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Abstract

Measurement of the first flexural and the first torsional free-free resonant

frequencies are employed to adjust assumed values for Young's modulus and

Poisson's constant in finite element models until frequency equivalence is

established.  The method yields, with simple production laboratory test

equipment, measurement accuracies of one percent, thereby providing

information necessary for precision computational assisted horn design.

Introduction

Accurate design of extensional resonators whose lateral dimensions are

comparable to their length, such as the horns used in plastic welding equipment,

requires precise knowledge of both Young’s modulus and Poisson’s constant if

substantial correction to their dimensions necessary to produce the desired

resonant frequency is to be avoided.  Even for same alloy and specification,

Young’s modulus may vary as much as ten percent from the nominal value given

by the manufacturer, a variation that introduces a 5 percent variation in the horn

frequency.  Most ultrasonic systems are intolerant of frequency deviations of

more than 2 percent, a situation that often requires deliberate alteration of horn to

achieve compliance.

The variation of Poisson’s constant within the same material type and

specification is less known, but the constant, a measure of expected lateral

motion in horns, plays an increasingly important role in determining frequency as

the horns become stout.  The effect of coupled strains is always to lower the
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design frequency.  Again, to avoid post horn fabrication trimming, precise

knowledge of this constant is necessary.

Typically, Young’s modulus and Poisson’s constant are measured in static

strength testing fixtures where both the extension and lateral dilation are

measured for known applied extensional strain.  This technique, while accurate,

requires large and expensive hydraulic test stands and the preparation of

specimens for which horn blanks having diameters comparable to their lengths

are not be suitable candidates.

Finite element analysis (FEA) permits, given accurate material information,

make-to-print horns that actually work as intended without post fabrication tuning.

It also offers a way to permit test frequency measurements on the horn blank

itself, along with the blank dimensions and density, to be used to determine both

the modulus and Poisson’s constant.

Theory

Assuming a blank of uniform cross section and square faces, measurement may

be made of both the first free-free flexural and torsional vibration frequencies, Ff

and Ft respectively.  Both frequencies depend upon the square root of Young’s

modulus, but the torsional frequency also depends directly upon Poisson’s

constant, as the torsional sound velocity is proportional to the square root of the

modulus of rigidity, G, also known as the shear modulus and defined as:

( )µ+
=

12

E
G (1)

where E is Young’s modulus and µ denotes Poisson’s constant.  Ff, in the first

approximation, depends only upon E.
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To determine both constants, an FEA model is generated from the blank’s

dimensions and the modal frequencies extracted from analysis using

manufacturer’s data for the constants.  The model is constructed of meshes or

regions whose further reduction in size does not change the computed

frequencies within the precision needed.  The value of E is then corrected to

produce in a second analysis (1st iteration) a value of Ff equal to that measured.

Attention is then directed to the computed value of Ft.  Using the expression

given by Eq. 1 and noting that the torsional sound velocity varies as the square

root of the quantity, correction is made to µ to produce in a third analysis (2nd

iteration) a computed value of Ft equal to that measured.

Returning the value of Ff produced by the 2nd iteration analysis, E is again

corrected to produce in a fourth analysis (3rd iteration) equivalence between

computation of Ff in computation and measurement.

The process continues focusing next upon Ft if necessary until sufficient

precision is obtained in the result.  Because Ff is far less sensitive than Ft to

changes in µ, the computation will converge.  Figure 1 illustrates the computed

relative frequency sensitivity of the extensional and torsional resonant

frequencies to a fractional variation in Poisson’s constant and to the ratio of the

length (L) to diameter (D) of a horn blank.  Figure 2 is a schematic representation

of the iterative process.
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Fractional Frequency Sensitivity Ratio
[(dF*/F*)/(dMu/Mu)]/[(dF /̂F )̂/(dMu/Mu)]
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Figure 1 – Computed Flexural/Torsional frequency sensitivity to Poisson's Constant in a
round stout horn blank

Figure 2 – Iterative computational procedure for determining Young’s modulus and

Poisson’s constant.

In Figure 1 F* and F^ are the first free-free flexural and torsional frequencies

respectively.  Mu denotes Poisson’s constant.  It is seen that, even when the

length of blank equals its diameter, the flexural frequency is less than half as

sensitive to changes in µ than is the torsional frequency.

E1 µ1 E2

Ffo, Fto → Ff1= Ffm, Ft1 → Ff2, Ft2=Ftm → Ff3=Ffm, Ft3 --→-- Ffn=Ffm, Ftn=Ftm

    1   2 3        n

Ffm, Ftm denote measured flexural and torsional frequencies
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In place of Ff the extensional resonant frequency can also be used, but as, will be

subsequently discussed, the flexural frequency can be obtained with simple test

equipment and remains well defined at values of L/D near unity.

Method

The apparatus used to measure the flexural resonance is sketched in Figure 3.

Figure 3 - Measurement of Ff

The blank is supported by soft elastomeric supports at the location of the two

nodes of the first free-free flexural mode, and the blank is struck with a ball peen

hammer as shown at its center.  The flexural mode is easily excited in this

manner.  A bimorph vane1 is cemented, using fast setting cyanoacrylate or epoxy

                                                          
1
 The author acknowledges the gracious assistance of the Piezo-electric division of the Morgan Matroc

Company in providing this PZT5H material, measuring approximately 6x25x0.5 mm.
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adhesive, along a radius of one face with wire connections to its electrodes

attached to a frequency meter.  The vane is positioned relative to the impact

such that the resulting motion of the face is in a direction to flex the vane.  To

ascertain that the frequency obtained is indeed the flexural vibration, a

preliminary calculation can be done to determine the approximate expected

value2.  Even for blanks intended for subsequent life as 20 kHz horns whose

diameter or largest lateral dimension equals the length, the first flexural

frequency is usually audible.

Using the same blank and bimorph attachment, the measurement of the first

free-free torsional mode is made as shown in Figure 4.

Figure 4 - Measurement of Ft

                                                          

2
 Kinsler, L and A. Frey, Fundamentals of Acoustics, 2

nd
 Ed., John Wiley, p. 76 (1962).  To the first

approximation, the flexural resonant frequency is determined by Young’s modulus, density, the radius of

gyration of specimen cross section about the neutral axis and the square of the specimen length.
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The centers of the free faces are pinned, for example in lathe head and tail stock

centers, to both support the blank and also suppress the excitation of extension

and flexural modes.  Again, the approximate expected torsional frequency can be

computed from the blank’s dimensions, given assumed values of the modulus

and Poisson’s constant3.  The blank is struck at one end asymmetrically to excite

torsion.  As the modulus of rigidity is usually significantly smaller than Young’s

modulus, the torsional frequency is also audible for blanks cut for use in 20 kHz

extensional resonators.

In making both measurements, but particularly when measuring Ft, oscilloscope

monitoring of the bimorph signal was found helpful initially in identifying excitation

of the desired mode, a condition apparent in the progressive decay of the

vibration over an interval of several seconds during which time the frequency

indication remained the same.

Results and Discussion

Two 6Al-4V titanium horn blanks were evaluated in this study.  Their dimensions,

frequencies and computed values of frequencies, E and µ are shown in Table 1.

Three iterations were required to bring the computed frequencies, Ffc and Ftc,

within 0.2 percent of those measured.  Subsequent use of these blanks in horn

designs produced operating frequencies within one percent of the calculation.

Blank Diameter
mm

Length
mm

Ftm

Hz
Ftc

Hz
Ffm

Hz
Ffc

Hz
E

GPa
µµµµ

1 63.6 134.4 11679 11679 11144 11127 114 0.288

2 82.5 141.2 11088 11064 11720 11716 112 0.288

Table 1
FEA assisted computation of material constants.

                                                          
3
 Graff, K., Wave Motion in Elastic Solids, Dover Pub., pp. 125-127 (1991).  The torsional resonant

frequency is determined by torsional rigidity (proportional to G), density, the polar moment of inertia of the

specimen cross section and the specimen length.


