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Abstract

Shock-wave model of liquid cavitation due to an acoustic wave was developed, showing how the primary energy of an acoustic radiator
is absorbed in the cavitation region owing to the formation of spherical shock-waves inside each gas bubble. The model is based on the
concept of a hypothetical spatial wave moving through the cavitation region. It permits using the classical system of Rankine–Hugoniot
equations to calculate the total energy absorbed in the cavitation region. Additionally, the model makes it possible to explain some newly
discovered properties of acoustic cavitation that occur at extremely high oscillatory velocities of the radiators, at which the mode of bub-
ble oscillation changes and the bubble behavior approaches that of an empty Rayleigh cavity. Experimental verification of the proposed
model was conducted using an acoustic calorimeter with a set of barbell horns. The maximum amplitude of the oscillatory velocity of the
horns’ radiating surfaces was 17 m/s. Static pressure in the calorimeter was varied in the range from 1 to 5 bars. The experimental data and
the results of the calculations according to the proposed model were in good agreement. Simple algebraic expressions that follow from the
model can be used for engineering calculations of the energy parameters of the ultrasonic radiators used in sonochemical reactors.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the design and calculation of powerful ultrasonic
sources for sonochemical reactors, it is necessary to know
the exact value of the intensity of the acoustic energy radi-
ated into the working liquid. This information is usually
obtained experimentally because no adequate physical
model of acoustic cavitation that would allow one to
obtain such data through calculation so far exists. The
development of an adequate model of acoustic cavitation,
although of great importance, has in the past been severely
restricted by considerable mathematical difficulties con-
nected with the necessity of finding numerical solutions
of nonlinear equations describing the cavitation region
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(the visible region of large cavitation bubble population)
[1]. Direct analytical solutions of these equations in differ-
ent approximations do not give practical results suitable
for the design of ultrasonic equipment [2,3].

Current literature on acoustic cavitation mainly tends to
involve numerical models of spatio-temporal characteristics
of the cavitation region [4–6]. Large number of theoretical
acoustic cavitation models has been developed along with
the corresponding methods of numerical analysis of such
models. Further computer simulation-based investigations
of acoustic cavitation have also been proposed, involving
complex nonlinear physicomathematical models and
including many aspects of spatial movement of cavitation
bubbles in an acoustic field, spatial distribution of the
characteristics of these fields in a liquid, interaction between
the bubbles themselves, properties of acoustical flow, etc.
[7–10]. Water is most frequently used for the experimental
verification of such theoretical models.
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No adequate explanation of the mechanism by which
dissipation of the primary acoustic energy of a radiator
occurs in a liquid at cavitation is, however, available from
the literature. Additionally, no theoretical method permit-
ting to calculate this energy in a manner adequate to the
available experimental data currently exists. Meanwhile,
the exact knowledge of the mechanisms by which the heat-
ing of a liquid in the presence of a cavitation-inducing
acoustic wave occurs is quite important not only for the
understanding of the related sonochemical processes, but
also for the practical design parameter calculations that
would permit constructing improved high-capacity ultra-
sonic radiators and reactors.

1.1. Visual observations of acoustic cavitation

Several authors provided common [11], high-speed [12]
and stereoscopic high-speed [13] photographs of the cavita-
tion region, obtained in the presence of relatively low-
intensity acoustic fields. At these conditions, the cavitation
region is located some distance away from the radiating
surface and has a typical pattern similar to that of an elec-
trical discharge.

Photographs of the cavitation region formed by power-
ful ultrasonic radiators have also been provided [14,15].
The diameters of the radiating surfaces of the radiators
were greater than the sound wavelengths in the given liquid
at the working frequencies. In these cases, plane acoustic
waves are radiated into the liquid. The photographs show
that at relatively low acoustic radiation intensity, the cavi-
tation region is also located some distance away from the
radiating surface, has an irregular pattern and is composed
of thread-like collection of cavitation bubbles. As the radi-
ation intensity goes up, however, the cavitation region
approaches the radiating surface and grows in size. When
the intensity reaches the value of, approximately, 1.5 W/
cm2, the cavitation region ‘‘sits’’ on the radiating surface
and its shape becomes regular, resembling an upside-down
circular cone. The so-called ‘‘cone bubble structure’’ begins
to form. Further radiation intensity increases have little
effect on the shape and position of the cone bubble struc-
ture. The photographs in the abovementioned studies show
that at high radiation intensity the cone bubble structure is
in contact with the radiating surface. Ref. [16] provides
photographs of the radiating surface of a metal radiator
which was utilized for a period of time to create high-inten-
sity cavitation in a liquid. The surface of the radiator con-
tains clear traces of metal degradation due to cavitation.

Therefore, it can be concluded with certainty that at
high radiation intensities, acoustic cavitation starts at the
surface of the acoustic radiator. This location in the liquid
is known, according to theory, to have the lowest value of
tensile strength due to the constant presence of adsorbed
gas inclusions at the metal surface [2].

However, at low radiation intensities just above the cav-
itation threshold, the cavitation region in always formed at
a significant distance away from the radiating surface,
which contradicts the abovementioned theory. Clearly,
the tensile strength of the liquid at any location away from
the metal surface should be higher than near it, since the
concentration of the preexisting bubbles (inceptions) that
‘‘weaken’’ the liquid at that location should diminish with
time.

1.2. Justification for the shock-wave approach

At low radiation intensity, harmonic acoustic wave is
not yet capable of inducing cavitation even at the weakest
location in the liquid near the radiating surface. Formation
of cavitation away from the radiating surface in this case
can be explained by the effect of the increase of the planar
acoustic wave front steepness during its propagation
through a liquid. As a result of such increase, at some loca-
tion in the liquid a discontinuity in the wave profile is
formed. Since such discontinuity is physically not possible
in a continuous media, a shock-wave with a steep front is
formed as a result. This effect has to do with the acoustic
radiation-induced nonlinearity of the compressible media
properties and is very well known and documented [17].

This explanation, however, seems contradictory to the
common shock-wave theory, since the attainable amplitude
of vibration velocity of the radiating surface is always
much lower than the speed of sound in the pure liquid
and, therefore, the necessary conditions for the creation
of such a discontinuity in the wave profile are not fulfilled.
The explanation may, nevertheless, still be valid due to the
following two considerations. It is well known that during
propagation of an acoustic wave of slightly lower intensity
than the cavitation threshold, an ensemble of tiny bubbles
is formed in the liquid. This occurs due to the so-called
‘‘rectified diffusion’’ [2]. It is also well known that the speed
of sound in a liquid containing gas bubbles is significantly
lower than that in a pure liquid [18,19], and, under certain
conditions, it may become similar to the amplitude of
vibration velocity of the radiating surface.

It may, therefore, be considered that the bubbles formed
in an acoustic wave due to rectified diffusion help forming a
discontinuity in the profile of the acoustic wave at a loca-
tion away from the radiating surface by significantly lower-
ing the sound speed in the liquid. Further, at the location of
the discontinuity in the acoustic wave, these tiny bubbles
begin to undergo such rapid nonlinear movements that
they loose dynamic stability and, consequentially, rapidly
multiply forming the cavitation region.

The abovementioned observations and analysis formed
the basis of the shock-wave model of acoustic cavitation
described in this work. The model shows how the primary
energy of an acoustic radiator causing the cavitation of
liquid is absorbed in the cavitation region owing to the for-
mation of spherical shock-waves inside each cavitation
bubble. Calculation of the total energy absorbed in the cav-
itation region using the concept of a hypothetical spatial
wave moving through the cavitation region is possible with
this model using the classical system of the Rankine–
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Hugoniot equations. Additionally, the proposed model
makes it possible to explain some newly discovered proper-
ties of acoustic cavitation of water that occur at extremely
high oscillatory velocities of the radiating surfaces.

2. Theory

Let us assume that an acoustic radiator emitting a plane-
wave is used to generate cavitation in a liquid. The diame-
ter of the radiator’s output surface is comparable with the
length of the acoustic wave in the liquid at the given fre-
quency of vibrations. The frequency of the acoustic radia-
tor vibrations should be considered to be much lower than
the resonance frequency of the cavitation bubbles. We
assume that the liquid always contains an equilibrium con-
centration of dissolved gas as well as some cavitation nuclei
(tiny spherical bubbles filled with the gas) and, consequen-
tially, the liquid possesses no tensile strength during rare-
faction caused by the acoustic waves. As, for example, is
indicated in Ref. [2], water that has not been purified of
gas inclusions ruptures at the negative acoustic pressure
of, approximately, 1 bar. The density of the liquid with
the tiny cavitation nuclei is taken to be equal to the density
of the pure liquid, qf. Surface tension of the liquid and the
presence of stable (non-cavitational) gas bubbles are
neglected. Thus, within the framework of the model, only
the so-called low-frequency transient gas cavitation is con-
sidered. We, additionally, assume the liquid to be non-vis-
cous, non-compressible and non-volatile.

Let us represent acoustic cavitation in the liquid as a
sequence of the following events. When an acoustic rare-
faction wave of certain amplitude passes through a volume
of the liquid, an explosive growth of cavitation nuclei
occurs, leading to the formation of the gas-filled cavitation
bubbles. Possible parameters of such rarefaction wave are
described, for example, in [20]. A mixture of the spherical
bubbles and the liquid is, therefore, formed. The gas dis-
solved in the volume of the liquid passes inside the free
space formed by the bubbles. The density of the liquid,
therefore, drops. At this point, the bubbles are so small,
as compared with the acoustic wavelength, that the
liquid/bubble mixture can be considered a continuous med-
ium. The rarefaction wave phase is followed by a compres-
sion wave phase, whose passage results in a collapse of all
gas bubbles, restoring the density of the liquid to qf. The
reverse diffusion of the gas back into the liquid during com-
pression is insignificant and should be ignored. This partic-
ular stage of acoustic cavitation completes the total
cavitation cycle and is further considered here in great
detail, since it is this stage that is mainly responsible for
the sonochemical effects of acoustic cavitation.

2.1. Oscillations of a single gas bubble

The problem of the liquid motion during the compres-
sion of an empty spherical bubble in liquid was solved by
Rayleigh (see reviews [2,3]). On the basis of this solution
and Ref. [17], the instantaneous pressure distribution in
the liquid can be written as

p ¼ p1 þ qf

_Ur þ 2U 2

n
� qf

U 2

2n4
: ð1Þ

Here, p1 is the pressure in the liquid at infinity, U is the
velocity of the bubble boundary (wall), n = R/r, r is the
current bubble radius, and R is the current radial coordi-
nate. For the boundary of a gas-filled bubble at n = 1,
the following equality must be met:

pg ¼ p1 þ qf
_Ur þ 3

2
U 2

� �
: ð2Þ

Here, pg is the gas pressure in the bubble. This expression is
the well-known Noltingk–Neppiras equation (see reviews
[2,3]).

For an empty bubble, taking pg = 0 and p1 = p0, inte-
gration of Eq. (2) gives Rayleigh’s equations for the veloc-
ity of the bubble wall movement and the time of the bubble
collapse:

u2 ¼ 2p0

3qf

r3
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r3
� 1

� �
;

s ¼ 0:915rin

qf

p0

� �0:5

:
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Here, p0 is the static pressure, and rin is the initial bubble
radius.

From Eqs. (1) and (2), an expression for the instanta-
neous distribution of the pressure in liquid during the com-
pression of a gas-filled bubble can be obtained:

p ¼ p1 1� 1

n

� �
þ

pg

n
þ qf U

2

2

1

n
� 1

n4

� �
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Let us single out a spherical liquid volume that includes
a gas bubble. The gas bubble/surrounding liquid system
has a certain acoustic compressibility, which determines
the velocity of the propagation of small perturbations or
the velocity of sound in this volume. Using the linearized
form of the Noltingk–Neppiras equation, one can obtain
an expression for the velocity of sound in such a system,
as it was done, for example, in the work [18]. The velocity
of sound, with the abovementioned assumptions taken into
account, is determined using the following expression:

c ¼
pg

qfað1� aÞ

� �0:5

: ð5Þ

Here, a is the volumetric gas concentration in the singled-
out liquid volume that includes a gas bubble. From Eq.
(5) it can be seen that the velocity of sound at a given
gas pressure in the bubble has a minimum at a = 0.5. For
example, at pg = 1 bar the minimum velocity of sound
cmin = 20 m/s. It should also be noted that the velocity of
sound in the range 0.4 < a < 0.6 changes little.

A gas bubble is formed during the half-period of the
liquid rarefaction in the acoustic wave. Under the above-
mentioned assumptions, this occurs at the moment when



Fig. 1. Instantaneous distribution of the excessive pressure in the liquid
near the cavitation bubble wall at U > cmin is shown. The quantity dp01 is
not taken into account.
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the pressure in the liquid near the wall of a cavitation
nucleus decreases to zero, i.e. the negative acoustic pressure
is equal to p0. At that point, the gas pressure in the formed
bubble is also very small. Further, during the subsequent
period of increase in the acoustic pressure, the bubble is
compressed, and the gas pressure in it also increases. Dur-
ing the subsequent compression half-period, in the singled-
out liquid volume near the gas bubble wall a spherical flow
in the direction of the bubble center is formed, which is
described by Eq. (4). From Eq. (5) it is seen that the veloc-
ity of sound for the singled-out system gas bubble/sur-
rounding liquid depends on the gas pressure in the
bubble pg and the value of coordinate n, along which the
boundary of the singled-out volume passes. If we start
reducing the singled-out volume, while the radius of the
bubble and the gas pressure in it are constant, the velocity
of sound in this system will fall to a certain limit and then
will grow again. This means that in the considered spheri-
cal volume near the moving wall of the bubble, there is a
critical spherical region, where the sound velocity, cmin, is
at the minimum at a given gas pressure in the bubble, pg.
The position of this region is determined from the condi-
tion 0.4 < a < 0.6. It is located close to the bubble wall in
the coordinate range 1.18 < n < 1.35. For the simplicity
of further analysis of Eq. (4), it is taken that the velocity
of the flow of the liquid particles in the critical region is
equal to the velocity of the bubble wall movement, U.

In the model being considered, it is assumed that when
the gas bubble/surrounding liquid system is compressed
by the external pressure, p1, the velocity of the flow of
the liquid particles in the critical region near the bubble
wall increases to such a degree that at a certain gas pressure
in the bubble, pg, it reaches the minimum velocity of sound
in the system under consideration, i.e. U = cmin.

At a ratio of the initial radius of an empty bubble to its
current radius, rin/r = 2, and static pressure, p0 = 1 bar, the
value of U � 21 m/s reached according to Eq. (3) is indeed
close to cmin = 20 m/s.

Let us represent the pressure at infinity as a sum of the
static and the acoustic (excessive) pressures, p1 ¼ p0 þ p01
and transform Eq. (4) taking into account that U = cmin:

p ¼ ðp0 þ p01Þ 1� 1

n

� �
þ
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1

n
� 1
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This expression describes the extreme condition of equilib-
rium of the system. Eq. (6) shows that during compression
of the flowing liquid, in the vicinity of the gas bubble a
pressure impulse is formed, which is stationary with respect
to the bubble wall. The amplitude of the excess pressure in
this impulse is p � p0 ¼ 1:4pg þ 0:5dp01, where dp01 ¼
ðp01 � p0Þ. This value is reached at the coordinate n � 2 lo-
cated upstream from the critical region. As we show below,
the quantity, dp01, does not need to be considered for small
oscillation velocities of acoustic radiators.

When the velocity of the bubble wall motion exceeds the
minimum velocity of sound, U > cmin, the equilibrium state
described by Eq. (6) becomes destroyed, and the pressure in
the liquid at the bubble wall downstream from the critical
region decreases to p0. The velocity of the bubble wall
movement also reduces because the driving pressure differ-
ence decreases. At the same moment, the excessive pressure
amplitude in the impulse increases stepwise up to the value
p � p0 ¼ 1:4p0 þ 0:5dp01, since the boundary condition in
Eq. (2) is changed and the pressure near the bubble wall
becomes pg = p0. This occurs because the bubble pressure
signal does not penetrate upstream from the bubble wall
when U > cmin.

Due to destruction of the dynamic equilibrium (retarda-
tion of a part of the flow), the pressure impulse located in
the liquid upstream from the critical section disintegrates
and begins to move relative to the bubble boundary in
the form of a converging spherical wave. The supposed
instantaneous distribution of excessive pressure in the
impulse near the gas bubble wall at U = cmin is shown in
Fig. 1.

Phenomena similar in essence are observed during the
breakup of arbitrary pressure discontinuity in a gas, during
hydraulic impact, and during the flow of gases and gas–
liquid mixtures through nozzles. See, for example, the
works [5,6], as well as the studies on Laval nozzles and
water hammers.

In accordance with the assumed form of pressure distri-
bution in a converging spherical wave shown in Fig. 1, the
excessive pressure at the bubble wall first increases
smoothly up to the value of p � p0 ¼ 1:4pg þ 0:5dp01, and,
accordingly, the gas pressure inside the bubble increases
smoothly (isothermally) as well. Then, when an abrupt
excess pressure jump (up to the value of p � p0 ¼ 1:4p0þ
0:5dp01) approaches the bubble wall, a spherical shock-
wave is formed in the gas inside the bubble. The pressure
jump itself, evidently, is equal to 1.4(p0 � pg). After focus-
ing in the center of the gas bubble, the spherical shock-
wave is reflected, and the bubble ‘‘explodes’’ from the
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inside, breaking up into small fragments. The collapse of
the gas bubble or, more precisely, its shock destruction
occurs. Gas pressure and temperature inside the bubble
during the focusing and the subsequent reflection of the
shock-wave reach very large, albeit theoretically restricted,
values [17]. When the collapse of the gas bubble is com-
pleted, its small fragments are left in the singled-out liquid
volume, which are equal in size to the original cavitation
nuclei, and the density of the singled-out liquid volume
becomes close to the initial liquid density, qf. As we show
below, when the oscillation velocities of the ultrasonic radi-
ators reach very high values, cavitation may follow a differ-
ent mechanism, which does not involve breaking the gas
bubbles up into small fragments, but rather exhibits bubble
behavior approaching that of an empty Rayleigh cavity.

This approach permits easily eliminating a seemingly
clear contradiction that follows from the Noltingk–Nepp-
iras equation: how can a gas-filled bubble implode with a
very high rate if the gas pressure inside the bubble during
compression rapidly increases, while the rate of the gas dif-
fusion from the bubble, according to [2,3], is negligible. In
the proposed model, the gas bubble does not implode in the
literal sense of the word, but is destroyed by a spherical
shock-wave reflected after focusing in its center. The pres-
ence of a well-known phenomena accompanying acoustic
cavitation, such as sonoluminescence, erosion and disper-
sion of solids, emulsification of liquids, etcetera, can be well
explained from this point of view. Additionally, the mech-
anism of the dissipation of the primary acoustic energy
during the liquid cavitation becomes clear. This is the
mechanism of the heating of a compressible medium in a
shock-wave, which is well described in the literature (see,
for example, [17]).

2.2. Cavitation region

During the rarefaction of a liquid in an acoustic wave, a
mixture of a great number of spherical gas bubbles with the
liquid (cavitation region) is formed. Let us call this gas–
liquid mixture present in the cavitation region, the ‘‘contin-
uum’’. In the previous section, the course of events during
the collapse of a single bubble in some small volume of
liquid was described. To extend these events over the entire
continuum, a transition to spatial description is necessary.
At that, the results of this transition must depend neither
on the dimensions and the form of the continuum itself
nor on the sizes and the spatial distribution of the bubbles
in it.

During the compression stage, an acoustic radiator cre-
ates a pressure impulse in the liquid beyond the continuum
in the form of a plane acoustic wave. Since the velocity of
sound in the continuum is finite, the collapse of a multitude
of gas bubbles located arbitrarily in the continuum must
also occur simultaneously only in some narrow layer, as
the impulse of the acoustic pressure approaches it, i.e. it
must have a wave character. In the current model represen-
tation, the result of the superposition of many spherical
shock-waves, which are formed near each gas bubble dur-
ing its collapse in a narrow layer of the continuum, is a spa-
tial wave (SW) moving through the continuum. Such a
representation is the most exact and visual way of extend-
ing the events occurring during a single gas bubble col-
lapse, over the entire continuum.

In the real situation, the cavitation region in a liquid
may take very complex, branched shapes. The spatial dis-
tribution of bubbles in the region also may be quite non-
uniform and the sizes of the bubbles may vary. When the
transition to the presented spatial description of cavitation
is made, for the results to be independent of the shape of
the cavitation region as well as of the spatial distribution
and the sizes of the bubbles, in our fundamental equations
we will further utilize hypothetical physical parameters
related to the cavitation region as a whole. In other words,
instead of operating with local values of density, changes in
internal energy and so on, we will use the values averaged
over the whole cavitation region. As demonstrated below,
these values disappear when further modifications of the
fundamental equations are made.

The experimental investigations of acoustic cavitation
described below conducted for the verification of the pre-
sented model were carried out using calorimetry of the
entire environment and, therefore, provide only the spa-
tially averaged values due to a relatively high thermal con-
ductivity of the liquid. Therefore, the final purpose of the
calculations following this model is the determination of
a cumulative value of the changes in the internal energy
of the environment, as a result of acoustic cavitation.

The spatial wave (SW) described above has a bore wave-
like character, however, the continuum density and pres-
sure inside the SW front change stepwise. This occurs
because the cavitation bubbles collapse inside its front, fol-
lowing the process outlined in Section 2.1. The presence of
such a wave is the final stage of acoustic cavitation, within
one cycle of the continuum rarefaction–compression. In
other words, according to the model, it is assumed that
the collapse of the gas bubbles occurs inside a relatively
narrow front of a hypothetical SW, being formed and mov-
ing through the continuum in each compression half-period
of an acoustic radiator.

The width of the SW front, inside which the collapse of
the bubbles and the change of the continuum density occur,
can be estimated as the product of the empty bubble col-
lapse time, according to Eq. (3) and the wave front move-
ment velocity with respect to the continuum, h = cs. A
rough estimate for the wave front movement velocity can
be made using expression (5). Then, at a = 0.1 (taken from
the literature data [20] and characteristic for the initial
stage of acoustic cavitation) we obtain h � 3rin. According
to the estimation performed in the work [2], the maximum
radius of a gas bubble in water does not exceed 2 · 10�4 m,
since larger bubbles rapidly rise to the surface. Hence, the
value is: h 6 6 · 10�4 m, which is smaller than the dimen-
sions of the continuum itself by many orders of magnitude.
Thus, the specified wave has a front that is very narrow



Fig. 2. Schematic of the continuum’s flow during compression is shown (1
– acoustic radiator, 2 – flow region after the SW passage, 3 – flow region
before the SW passage).

Fig. 3. Processes occurring during acoustic cavitation are illustrated. Line
1 represents the rarefaction of the continuum with cavitation nuclei in an
acoustic wave, line 2 represents a nonlinear process of the growth of
cavitation bubbles in the rarefaction wave, line 3 represents a preliminary
compression of the continuum in an acoustic precursor wave, line 4
represents the continuum transition from one state to the other when the
SW passes.
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relative to the dimensions of the entire continuum. Getting
over this barrier, therefore, the physical parameters of the
continuum change stepwise.

It is necessary, further, to establish a relation between
the continuum parameters ahead of and behind the SW
front, as well as the relationship between these parameters
and the oscillatory velocity of an acoustic radiator. It is
important to note that the velocity of the specified wave
can be lower than the velocity of sound in the continuum.

The SW moving through the continuum is not only a
physical abstraction used for the construction of the model,
but can, apparently, exists in reality. In this case, however,
we are not faced with an ordinary shock-wave, which arises
in a compressible continuum when the piston movement
velocity is higher than the sound velocity in the continuum.
Such shock-waves in a gas–liquid suspension obtained by
bubbling a gas through a liquid are described in detail in
literature [18]. Here, it is assumed that in a gas–liquid sus-
pension formed as a result of the liquid rarefaction in an
acoustic wave, another type of bore wave-like shock-waves
may exist, which is associated with the radial movement of
the liquid in the vicinity of each bubble.

It is well known that when a jump (discontinuity) of a
physical quantity arises in a compressible continuum, a
solution should be sought using the general conservation
laws in the form of the Rankine–Hugoniot equations
[17]. These equations reflect the ratios of the steady-state
physical parameters of the compressible continuum before
and after the passage of the shock-wave front. Addition-
ally, there appears a possibility to analytically calculate
the values of important parameters, without considering
in detail the transient processes inside the SW front, which
are connected with the complex kinetics of a collapsing gas
bubble.

Let us introduce the following designations: ph is the
pressure in the liquid phase of the continuum near the bub-
ble wall after the SW passage; pl, ql = qf(1 � al), al are,
respectively, the pressure in the liquid phase of the contin-
uum near the bubble wall, the density and the volumetric
gas content of the continuum before the SW passage. A
scheme of the continuum flow is presented in Fig. 2. It is
assumed that a SW moves through the continuum, and
that the gas bubbles collapse inside the narrow front of this
wave. Also shown in this figure is the supposed pressure
profile in the continuum.

Fig. 3 shows the supposed processes occurring in one
cycle of the acoustic cavitation of liquid. The pressure in
the liquid phase of the continuum near the gas bubble wall
in an arbitrary state is plotted on the ordinate, and the con-
tinuum specific volume is plotted on the abscissa. Line 1
represents the rarefaction of the continuum with cavitation
nuclei in an acoustic wave. Line 2 represents a nonlinear
process of the growth of cavitation bubbles in the rarefac-
tion wave. Line 3 represents a preliminary compression of
the continuum in an acoustic wave (for a single gas bubble,
this corresponds to a rise in the gas pressure in the bubble
on the smooth section of a converging spherical wave, as
described in Section 2.1). Line 4 represents the continuum’s
transition from one state to the other when the SW passes
(for a single gas bubble, this corresponds to a rise in the gas
pressure in the bubble on the steep section of a converging
spherical wave, as described in Section 2.1). In this scheme,
it is assumed in advance that the velocity of the SW move-
ment through the continuum can be lower than the sound
velocity in the continuum itself ahead of SW. Additionally,
the SW front itself serves as a source of the acoustic wave,
propagating forward in the direction of the shock-wave
movement. In this connection, there is a preliminary com-
pression of the continuum, and line 4 begins above the
abscissa axis.

This kind of an acoustic wave is called a precursor. The
precursor does not cause the collapse and disintegration of
the bubbles because of a small value of its amplitude. Sim-
ilar representations are used for initially loose or porous
environment. In such environment, during the compression
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phase, the shock-wave front is formed only due to the
parameters of the compression process itself since this envi-
ronment tends to change the specific volume of pores (cav-
ities) abruptly (stepwise) under pressure [22–24].

Let us introduce the following additional designations:
pl ¼ p0 þ p0l; ph ¼ p0 þ p0h; p0l and p0h are the excessive pres-
sures in the liquid phase of the continuum near the bubble
wall before and after the SW passage, respectively; ul and
uh are the continuum flow velocities relative to SW before
and after its passage, respectively; el and eh are the specific
internal energy of the continuum before and after the SW
passage, respectively; v is the current oscillatory velocity
of an acoustic radiator; vt is the critical oscillatory velocity
of an acoustic radiator, which corresponds to the cavita-
tion onset (cavitation threshold). Note that a stepwise
increase in the continuum density from ql to qf at the SW
front corresponds to a change in pressure from pl to ph.
The relative movement of the liquid and the gas bubbles
is neglected.

Let us now write the system of conservation equations
(Rankine–Hugoniot equations) for the continuum parame-
ters on both sides of the SW front:

qlul ¼ qfuh;

p0l þ qlu
2
l ¼ p0h þ qfu

2
h;

p0 þ p0l
ql

þ u2
l

2
þ el ¼

p0 þ p0h
qf

þ u2
h

2
þ eh;

v� vt ¼ ul � uh:

ð7Þ

The fourth equation of system (7) shows that a change
in the continuum’s movement velocity getting over the
SW front is equal to the excessive oscillatory velocity of
an acoustic radiator, which exceeds the critical value, vt.

This system of equations can be transformed to the fol-
lowing form:

I ¼ ð2p0 þ p0l þ p0hÞ
2

ðv� vtÞ;

gl ¼
ðv� vtÞ2

p0h � p0l
:

ð8Þ

Here, I = (eh � el)qfuh is the flux density of the energy dis-
sipated inside the SW as a consequence of the dissipation
processes related to the bubble collapse and gl = al/ql is
the volume of all cavitation bubbles per unit mass of the li-
quid phase of the continuum before the SW passage.

The average flux density of the acoustic energy (acoustic
energy intensity) absorbed in one acoustic wave period can
be presented in the following way:

Ia ¼
x
2p

Z p=x

0

jI sinðxtÞjdt ¼ I=p: ð9Þ
3. Setup of the equations for the experimental verification

To experimentally verify resulting Eq. (8), it is necessary
to determine the values of p0h, p0l, gl and vt.
3.1. Small oscillatory velocities of acoustic radiator

From Eq. (6) and the analysis given in Section 2.1, it fol-
lows that the maximum excessive pressure at the SW front
is equal to p0h ¼ 1:4p0 þ dp01. As mentioned above, the
liquid utilized for the construction of the theoretical model,
does not possesses tensile strength during rarefaction. Con-
sequentially, the explosive growth of the cavitation nuclei
and their conversion into gas bubbles in the rarefaction
wave takes place at the negative pressure equal to the static
pressure, p01 ¼ p0. It is possible to assume that for small
oscillation velocities of the acoustic radiator near the
cavitation threshold a symmetry of acoustic pressure
amplitudes during the half-periods of compression and rar-
efaction is conserved. Consequentially, in this case,
dp01 ¼ 0 and p0h ¼ 1:4p0. It will be shown below that for
large radiator oscillatory velocities it is no longer possible
to ignore the quantity dp01. Note that the value of p0h �
1:4p0 actually corresponds to the threshold of water cavita-
tion, at least, in its initial stage. This fact was experimen-
tally established in [21].

Above, it was assumed that during the rarefaction of a
liquid in an acoustic wave, all gas dissolved in a unit vol-
ume of the liquid passes into the bubbles formed in this vol-
ume. The oscillations of the gas bubbles before the onset of
their collapse are isothermal, and the mass of the gas in
them does not change. From the analysis of Eq. (6) given
in Section 2.1, it follows that p0l ¼ 1:4pg, hence, the condi-
tion p0g0 ¼ 0:71p0lgl must be met. Here, g0 is the equilib-
rium volume of gas dissolved in a unit mass of the liquid
at the pressure, p0.

The quantity vt is the critical oscillatory velocity of an
acoustic radiator, which corresponds to the cavitation
threshold. In view of the conditions described above, one
can assume that for a plane acoustic wave, ðvtÞrms ¼
0:71p01=qfcf ¼ 0:71p0=qfcf .

It should be borne in mind that the value of vt in each
particular experimental case can be different from the spec-
ified theoretical value. This is connected with the fact that
the practical value of vt depends on a large number of dif-
ferent parameters of liquid (physical nature, purity degree,
gas content, volatility, sample preparation history, etc.).
Besides, vt also depends on the conditions of the conducted
measurements (frequency of ultrasound, degree of isolation
from external radiation, temperature, etc.).

From the second equation of system (8) we obtain:

p0l ¼
1:4p2

0g0

g0p0 þ 1:42ðv� vtÞ2rms

: ð10Þ

Now from the first equation of system (8) in view of Eqs.
(9) and (10) we obtain the final equation for the average
flux density of the acoustic energy (intensity of acoustic
energy) absorbed in the cavitation region:

Ia ¼ 0:76p0 1þ 0:41p0g0

g0p0 þ 1:42ðv� vtÞ2rms

" #
ðv� vtÞrms: ð11Þ
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For the initial stage of acoustic cavitation, at a small
value of (v � vt)rms, the final equation is as follows:

Ia

p0

¼ 1:07ðv� vtÞrms: ð12Þ

It is important to point out that in Eqs. (11) and (12) the
quantities related to the spatial distribution of gas bubbles
in the continuum and their size, as well as the form and
shape of the continuum itself are not present.

3.2. High oscillatory velocities of acoustic radiator

From the main system of Eq. (7), one can obtain the
expression for the SW velocity relative to the unperturbed
continuum, ul ¼ ½ðp0h � p0lÞ=qfað1� aÞ�0:5. The ratio of ul to
the sound velocity, c, in the continuum according to Eq.
(5), using Eq. (10) and taking into account that pg ¼
0:71p0l, can be written as

ul

c
¼ p0h � p0l

pg

 !0:5

¼ 2ðv� vtÞ2rms

p0g0

 !0:5

: ð13Þ

From this expression, it is seen that at (v � vt)rms P 1 m/
s, the SW movement must become supersonic, making it a
real shock-wave in the classical sense. When the SW move-
ment is supersonic, a precursor is absent because it is
absorbed by the faster shock-wave. The density and the
pressure of the gas inside the bubbles in this case are ini-
tially small since they are not compressed beforehand by
the precursor. From the analysis of Eq. (10), it is seen that
at (v � vt)rms > 3 m/s the gas pressure in such bubbles
becomes approximately an order of magnitude lower than
the static pressure, p0, and continues to decrease. A spher-
ical shock-wave in rarefied gas inside such a bubble is not
formed and, accordingly, the bubble does not break up into
small fragments as a result of the collapse. The behavior of
the bubble becomes close to the behavior of an empty Ray-
leigh cavity.

It is also important to keep in mind that the minimum
width of the shock-wave front in a gas is on the order of
the molecule free path [17]. At a normal density of the
gas, this distance is about 10�7 m. With a decreasing gas
density, this distance increases proportionally and becomes
close to the characteristic size of the bubble itself 10�5 m.
Under these conditions, a spherical shock-wave inside the
bubble cannot be formed, and the bubble is compressed
like a Rayleigh cavity.

At the final stage of the collapse of the bubble, the gas
pressure in it increases to such a degree that it can hold back
the liquid’s pressure. At that, the pressure and temperature
of the compressed gas can reach very high values (theoreti-
cally unrestricted under the assumptions of this model [17]).
In this case, at the excess pressure, p0h ¼ 1:4p0, the contin-
uum behind the SW is a gas–liquid suspension with some
density qh = qf(1 � ah). If the conditions identified in the
beginning of Section 2, assumed for the construction of
the model, are to be met, the continuum behind the front
of SW is additionally compressed by the acoustic radiator
until density qf is reached. This corresponds to a pressure
increase at the SW front up to the value of p0h ¼ 1:4p0þ
dp01 ¼ 1:4p0 þ 0:5c2

hdq ¼ 1:4p0 þ 0:5c2
hqfah, where dq =

qf � qh = qfah is the additional increase in the continuum’s
density behind the SW front, necessary to reach the quan-
tity qf, and ch is the speed of sound in the gas–liquid suspen-
sion with density qh. For high oscillatory velocities of
acoustic radiator similar to the sound speed in the contin-
uum, p0h ¼ 1:4p0 þ qfahv2

rms, since in this case it can be taken
that c2 ¼ 2v2

rms.
The value of vt is neglected. Since dp01 should be taken

into account only at high v and the second term of Eq.
(11), which corresponds to the excessive pressure p0l, is neg-
ligible, we leave it unchanged. Let us now write Eq. (11) in
the final form in view of Eq. (9):

Ia¼ 0:76p0 1þ 0:41g0p0

g0p0þ1:42ðv� vtÞ2rms

þ0:29qfahv2
rms

p0

" #
ðv�vtÞrms:

ð14Þ
4. Interpretation of the experimental results provided in Ref.

[21]

A large series of experiments aimed at studying acoustic
cavitation of water at low oscillatory velocities of acoustic
radiator is presented in the work [21]. Experiments were
conducted in degassed water with the concentration of
the dissolved air equal to 30% of the nominal concentration
in the equilibrium state at the room temperature and the
normal static pressure.

For the interpretation of these data, let us introduce the
following designations:

P
Ia ¼ 0:5ðp0hÞ

2c ¼ p2
0c is the total

intensity of the acoustic energy radiated into water;
Ia0 ¼ 0:5ðp0hÞ

2cf ¼ p2
0cf is the intensity of the acoustic

energy propagating beyond the bounds of the cavitation
region. Here, c is the specific acoustic radiation admittance
of the continuum, cf = 1/qfcf. The difference of these inten-
sities is the intensity of the acoustic energy absorbed in the
cavitation region. Thus, when compared with the theoreti-
cal results of the given model, the experimental values of c
for each oscillatory velocity obtained in [21] were recalcu-
lated by the following expression:

Ia

p0

¼ ðc� cfÞp0: ð15Þ

In representing the data of the work [21], the values of
(vt)rms were determined directly from the experimental plots
of this work at the point of characteristic inflection.
5. Experimental setup

To measure the acoustic energy absorbed in a cavitating
liquid at an increased static pressure p0, an acoustic calo-
rimeter described in [25] was used. The operating frequency
of the magnetostrictive transducer was 17.8 kHz. Acoustic
radiators were a set of the barbell horns with equal-size
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radiation surfaces, which were designed using the method
described in [25]. The radiating surfaces’ diameters were
60 mm and thus provided the generation of plane acoustic
waves in water at the given frequency. The oscillatory
velocity of the acoustic radiators reached very high values.
The highest oscillatory velocity amplitude achieved in the
experiments was v = 17 m/s. Static pressure in the calorim-
eter was produced with compressed nitrogen. Settled tap
water at 20 �C was used. The static pressure, p0, varied in
the range of 1.0–5.0 bar; the water density, qf = 998 kg/
m�3; sound velocity in the water, cf = 1500 m/s; the volume
of air dissolved in unit mass of water, g0 = 2.2 · 10�5 m3/
kg. Each experimental point shown on the plots was
obtained as a mean value of 10 measurements.
6. Experimental results

Experimental data for small oscillatory velocities of an
acoustic radiator, v, and different static pressures, p0, are
shown in Fig. 4. The values of vt used in the treatment of
these experimental data were calculated from the expres-
sion (vt)rms = 0.707p0/qfcf for different static pressures.
Also shown in this figure are the experimental data from
[21] for ultrasound frequencies of 19 and 28 kHz, closest
to the frequency 17.8 kHz used in the present work, which
are interpreted by Eq. (15). The values of the cavitation
threshold obtained from the corresponding plots of [21]
for both frequencies (vt)rms = 0.08 m/s. Fig. 4 also shows
the theoretical lines calculated from Eqs. (11) and (12),
which are represented by the solid and the dotted lines,
respectively.

A good agreement between the theoretical lines them-
selves and the experimental data with these lines at small
Fig. 4. Intensity of acoustic energy absorbed in water at cavitation is
shown as a function of the excessive oscillatory velocity of an acoustic
radiator for pressures of · – 1 bar, + – 2 bar, j – 3 bar, h – 4 bar, � –
5 bar, at frequencies of – 28 kHz and – 19 kHz from the work [21].
Line 1 is plotted from Eq. (12); line 2 is plotted from Eq. (11).
values of v can be clearly seen. With increasing
(v � vt)rms > 0.2 m/s, the experimental points diverge from
the straight line plotted from Eq. (12) and approach the
line plotted from Eq. (11).

Fig. 5 shows the experimental results for all oscillatory
velocities of the acoustic radiator, v, which were used in
the experiments at normal static pressure, p0 = 1 bar. Also
shown in this figure are the theoretical lines plotted from
Eqs. (11) and (14). From Fig. 5 it is seen that at intermedi-
ate values of v the experimental points are located near
practically coincident lines plotted from Eqs. (11) and
(14), which are represented by the dotted and solid lines,
respectively.

At high oscillatory velocities, (v � vt)rms > 3 m/s, the
specified theoretical relationships diverge, and the experi-
mental points are located according to a more general rela-
tionship (14) at ah = 0.4. It can be seen that the theoretical
and the experimental data are in good agreement up to the
highest values of the oscillatory velocity, v.

A spread of the experimental points on the curve in
Fig. 5 in the region 2 m/s < (v � vt)rms < 3 m/s is also
observed. Here, the beginning of the divergence of the the-
oretical curves 1 and 2 is observed as well. These phenom-
ena are, apparently, associated with the establishment of
the supersonic regime of the SW movement and a consid-
erable decrease in the gas pressure in the bubbles. The indi-
cation of the possibility of the supersonic regime of
radiation at acoustic cavitation was first made in the work
[26]. The phenomenon itself was called the second thresh-
old of acoustic cavitation. The region located over the sec-
ond threshold at (v � vt)rms > 3 m/s was called the region of
acoustic supercavitation. The closest related known phe-
nomenon is called hydrodynamic supercavitation and is
described, for example, in [27].
Fig. 5. Intensity of acoustic energy absorbed in water at cavitation is
shown as a function of the excessive oscillatory velocity of an acoustic
radiator. Line 1 is plotted from Eq. (14); line 2 is plotted from Eq. (11).
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Since, as the stated theory assumes, at supercavitation
the spherical shock-wave is not formed in the gas inside
the bubbles, at oscillatory velocities (v � vt)rms > 3 m/s the
characteristic changes of the secondary effects of cavita-
tion, which are used in the sonochemical technology, must
be observed.

An experimental verification of this effect was conducted
by observing the cavitation-induced ultrasonic dispersion
of solid particles. During the experimental setup, it was
assumed that the transition to the supercavitation regime
should in some way be reflected in the manner in which
the dispersion occurs. The experimental study was con-
ducted during the ultrasonic dispersion of graphite parti-
cles with the initial size 200–250 lm in settled tap water
under normal conditions. To avoid any possible influence
of the reactor geometry on the results of the measurements,
the acoustic calorimeter described above was used as an
apparatus for dispersing. For the analysis of the relative
transparency of the obtained dispersions, the degree of
the light absorption (at the wavelength of 420 nm) in them
was measured using a photo-colorimeter. From the mea-
surement results presented in Fig. 6 in relative units, it
can be seen that the obtained curve reaches a maximum
and then discontinues at 2.5 m/s < (v � vt)rms < 3 m/s. A
subsequent smooth rise of this curve in the supercavitation
region is also observed, which is most likely associated with
the intense acoustic streaming, rather than with the effect of
cavitation itself.

In the literature, it is indicated that the chemical action
of acoustic cavitation, which is determined, for instance,
from the rate of the free iodine release from the aqueous
solution of potassium iodide, first increases to a certain
limit with the increasing cavitation intensity and then
abruptly decreases. See, for example, review [28]. In the
work [25] it is experimentally shown that a rise in the rate
Fig. 6. Dispersing effect of acoustic cavitation (dispersion of graphite
powder in water) determined by the degree of the 420 nm wavelength light
absorption is illustrated as a function of the excessive oscillatory velocity
of an acoustic radiator.
of the release of the free iodine continues up to very high
intensities of cavitation. The process rate dependence on
the intensity of cavitation simply has a deep discontinuity
at the transition to the supercavitation regime, which is
analogous to that observed in Fig. 6. With a further
increase in the radiator oscillatory velocity, the rise in the
rate of the free iodine release continues.

It appears that it is in the acoustic supercavitation
region where the achievement of the highest possible tem-
peratures during the compression of the rarefied gas inside
the bubble oscillating as a Rayleigh cavity can be expected.
Pressure at the bubble wall at the moment of focusing the-
oretically approaches infinitely high values because the gas
compression is exerted by the moving dense bubble wall
acting as a spherical plunger, rather than by a spherical
acoustic wave [17]. In the same region, the highest intensi-
ties of the cavitation-induced sonochemical processes
occurring at high temperatures may be observed. At the
same time, processes connected with erosion, dispersion
of solids and the like can be inhibited in the supercavitation
region.

7. Conclusions

The proposed shock-wave model of acoustic cavitation
reflects real events occurring in water at cavitation since
calculations based on the equations that follow from the
model are in good agreement with the results of the exper-
iments. The presented experimental data extend to the
region of super-high oscillatory velocities of an acoustic
radiator and agree well with the theoretical model. The
model makes it possible to obtain the resulting equation
for the calculations of the energy absorbed by liquids dur-
ing cavitation without having to consider in detail all the
complex processes of the absorption of the acoustic energy,
which are connected with the nonlinear oscillations of the
gas bubbles during their collapse.

Within the framework of this model, the existence of a
transition from the subsonic regime of acoustic cavitation
to the supersonic regime is predicted. The possibility of a
change in the character of the oscillations of a cavitation
bubble at high values of v is theoretically shown. The con-
ducted experimental studies confirm such a possibility.

Simple algebraic expressions that follow from the pro-
posed model can be used in practical engineering calcula-
tions for designing powerful ultrasonic waveguide systems
for sonochemical reactors following, for example, the
methodology described in the work [25].
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