high-performance equivalents.

For machining with minimum-quantity lubrication, we would advise you to observe the lubricant recommendations of the manufacturer of your MQL equipment.

EMUGE Coolant-lubricants

Abbreviation	No.	Range of application	
0	1 1 clf	For the machining of un-alloyed and low-alloyed steels Can be used for brush and circulation lubrication. Not suitable for the machining of light metals and non-ferrous metals.	
0	2 2 clf	For the machining of cast iron, spheroidal and meehanite cast iron, and steels of up to 900 N/mm ² tensile strength Can be used for brush and circulation lubrication.	
E	3 3 clf	Should be used as emulsion only (mixture ratio 1:8), and is suitable for nearly all materials, and also for the cold forming of threads, in that form Should not be used in concentrated form.	
0	4 4 clf	For light metals and non-ferrous metals, and their alloys Can be used for brush and circulation lubrication.	
0	5 5 clf	For tough and difficult materials, and especially for the cold forming of threads Can be used for brush and circulation lubrication.	
Р	6 6 clf	For tough and difficult materials, and especially for the cold forming of threads For brush lubrication only; especially useful in horizontal machining, with large thread sizes and through hole threads.	

Description of abbreviations

Abbreviation	Range of application
E	Emulsion (EMUGE Thread cutting oil no. 3) The most common type of cooling/lubrication on machining centres.
0	Thread cutting oil (EMUGE Thread cutting oils no. 1, 2, 4, 5)
	Specially adjusted for the workpiece materials to be machined, these oils will help to obtain excellent thread surfaces and long tool life.
	Thread cutting paste (EMUGE Thread cutting paste no. 6)
Р	Ideal for thread cutting and the cold forming of threads in tough and difficult materials. Especially useful in horizontal machining.
	Minimum-quantity lubrication (MQL)
М	Due to the possibility of supplying aerosol through the spindle on modern machining centres, this type of cooling/lubrication is becoming more and more popular.
	Dry, pressurized air, cooled pressurized air
Α	Real "dry cutting" is normally done only in grey cast iron. For chip removal, the use of air, sometimes cooled, is a common solution.

EMUGE Coolant-lubricants are made especially for the material to be machined, and for the work conditions as outlined above. They are available in a chlorinated, and alternatively in a chlorine-free (clf) version.

ENUCIE Threading Technology

Tool clamping

EMUGE offers a comprehensive programme of holders for threading tools, for example:

- quick-change holders
- collet chucks
- tapping attachments

No matter what kind of tool you want to clamp, we have the perfect solution. Depending on the application case and the existing requirements, our holders are equipped with the necessary performance features.

For the adaptation of cutting and cold-forming taps in quick-change holders, we can offer you a wide range of quick-change adapters.

Tapping attachments of our GRN-NC and SWITCH-MASTER[®] series are made for the production of right-hand threads on CNC-controlled machine tools. Thanks to the integrated change gear, the sense of rotation of the machine spindle does not need to be changed for reversing the tool, which permits enormous time savings due to shorter cycle times, and saves the machine spindle itself by allowing it to keep up a constant right-hand rotation. In addition, the best possible tool life is obtained easily, and power consumption is kept low due to a nearly constant flow of current.

Clamping system PGR

The clamping system PGR "powRgrip®" is a mechanical alternative to thermal shrink-fit and hydro-expansion chucks, and is suitable for the clamping of both solid carbide and HSS tools. As opposed to shrink-fit technology, there are no heat-related structural changes on the tool holder.

The PGR system permits safe clamping in tolerance h9 (type PGR-GB) or h6 (type PGR) and shows extraordinary performance in the enormous torques it can transfer, as well as in its excellent concentricity characteristics. A special feature for pre-setting the tool is integrated in each collet.

powRgrip® is a registered trademark of REGO-FIX AG.

Tool monitoring system DDU

With the help of tool holders fitted out with DDU electronics and the complementary analysis unit of ARTIS it is possible to measure the effective machining forces in thread production directly on the tool holder.

The DDU system is a further development of the tool monitoring system ICS, with the additional option of monitoring and documenting not only the effective torque but also the axial forces coming up in the production of threads.

EMUGE Präzisionswerkzeuge GmbH

Pummerinplatz 2 · 4490 St. Florian Tel. +43-7224-80001 · Fax +43-7224-80004

EMUGE-FRANKEN Ferramentas de Precisão Ltda.

Av. Dom Pedro II, 288 - 11° Andar · Bairro Jardim - Santo André São Paulo Brasil - CEP 09080-000 Tel. +55-11-4432-2811 · Fax +55-11-4436-3896

EMUGE-FRANKEN B.V. Handelsstraat 28 · 6851EH Huissen · NETHERLANDS Tel. +31-26-3259020 · Fax +31-26-3255219

EMUGE Corp. 1800 Century Drive · West Boylston, MA 01583-2121 · USA

Tel. +1-508-595-3600, +1-800-323-3013 · Fax +1-508-595-3650

EMUGE-FRANKEN Precision Tools (Suzhou) Co. Ltd. No. 72, Loujiang Rd. · Weiting Town (Kuatang Sub-district) Suzhou Industrial Park · 215122 Suzhou Tel. +86-512-62860560 · Fax +86-512-62860561

EMUGE-FRANKEN servisní centrum, s.r.o. Tel. +420-5-44423261 · Fax +420-5-44233798

EMUGE-FRANKEN AB Toldbodgade 18, 5.sal · 1253 København K Tel. +45-70-257220 · Fax +45-70-257221

Emuge-Franken Cutting Tools Oy Heikkiläntie 2A · 00210 Helsinki Tel. +35-8-207415740 · Fax +35-8-207415749

EMUGE SARL 2. Bd de la Libération · 93284 Saint Denis Cedex Tel. +33-1-55872222 · Fax +33-1-55872229

EMUGE U.K. Limited 2 Claire Court, Rawmarsh Road · Rotherham S60 1RU Tel. +44-1709-364494 · Fax +44-1709-364540

EFT Szerszámok és Technológiák Magyarország Kft. Gyár u. 2 · 2040 Budaörs Tel. +36-23-500041 · Fax +36-23-500462

EMUGE India Plot No.: 92 & 128, Kondhanpur, Taluka: Haveli · District Pune-412 205 Tel. +91-20-24384941 · Fax +91-20-24384028

EMUGE-FRANKEN S. r. l. Via Carnevali, 116 · 20158 Milano Tel. +39-02-39324402 · Fax +39-02-39317407

EMUGE-FRANKEN K. K. Nakamachidai 1-32-10-403 · Tsuzuki-ku Yokohamashi, 224-0041 Tel. +81-45-9457831 · Fax +81-45-9457832

Dirk Gerson Otto

Gässelweg 16a · 64572 Büttelborn · GERMANY Tel. +49-6152-910330 · Fax +49-6152-910331

EMUGE-FRANKEN (Malaysia) SDN BHD

No. 603, 6th Fl., West Wing, Wisma Consplant II, No. 7 Jalan SS 16/1, Subang Jaya, Selangor Darul Ehsan Tel. +60-3-56366407 · Fax +60-3-56366405

EMUGE Corp.

EMUGE-FRANKEN B.V.

1800 Century Drive · West Boylston, MA 01583-2121 · USA Tel. +1-508-595-3600, +1-800-323-3013 · Fax +1-508-595-3650

Emuge Franken Teknik AS Nedre Åsemulvegen 6 · 6018 Ålesund Tel. +47-70169870 · Fax +47-70169872

Tel. +31-26-3259020 · Fax +31-26-3255219

Handelsstraat 28 · 6851EH Huissen

EMUGE-FRANKEN Technik ul. Chłopickiego 50 · 04-275 Warszawa Tel. +48-22-8796730 · Fax +48-22-8796760

EMUGE-FRANKEN Av. António Augusto de Aguiar, nº 108 - 8º andar $\,\cdot\,$ 1050-019 Lisboa Tel. +351-213146314 · Fax +351-213526092

EMUGE-FRANKEN Tools Romania SRL Str. Tulcea, Nr. 24/3 · 400594 Clui-Napoca Tel. +40-264-597600 · Fax +40-264-597600

EMUGE-FRANKEN Tooling Service d.o.o.

Tel. +381-24-817000 · Fax +381-24-817000

Adi Endre ul.77 · 24400 Senta

翩 SERBIA

EMUGE-FRANKEN nástroje spol. s.r.o. Lubovníková 19 · 84107 Bratislava SLOVAK REPUBLIC Tel. +421-2-6453-6635 · Fax +421-2-6453-6636

EMUGE-FRANKEN tehnika d.o.o. Streliška ul. 25 · 1000 Ljubljana Tel. +386-1-4301040 · Fax +386-1-2314051

SOUTH AFRICA

2, Tandela House, Cnr. 12th Ave. & De Wet Street $\,\cdot\,$ 1610 Edenvale

Tel. +27-11-452-8510/1/2/3/4 · Fax +27-11-452-8087

Calle Fructuós Gelabert, 2-4 4º 1ª · 08970 Sant Joan Despí (Barcelona) Tel. +34-93-4774690 · Fax +34-93-3738765

EMUGE FRANKEN AB Hagalundsvägen 43 · 70230 Örebro Tel. +46-19-245000 · Fax +46-19-245005

EMUGE S.A. (Pty.) Ltd.

RIWAG Präzisionswerkzeuge AG Winkelbüel 4 · 6043 Adligenswil Tel. +41-41-3708494 · Fax +41-41-3708220

EMUGE-FRANKEN (Thailand) co., ltd. 1213/54 Ladphrao 94, Khwaeng/Khet Wangthonglang · Bangkok 10310 Tel. +66-2-559-2036,(-8) · Fax +66-2-530-7304

EMUGE Corp.

1800 Century Drive · West Boylston, MA 01583-2121 Tel. +1-508-595-3600, +1-800-323-3013 · Fax +1-508-595-3650

EMUGE-Werk Richard Glimpel GmbH & Co. KG · Fabrik für Präzisionswerkzeuge

Nürnberger Straße 96-100 · 91207 Lauf · GERMANY · Tel. +49 (0) 9123 / 186-0 · Fax +49 (0) 9123 / 14313

FRANKEN GmbH & Co. KG · Fabrik für Präzisionswerkzeuge

Frankenstraße 7/9a · 90607 Rückersdorf · GERMANY · Tel. +49 (0) 911 / 9575-5 · Fax +49 (0) 911 / 9575-327

info@emuge-franken.com · www.emuge-franken.com · www.frankentechnik.de

