Cyclic stress-strain curves and
internal friction of steel at
ultrasonic frequencies

A. PUSKAR

A new interpretation of some characteristics of material push-pull loaded at a
frequency of 23 kHz can be evaluated by measuring the internal friction and elasticity
modulus defect at different strain amplitudes. It is possible to obtain interesting rela-
tions describing the material’s cyclic microplasticity response. The paper presents
some basic relationships between the ‘plastic’ internal friction, elasticity modulus
defect, hysteresis loop area, plastic strain amplitude and the cyclic deformation
hardening coefficient, for low carbon steel with different grain sizes.
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List of symbols

A displacement amplitude
E elasticity modulus
H, hysteresis loop shape factor
Q7! internal friction of specimen
Oy  internal friction of whole system
ot internal friction of system without specimen
Qp'  ‘plastic’ internal friction
<! internal friction at €,
Q7' internal friction at some value of €
U,(U,;) applied voltage (at resonance)

U,  voltage from capacitance measuring of displace-
ment amplitude

Upu(Upyr) pickup voltage (at resonance)
Ur  voltage from strain gauge

W total supplied energy

AW,  dissipated energy during one loading cycle
d,, d, d3 grain size of steel

f(f;) frequency (at resonance)

n cyclic hardening coefficient

AE/E  elasticity modulus defect

€ strain amplitude in middle section of specimen

€M, €T, €4 strain amplitude evaluated by Mason’s
calculation, by strain gauge and by displace-
« ment amplitude measuring

€at total strain amplitude
€ae elastic strain amplitude

€ap plastic strain amplitude

€. critical strain amplitude
A wavelength
O, stress amplitude

b‘X‘ 688)(5 eapx~ eaX!er Values Of E’" eae» eapv Oa’ fl' at
some strain amplitude higher than e,

Introduction

A control factor in the accumulation of fatigue damage is
plastic strain amplitude. Direct measuring of the plastic
strain amplitude component from the total strain amplitude
at ultrasonic loading frequencies is very complicated or even
impossible. Recently it was assumed’ that all the mechanical
energy transferred to the specimen during cyclic loading is
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transformed to an increase in solid state internal energy by
an increase in dislocation density, vacancy concentration,
etc, and more than 98 % of supplied energy can be changed
into heat. The measuring of specimen temperature increase
by thermocouple,! by a weak layer of cholesteric liquid
coating? or analytically solving different approximations of
the hysteresis loop area equation,® shows a way of estimating
the plastic strain amplitude contribution of the total strain
amplitude in different places of simple shaped waveguides
made from different materials. There are basic possibilities
for evaluating microplastic deformation distribution along
the waveguides.
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Measuring internal friction and elasticity modulus defect
in the material’s microplastic deformation region gives
more useful information about the interaction of high-
energy ultrasound with solid state materials. The hysteresis
loop area and shape are integral characteristics of these
processes. Evaluation of hysteresis loop parameters after
saturation of the material progerty changes developed by
cyclic deformation makes it possible to find cyclic stress-
strain curves and to estimate material fatigue durability at
ultrasonic frequency loading.

Experimental equinment and method

The resonance system®*® shown in Fig. 1 consists of a
driving transducer, stub transformer, and the dumb-bell-
shaped specimen. The transducer is a piezoelectric PZT
ceramic in the form of a hollow cylinder (external diameter
38 mm, internal diameter 32 mm) with silver electrodes on
both the external and internal cylindrical surfaces. The
transducer is cemented with epoxy resin to the stub trans-
former made from one piece of A1SVF titan alloy with an
upper diameter of 54 mm and lower diameter of 12 mm. The
specimen is held on the end of the transformer by a screw
joint. The heads of the specimen have a diameter of 12 mm
and the middle section has a diameter of 3 mm. Each part
of the system was dimensioned to resonate longitudinally at
23 kHz. '

The current (Fig. 1) from the low frequency generator
(from 16 to 25 kHz) passes through a preamplifier to the
external and internal conductive layers of the transducer.
The applied voltage U, is measured by a millivoltmeter,
and the current frequency f'by a digital frequency counter.
At the mid-length of the transducer are two small square
areas on opposite sides of the external surface which were
isolated to serve as detectors of strain amplitude by measur-
ing the pickup voltage Uy, on another millivoltmeter.

From the arrangement of the resonance system., basic
knowledge of propagation of longitudinal ultrasonic waves,’
and from the fact that force and velocity are continuous at
each interface, it follows that the successive reductions in

cross-sectional area from the transducer via the transformer
to the specimen result in corresponding increases in displace-
ment amplitude A as well as strain amplitude € along the
resonance system (Fig. 1). Maximum strain amplitude takes
place in the middle of the specimen and is nearly uniform.

It was assumed that in the transducer, stub transformer, and
heads of the specimen only fully elastic reaction could take
place but in the middle of the specimen microplastic reac-
tion of materials with ultrasonic loading also occurs.*™®

It has been shown*® that there is a linear dependence
between pickup voltage Uy, and strain amplitude €y in the
middle section of the specimen, and so

ev = EUpy (1)

where £ is constant for the resonance system. Equation (1)
has been checked by positioning a strain gauge with a high
frequency response directly on the specimen. The electrical
signal leads to a Wheatstone bridge, and a preamplifier and
is measured by a frequency selective nanovoltmeter. The
displacement amplitude 4 of the free end of the specimen
was measured by a frequency-tuned capacitance detector
which measured the voltage Us(~4) by special apparatus.
The relation between A and strain amplitude e can be
found in the literature.® From a statistical treatment of
strain amplitude values measured by a different procedure
at U, from 0.1 to 150 V we find good agreement between
€nm, €t and €4 for different Uy, especially at Uy, = 0.3 V.

For evaluation of internal friction and elasticity modulus
defect we often need to ignore the magnetomechanical part
of internal friction. We used an electrical coil with a single-
phase current source, with the current 7, measured by an
ammeter.

The internal friction of the whole system Q! can be
calculated from

L (KUy Afaan ) | ‘
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where K is a constant and Af,34p is a 3 dB separation of
resonance frequency, that is, the difference between the”
frequencies at which the amplitude of oscillation falls to
A;[\/2, where A, Uy, and Uy, are values of 4, U, and U,
at resonance frequency.

The internal friction of the specimen Q! can be calculated
by the equation

0" = k03 - kO3, (3)
where &k, and k, are constants connected with the influence
of effective masses and mechanical resistance of the whole
resonance system and @y’ is internal friction which can be

calculated by (2) for the resonance system without the
specimen,

Loading the specimen with strain amplitude €, > €., where
€. is the critical amplitude® we can find the fall in resonance

frequency f; for some value of f,. The elasticity modulus
defect AE/E can be calculated by the equation

AF _ 2(fr"’frx)
e T

4)

where 7 is a constant depending on the ratio of the effective
masses and stiffnesses of the whole resonance system and the
specimen.



The advantage of this kind of equipment and measuring
method is that it is quite simple to record Uy, Uy, and f;
(or f;) and it is possible to obtain the internal friction
characteristics of different materials at strain amplitudes
from S x 1077 to 3 x 107% with or without magnetic field
as well as independently measuring the internal friction and
evaluating the elasticity modulus defect characteristics

over a wide interval of strain amplitudes.

Experimental material and procedure

The low carbon unalloyed steel consisted of 0.07 % C,
0.006 % N, 0.27 % Mn, 0.03 % Si,0.013 % P, 0.018 % S
and 0.07 % Cr. After heat treatment the bars had ferritic
grain size d, =0.022 + 0.004 mm, d, = 0.29 £ 0.045 mm
ord; =0.62 + 0.085 mm. The dumb-bell shaped specimen
in the middle section was carefully machined and mechani-
cally polished, then annealed at 200°C for 30 min in an
argon atmosphere and slowly cooled in the furnace, and
finally chemically polished.

Specimens were attached to the resonance system described
and cyclically loaded at the frequency of 23 kHz with a
total strain amplitude ranging from 5 x 107 to 4 x 107 at
room temperature and in the presence of a magnetic field
intensity of 1.9 x 10* A m™". Simultaneously for each
experimental point the internal friction Q7! elasticity
modulus defect AE/E and total strain amplitude e,,, were
measured for 100 s at constant €,,. We assumed that

2.3 x 10 loading cycles was enough for saturation of
material property changes over the strain amplitude

interval mentioned above.
Results !

The internal friction level at €,, =5 x 107 depends on the
ferritic grain size (Fig. 2). An increase in steel grain size
causes a rise in internal friction. There are also differences
in the behaviour of Q7" against e, for steel with different
grain sizes in the amplitude-dependent region of internal
friction. Exceeding €, causes a strong increase in elasticity
modulus defect. The value of critical strain amplitude is a
function of ferritic grain size (Table 1). Changes in elasticity
modulus defect at the increasing values of the total strain
amplitude are more pronounced for steel with a larger

grain size than for fine grained steel.
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Fig. 2 Dependence of internal friction 0_1 (continuous lines) and
elasticity modulus defect AE/E (broken lines) on total strain ampli-
tude for steel with different grain sizes

Table 1. Microplastic characteristics response factors and
exponents for steel with different grain sizes (d)

d €c b n K c g /
[mm] [MPal

0022 13x10™ 1313 0410 9700 2.30 1.092 3.260
0.290 1.0x107* 1.661 0.357 4400 2.60 0.790 3.610
0620 7.3x107° 1967 0.320 2700 297 0732 3917

For evaluation of the stress amplitude o, in the middle
section of the specimen for each experimental point, that
is, for each total strain amplitude value, this approximation
can be used (Fig. 3a). In the fully elastic region of cyclic
loading 0,.= £ €,,, Where €, is an elastic strain amplitude
and F is the elasticity modulus of the specimen which is also
characterized by the basic resonance frequency of the system
f:- In the elastic-plastic region, at some point x, the stress
amplitude 0,y = E,(€4ex + €apx) = Ly €arx, Where €, is the
plastic strain amplitude and £ is the elasticity modulus of
the specimen which is characterized by the resonance fre-
quency of the system, f;, at the point x, when €,, > €.
Then, £, = E — AE, where AE, is the elasticity modulus
change as a consequence of the specimen’s microplastic
deformation. '

From the approximation valid at the start of the cyclic
microplastic region we may derive:

o . AE

Oa = €(E — AE) = eyk (1 - ‘F‘)a 5)
o \ AF

€ap T €at — €de T €ut — E_{i = Eat E (6)

In the region €,,; > €. an increase in elasticity modulus
defect with rising total strain amplitude is more pronounced
for steel with large grain size than for fine grained steel.
From Fig. 2 it is clear that experimental points are linear
with log-log coordinates. Thus
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Fig. 3 a — Scheme for approximation; and b — cyclic stress-strain

curves for steel with different grain sizes
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Fig. 4 Dependence of the stress amplitude o, or'plastic’ internal -
friction 051 on plastic strain amplitude €30 for steel with different
grain sizes

AE ,
- =B € (7)
where B and b are structurally sensitive constants, which
increase with grain size, as shown in Table 1 for factor b.

The approximation and derived equations (5) and (6) make
it possible to find the relation between stress amplitude

0, and plastic strain amplitude‘eap for each experimental
point. When we applied the approximation, for steel with
different grain sizes, we obtained typical cyclic stress-strain
curves (Fig. 3b). In log-log.coordinates (Fig. 4) we can see
linear relations which are analytically expressed by the
equation

0, = K€l - ®)

where k and n are structurally sensitive constants (Table 1).
An increase in ferritic grain size of steels from 0.022 to

0.62 mm causes a decrease in the cyclic hardening coefficient

n from 0.41 to 0.32 and a decrease in the factor k from
9700 MPa to 2700 MPa.

In the region where €,; > €, we may also express the relation
€ap against €,; (Fig. 5) by the equation

€p = Cegy ©)

where C and c are structurally sensitive constants (Table 1).
To a first approximation the factor ¢ v 1/n. From (9) and
from Fig. 5 it can be seen that applying €, develops a higher
value of plastic strain amplitude in steel with large grain

size than in fine grained steel.

It is useful to separate internal friction at €,; > €. and to

label part as ‘plastic’ internal friction, that is, 05' = 07! — 07,

where Q¢! is internal friction at some value of €, > €. and
Q7! isinternal friction at® e, = €,. From the experiments
(Fig. 4) verification of the equation

0yl = Gép - (10)

is clear, where G and g are constants dependent on ferritic

grain size (Table 1). A similar value of applied €,; for steel
with larger grain size causes a higher dissipation of mecha-
nical energy which can be connected with easier movement
and origination of dislocation segments than in the fine
grained steel.

The ‘plastic’ internal friction Q;I is the ratio of the dissi-
pated energy during one cycle of loading AW, and total
supplied energy'® W, where AW, = H , 6, €,, or W= 1AE €2,
Then

on = AWy 0acup (11)-

P 2w E €,

where Hy, is a hysteresis loop shape factor at €,; > €.. From
this we can find the interesting result that the plastic strain
amplitude is a function of the cyclic deformation factor,

that is,
1

1O E ntl
€ap = ( T eﬁt) (12)

p

The hysteresis loop area increases with a rise in plastic strain
amplitude loading. Inserting (7) and (9) into (11) gives

AW, = L €l (13)

which is confirmed for steel with different grain sizes in
Fig. 5. The factor L and the exponent [ increase with an
increase in ferritic grain size, (Table 1).

In the strain amplitude region considered no one factor or
exponent basically dependent on ferritic grain size fulfils
Hull-Petch’s relation.
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Fig. 5 Dependence of the plastic strain amplitude e, or hysteresis
loop area AWp on total strain amplitude e, for steel with different
grain sizes



Discussion

An increase in internal friction level as well as a decrease

in critical strain amplitude with increasing grain size of iron
or steel have been explained for ultrasonic frequency
loading” and also for ordinary frequency loading."'

The basic equations for plastic response on cyclic loading

at 23 kHz are the same as for the ordinary loading frequency
(8) but with a different value of factor k and exponent .
For example, with low carbon steel loaded at 70 Hz the
factor k = 853 MPa and n = 0.156 have been found.'? The
higher values of k and n obtained at 23 kHz showed an
increase in material response against cyclic microplastic
deformation at high frequency loading.

The plastic strain amplitude €,, at 23 kHz proves to be
only a few percent of the total strain amplitude. A similar
observation can be found in the case of copper loading at
21 kHz.? When the loading frequency is 70 Hz the part

€,p Of total strain amplitude is many times higher.'? It can
be understood that some €,; develops a more pronounced
microplastic effect in the material at low frequency than at
ultrasonic frequency loading. These differences can be a
consequence of: the limited time for dislocation of seg-
ments moving under the stress amplitude; worse conditions
for stress peak relaxation; extremely localized microplastic
deformation; a decrease in microplastic deformation activa-
tion volume,'? the increasing of material response against
deformation; as well as the consequence of an increase in
the cyclic deformation hardening coefficient on the appli-
cation of high frequency loading.

The influence of grain boungary on some cyclic micro- -
plastic characteristics of low carbon steel has been found
to be smaller at a loading frequency of 23 kHz than with
static deformation or a low frequency cyclic loading. We
assume that in the region of strain amplitude examined the
dislocations preferentially interacted among themselves
and with other structurat obstacles in more cases than with
grain boundaries.

The stress amplitude, ‘plastic’ internal friction, elasticity
modulus defect, hysteresis loop area and other cyclic micro-
plastic characteristics are an exponential function of the

strain amplitude value. Thus it is true to say that the value
of strain amplitude plays a very important role in the
fatigue damage accumulation process.

Conclusions

Stress amplitude, ‘plastic’ internal friction, elasticity modulus
defect, and hysteresis loop area are exponential functions of
the plastic strain amplitude for low carbon steel with
different grain sizes at the loading frequency of 23 kHz.

The plastic strain amplitude proves to be only a few percent
of the total strain amplitude when the material is loaded at
23 kHz.

The independent measuring of internal friction and elasticity
modulus defect at a total strain amplitude makes it possible
to evaluate the plastic strain amplitude as well as the cyclic
stress-strain curves in the region of very small total strain
amplitude (less than 5 x 107%) at a loading frequency of

23 kHz.

An increase of ferritic grain size when applying the total
strain amplitude causes an increase in the plastic strain
amplitude, ‘plastic’ internal friction, and hysteresis loop
area.
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