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ABSTRACT 

Electric discharge machining (EDM) is a metal removal process that has seen 

increasing use in the recent years. EDM is replacing the use of conventional 

machining in certain applications due to its ability to machine conductive 

materials of any hardness into highly complex shapes. One such application is the 

manufacture of structural components for skis used by Antarctica-bound Hercules 

aircraft. As fatigue properties are important for structural components used in the 

aeronautical industry, the effect of EDM on fatigue properties is significant. 

Literature indicates that EDM causes degradation in fatigue properties; however, 

there is insufficient information relating EDM wire cutting (EDWC) (the process 

to be used) to fatigue.  

Results indicate that EDWC is greatly detrimental to fatigue properties. Fatigue 

limits of EDWC specimens are reduced from approximately 900MPa (ground 

specimens) to 300MPa. Numerous cracks in the surface and sub-surface of the 

specimens, together with a surface roughness of 3μm Ra, indicate that surface 

topography contributes to the reduction in fatigue limit. A phase change in the 

surface layer and the presence of a residual tensile stress are also possible 

contributing factors. 

The effect of shot peening after EDWC is also investigated, as there is little 

information on this subject. Shot peening after the EDWC process has returned 

the fatigue limit to its initial value, and in some cases has even increased it 
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(1000MPa). This result is attributed to the introduction of residual compressive 

stresses in the surface. The use of EDWC alone to manufacture the aircraft 

structural components is not practical. By adding the shot peening process after 

EDWC, the manufacturing process can become a viable alternative to 

conventional machining. 
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CHAPTER 1: INTRODUCTION 

Electric discharge machining (EDM) is a non-conventional metal removal process 

with the ability to machine conductive materials of any hardness into complex 

shapes1. Using conventional machining processes such as milling and grinding to 

machine materials in the hardened state is economically unviable. Components 

have to be machined in the unhardened stage, before being hardened. The 

hardening process can produce distortion in the components that has to be 

removed by hand. EDM removes the difficulties with distortion by machining the 

components in their hardened state. This advantage makes EDM more attractive 

than conventional machining in certain applications. One application for which 

EDM might prove beneficial is the manufacture of structural components for skis 

used by Antarctica-bound Hercules aircraft.  

The structural components used for the skis are currently manufactured by 

conventional machining from large billets of 300M (4340M) high strength steel. 

EDM wire cutting (EDWC) has been suggested as an alternative production 

method that would have the advantage of a shorter machining time and a 

reduction in the amount of scrap metal produced. EDWC has, however, been 

shown to produce degradation of fatigue properties1. 

Shot peening is suggested as a finishing process for EDWC components. 

Literature indicates that shot peening can be used to restore the fatigue life lost 

through EDM2. However, data relating to the effects of EDWC and shot peening 
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on fatigue is insufficient to ascertain the suitability of the processes for the 

production of the ski structures.  

This research was initiated by Air New Zealand Ltd in 1995 as a Third 

Professional Year Project (Project No 12/95)3, but was uncompleted in 1995 as a 

result of problems with the experimental equipment. This research work is a 

continuation and expansion of the project. 

4340 steel and 300M steel have very similar compositions and properties. 

Therefore 4340 steel can be used as a cheaper alternative to 300M steel. The 

materials are hardened, then machined using the EDWC process through Air New 

Zealand Ltd. One-third of the specimens were shot peened and another third 

ground. The specimens were then tested at the University of Canterbury and the 

results analysed. 

Chapter 2, 3 and 4 describes the background theory relevant to this research. The 

results obtained are summarised in Chapter 5. The complete set of results is given 

in the appendices. Chapter 6 discusses the reasons behind the results and their 

implications, while Chapter 7 summarises the findings and gives some 

recommendations for the use of this research. 
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CHAPTER 2: FATIGUE 

 
In the ASTM standards, fatigue is defined as “the process of progressive localized 

permanent structural change occurring in a material subjected to conditions that 

produce fluctuating stresses and strains at some point or points and that may 

culminate in cracks or complete fracture after a sufficient number of fluctuations.”  

The failure of the material normally occurs at stress levels that should, under static 

loading, give infinite lives4. Few mechanical and structural components are, 

however, subjected to constant loads throughout their entire service lives; 

therefore fatigue failures constitute the most common source of failures in 

structures5,6. Over the last twenty years, fatigue failures have accounted for 

approximately 80% of in service catastrophic fractures7.  

2.1 Macrofractography of Fatigue Failures 

The examination of a fatigue fracture surface usually shows a number of common 

features8. There are two distinct zones present: a fatigue zone and a final rupture 

zone.  

Fig. 2.1: Fatigue Fracture Surface9 

Fatigue Zone 

Final Rupture Zone 
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There are a few characteristics that are unique to the fatigue zone. The fracture 

surface is generally flat, indicating the absence of any appreciable amounts of 

gross plastic deformation. Another characteristic is the presence of crack arrest 

lines (also referred to as “clam shell” or “beach” markings)8.  

Fig. 2.2: Fracture Surface of 3.5 NiCrMoV Forged Steel

The crack arrest lines are attributed to periods of crack growth and are believed to 

occur due to the oxidation or corrosion of the crack surface during the dormant 

periods (crack arrest periods)11. These markings are normally only present in 

fracture surfaces of failures that have been exposed to air over a long time period. 

Fracture surfaces of failures produced in the laboratory do not display these 

markings. The markings are seen to be perpendicular to the direction of crack 

propagation, making them a useful guide to identifying the fracture initiation site8.  

10 

Another set of fracture surface markings that are present in the fatigue zone are 

ratchet lines. Ratchet lines are vertically orientated curved black lines that 

separate sets of crack arrest lines. These lines represent the junction surfaces 

between adjacent crack initiation sites. In a multi-crack initiation fracture, the 

cracks do not always form on the same plane. The linkage of the cracks causes the 

Crack Arrest Lines 

Crack Propagation 
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creation of vertical steps on the fracture surface. As the cracks propagate to form a 

single major crack, the ratchet line disappears. The presence of the ratchet lines is 

due to factors such as the applied stress and the number of possible crack 

initiation sites8.  

Fig. 2.3: Ratchet Lines on Fracture Surface 

The final rupture zone is produced by the catastrophic separation of the part or the 

specimen. The fracture surface in the final rupture zone is rougher in texture than 

that in the fatigue zone. The roughness of the final rupture zone indicates that an 

appreciable amount of plastic deformation does occur in this zone.  

Fig. 2.4: Fracture Surface Showing Microvoid Coalescence (Left) and Cleavage

The mode of the final fracture is usually by microvoid coalescence (indicated by 

tear dimples) or by cleavage8,11. 

4 
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2.2 Fatigue Failure Process 

The fatigue failure process can be divided into several stages4,5,12: 

I. Cyclic plastic deformation prior to fatigue crack initiation 

II. Microcrack initiation 

III. Microcrack propagation 

IV. Macrocrack propagation 

V. Final failure 

Stages I to III of the fatigue process, normally known as macrocrack initiation, 

will be explained in detail. Stages IV and V are of less relevance to this research 

work and will not be described further. 

2.2.1 Prior Cyclic Plastic Deformation 

Except for a few cases of special stress distribution (see 2.4.1), most fatigue 

cracks initiate at the surface of a component. For a smooth specimen, the 

magnitude of the externally applied stress or strain-cycle amplitude may be large 

enough to lead to the initiation of microcracks4.  

The cyclic straining process can cause the surface to roughen through the motion 

of near-surface dislocations78. When a dislocation emerges at the surface of the 

component, a slip step of one Burgers vector is created. A perfect reversal of 

loading on the same plane cancels this step. In service, slip occurs in numerous 
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slip planes and perfect reversal is not possible. The accumulation of slip steps 

produces a roughening of the surface, thus leading to crack initiation4.  

This imperfect reversal of slip planes is the basis for the mechanism described by 

Cottrell and Hull to explain the features known as intrusions and extrusions that 

are seen on the surface of components undergoing fatigue loading4. A sequential 

step on two intersecting planes occurs.  

Fig. 2.5: Cottrell-Hull Model for Formation of 
Intrusions and Extrusions

In the first half cycle, one slip system then the other operates to produce two slip 

steps of the same sign (Figure 2.5c). In the second half cycle, both slip system 

work again, giving rise to an intrusion and extrusion pair (Figure 2.5e)4,13. 

13 

This model has been modified to allow the generation of intrusion-extrusion pairs 

in the absence of cross-slip, that is, only one slip system is operative. The 
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formation of an intrusion-extrusion pair is theorised to be the result of an 

avalanche from neighbouring slip bands containing excesses of dislocations of 

opposite sign14. 

Fig. 2.6: Formation of Intrusion-
Extrusion Pairs

Paired dislocation pile-ups originate from cyclic straining. When the dislocations 

pile-ups reach a critical value, avalanches occur leading to the formation 

intrusions or extrusions13.  

13 

Fig. 2.7: Persistent Slip Bands (PSB) in Copper4 
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A form of coarse slip that can be produced by avalanches is persistent slip bands 

(PSB). PSBs are characteristic of materials subjected to cyclic deformation15. The 

slip bands are regions of localised deformation arising from the intense 

dislocation activity that occurs15. 

PSBs are said to be persistent in the sense that they are not removed by 

electropolishing16. Slip bands that have been removed, on further cyclic straining, 

form again at the same places17. A model that has been suggested for the 

formation of the PSBs follows.  

Fig. 2.8: Formation of Slip Bands

The first stage of slip is the formation of numerous short slip lines. After a 

sufficient stress is reached, cross slip occurs. Cross slip releases the pile-up of 

dislocations at the ends of the slip lines, allowing more dislocations to be 

16 
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generated. As more dislocations are generated, the slip bands increase and begin 

to merge by cross slip to form coarse slip bands16.  

Temperature has been found to affect the formation of the slip bands. An increase 

in temperature decreases the stress that is required for cross slip to occur, thus 

encouraging the formation of slip bands16. The application of anodic films on the 

surface is seen to block the formation of slip bands. Dislocations that pile-up at 

the surface do not concentrate enough stress to break through the anodic film. The 

formation of slip bands is therefore obstructed18. 

Not all materials form slip bands during fatigue. One such material is 

titanium. In titanium, the fatigue cyclic strain is in the linear elastic range. The 

dislocations are virtually immobile and slip is negligible. The only indication of 

the formation of a crack is a faint line that extends across one or two grains. This 

line is seen as a surface step at times, and a depression at other times19. It is 

possible that this slipless cracking may be due to cyclic slip that cannot be noted 

through the scanning electron microscope (SEM). 

Fig. 2.9: Slipless Cracking Showing Faint 
Line (A) and Crack (B)19 
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During cyclic deformation, cyclic hardening or cyclic softening may occur20. 

Annealed alloys normally cyclically hardened, while cold worked alloys 

cyclically softened4,12. As-quenched steels were noted to cyclically harden, while 

quenched and tempered steels were seen to cyclically soften. Cyclic hardening in 

the as-quenched steels is attributed to dynamic strain ageing21.  

In annealed low carbon steel, cyclic softening was noted before cyclic hardening 

occurred. The initial softening is due to the generation of mobile dislocations 

within plastically deformed zones22. The spread of these zones lead to further 

softening. The subsequent hardening is attributed to work hardening 

mechanisms21. For materials that cyclically harden then cyclically soften, the 

softening is believed to be caused by irreversible damage occurring either at the 

intersection of slip bands with the surface, or at pile-ups of dislocation 

(microcracking)21. Other factors that determine cyclic softening include the 

mechanical removal of dislocation pinning, or the mechanical generation of 

unpinned dislocations12,21,22.  

2.2.2 Microcrack Initiation 

The total fatigue life of a specimen is defined as: 

 NT = Ni + Np ….Eqn (1) 

where  NT = Total fatigue life 

 Ni = Initiation life 

 Np = Propagation life 
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The initiation life of a specimen is defined as the number of cycles required to 

develop a crack of a specific size and the propagation life is defined as the number 

of cycles required for the crack to develop to a critical size8.  

The initiation of fatigue cracks on a specimen has been found to occur frequently 

at the surface of the specimen8,23,24. In changing the surface condition of the 

specimen, it is possible to change Ni. If the core of the specimen is unchanged, Np 

remains the same, making it possible to vary the total fatigue life of the specimen 

by varying the surface conditions.  

In specimens with a smooth surface, the cracks have been observed to initiate 

along slip bands18,25-30, in grain boundaries30,31, in second phase particles32 and at 

interfaces between the matrix and inclusions or second phase particles26,33. These 

observations have led to the proposal of various models for the initiation of 

fatigue microcracks. The models for microcrack initiation can be separated into 

five groups4: 

I. Models that do not distinguish between intrusions and microcracks 

II. Crack nucleation based on critical conditions for local brittle fracture 

III. Condensation of vacancies 

IV. Loss of coherency across a slip plane due to accumulation of defects 

V. Nucleation of cracks in grain boundaries 
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2.2.2.1 Models that Do Not Distinguish between Intrusions and Microcracks 

The Neumann model proposes the formation of cracks by coarse slip14. 

Fig. 2.10: Neumann’s Model for Crack Initiation

During the tensile phase of each cycle, excess dislocations of one sign on 

activated slip plane 1 led to the formation of a slip step (Figure 2.10a). The slip 

step acts as a stress raiser, leading to the activation of slip plane 2 (Figure 2.10b). 

In compression, the surfaces formed by slip plane 2 disappear due to reversal slip. 

The surfaces formed by slip plane 1, however, do not disappear. The surfaces at A 

touch macroscopically, ensuring that they can be separated without effort (Figure 

14 
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2.10c). On the next tensile phase, slip plane 2 is activated as before. With the slip 

step formed by the activated slip plane 2 acting as a stress raiser, slip plane 3 is 

activated (Figure 2.10d). Compression leads to the surfaces formed by slip plane 2 

touching macroscopically, thus producing a serrated crack (Figure 2.10e). This 

process continues leading to the growth of the crack. 

2.2.2.2 Crack Nucleation Based on Critical Conditions for Local Brittle Fracture 

Ni-base superalloy Udimet 720 Li is one material that supports this mechanism32.  

Fig. 2.11: Crack Initiation at TiN Particles

The TiN particles in the alloy are brittle and unable to withstand the stress that is 

placed on the specimen. To relieve the stress, the TiN particles crack. Fatigue 

cracks then initiate from the cracked TiN particles. 

32 

2.2.2.3 Condensation of Vacancies 

Cyclic deformation produces a high number of vacancies. The coalescence of the 

vacancies leads to the formation of microvoids or pores4,23.  
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Fig. 2.12: Pores Linking to Cavities in Copper

Continued generation of these microvoids or pores would lead to the destruction 

of the coherency of a plane. The microvoids or pores can then link to form 

microcracks34. 

34 

2.2.2.4 Loss of Coherency across a Slip Plane due to Accumulation of Defects 

Fig. 2.13: Fujita’s Model for Crack Initiation4

Fujita’s model for crack initiation is based on the formation of cracks by the 

annihilation of dislocations in parallel slip planes35. 

  

During cycling, there is a pileup of dislocations of opposite signs on two parallel 

slip planes (Figure 2.13a), where h is the separation of the planes. When the two 

leading dislocations pass each other, there are two possible outcomes depending 



Chapter 2: Fatigue  Page 18   
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

on the value of h. When h is a few atomic spacings, the dislocations will 

annihilate in pairs and leave a small cavity. This annihilation occurs for n 

dislocations, leading to the formation of a microcrack with a length nb (b is the 

Burgers vector). When h is relatively large (more than ten atomic spacings), the 

annihilation will not occur and the two rows of dislocations will pass each other. 

Fujita’s model has been modified by Mura27,33,36,37. One of the earliest 

modifications proposes that crack nucleation occurs when the strain energy of the 

dislocations exceeds the surface energy needed to open up the two faces of the 

crack36. In a later work, the crack size is set equal to the net displacement due to 

all piled-up dislocations at the time of the nucleation27. Mura shows that there 

exists a critical number of cycles beyond which the accumulation of dislocations 

become energetically unstable, leading to the annihilation of the dislocations and 

the formation of a crack33,37. 

2.2.2.5 Nucleation of Cracks in Grain Boundaries 

Laird’s model is based on slip band interaction with grain boundaries30. Laird 

proposes that the fatigue crack nucleation process is due to the formation of steps. 

The grain boundaries are required to have the following properties:  

1. The trace of the boundaries lie at an angle in the range 30° to 90° with 

respect to the stress axis; 

2. The boundaries join high misoriented grains; 
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3. The dominant slip system is directed at the intersection of the 

boundary with the surface. 

Such a nucleation process is shown in Figure 2.14. 

Fig. 2.14: Laird’s Model for Crack Initiation

A step can easily form at the grain boundary 1/2, but not at the boundary 2/3. The 

nucleation of the fatigue crack thus takes place at boundary 1/2. 

30 

2.2.2.6 Nucleation vs. Continuous Growth 

The models that have been presented can be grouped into two categories. The first 

category explains the initiation of cracks as a gradual process, while the second 

describes initiation as a nucleation process25. Both categories have been proven 

and can easily be explained. For example, cracks are not seen in a specimen prior 

to x cycles. The cracks may form by nucleation; this would explain why they are 

not seen prior to x cycles. However, it can be argued that the cracks are formed by 

a continuous process that begins in the first cycle and that the cracks are too small 
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to be imaged prior to x cycles. Through crack size calculations and the 

observation of the formation of pit-shaped features, it has been shown that a 

nucleation process is the method by which cracks initiate25. 

2.2.3 Microcrack Propagation 

Before the emergence of small crack theory in the mid 1970s, microcracks were 

proposed to propagate by coalescence or by propagation along crystallographic 

planes (referred to as Stage I)4,12,26,31. Stage I crack growth occurs principally by 

slip-plane cracking4,28,29.  

Fig. 2.15: Stage I Crack Propagation17 
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The presence of a notch is omitted in Figure 2.15a for clarity. The notch serves as 

a stress concentration point that focuses the slip in tension along C-C’. Here, a slip 

offset of five Burgers vectors is caused by the stress concentration. In the 

compression step, Figure 2.15b, the slip is distributed on the five slip planes, so 

that the C-C’ slip is cancelled by one Burgers vector. In Figure 2.15c, tension is 

applied and the strain is again concentrated on C-C’. The next compression step 

shows a resultant offset of eight Burgers vectors. As the penetration of the crack is 

associated with an extrusion, the overall crack penetration is only four Burgers 

vectors17.  

Fig. 2.16: Stage I Crack Associated with 
Extrusion

The following model has been proposed for Stage I crack growth along grain 

boundaries by plastic blunting30. 

17 
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Fig. 2.17: Stage I Crack Growth along a Grain 
Boundary

The requirements for this model include high angle boundary and slip motions 

directed at the intersection of a boundary with the surface. The crack is initiated at 

the boundary 1/2. Slip motions are indicated by the arrows in grain 2. Grain 2 is 

assumed to be oriented favorably for directed slip at the boundary. As the slip 

motions are associated with the most active slip system in grain 2, they are 

oriented to provide the greatest plastic deformation at the crack tip without 

requiring the stress concentration of the crack to initiate slip on other planes. At 

maximum tension, extensive shear occurs along the active slip system and the 

crack advances by Δa (Figure 2.17b). In compression, the load is reversed and the 

30 
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slip at the crack tip is reversed. The new surface gained is conserved and crack 

growth is achieved30. 

The propagation of microcracks in some materials has been observed to occur 

rapidly4,13,29. When compared with macrocrack propagation with the same 

nominal crack driving force, microcrack propagation has been found to be up to 

100 times faster in precipitation-hardened aluminum alloys38. The use of 

macrocrack analysis methods can, therefore, lead to an overestimation of 

structural life. Small crack theory has been developed to explain the increased 

propagation rates of small cracks (microcracks).  

There are three types of small cracks that have been identified4: 

I. Microstructurally small cracks 

II. Mechanically small cracks 

III. Physically small cracks 

Microstructually small cracks are cracks with dimensions that are smaller than 

relevant microstructural dimensions, such as grain size or inclusion size, while 

cracks that are mechanically small are comparable to the scale of local plasticity. 

The third type of cracks are cracks that are just physically small4,5,23. The terms 

“small crack” and “short crack” have been used interchangeably in literature. 

However, they have recently acquired specific meanings. A “small” crack is a 

crack that is small in all dimensions, while a “short” crack is only small in all but 

one dimension4,5,39. Their differences are shown in Figure 2.18. 
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Fig. 2.18: Schematic of “Small” and “Short” Cracks

The presence of small cracks is most noticeable when the cracks are so small that 

they interact with only one grain, or at most a few grains39. As the crack initiates 

at a preferred crystallographic plane, the local yield stress is lowered, leading to a 

fast growth rate4. However, due to the size of small cracks, microstructural 

features such as grain boundaries and inclusions have been observed to greatly 

influence the propagation of small cracks, leading to the acceleration, deceleration 

or arrest of the crack29.32,39,40.  

4 

When approaching a grain boundary, small crack growth can be hindered by 

mechanisms that include the blocking of slip bands41, the containment of the 

plastic zone within the grain, and reorientation and re-initiation of the crack as it 

travels into the next grain5,40. Crack deflection is proposed as an occurrence that 

happens when the crack tip interacts with the grain boundary. When a crack tip 

reaches the grain boundary, it reorients in the adjacent grain to advance on the 

most favourable slip system. Sometimes, the slip system is less favourable than 
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the initial system, thus leading to retardation in crack growth and maybe crack 

arrest5,39.  

Fig. 2.19: Crack Deflection; θ0 is Crack Initiation 
Angle and θ1 is Angle of Deflection at First Grain 
Boundary

Another factor that affects the growth rate of small cracks is crack closure5,40. 

Crack closure results from the constraint of the surrounding material on the plastic 

zone around the crack. As small cracks come into contact with a smaller plastic 

zone, the cracks would experience less closure, allowing a faster crack growth5.  

5 

2.3 The S-N Curve 

The S-N (stress-number of cycles) curve is used to display the results of fatigue 

testing over a range of stresses. There are two distinct types of S-N curves20. The 

S-N curve for most steels shows a well-defined fatigue limit24,42. The horizontal 

line on the S-N curve represents this limit. When stressed to below this limit, 

these steels can withstand an infinite number of load cycles without fracture38.  
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Fig. 2.20: Schematic Fatigue Curves

In contrast, most non-ferrous alloys do not exhibit well-defined fatigue limits20,38. 

For these alloys, a minimum fatigue life is specified. The corresponding stress is 

taken to be the fatigue strength. The fatigue strength is the stress below which 

fatigue does not occur within the time period42. Running the material for a higher 

11 
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number of cycles at the same stress would see the possibility of fatigue fracture 

occurring. 

The presence of the fatigue limit in the S-N curve for most steels have been 

attributed to the ability of the steels to harden by strain ageing11,38,43. Strain ageing 

is when dislocations are pinned by mobile nitrogen atoms within the materials. An 

increase in stress is required to unpin the dislocations before the dislocations can 

begin moving again. The material dynamically strain ages as fatigue loading 

occurs. The accumulation of fatigue damage and the strain ageing process are 

seen as competitive processes. The fatigue limit occurs when the strain ageing 

process outpaces the damage process11. Some aluminium alloys have been noted 

to display the fatigue limit44.  

Fig. 2.21: S-N Curve for 2024-T4 Aluminium Alloy

The S-N curve is influenced by several factors. Some of these factors include the 

type of material tested, its microstructure and the test environment. A well-

44 
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defined S-N curve is more likely to be obtained in tests on a soft ductile material. 

Harder materials normally show greater scatter, which is further emphasized by 

the presence of stress concentrations45. The grain size of the material affects its 

fatigue limit. An increase in grain size decreases the fatigue limit46.  

Fig. 2.22: Effect of Grain Size on the Stress-Life Behavior of X-7075 
Alloy

Fig. 2.23: Effect of Inclusion Density on Stress-Life 
Behavior of 7XXX Alloy: High-Inclusion Density 7075 
Alloy, Low-Inclusion Density 7475 Alloy

46 

46 
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An increase in the amount of inclusions also decreases the fatigue limit46. 

The test environment also influences the S-N curve of a material44. The presence 

of a corrosive environment is detrimental to the fatigue limit of the material 

tested. If the material has been exposed to a corrosive environment before testing, 

the effect of the corrosion on the fatigue limit of the material is also detrimental47. 

Fig. 2.24: Effect of Corrosion and Pre-Corrosion on 7075-T6 Alloy

2.4 Factors that Influence Fatigue 

47 

There are many factors that can affect the fatigue behavior of a material. Some of 

the factors mentioned in Section 2.3 include microstructure and test environments. 

One important factor that has yet to be mentioned is the surface layer. Fatigue can 

be greatly influenced by the surface layer, due to the effect of the surface layer on 

crack initiation4,48..  
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The surface layer of a material includes the surface and a small layer of the 

material below the surface. A change in the surface affects crack initiation, while 

a change in the layer below the surface also influences crack propagation.  

Cracks initiate at sites where cyclic deformations are higher than average - that is, 

areas of plastic-strain concentrations, such as stress concentrations48. Machining a 

surface can produce scratches on the surface that act as stress concentrations, 

leading to a reduction in the number of cycles required for crack initiation. 

Similarly, corrosive environments lead to pitting in the surface that act as points 

of stress concentrations4.  

The introduction of residual stresses on the surface influences the fatigue 

properties of a material. As the residual stresses are developed in the subsurface 

layers of the material, both crack initiation and propagation are affected. Residual 

stresses, when superimposed with the applied fatigue loads, change the mean 

stress applied4,38,49. A residual tensile stress is, therefore, detrimental to the fatigue 

process, while a residual compressive stress is beneficial. Residual compressive 

stresses have been observed to shift the site of crack initiation from the surface of 

the material to the subsurface50,51. A subsurface initiation would indicate that 

inclusions are the major source of failure51. Subsurface initiations generate a dark 

circular area around the crack initiation point; this area has been identified as an 

area of slow crack propagation51. 
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A phase or chemical composition change at the surface of a material can affect 

fatigue depending on the resistance of the changed surface to fracture4. Changing 

the surface layer leads to a change in the hardness of the surface. The material can 

then be treated as a core with either a hard or soft coating. A core with a hard 

coating would allow the material to cope with a higher load before fracture, while 

a core with a soft coating would fail at a lower load. Cracks initiate in the soft 

coating at a lower stress level. These cracks act as a stress concentration for the 

higher strength core, leading to a drop in fatigue strength52,53.  

2.5 Processes to Modify Fatigue Properties 

There are several surface treatments that are used to modify the fatigue properties 

of a material. Grinding, polishing, nitriding, surface rolling, aluminum cladding 

and shot peening are examples of such processes52. Some of the surface 

treatments affect fatigue by the removal of surface defects that may act as stress 

concentrations, while some introduce residual compressive stresses. Others 

change the physical properties of the surface to delay the onset of fatigue. Some 

surface treatments, however, have to balance beneficial against detrimental 

factors. One such surface treatment is grinding. Grinding removes surface defects 

that may act as stress concentrations. However, the grinding process introduces a 

residual tensile stress in the surface. Even with the residual tensile stresses, 

grinding has been found to improve the fatigue limit4. 
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CHAPTER 3: ELECTRIC DISCHARGE MACHINING  

Electric discharge machining (EDM), also known as ‘electro-erosion’ or spark 

erosion, is a non-traditional method of removing metal1. EDM was introduced 

over thirty years ago. The introduction of new materials, along with the need for 

the ability to produce more complex shapes and tighter tolerances, has led to the 

development of the EDM process.  

3.1 Description of Process 

Fig. 3.1: Electric Discharge Machine

EDM involves the use of a series of recurring electrical discharges (sparks) 

between one electrode (the cutting tool) and another electrode (the workpiece) to 

remove metal. The two electrodes, separated by a small gap of 0.0005 to 0.020 in 

(0.0127 to 0.508mm)54, are immersed in a dielectric fluid. The dielectric fluid in 

the gap is partially ionized under the pulsed application of a high voltage, 

enabling a spark to pass between the cutting tool and the workpiece. The spark 

1 
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causes a minute portion of the workpiece to melt, or vaporize, at the surface, 

resulting in the formation of a crater. Rapid recurrence of sparks erodes the 

workpiece to the electrode shape. The minute particles of metal and chips are then 

flushed away from the surface of the workpiece by the dielectric fluid. 

3.2 Principles of Operation 

There have been several theories that have been presented in an attempt to explain 

the erosion effect of the spark. One theory suggests that the electric field separates 

the material particles of the workpiece as it exceeds the force of cohesion in the 

lattice of the material. This theory neglects any thermal effects and experimental 

evidence does not support this theory1. 

Another theory is based on ‘jets of flame’. These are formed by various electrical 

effects of the discharge and are said to be responsible for the removal of metal by 

melting the metal. This theory neither agrees with experimental data nor gives a 

good explanation for the erosion effect of the spark1. 

The theory that is best supported by experimental evidence suggests that the high 

intensity of the discharge current generates a temperature of over 10,000oC, 

which, in turn, melts or vaporizes the metal 1,55-57.  

 The discharge mechanism is divided into three stages1. The first stage 

(Figure 3.2.a,b) is known as the preparatory stage. Here, the electric field ionizes 

the dielectric fluid, thus forming a conductive channel. The second stage (Figure 
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3.2.c,d) is characterized by the discharge itself, which causes the heating of the 

channel (10,000oC - 50,000°C1), which is hot enough to melt or even vaporize the 

metal. The final stage (Figure 3.2.e,f) is the ejection of the eroded metal.  

Fig. 3.2 : Stages of EDM

The ejection of the eroded metal may start during the second stage and continue 

after the discharge. A crater may be observed on the workpiece and, to a smaller 

extent, on the cutting tool (see Section 3.3.1). The thermic effect is therefore 

demonstrated to be a main factor of the spark erosion1. 

1 

3.3 Electrode Wear 

Electrode wear is an important factor that has to be considered. Wear produces 

inaccurate machining as it occurs at the leading edge of the electrodes, thus 

producing tapered cavities1. 

When copper, iron and other low melting point materials are used as electrodes, 

the temperature produced by the spark is higher than the melting point of the 
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electrodes. The molten metal droplets are blasted away, thus causing electrode 

wear. The melting point of graphite is much higher; the heat generated is 

insufficient to melt graphite, thus ensuring less wear. 

There are three kinds of metal removal1: 

I. Vaporization 

II. Liquid metal droplets 

III. Thermal shock 

Vaporization is when the metal has to be removed as it boils. Liquid metal 

droplets is when the metal is melted and removed in droplet form by high pressure 

at the electrode face. Thermal shock is when the material comes off in small 

particles due to the thermal shock gradients between the melting surface and the 

cold material behind the surface. 

The ratios of the three kinds of metal removal depend on several factors, such as 

the workpiece material properties, the size of the cut, and other machine variables. 

The surface finish can therefore be controlled by the ratios of the three kinds of 

metal removal. 

3.4 Dielectric Fluid 

The dielectric fluid fulfils three functions1,55,58. 



Chapter 3: Electric Discharge Machining  Page 36 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

I. It acts as an insulator between the electrode and the workpiece until the 

required conditions are achieved, after which it acts as a conductor. 

II. It is a coolant and must cool the workpiece, electrode and “chips”. 

III. It is a flushing medium for the removal of the “chips” from the workpiece. 

The most commonly used dielectric fluid is petroleum-based hydrocarbon oil1. 

These oils have a high flash point and very low viscosity. Additives are used to 

inhibit the formation of gas bubbles and remove the characteristic of the 

petroleum odour.  Another advantage of oil is its constant dielectric resistance, 

which allows a discharge gap of 0.005mm and less. This makes it suitable for fine 

machining with a thin wire electrode1. One disadvantage is that hydrocarbon oils 

leave a slight carbon residue, which acts as a barrier to sparking. 

For some applications, better results can be obtained using silicone fluids. In 

machining titanium, higher removal rates, less electrode wear and better surface 

finishes are obtained1. One disadvantage in using silicone fluids is their high cost; 

however this disadvantage may be minimised by mixing the silicone fluid with a 

less expensive dielectric59.  

Another dielectric fluid that can be used is a powder mixed oil. This oil has been 

found to improve finishing efficiency and to provide mirror finished surfaces. One 

major disadvantage is the presence of powder precipitate6. 
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Other dielectric fluids that can be used include deionized water, kerosene, and 

polar liquids such as aqueous solutions of ethylene glycols1.  

The effectiveness of the process depends on the cleanliness of the dielectric 

fluid55. The presence of particles can interfere with the smooth and effective 

working of the process, especially during the machining of accurate work within 

small spark-gaps. Metal particles and carbon formed due to the breakdown of the 

dielectric fluid can cause inaccurate sparking to occur55,59. The presence of a 

carefully controlled, small amount of contamination can be beneficial in 

stabilizing the EDM process for high-amperage, low-frequency roughing 

operations1,59. 
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3.5 Types of EDM and Their Applications 

3.5.1 Electric Discharge Spark Erosion 

Fig. 3.3: Spark Erosion EDM

Spark erosion is the most common type of EDM process. The electrode is shaped 

to the opposite of the final cavity machined on the workpiece. The electrode is 

mounted on a machine ram and fed into the workpiece to obtain three-dimensional 

machining. The most common application for spark erosion EDM is in the 

production of dies. Complex features, such as small or odd-shaped holes and 

intricate contours, can be easily produced1. 

54 
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Fig. 3.4: Electrode Assembly and Spark-Eroded Press Tool 
for Punching Clutch Linings

Machining procedures such as electrode rotation and orbiting electrode have been 

developed to improve flushing of the dielectric fluid. 

60 

3.5.1.1  Electrode Rotation 

The EDM machine used includes a precision spindle, a drive mechanism and a 

speed control1. The electrode rotates as it is being lowered towards and through 

the workpiece. This rotating motion circulates the dielectric fluid through the gap 

between the electrode and the workpiece, thus improving flushing and increasing 

cutting speed. The quality of the hole produced is superior to that of a stationary 

electrode. This method is limited to the production of round holes1,60and internal 

threads61.  

Electrode 
Workpiece 



Chapter 3: Electric Discharge Machining  Page 40 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

Fig. 3.5: EDM Thread Cutting62 

3.5.1.2 Orbiting Electrode 

Fig. 3.6: Orbiting Electrode EDM

In this process the electrode does not rotate, but moves in a prescribed orbit. The 

relative motion between the electrode and the workpiece during orbiting circulates 

the dielectric fluid, thus improving flushing. The final size of the hole is 

dependent on the size of the electrode and the size of the orbit. Orbiting electrode 

1 
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EDM is therefore a good process for producing low-volume, close-tolerance jobs 

at a low electrode manufacturing cost1.   

3.5.2 Electric Discharge Wire Cutting (EDWC) 

Fig. 3.7: EDWC

The major difference between electric discharge spark erosion and EDWC is the 

type of electrode that is used. In EDWC, the electrode is a wire, which is fed 

through the workpiece1,3,63,64. The workpiece remains stationary and the horizontal 

movement of the wire determines the shape of the hole. This process requires a 

starter or threading hole for the wire. EDWC is normally used to produce 

stamping and extrusion dies, complex-shaped blanks and templates, and special 

form inserts. With the use of numerical control (NC) programs, skilled workers 

are not required. This is the type of EDM process used in this research work.  

1 
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3.5.3 Electric Discharge Grinding (EDG) 

 Fig. 3.8: EDG1 

In EDG, the electrode is a rotating wheel. The metal is removed by electrical 

discharges passing through the gap between the wheel and the workpiece. The 

reverse form of the wheel face is transferred to the workpiece surface1,55. The 

main application for EDG is grinding hard materials. These materials include 

carbide form tools, hardened steel gear racks, tungsten carbide inserts and 

hardened lamination dies1. 

3.6 Effects of EDM 

3.6.1 Macroscopic Effect 

 Fig. 3.9: Macrostructure of an EDM Specimen65  
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 EDM has been reported to cause changes in the surface layers of the 

machined specimen. In a cross-section of the specimen, the macrostructure 

consists of 3 zones – a central zone and two darker edge zones. The central zone 

consists of the original material. The edge zones are regions that have been 

thermally affected regions by the EDM process65.  

 

 

Fig. 3.10: Variation of Zones with Increasing 

Cutting Currents65 

 

 

Figure 3.10 shows that the size of each zones depends on the cutting conditions. 

An increase in current leads to an increase in the heat generated, thus increasing 

the size of the zones. In steels and alloys that experience no structural changes 

during heating and cooling, there are no edge zones are present.14  

3.6.2 Microscopic Effect 

The surface of the machined part is produced through metal vaporization by  

sparks, resulting in the formation of many craters. The size of the craters formed, 
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and hence the surface finish, is dependent on the energy of the discharge1,55,66. 

Surface roughness of the machined surface varies from 0.005µm Ra to 6.3µm 

Ra
1,63. No matter how fine a surface roughness is obtained, the surface of the part 

is covered with numerous craters, giving a similar appearance to the surface of the 

moon63,67,68. Ideally, the dielectric fluid carries away all the melted material from 

the machined surface. In practice, not all of the melted material is removed by the 

dielectric fluid. A limited volume of material re-solidifies on the surface, forming 

a shiny skin, known as the recast layer, which is dissimilar to the macroscopic 

zone mentioned above1,58,60,63,66. This produces surfaces as shown below. 

Fig. 3.11: EDWC Surface63 Fig. 3.12: Spark-Eroded Surface

Figures 3.13 and 3.14 show the cross-sections of machined workpieces. The recast 

layer can be seen as the light band in Figure 3.13. The recast layer is non-uniform 

across the section and varies from a thickness of 0.002mm to 0.38mm1,63,66. The 

difference in color of the recast layer and the original material in Figure 3.13 

shows that the structure of the recast layer differs from that of the original 

material63,66. The recast layer is harder than the parent material. This recast layer 

causes an increased resistance to wear, but a reduction in strength1,66. A darker 

63 
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zone is present just below the recast layer, where the material has been 

tempered60.  

Fig. 3.13: Recast Layer (Optical Microscope)60  Fig. 3.14: Recast Layer (SEM)

Figure 3.14 shows the recast layer as seen on the scanning electron microscope 

(SEM). The layer has a fused structure and is riddled with holes66. The presence 

of these holes is detrimental to the fatigue strength of the workpiece. When the 

workpiece is stressed, the holes act as stress concentrations, encouraging the 

initiation of cracks63. 

3 

Fig. 3.15: Spark-Eroded Surface63 Fig. 3.16: EDWC Surface3 

EDM machined workpieces exhibit numerous cracks on the surface1,3,63,66. These 

cracks may be seen in Figures 3.15 and 3.16. The molten metal that has not been 
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carried away by the dielectric fluid has re-solidified on the surface of the 

workpiece. The molten metal left on the surface (the recast layer) is cooled rapidly 

by the dielectric fluid, and shrinkage occurs. Cooler sections on the surface resist 

this shrinkage, causing tensile stresses on the surface of the specimen. The recast 

layer has a lower resistance to tensile stresses, leading to the formation of 

microcracks63,66. 

Fig. 3.17: Surface Cracking

Figure 3.17 shows the cross-section of a spark-eroded workpiece with a network 

of microcracks that extend from the surface of the workpiece1,63. Shrinkage in the 

surface due to the rapid cooling of the recast layer produces tensile stresses in the 

surface. As a result of this stress, cracking occurs in the surface1.  

63 

The existence of these microcracks on the surface is detrimental to the fatigue 

strength1,3,66. The microcracks act as stress concentrations when stressed and are 

sites for the initiation of propagating cracks that lead to failure1,3,63,66. In the 

absence of these microcracks, the fatigue strength is still lower. The drop in 
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fatigue strength can be attributed to the residual tensile stresses in the surface 

layer64,66,69,70.  

Fig. 3.18: Residual Surface Stress

Figure 3.18 shows the variation of residual tensile stresses from the EDM 

machined surface down towards the bulk material as measured using x-ray 

diffraction. The recast layer shrinks during re-solidification. This shrinkage is 

resisted by the bulk material, leading to tensile stresses in the recast layer and 

compressive stresses in the bulk material adjacent to the recast layer. Therefore, 

the tensile stress, at a certain depth in the bulk material, changes to a compressive 

stress66. 

69 

The heat-affected zone is another characteristic of the EDM process. The light 

band in Figure 3.19 is the recast layer. Beneath the recast layer is the heat-affected 

zone. The heat-affected zone in Figure 3.19 shows a distinct change in structure. 
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This does not always occur1,63,68. Figure 3.20 does not show a distinct difference 

in structure between the heat-affected zone and the original material.  

Fig. 3.19: Recast Layer and Heat-Affected Zone

Fig. 3.20: Recast Layer and Heat-Affected Zone

69  

Hardened metals that are heated to a temperature lower than the critical level may 

be annealed. If however the temperature is above the critical level, the metal is re-

hardened. For martensitic steels, the structure in the heat-affected zone and the 

original structure differ little63,65. It is therefore difficult to distinguish the heat-

affected zone from the bulk material.  

63  

 



Chapter 3: Electric Discharge Machining  Page 49 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

Fig. 3.21: Microhardness Measurement

One way of defining the depth and the presence of the heat-affected zone is to test 

the hardness of the material63,69. Figure 3.21 indicates that there is a total heat-

affected depth of approximately 0.15mm. Another way of differentiating the heat-

affected zone from the bulk material is by examining the fracture surface. The 

heat-affected zone would show a fine crystalline structure that is similar to that of 

hardened carbon steel, while the bulk material would have a large grain 

structure65. 

69 

Table 3.1 shows a summary of the types of surface characteristics that may be 

obtained for different metal removal processes. Electrochemical machining 

(ECM) and chemical milling (CHM) are the other two non-traditional metal 

removal methods included. 
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Table 3.1: Surface Characteristics Resulting from Various Metal Removal 
Processes

Key: 

69 

 R Roughness of surface 

 PD Plastic deformation and plastically deformed debris 

 L & T Laps and tears and crevice-like defects 

 MCK Microcracks 

 SE Selective etch 

 IGA Intergranular attack 

 UTM Untempered martensite 

 OTM Overtempered martensite 

 OA Overaging 

 RC Recast, respattered metal, or vapor deposited metal 
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3.7 Post-Operation Processes  

The surface characteristics that the EDM process generates are detrimental to 

workpieces that are subject to high dynamic stresses in service. The two main 

methods of overcoming this problem are by removing the surface layer or by 

negating the effects of the residual tensile stresses54.  

The surface layer can be removed by conventional methods such as mechanical 

milling, polishing and abrasive finishing. Other methods of surface layer removal 

include chemical milling, electropolishing and electrochemical machining1,63,71. In 

order to neutralize the effects of the residual tensile stresses and increase the 

fatigue strength of the workpiece, the surface can be peened or burnished to 

produce a residual compressive stress in the surface54,70.  

3.8 Advantages and Limitations of EDM 

The EDM process utilizes sparks to remove metal. The electrode tool does not 

touch the workpiece at all. No physical force is exerted on the workpiece, making 

it ideal for the machining of thin and fragile workpieces that cannot withstand 

conventional mechanical cutting forces1,55. Metal removal by this process is 

independent of the hardness of the workpiece1,55,63,72,73. Hardened materials can 

undergo heat treatment processes before being machined, thus eliminating 

workpiece distortions that are caused by the heat treatment process1,55,56,63,74. The 

EDM process is, however, limited to electrically conductive workpieces1,63,73.  
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Another advantage of the EDM process is the ability to machine complex shapes 

without the need for costly cross-sectional construction. Workpieces that contain 

narrow, deep cavities with intricate contours or holes can be easily produced1,3,54-

56,60,61,63,67,75.  

Fig. 3.22: Cloverleaf Dies Button

These difficult features can be machined to a high accuracy and uniformity in 

tight clearances for irregular shapes can be achieved54,55,60,61,67,74. The complete 

product is burr-free, eliminating the need for a finishing process to smoothen any 

rough edges, thus reducing cost and time1,56,61,74. The surface patterns that the 

EDM process leaves on the workpiece have been shown to have an enhanced oil 

retention capability. This capability makes EDM a very good process for the 

finishing of parts such as plain bearings55,73. 

74 

EDM is a low cost procedure as electrodes can be machined out of relatively 

inexpensive materials such as carbon3,72,74. Actual parts can be used as electrodes 

to produce electrodes for manufacture, reducing electrode-machining costs. 
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However, the low electrode tool life and the high costs of accurate electrode tools 

mean that conventional mechanical methods may be preferable54. 

Modern EDM machines have many new features that contribute to broadening the 

process capability. One of these features is the NC motion control, in which the 

EDM process is automated, removing the need for skilled operators. The machine 

can also be left to run on its own without the need for supervision1,3,72,67. 
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CHAPTER 4: SHOT PEENING 

Shot peening is a method of cold working that involves the impingement of a 

stream of shot on the surface of a workpiece at high velocities6,73. The peening of 

a surface is not a new process; it has been in use for thousands of years in the 

production of armour, weapons and tools2. Shot peening has now gained 

widespread acceptance in the automobile, aeronautic and aerospace industries as 

an effective means to combat fatigue76. 

4.1 Description of Process 

 Fig. 4.1: Shot Peening Process

Shot peening utilises a stream of spherical shot particles to impact the surface of a 

workpiece at a high velocity. The shots are normally propelled by compressed air 

or by centrifugal force onto the surface of the workpiece6,73. The used shot is then 

removed to a shot-recycling unit, where the shot is recycled and re-classified. 

Usable shot is then sent to the shot propulsion unit to be reused. 

77 
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When the shot particles hit the surface of the workpiece, an indentation is formed 

on the surface. This is a consequence of plastic deformation. This plastic 

deformation normally extends to a depth of 0.13mm to 0.25mm (0.005in to 

0.02in)6. The material below this depth has not been altered, but is still continuous 

with the material that has been deformed. This results in a compressive stress at 

the surface, with an associated tensile stress being present in the material below 

the surface2,6,78-80. If an external load is applied to the component, the resultant 

stress at the surface is equivalent to the sum of the residual surface stress and the 

surface stress at the surface associated with the externally applied load. As fatigue 

cracking is sensitive to tensile stress, the fatigue life is improved2,6,78. 

4.2 History of Peening 

Peening is a process that has been in use for hundreds of years. Known as hammer 

hardening, a ball pein hammer was used to work harden a surface, such as that of 

weapons and shields. Some copper spearheads were seen to penetrate armour with 

ease while others did not. Similarly, blacksmiths who hammer peened the tension 

side of carriage springs noted that this increased the life and load carrying 

capacity of the springs. This greater wear resistance and improved resilience in 

the part was noticed, but the mechanisms behind the effect were unknown2.  

In the 1920s, analytical methods were employed to study the effects of particles 

striking a surface as compared to that of a single pointed ball pein hammer. In the 

late 1920s, General Motors was involved in the use of blast cleaning to remove 
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corrosion from car valve springs. These springs were observed to have a longer 

fatigue life then springs that had not been blast cleaned. John O. Almen, who was 

working at General Motors, investigated this phenomenon and concluded that the 

blast cleaning process was the cause of the extended lives. General Motors began 

using shot peening in production, to extend the lives of valve springs in car 

engines2,78,81. 

In a bid to control the shot peening process in production, Almen manufactured 

thin strips, out of the same materials, as a comparator to the springs. The strips, 

now known as the Almen strip (‘A’ strip), were subjected to the same shot 

peening process as the springs. The changes in the curvature of the strips were 

then used as an indicator for the peening process2,6,73,79. 

Two other strips were later introduced to allow the control of a larger range of 

peening conditions. The ‘N’ strip was introduced in the 1950s for controlling 

lighter peening conditions on aerospace components. In the 1960s, the ‘C’ strip 

was manufactured for more aggressive peening parameters. Apart from these 

three standard strips, other strips produced from different alloys and of different 

sizes are in use in industry today2,6,73,81. 

Although shot peening had been seen to cause fatigue strength improvements of 

20% - 30% since the 1940s, shot peening was only applied as a remedial 

treatment for components that had failed during service2. In the late 1970s, a 

review of the shot peening process was carried out. The results of this review 
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spread rapidly throughout the world’s aerospace industries, leading to the 

recognition of shot peening as a process that can greatly enhance the fatigue life 

of components. This review coincided with an increasing demand for lighter and 

more fuel-efficient aircraft. Improvements in the process predictability and 

reliability of shot peening were required80.  

4.2.1 Equipment 

Shot peening began as a manual technique. Hand held equipment was replaced by 

mechanised methods when the automotive industry began using shot peening. Use 

of mechanisation made the shot peening process repeatable. The process has now 

been simplified by the addition of CNC controls82 and the use of shot peening 

programs, such as PEPCOM, to run the operation83.  

The accuracy of the Almen gauges is also continually being improved to achieve a 

consistent in quality84. Some advancements have also led to shot peening 

becoming a more environmentally friendly process. One example is to use a dust-

free process85.  

4.2.2 Media 

In the 1930s, chilled iron grit was used for blast cleaning. The first main change to 

the shot peening process was the change in the shape of the shot to a sphere. In the 

1950s, cast steel shot was introduced as chilled iron grit was seen to shatter too 

quickly. In the 1960s, glass beads were introduced to allow for the peening of thin 
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ferrous materials and materials that might be contaminated by ferrous shot. In the 

1970s, high hardness steel shot was introduced. In the 1980s, ceramic shot was 

introduced to fill the gap between the steel shots, which lasted for several 

thousand cycles, and the glass shot, which lasted only a few cycles. There are 

other types of shot that are now available for special applications, but cast steel 

shot is still the most commonly used2,6,73. 

4.2.3 Applications 

The first application of shot peening was to address fatigue problems in the 

automotive industry2,78,81. Initially, the peening process was used on leaf and coil 

springs. The range of applications soon expanded to include gears, shafts, 

fasteners and oil drilling equipment. The success of shot peening was such that it 

spread to the aerospace industry. Landing gears, structural members and 

compressor and turbine blades were peened73.  

In the late 1940s, the Almen strip principle was used as the basis for the forming 

of aerodynamic components through shot peening2. This process was known as 

peen forming. The peen forming process is largely automated. The part is usually 

thin in section and selectively peened on one side to produce its final shape6,73,79. 

A variation of peen forming is peen straightening. Peen straightening is used to 

correct the distortion that is produced in parts due to machining or heat 

treatment6,73,79. 
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In the 1960s, shot peening was found to improve the resistance of a part to stress 

corrosion cracking2. One such example is hydraulic reservoirs in aircraft landing 

gears. Shot peening has also been found to be effective against fretting corrosion, 

and is used to combat fretting corrosion on bolt and fastener holes on aerospace 

structures73. 

4.3 Effects of Peening 

Shot peening is a process that uses a stream of shot particles travelling at a high 

velocity to bombard the surface of a component. When each shot particle impacts 

the metal surface, plastic deformation occurs, thus producing a slight, round 

depression on the surface2,6,79,80. The material that has been plastically deformed 

only extends about 0.013mm to 0.50mm (0.005in to 0.02in) beneath the 

surface6,73. Below this stretched layer is the bulk material that is unaffected by this 

indentation. Due to continuity, residuals stresses are generated by the shot peening 

process2. 

Figure 4.2 shows how residual stresses can be created. Imagine bar A as the 

surface layer and bar B as the bulk material. When the component is peened, the 

surface layer, bar A, plastically deforms and stretches. To rejoin both bars now, 

their lengths would have to be adjusted. Bar A would have to be shortened, while 

bar B lengthened. The final assembly would have a compressive stress in the 

surface and a tensile stress in the bulk material. The creation of these stresses is 

what happens when the component is shot peened2. 
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Fig. 4.2: Creation of Residual Stress in a Two-Bar System

For thin materials, shot peening on only one side of the material would cause a 

convex curve to form with the peened surface on the outside. Here, the layer that 

is unaffected by the peening is too thin to completely resist the elongation of the 

peened side, thus resulting in curvature. This is the basis of the Almen strips, 

which are used to monitor the process. Peen forming and peen straightening have 

been developed on this principle as well73,79. 

2 
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Fig. 4.3: Why Shot Peening Works

The residual stress in the surface layer of a component that has been shot peened 

is compressive2,6,73,78,79,80. Figure 4.3 shows how shot peening increases the 

fatigue life of a component. Cracks propagate from the surface of a component 

under repeated tensile stresses associated with the loading. When the component 

is shot peened, a residual compressive stress is created in the surface. When a load 

2 
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is applied, tensile stresses do not develop to form a crack on the critical surface 

area until the residual compressive stresses induced by the shot peening process 

have been overcome. The allowable stress level is increased, thus increasing the 

fatigue life of the component6,73,78. Shot peening has been found to increase the 

fatigue life of components by up to 50%79,87.  

Fig. 4.4: Effect of Shot Peening on Steel Spring Wires

A side effect that occurs due to shot peening is the stress relief that may occur in 

the component. Manufacturing processes, such as grinding and milling, lead to the 

creation of residual tensile stresses in the surface layer of the component. These 

tensile stresses would contribute to the early failure of the component. Shot 

peening changes these undesirable tensile stresses to compressive stresses, thus 

further improving the component’s fatigue life6,73,78. 

6 
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Surface imperfections found on machined components include pits, scratches and 

other surface defects. The shot peening process blends these imperfections, thus 

effectively removing them as stress concentration points6,73. However, the surface 

finish may not have improved. After peening, overlapping dimples cover the 

surface. As a general rule, shot peening would improve the surface roughness of 

the component if its initial surface roughness is above 125 RMS. This surface 

roughness value is also dependent on process parameters, such as material type, 

hardness and the shot size87. 

Overpeening, or peening a component for too long a time, has been seen to be 

detrimental to the component and potentially dangerous. In adverse conditions, 

pockets of localized corrosion may occur on the surface80. Another point to note is 

that although shot peening is very effective in improving the fatigue life of a 

component, it is less effective in preventing fatigue failures that initiate from 

defects that are present beneath the surface80. 

4.4 Major Factors 

Shot peening is affected by three major factors: the peening media, the peening 

intensity and the coverage2,6,73,87. The nature of the anticipated mode of fracture, 

the geometry and metallurgy of the component to be shot peened affects how each 

factor should be determined2,87. 
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4.4.1 Peening Media 

4.4.1.1 Materials 

There are several different types of peening shot. The most commonly used shot is 

cast steel shot2,6,73,80. Shots made from cast steel have good ductility and a low 

initial cost. There are two common hardness levels: regular and hard. The shot 

hardness required is dependent on the hardness of the component to be peened. 

The disadvantage of hard cast shot is that they break down rapidly and an efficient 

system to remove the broken particles must be employed2,6. 

Conditioned cut wire shot breaks down slower than cast steel shot, although the 

initial cost is higher2,73. Steel wire is chopped into cylinders where the length 

equals the diameter. These cylinders are then blasted repeatedly to round off the 

cut edges2,6. One advantage of cut wire shots is that the shots rarely break into 

sharp half spheres that would nick the surface of the component being peened2. 

Glass beads are used where ferrous contamination of the peened component 

would be detrimental2,6,73. The beads are manufactured from high grade glass and 

are designed to provide a desired finish2,80. Glass beads are used to peen very thin 

sections. As glass beads are available in sizes down to 0.05mm (0.002in), very 

tight radii, such as threads in screws can be easily peened2.  

Ceramic beads are manufactured from a mixture of zirconium, silicon and 

aluminium oxides at a high temperature2,80. The beads produce acceptable 



Chapter 4: Shot Peening  Page 65 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

intensities and are more durable than glass beads, making them ideal for 

applications where no foreign metal can be tolerated2,73.  

4.4.1.2 Shot Shape 

Through his investigations on shot blasting, Almen discovered that the use of 

spherical shot particles rather than angular and grit type particles made the 

peening process more effective2. The shape of shot is currently monitored 

visually. An example of shot shapes is shown in Figure 4.5. The first row shows 

shapes that are considered normal in appearance and uniformity. The impressions 

produced would be circular and uniform in size. The second row of shapes show 

shot shapes that is unacceptable as the shot is not uniform and would produce 

irregular impressions on the component. The third row includes shot shapes that 

contain sharp edges. These edges are detrimental to components being peened2.  

Fig. 4.5: Shapes of Shots for MIL-S-131652 
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The breakdown of shot is inherent in the process of shot peening. The resulting 

broken shot can be detrimental; therefore the shape of the shot must be screened 

throughout the peening process. Figure 4.6 compares the surface that is produced 

by peening with broken shot and regularly shaped shot. 

Fig. 4.6: Surface Produced with Broken Shot(a) 
and Regular Shot(b)

Peening with broken-regular shot mixtures can increase fatigue life, however, to 

do so would require an increase in the weight of the broken shot mixture used. 

This increase would, in turn, lead to an increase in the cost of the process88. 

87 

4.4.1.3 Shot Size 

The size of the shot used must be monitored in order to control the outcome of the 

peening process. The shot is passed through a set of five test sieves to determine 

the size distribution of the shot. The bulk of the shot will typically pass through 

the second sieve but be retained by the fourth sieve2. 

There are several conditions that determine that size of the shot that is used in 

peening. The geometry of the component is the main constraint73. Figure 4.7(A) 
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shows that if the diameter of the shot used is larger than twice the radius of a 

groove, full coverage will not be achieved. Figure 4.7(B) show the maximum shot 

size (d = ½R) that would make peening the root radius of a thread effective6,87.  

Fig. 4.7: Shot Size Based on Geometry

Changing the size of the shot affects the intensity of the peening process6,89. With 

all other process parameters constant, an increase in the diameter of the shot 

increases the peening intensity of the process. The increase in peening intensity 

causes an increase in the depth of the compressed layer of the component6,90. The 

final surface roughness of the component has been found to increase with 

increasing shot size90. However, the coverage and the compressive stresses 

induced are decreased with an increase in shot size6,91.  

87 

4.4.2 Intensity 

The peening intensity is used to describe the overall effect of peening73. In the 

1930s, Almen recognized the importance of process consistency. He arranged to 

manufacture strips as a comparator. He observed that if one side of a strip was 
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peened, it would curve, convex on the peened side. The curvature is due to the 

introduction of compressive stresses and the stretching of the peened side. The 

amount of curvature on the strip varies with different process conditions. If the 

shot size is larger, the curvature is greater. Similarly, if there is a greater shot 

velocity, the curvature increases. However, once the surface of the test strip is 

totally covered in peening dimples, further peening shows little additional 

curvature. Using this information, Almen developed the system that is named 

after him2,87.  

 The Almen system consists of mainly three elements: the test strip, the holding 

block and the Almen gauge. Figure 4.8 shows the three standard test strips that are 

used for the measurement of peening intensity. 

Fig. 4.8: Shot Peening Test Strips Specifications

The ‘A’ strip is used to measure peening intensities that produce arc heights of 

0.15mm to 0.569mm (0.006in to 0.0224in). Intensities producing arc heights of 

less than 0.15mm (0.006in) are measured using the ‘N’ strip, while intensities 

73 
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greater than 0.61mm (0.0.024in) are measured using the ‘C’ strip2,73,81. Test strips 

are normally produced from steel79, although other materials such as aluminium 

and Inconel have been used. Producing strips of material other than steel is rarely 

done, as intensities obtained using the standard strips have been found to relate 

adequately to most peening applications2.  

Fig. 4.9: Standard Almen Block for Holding Test Strips

The test strip is held in a standard Almen holding block as shown above. The 

holding block is loaded in the machine at a location where the peening is critical. 

The test strip is peened for a short time period, then removed from the holding 

block. The curvature of the strip is measured using an Almen gauge and recorded 

on a chart. 

73 
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Fig. 4.10: The Almen System

The process is repeated with new test strips at increasing time periods until the 

resultant curve flattens out. When doubling the exposure time yields only a 10% 

increase in arc height, saturation is said to have occurred. This exposure time is 

known as the saturation time2,80,81,87. The saturation time is also the approximate 

time required for the Almen strip to receive 100% surface denting, or 100% 

coverage92. 

81 

Fig. 4.11: Saturation Curve87 
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4.4.3 Coverage 

Surface coverage is defined as the percentage of the original part surface that is 

covered by the indentations of the individual shot particles. Full or 100% 

coverage is achieved when the original surface is totally replaced by the peening 

dimples and over 100% coverage is achieved if the peening process continues 

after 100% coverage is reached2,6,73. Coverage is an important factor as a little less 

than 100% coverage can result in a reduction in fatigue life. An increase in 

coverage from 200% to 600%, however, only leads to an increase of 9% for 

fatigue life91. If 200% coverage is insufficient, further shot peening will not solve 

the problem. In industry, the coverage varies from 80% to 100% for spring 

applications and 200% in the aircraft industry73.  

There are four methods of measuring coverage. The first is by visual examination 

with a tenfold magnification. Although not quantitative, visual examination is 

widely used2,6,80,81. Situations where this method is not very accurate include the 

examination of gears, where the dimples in the critical tooth root radii are almost 

impossible to distinguish2. 

An alternative method is the use of Dyescan tracer liquids, as in the Peenscan® 

process2,73. The tracer liquid is painted, sprayed or dipped onto the part. After 

drying, the part is peened for about half the estimated time required to obtain full 

coverage. The part is then removed and examined under black (UV) light. Any 

tracer liquid that is not removed by the peening process is highly visible. The 



Chapter 4: Shot Peening  Page 72 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

exposure time is then increased until full coverage is obtained - that is, no tracer 

liquid is left on the part. 

The Straub method involves the use of an Almen strip6,73. The strip is exposed to 

the shot and then magnified to 50 diameters in the field of a metallograpic camera. 

The images of the indented area are traced with a sharp pencil onto transparent 

paper, then measured with a planimeter. The ratio of the indented area to the total 

area is determined. This method is time consuming, and it assumes that the area 

selected is representative of the whole strip. 

Another method that uses the Almen strip depends upon the hardness of the 

Almen strip and the component. This method is fairly quick and accurate. The 

Almen strip is exposed for the time that is estimated to be required to achieve 

100% coverage. Another Almen strip is exposed for twice the length of time for 

the first one. The arc heights are measured. If the change in arc heights is found to 

be more than 10%, it indicates that the first Almen strip did not reach saturation73. 

This method is fairly indicative for components that are of the same hardness. 

However, for components that are of a different hardness, the saturation time 

would vary from that of the Almen strip, with a softer material requiring a shorter 

time.  
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4.5 Post-Operation Processes  

Shot peening is normally used as a finishing process6. If a surface finish finer than 

that of the peened component is required, certain processes may be used. These 

processes are limited by the amount of heat that is produced and the amount of 

material removed6,87.  

The effectiveness of shot peening is greatly dependent on the compressive stresses 

that are produced at the surface of the peened component. High temperatures 

generated during the post-peening process act to relieve the compressive 

stresses6,87. Moreover, the compressive layer is relatively thin, and no more than 

10% of the compression depth should be removed during subsequent grinding87. 

Light honing and lapping can be carried out if required6,87. 

Straightening or cold forming should be avoided, as these processes introduce 

residual tensile stresses, which reduce or eliminate the effect of shot peening. 

Peen straightening and peen forming should be used instead6. 

Steel that has been peened has a clean and chemically active surface that is highly 

susceptible to corrosion. This problem can be addressed by the application of a 

rust preventative. Stainless steels that have been peened using steel shot can be 

contaminated by iron particles, which cause rusting. Further peening with glass 

beads removes the contamination and increases the fatigue life of the peened 

part6,93. 
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CHAPTER 5: EXPERIMENTAL PROCEDURE AND 

RESULTS  

5.1 Test Specimens 

300M steel is essentially a silicon-modified 4340 steel with a higher carbon and 

molybdenum content and added vanadium. The increased silicon content provides 

deeper hardenability and better resistance to softening at higher temperatures94. 

Although 300M steel is the material used to produce the structural components, 

4340 steel is a cheaper alternative that can be used as a basis for comparison. The 

chemical compositions of the two steels are shown below. 

 4340 Steel 300M Steel 

Carbon 0.38 – 0.43 0.40 –  0.46 

Manganese 0.60 – 0.80 0.65 – 0.90 

Silicon 0.20 – 0.35 1.45 – 1.80 

Nickel 1.65 – 2.00 1.65 – 2.00 

Chromium 0.70 – 0.90 0.70 – 0.95 

Molybdenum 0.20 – 0.30 0.30 – 0.45 

Vanadium - 0.05 (min) 

Table 5.1: Composition of 4340 Steel and 300M Steel

4340 steel is heat treated to a hardness of 51 to 52 Rc. The microstructure of 4340 

steel is primarily martensite and is shown in Figures 5.1 and 5.2. 

94 
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Fig. 5.1: Microstructure of Heat Treated 4340 Steel at 230X 

Fig. 5.2: Microstructure of Heat Treated 4340 Steel at 575X 

The dimensions of the test specimens were taken from Project 12/953. The width 

of each specimen is 20mm; the height is 10mm and the length is 75mm. Each 
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edge of each specimen has a radius of 2mm. Two-thirds of the tests specimens 

were machined to size by EDWC. Of the two-thirds, half the specimens were shot 

peened to 0.01A, while the other half were left in the EDWC condition. The 

remaining third of the specimens were EDWC before they were ground to size.  

5.2 Fatigue Tests 

Four-point bend testing on the test specimens was carried out on an Amsler High 

Frequency Vibrophone machine (Figure 5.3). The Vibrophone machine is used to 

determine the fatigue properties of a material through fluctuating and alternating 

tensile, compressive or shear stresses. The machine runs on the resonance 

principle; the test frequency coinciding with the natural frequency of the 

oscillating elements. The test frequency for the test specimens varies from 120Hz 

to 140Hz. The mean load used for the EDWC test specimens was 15kN, while the 

mean load used for the EDWC, then shot peened specimens and the machined 

specimens was 25kN. These values were determined in Project 12/953 using a 

Goodman diagram (Figure 5.5). Any change in the mean stress would result in a 

change in the alternating stress amplitude used. 

The four-point bend test is used so that the maximum strain occurs within the area 

of the central two points. Fatigue will initiate from this area and the corresponding 

stresses can be calculated.  The results of the fatigue tests are shown in Figures 

5.6 to 5.8. The values for the fatigue limits are based on reverse bending and can 

vary from results obtained from rotating bending tests. 
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Fig. 5.3 Amsler High Frequency 
Vibrophone Machine3 

Fig. 5.4: 4-Point Bend Test Grips3 
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Fig. 5.5: Goodman Diagram

Fig. 5.6: S-N Graph for Rough EDWC Test Specimens 
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Fig. 5.7: S-N Graph for Rough EDWC and Shot Peened Test Specimens 

Fig. 5.8: S-N Graph for Machined Test Specimens 
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Fig. 5.9: S-N Graphs 

The fatigue limits of the three sets of test specimens can be compared in Figure 

5.9. The EDWC specimens show a fatigue limit of aproximately 200MPa to 

350MPa. The EDWC specimens that have been shot peened have a fatigue limit 

of approximately 700MPa to 1100MPa. The ground specimens have a fatigue 

limit of 800MPa to 1000MPa. The scatter of data is observed to be much greater 

for the shot peened specimens than for the other specimens. 

5.3 Scanning Electron Microscopic Examination 

The fracture surfaces of the specimens were examined under the scanning electron 

microscope (SEM). The crack initiation sites for the specimens were 
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photographed. Figures 5.10 to 5.19 are examples of the crack initiation sites 

observed for each of the three sets of specimens. 

Fig. 5.10: Crack Initiation Site for EDWC Specimen 10a at 100X 

Fig. 5.11: Crack Initiation Site for EDWC Specimen 10a at 1,000X 
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Fig. 5.12: Crack Initiation Site for Shot Peened Specimen 7a at 100X 

Fig. 5.13: Crack Initiation Site for Shot Peened Specimen 7a at 1,000X  
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Fig. 5.14: Crack Initiation Site for Shot Peened Specimen 6b at 100X  

Fig. 5.15: Crack Initiation Site for Shot Peened Specimen 6b at 500X 
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Fig. 5.16: Crack Initiation Site for Ground Specimen 7 at 100X  

Fig. 5.17: Crack Initiation Site for Ground Specimen 7 at 1,000X  



Chapter 5: Experimental Procedure and Results Page 85 
 

The Effect of EDM Wire Cutting on the Fatigue Properties of 4340 Steel 
 

Fig. 5.18: Crack Initiation Site for Ground Specimen 11 at 100X  

Fig. 5.19: Crack Initiation Site for Ground Specimen 11 at 500X 
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The SEM images show the different crack initiation sites for the three sets of 

specimens. The EDWC specimens are observed to initiate from the surface. The 

fatigue cracks can be seen to initiate from surface defects. The shot peened 

specimens exhibit a variety of possible crack initiation sites. There are a few sub-

surface crack initiations, despite the fact that surface defects are present. Some 

specimens showed surface crack initiations. A few specimens exhibit cracks 

initiating from surface defects at the corners. The ground specimens generally 

display surface crack initiation sites. Cracks initiating from the corners were also 

observed for some ground samples. 

The machined surfaces of the specimens were also examined under the SEM. 

Figures 5.20 to 5.22 are representative of the surfaces of the specimens. 

Fig. 5.20: EDWC Surface at 500X 
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Fig. 5.21: Shot Peened Surface at 430X 

Fig. 5.22: Ground Surface at 500X 
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5.4 Microhardness 

Microhardness testing was carried out on some specimens that were mounted and 

polished. The testing was done on a Leco M-400-H1 hardness testing machine 

that was fitted with a Knoop indenter. The resulting indentations produced by the 

Knoop indenter are shown in Figure 5.23.  

Fig. 5.23: Microhardness Testing Indentations  

The load used for the microhardness testing was 200g. The indentations have been 

place 0.03mm apart to prevent interference due to the plastic deformation 

produced by the indentations. The width of the indentations have been measured 

and converted to Rc. Figure 5.21 show the results obtained for the specimens 

tested. 

The microhardness values for the three different sets of specimens are shown in 

Figure 5.24. The curves are observed to be similar with a slight drop in hardness 
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at the edge of the specimens. The hardness of the specimens levels out at a depth 

of approximately 0.2mm. The hardness is found to be approximately 52Rc. 

Fig. 5.24: Graph of Microhardness vs Specimen Depth 

5.5 Surface Roughness 

The surface roughness of the specimens was measured using a Rank Taylor-

Hobson Talysurf 10 surface texture measuring instrument. Surface roughness was 

measured horizontally widthwise and lengthwise. The average values are shown 

in Table 5.2. 
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 Surface Roughness (μm Ra) 

 Length Width 

EDWC 3.19 3.23 

Shot Peened 1.01 1.06 

Ground 0.19 0.42 

Table 5.2: Surface Roughness 

The surface roughness of the EDWC specimens is approximately 3.2μm Ra, while 

the shot peened specimens have a surface roughness of 1μm Ra. There is little 

variation of surface roughness for both the EDWC specimens and the shot peened 

specimens, regardless of the direction of measurement. The surface roughness of 

the ground specimens is highly dependant on the direction of measurement. The 

surface roughness is approximately 0.4μm Ra when measured across the 

specimen, while it is 0.2μm Ra when measured along the specimen. 
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CHAPTER 6: DISCUSSION  

6.1 Fatigue Test and SEM Analysis 

The fatigue limit of polished 4340 steel specimens is 795MPa for air melted and 

965MPa for vacuum arc remelted steel94. The fatigue testing of the ground 

specimens have shown a fatigue limit varying from 820MPa to 990MPa. An 

examination of the fracture surfaces using the SEM was carried out on all the 

specimens. Specimens with cracks that had initiated from the corners were 

included. On close examination, it was observed that the corner crack initiations 

all began at a surface defect. The surface defect could be a scratch that has been 

left by the polishing process, which acted as a stress concentration point, initiating 

cracking. An example is shown below. 

Fig. 6.1: Corner Crack Initiation Site at 500X 
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Those specimens that did not have corner crack initiation were observed to have 

surface crack initiations. Some cracks initiated from a surface defect.  

Fig. 6.2: Surface Crack Initiation Site at 500X 

Fig. 6.3: Sub-Surface Initiation Site at 500X 
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Sub-surface initiation sites were observed in a few of the ground specimens. 

Figure 6.3 shows one such example. The mechanism by which the surface and 

sub-surface cracks had initiated is difficult to determine by SEM analysis alone. 

The fatigue limit obtained for the EDWC specimens ranged from 200MPa to 

350MPa. The scatter of data for these specimens was slightly less than that of the 

ground specimens. The lessening in scatter could be attributed to the reduced 

variation of crack initiation sites for the EDWC specimens. The SEM analysis 

showed that for all non-corner crack initiation specimens, there was a single site 

from where the cracks initiated. These sites were surface defects that were 

produced by the EDWC process.  

Fig. 6.4: Crack Initiation Site for EDWC Specimen at 500X 
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The value of the fatigue limit obtained for EDWC specimens shows that the 

EDWC process causes degradation in the fatigue properties of the specimens. 

There are three possible factors that contribute to this degradation: 

I. Surface topography 

II. Phase changes in the surface layer 

III. Residual tensile stresses 

Surface topography includes the surface roughness and all other surface features. 

The EDWC process produced a surface finish inferior to that of ground 

specimens. From the testing using the Talysurf, the surface roughness of EDWC 

specimens was 3.2μm Ra, while the surface roughness of ground specimens was 

an average of 0.2μm Ra to 0.3μm Ra. On a smooth surface, cyclic deformation 

occurs to produce roughening of the surface. These irregularities can then act as 

crack initiation sites. EDWC specimens are already “rough”, thus no cyclic 

deformation is required. The SEM examination of the machined surface shows the 

presence of several surface defects (Figure 6.5).  

The EDWC process produces a surface that is covered with craters. The material 

that had been vaporized and not removed by the dielectric fluid re-solidifies on 

the surface, producing an uneven surface that is full of holes. There are also many 

microcracks that are present extending from the surface of the specimen into the 

bulk material.  
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Fig. 6.5: EDWC Surface at 2,000X 

An examination of an EDWC specimen through an optical microscope (Figure 

6.6) shows that there are many cracks present. The surface of the specimen is very 

uneven with protruding areas. These protrusions are examples of sites that can act 

as stress concentrations; initiating fatigue cracks at lower stresses. 

Fig. 6.6: EDWC Specimen at 230X 
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Equation (1) states that the total fatigue life is equal to the sum of the crack 

initiation life and the crack propagation life. The presence of the cracks implies 

that the crack initiation life is nil. Fatigue cracks can easily propagate from the 

existing cracks. The crack initiation life is totally eliminated, reducing the total 

fatigue life to be equivalent to the crack propagation life. 

A phase change in the surface layer can lead to a reduction in the total fatigue life. 

Figure 6.6 shows that the surface layer of the specimen had a different colour to 

that of the bulk material. The lighter colour indicates the recast layer. The recast 

layer contains many defects and is more brittle than the bulk material1. Below the 

recast layer is the heat-affected zone. In 4340 steel, the heat-affected zone cannot 

be easily distinguished from the parent material, as there is no phase change. As 

mentioned above, there are many cracks that extend through the recast layer, 

which makes the structure of the recast layer irrelevant to crack initiation. 

EDWC produces a residual tensile stress on the surface of the specimen69. This 

residual stress is due to the heating and cooling of the surface during the EDWC 

process. A residual stress on the surface of a specimen changes the mean stress 

that is applied on the specimen during fatigue. As the residual stress is tensile, the 

mean tensile stress that is applied on the specimen is increased. This increased 

mean tensile stress allows crack initiation and propagation to occur much more 

easily. Smaller stress amplitudes produce the same fatigue life as a specimen that 

has a lower mean tensile stress applied64,66,69,70. 
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Shot peening after the EDWC process affected the fatigue limit of the specimen. 

The fatigue limit of specimens that had been shot peened after the EDWC process 

ranged from 700MPa to 1100MPa. The scatter of data for these specimens was 

considerable. The large variation in the data can be linked to crack initiation in 

these specimens. The SEM examination of the fracture surfaces showed cracks 

initiating from several different types of initiation sites.  

Fig. 6.7: Crack Initiation Site for Shot Peened Specimen at 500X 

Figure 6.7 shows a corner crack initiation site. Shot peened specimens with corner 

crack initiations had the cracks initiating from a surface defect. A dark semi-

circular area was observed around the crack initiation site.  

Figure 6.8 shows a surface crack initiation site. This surface initiation site has its 

origins in a surface defect. Only a few of the shot peened specimens had cracks 

that initiated in this manner. These specimens gave the lowest fatigue life values.  

A slightly darker area was also present around the crack initiation site.  
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Fig. 6.8: Crack Initiation Site For Shot Peened Specimen at 500X 

Another surface crack initiation site is observed in Figure 6.9. Although surface 

defects are present, the fatigue crack initiated from the free surface instead of 

from a surface defect. There is also a darker area that is observed to surround the 

crack initiation site.  

Fig. 6.9: Crack Initiation Site For Shot Peened Specimen at 500X 
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Fig. 6.10: Crack Initiation Site For Shot Peened Specimen at 500X 

Sub-surface crack initiation sites were also observed. Some sub-surface initiations 

sites initiated from sub-surface defects, such as cracks and inclusions. Figure 6.10 

shows a sub-surface initiation site that did not initiate from a defect. 

Fig. 6.11: Crack Initiation Site For Shot Peened Specimen at 500X 
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The most commonly observed crack initiation sites were found to be sub-surface 

initiation sites with a sharp lip present (Figure 6.11). The angle of the lip made it 

difficult to determine the role that the lip plays in crack initiation. The lip could be 

due to the brittleness of the recast layer. After initiation, the crack propagates 

away from the initiation site. The stress that is applied could have resulted in a 

sudden fracture of the recast layer. A dark semi-circular area is again observed 

around the crack initiation site. 

The increase in fatigue limit indicates that shot peening restores the fatigue life 

that is lost through the EDWC process. Some of the three factors that lead to the 

degradation of fatigue life for EDWC specimens are modified by the shot peening 

process. 

Fig. 6.12: Shot Peened Surface at 500X 
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The surface roughness of the shot peened specimens is approximately 1μm Ra. 

This value is less than that of EDWC specimens. The SEM examination of the 

shot peened surface displayed a flattened surface (Figure 6.12).  

During the shot peening process, particles impact the surface of the specimen. The 

numerous “protruding” areas on an EDWC specimen surface are subsequently 

flattened by the impacting particles, thus producing a “squashed” appearance. The 

flattening of the surface is equivalent to a decrease in the measured roughness of 

the surface. The cracks are, however, still present (Figure 6.13).  

Fig. 6.13: Shot Peened Specimen at 230X 

A phase change in the surface layer was not observed visually. Moreover, as 

discussed above, the presence of cracks in the recast layer would cause the 

structure of the recast layer to be irrelevant to crack initiation and propagation. 
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Residual tensile stresses brought about by the EDWC process are removed by shot 

peening. Residual compressive stresses are introduced into the surface layers of 

specimens. Figure 6.14 shows a representation of the stresses present in a 

specimen that has been shot peened.  

Fig. 6.14: Residual Stresses in a Shot Peened Specimen

Theory suggests that a residual compressive stress reduces the mean tensile stress 

applied to the specimen. This reduction indicates that higher stress amplitudes can 

be applied to the specimen before a fatigue crack initiates, thus increasing the 

fatigue limit of the specimen. In normal static loading, tensile stresses do not 

develop on the surface until the residual compressive stresses have been 

overcome; therefore the allowable stress level is increased.  

2 
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Residual compressive stress also affects the propagation rates of fatigue cracks. A 

sufficient degree of tensile stress is required for the cracks to propagate. Residual 

compressive stress reduces the tensile stress applied, leading to a decrease in 

crack propagation rates. This effect has been described in literature51 and can be 

seen as a dark area around the crack initiation site. Within the dark area, crack 

propagation rates are reduced, while outside the dark area, propagation rates 

accelerate. 

Residual compressive stresses are also observed to alter the site of crack initiation 

from the surface of the material to the subsurface50,51. As mentioned above, many 

sub-surface initiation sites had been observed for the shot peened specimens.  

6.2 Microhardness Test 

The results obtained for the microhardness tests indicate that the specimens 

display a lower hardness closer to the surface. The hardness increases with depth 

and levels out at approximately 52Rc. Theoretically, the hardness of the EDWC 

specimens and the shot peened specimens should show an increased hardness 

closer to the surface. The results have indicated otherwise. Similarly, in work by 

Fordham et al95 and Project 83/9563, the hardness of EDWC specimens was noted 

as showing a similar drop near the surface. 

The EDWC specimens have a recast layer and a heat-affected zone that should 

have caused an increase in the hardness of the surface layer. The microhardness 
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measurements were taken at a minimum of 0.03mm from the surface. It is likely 

that if the recast layer is thinner than 0.03mm, the hardness of the recast layer is 

not registered on the microhardness tests95. Similarly, the heat-affected zone can 

be too narrow. Of the available analysis methods, the thickness of the heat-

affected zone can only be determined by microhardness testing. The thickness of 

the heat-affected zone is thus assumed to be too narrow to be picked up by the 

microhardness testing.  

Fig. 6.15: Hardness Profile of EDWC H13

Shot peened specimens also display a hardness profile similar to that of EDWC 

specimens. There is a lower hardness near the surface. Due to the presence of a 

residual compressive stress, an increase in the hardness near the surface is 

63 
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expected. Shot peening a specimen to 0.10A gives a residual compressive depth of 

0.15mm (Figure 6.16). 

Fig. 6.16: Depth of Compression vs Almen Arc Height 
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Fig. 6.17: Hardness Profile of Shot Peened Specimens 

Figure 6.17 shows the hardness data points obtained for the shot peened 

specimens. There are nine hardness values that are very much lower than the other 

points. Removing these points would produce a curve that is almost horizontal. 

The microhardness testing machine is highly sensitive; therefore the nine hardness 

values could easily have been influenced by other factors. 

The ground specimens were not expected to display any influences on the 

hardness profile. A slight drop in hardness near the surface may be present due to 

residual tensile stresses introduced from the machining process. This trend is 

shown in the results. 

The hardness profiles for all three sets of specimens have shown a drop in the 

hardness near the surface. The hardness was expected to be higher near the 
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surface; therefore it seems there are other factors that affect the hardness values 

closer to the surface. Such factors might include the flatness of the surface, how 

parallel the surface is to the testing bed and possibly external factors such as 

vibrations. 

6.3 Surface Roughness 

The surface roughness of the EDWC specimens is approximately 3.2μm Ra, 

whether measured across or along the surface. The SEM examination of the 

EDWC specimen shows a surface consisting of many holes and cracks (Figure 

6.18). There is little evidence to indicate the direction of the machining process; 

therefore the surface roughness values produced are not directional with respect to 

machining. 

Fig. 6.18: Machined Surface of EDWC Specimen at 500X 
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Shot peened specimens produced a surface roughness of 1μm Ra. Shot peening 

utilises spherical particles to impact on the surface of the specimen, blending 

surface defects. The shot peening reduced the height of the protruding areas, 

giving the observed flattened look and reducing the measure surface roughness 

(Figure 6.19).  

Fig. 6.19: Surface of Shot Peened Specimen at 500X 

The surface roughness obtained for ground specimens have been found to vary 

along and across the surface. Along the surface, the surface roughness is 0.2μm 

Ra, while across the surface, a value of 0.4μm Ra is obtained. This variation can be 

explained by the SEM examination of the surface. 

As shown in Figure 6.20, the surface of the ground specimen is shown to be 

directional. The machining tool evidently travelled from either top to bottom or 
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vice versa. This caused of the varying surface roughness for the ground 

specimens. 

Fig. 6.20: Surface of Ground Specimen at 500X  
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CHAPTER 7: CONCLUSION AND 

RECOMMENDATIONS 

7.1 Conclusion 

EDWC is a non-conventional metal removal process that is seeing increased 

usage in industry. One possible application of EDWC is the manufacture of 

aircraft structural components. Fatigue properties are important for structural 

components used in the aeronautical industry. The effect of EDWC on fatigue 

properties and the possible benefits shot peening may provide are investigated.  

The EDWC process has been found to be greatly detrimental to the fatigue 

properties of the components produced. The fatigue limit of EDWC specimens is 

reduced to approximately 30% of that for a ground specimen. The presence of 

numerous microcracks in the surface and sub-surface of the specimens, together 

with a surface roughness of 3μm Ra

Some EDWC specimens have been shot peened before testing. The shot peening 

process has restored the fatigue limit, and in some cases has even improved it. 

There are numerous cracks still present in the surface and the sub-surface of the 

specimens, although the surface roughness is reduced to 1μm R

, indicate that surface topography contributes 

greatly to the reduction in fatigue limit. Other possible contributing factors 

include a phase change in the surface layer and the presence of a residual tensile 

stress. 

a. Optical 
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examinations were incapable of detecting a phase change between the surface 

layer of a shot peened specimen and that of the EDWC specimen. The most likely 

cause for the restoration of the fatigue limit is the introduction of a residual 

compressive stress.  

7.2 Recommendations 

The fatigue limit of components is significantly reduced by the use of EDWC. It 

is difficult to ascertain a precise reason for this observation; however a likely 

reason is that the surface defects produced by the process are acting as stress 

concentrations, hence accelerating fatigue crack initiation. The extent of the 

effects of the heat-affected zone on the fatigue limit is uncertain. Microhardness 

testing has proved incapable of determining the depth of the heat-affected zone. 

Further work might include the removal of the recast layer, and testing to 

determine the effect of the heat-affected zone on the fatigue limit. X-ray 

diffraction might also be employed to determine the depth of any residual tensile 

stresses present. 

Shot peening an EDWC specimen leads to the recovery of the fatigue limit that 

had been lowered. The residual compressive stresses introduced by the shot 

peening process have been attributed to this recovery. The role of a smoother 

surface and possible modifications to surface defects on changing the fatigue limit 

can be further explored. A large scatter in the values of the fatigue limit is 

observed. Methods of reducing the scatter of the fatigue limit can be investigated 
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by examining methods to reduce the possible types of crack initiation sites. One 

such method may be to remove the surface defects by the removal of a thin layer 

from the surface of the specimen prior to testing.  

Although the results that have been obtained are encouraging, more testing needs 

to be done to confirm the positive effect of shot peening on EDWC specimens. 

There are only a few other research works that have investigated the effect of shot 

peening on EDM. Even in these cases, the EDM process used is not EDWC, but 

EDM spark erosion. 
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Microstructure of 4340 Steel  X 575 

 

 

Microstructure of 4340 Steel  X 1150 
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Edge of EDWC Specimen  X 230 
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Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No. of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)  
1,1 20.04 10.01 24.81 17.45 124100 534.45 129.4 0.27   
1,2 20.02 10.06 25.08 15.19 160000 461.08 127.7 0.35   
1,3 20.00 10.07 25.01 13.72 243000 416.04 129.5 0.52   
2,1 20.05 10.04 25.55 12.27 286800 373.37 129.5 0.62   
2,2 20.06 10.04 24.53 10.80 366400 328.47 130.1 0.78   
2,3 20.05 10.25 20.14 11.40 377500 332.83 130.2 0.81   
2,4 20.02 10.10 10.70 14.98 395200 451.47 125.8 0.87   
3,1 20.01 10.06 9.50 11.20 500300 340.13 121.5 1.14   
3,2 20.04 10.30 10.77 7.10 970000 205.38 124.6 2.16   
3,3 20.04 10.22 10.73 8.30 905700 243.87 122.3 2.06   
3,4 20.06 10.06 15.65 8.80 675800 266.58 125.2 1.50   
4,1 20.03 10.03 15.00 7.90 952400 241.11 126.2 2.10   
4,2 20.09 10.07 15.27 8.30 609700 250.56 126.6 1.34   
4,3 20.06 10.06 15.10 8.70 895800 263.55 125.6 1.98   
4,4 20.03 10.03 15.00 8.65 765800 264.00 126.6 1.68   
5,1 20.06 10.06 14.90 8.47 1212800 256.59 125.5 2.68 runout 
5,2 20.09 10.30 14.85 8.60 1200000 248.15 124.3 2.68 runout 
5,3 20.15 10.06 14.88 8.63 1186100 260.26 126.9 2.60   
5,4 20.06 10.05 14.79 9.70 949900 294.43 124.3 2.12   
6,1 20.00 10.06 14.99 9.74 731100 295.94 126.8 1.60   
6,2 20.04 10.16 14.42 9.03 619500 268.46 125.1 1.38   
6,4 20.05 10.03 15.07 17.10 270600 521.38 131.0 0.57   
7,1 20.06 10.02 15.14 18.15 227600 554.22 129.2 0.49   
7,2 20.06 10.08 14.63 13.02 412000 392.86 125.7 0.91   
7,3 19.99 10.02 15.03 20.40 140700 625.11 130.8 0.30   

Table B1: EDWC Specimens  



 
Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No.of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)   

1a 20.00 10.00 14.74 19.50 130700 285.23 130.5 0.28 runout 
1b 20.04 10.00 14.91 10.19 585100 312.72 129.9 1.25   
1c 20.09 10.03 14.48 9.69 4948000 294.86 12734.0 0.11 runout 
2a 20.05 10.05 15.23 12.02 470800 365.03 132.0 0.99   
2b 20.10 10.07 14.74 11.07 541900 334.02 131.3 1.15   
2c 19.99 10.00 15.02 11.05 12152000 339.96 127.7 26.43 runout 
3a 20.07 10.07 14.57 9.70 1234100 293.12 132.3 2.59   
3b 20.13 10.04 14.85 10.64 549900 322.48 130.4 1.17   
4a 20.02 10.06 14.96 8.49 2352300 257.70 132.3 4.94   
4b 20.07 10.03 14.83 10.10 590000 307.64 130.4 1.26   
5a 20.05 10.13 15.05 15.35 237900 458.83 131.3 0.50   
5b 20.08 10.10 14.86 9.50 1047200 285.23 133.4 2.18   
6a 20.09 9.91 14.86 13.85 368800 431.72 131.1 0.78   
6b 20.14 10.25 14.95 11.22 542700 326.11 130.1 1.16   
7a 20.14 10.09 14.52 17.77 201700 532.99 131.3 0.43   
7b 20.10 10.06 14.86 11.10 30200000 335.59 132.2 63.46 runout 
8a 20.03 10.16 14.72 10.22 12560000 303.99 131.2 26.59 runout 
8b 20.10 10.10 14.81 8.00 1836000 239.95 131.3 3.88   
9a 20.09 9.81 14.78 10.66 12160000 339.09 130.2 25.94 runout 
9b 20.06 10.10 14.92 7.28 5562000 218.79 131.5 11.75 runout 
10a 20.09 10.09 14.89 11.27 455500 338.87 131.5 0.96   
11a 20.07 10.00 14.87 10.20 1263000 312.56 132.5 2.65 runout 
12a 20.08 10.06 15.01 10.88 1034000 329.26 132.9 2.16 runout 
13a 20.05 10.05 14.64 12.63 445900 383.56 131.9 0.94   
14a 20.05 10.05 15.17 12.13 744600 368.37 132.1 1.57 runout 

Table B2: EDWC Specimens  



 
Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No.of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)   

1a 20.04 9.92 14.26 11.42 26373500 356.14 128.0 57.23 runout 
8a 20.06 10.04 14.02 11.40 77925500 346.72 129.7 166.89 runout 
8b 20.06 10.06 14.06 11.80 186800 357.46 128.7 0.40   
9a 20.08 10.07 14.07 11.75 216600 354.89 128.6 0.47 runout 
9b 20.09 10.10 14.04 12.02 210200 360.71 125.8 0.46   
10a 20.03 10.19 14.34 11.23 22696000 332.07 129.4 48.72 runout 
10b 20.06 10.33 14.03 11.81 204200 339.31 127.3 0.45   
11a 20.09 10.09 14.07 12.30 237300 369.84 128.9 0.51   
11b 20.10 10.09 13.88 12.84 151500 385.89 128.2 0.33   
12a 20.00 10.08 14.44 11.47 61172000 347.13 121.0 140.43 runout 
12b 20.05 10.05 14.52 9.85 35437800 299.13 126.9 77.57 runout 
12c 20.06 10.03 14.06 13.85 167100 422.08 125.2 0.37   

Table B3: EDWC Specimens  
 
Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No.of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)   

1a 20 9.88 22.82 28.73 102000 905.04 127.7 0.22187   
1b 20.01 9.96 23.13 25 263600 774.55 130 0.56325   
1c 20.01 9.95 23.21 25.13 33590500 780.14 128.8 72.4433 interference 
3a 19.95 9.99 25.96 24.8 137100 766.04 131.6 0.28939   
4b 20 9.95 27.05 24.38 102600 757.24 132.3 0.21542   
7b 19.97 9.93 26.16 25.51 177900 796.73 130.3 0.37925   
8a 20.09 9.95 23.07 25.26 52931000 781.06 130.2 112.927 runout 
8b 19.99 9.92 26.3 26.4 56800 825.36 130.7 0.12072 runout 
11a 19.97 9.95 22.75 26 130400 808.77 128.9 0.28101   
12a 19.94 10 26.37 24.78 73400 764.28 131 0.15564   
12b 20.05 10.11 23.08 28.69 89000 860.97 128.9 0.19179   

Table B4: Shot Peened Specimens



 
Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No.of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)   

1a 20.11 10.17 14.71 18.74 14360000 994.36 129.4 30.83 runout 
1b 20.03 10.00 26.48 31.93 70300 1066.91 125.5 0.16 corner 
1c 20.07 10.08 26.40 30.78 67850000 928.27 125.7 149.94 runout 
2a 20.02 10.00 14.76 24.20 401900 978.79 127.7 0.87 runout 
2b 20.06 10.01 25.83 31.99 1541300 1075.17 124.3 3.44 interference 
2c 20.03 10.02 26.19 31.93 15580700 976.47 130.8 33.09  
3a 19.98 10.10 24.41 39.75 139100 1199.43 129.5 0.30  
3b 20.05 10.01 26.45 31.89 95000 976.22 126.9 0.21  
4a 20.07 9.83 24.55 38.03 100300 1199.43 129.5 0.22 corner 
4b 20.04 10.18 26.38 32.69 241700 968.05 124.3 0.54  
5a 19.96 10.01 24.38 35.92 1327500 1075.17 130.1 2.83 runout 
5b 20.09 10.23 26.90 30.08 56747000 879.88 126.8 124.31 runout 
6a 20.07 10.01 24.40 36.02 73100 1101.55 130.2 0.16  
6b 20.08 9.99 26.46 31.57 93700 1010.09 125.1 0.21 corner 
7a 20.07 9.77 24.74 35.62 4194700 1199.43 125.8 9.26 interference 
7b 20.10 9.99 24.12 34.80 58300 1075.17 130.6 0.12 corner 
8a 20.04 10.05 26.47 31.55 27650000 743.41 121.5 63.21 runout 
8b 20.07 10.00 26.60 32.45 58000 554.10 131.0 0.12 corner 
9a 20.03 9.99 25.90 31.86 1175000 1104.54 124.6 2.62 runout 
9b 20.09 9.99 26.58 32.30 29040700 990.76 129.2 62.44  
10a 20.04 9.82 27.00 31.74 130400 1010.09 122.3 0.30  
11a 19.98 10.00 27.09 34.93 176300 1075.17 125.2 0.39  
12a 19.99 10.03 23.91 34.90 39532000 1067.30 126.2 87.01 runout 
13a 19.99 9.99 24.08 34.68 16340000 976.22 126.6 35.85 runout 
14a 20.07 9.99 24.48 34.20 26370000 968.05 125.6 58.32 runout 
15a 20.04 9.99 24.43 29.47 1130000 1069.08 126.6 2.48 runout 

Table B5: Shot Peened Specimens 



Specimen Width (mm) Thickness (mm) Mean Load (kN) Load Range (kN) No.of Cycles Stress Range (MPa) Frequency (Hz) Time (hr)   
1 20.03 10.00 25.07 31.02 12300000 952.44 135.1 25.2899 runout 
2 19.96 10.00 25.25 32.15 14025000 990.59 134.0 29.0734 runout 
3 20.00 10.00 26.72 32.20 1199500 990.15 133.9 2.48838   
4 20.04 10.00 26.30 31.82 7687500 976.51 134.2 15.9122   
5 20.02 10.00 25.63 30.84 15980000 947.38 133.7 33.2004 runout 
6 20.02 10.01 27.89 28.85 46328100 884.48 136.7 94.1398 interference 
7 20.01 10.00 27.58 30.53 429400 938.33 136.0 0.87704   
8 20.02 9.99 26.92 30.68 39889300 944.36 133.9 82.751 runout 
9 20.02 10.00 27.60 30.48 1175000 936.32 133.0 2.45405 runout 

10 20.04 10.01 29.19 28.08 55400 860.02 132.8 0.11588 corner 
11 20.02 10.00 27.10 27.11 634100 832.80 132.8 1.32635   
12 20.04 10.01 28.82 27.68 10147500 847.76 133.1 21.1777   
13 20.03 10.00 28.35 28.20 27400 865.85 135.0 0.05638   
14 20.03 10.00 27.63 27.95 30900 858.18 132.3 0.06488   
15 20.03 10.00 27.73 30.02 42200 921.73 135.6 0.08645   
16 20.02 10.00 27.80 26.85 24636900 824.81 134.7 50.8061   
17 20.03 10.01 28.56 28.58 2592500 875.77 134.9 5.33832   
18 20.02 10.02 29.12 27.70 7413800 847.53 135.1 15.2434   
19 20.03 10.01 29.07 29.13 1703300 892.62 133.1 3.55476   
20 20.02 10.00 28.30 30.19 2870000 927.42 135.2 5.89661   
21 20.04 10.00 27.11 27.15 43400 833.20 132.3 0.09112   
22 20.03 10.00 27.51 27.97 4088200 858.79 132.3 8.58361   
23 20.03 10.00 27.35 27.88 7713200 856.03 132.2 16.2069   
24 20.02 10.02 27.13 27.46 73100 840.19 133.2 0.15244   
25 20.02 10.00 27.20 27.42 204600 842.32 134.3 0.42318   
26 20.04 10.01 26.94 28.16 19292900 862.47 133.2 40.2338   
27 20.02 10.01 26.58 28.17 7213000 863.63 132.9 15.0761   
28 20.02 10.00 27.17 27.63 2468400 848.77 133.5 5.13608   
29 20.03 10.00 27.09 28.05 15186900 861.25 133.4 31.6236   
30 20.02 10.00 27.82 27.92 53560100 857.68 133.2 111.695 runout 

Table B6: Ground Specimens 



Fig. B1: S-N Graph for EDWC Specimens 
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Fig B2: S-N Graph for Shot Peened Specimens 
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Fig B3: S-N Graph for Ground Specimens 
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APPENDIX G: MICROHARDNESS TESTING 

Depth (mm) Hardness (Rc) 
0.03 44.4 49.5 41.8 37.5 46.4 46.2 47.6 38.6 
0.06 49.2 50.7 44.9 45.6 48.2 52.5 48.5 45.9 
0.09 51.4 50.0 47.5 43.4 49.7 55.1 53.7 45.6 
0.12 51.1 52.5 46.9 46.3 50.2 53.5 54.6 44.3 
0.15 51.0 54.0 47.1 45.9 50.0 56.2 54.6 44.9 
0.18 51.8 53.4 48.2 46.5 50.5 54.0 55.8 44.8 
0.21 52.7 54.4 48.8 45.8 49.3 53.0 53.8 46.4 
0.24 50.8 51.7 47.9 46.4 51.2 53.4 51.4 45.8 
0.27 52.4 50.0 47.4 46.8 50.4 53.8 53.8 46.7 
0.30 52.2 53.5 45.8 46.5 50.6 52.5 55.2 46.8 
0.33 52.3 52.1 48.2 47.0 49.5 54.7 56.2 47.2 
0.36 53.5 52.0 47.9 46.7 51.0 56.5 56.0 48.4 
0.39 52.9 54.3 47.2 48.0 51.7 57.4 53.1 49.0 
0.42 52.5 52.8 49.8 47.4 52.8 56.1 55.7 49.2 
0.45 51.3 53.0 49.3 46.8 52.4 53.2 54.0 49.2 
0.48 51.9 54.3 50.2 48.3 52.3 53.2 52.3 49.6 
0.51 52.6 56.9 51.9 47.1 51.6 56.0 55.0 52.0 
0.54 54.7 55.5 52.1 47.9 49.8 54.5 56.1 50.6 
0.57 51.2 55.3 51.7 49.6 51.4 53.4 54.7 50.3 
0.60   53.5 51.9 48.4 54.3 53.6 52.8 51.4 
0.63   52.9 51.9 50.0 55.3 56.4 55.7 51.8 
0.66   52.9 53.2 50.9 55.7 56.8 55.5 51.2 
0.69   55.3 51.9 48.5 55.7 54.8 55.4 51.8 
0.72   55.4 51.7 48.5 54.0 55.1 56.9 53.2 
0.75   53.6 51.4 48.6 55.2 55.1 57.4 53.5 
0.78   53.9 53.3 49.3 54.6 53.5 55.0 53.9 
0.81   54.1 52.4 50.6 55.1 53.6 54.7 53.1 
0.84   53.1 52.2 51.4 56.6 54.0 56.1 52.4 
0.87   51.8 53.0 50.7 56.1 53.3 54.9 53.5 
0.90   51.9 52.2 49.8 56.5 52.2 53.9 52.3 
0.93   53.0 52.6 49.5 55.7 55.5 55.8 52.7 
0.96   53.2 51.0 52.7 55.7 53.8 55.1 54.5 
0.99   53.5 53.8 53.8 55.5 53.3 55.5 55.2 
1.02   54.4 54.3 53.4 54.0 54.8 56.8 54.0 
1.05   55.1 54.6 53.7 54.9 56.4 54.2 54.9 
1.08   54.2 54.6 54.2 53.5 52.5 55.9 53.6 
1.11     53.4 55.5 55.7 55.2 57.4 53.8 
1.14     51.4 52.9 56.0 54.5 55.1 54.6 
1.17     53.4 53.6 55.5 56.8 53.3 55.1 
1.20     52.7 56.3 56.9 55.5 53.9 55.3 

Table G1: EDWC Specimens 
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Depth (mm) Hardness (Rc) 
0.03 38.9 50.4 49.7 52.5 
0.06 41.6 49.3 51.9 55.1 
0.09 41.5 50.8 53.3 56.1 
0.12 42.6 50.0 53.5 57.2 
0.15 42.7 51.1 52.4 57.6 
0.18 41.7 51.8 49.0 55.0 
0.21 42.0 51.2 51.9 5.6 
0.24 42.2 51.3 51.2 51.3 
0.27 41.9 49.3 51.1 52.0 
0.30 49.1 48.2 50.7 53.6 
0.33 49.2 49.2 51.4 53.5 
0.36 47.6 50.0 52.4 54.1 
0.39 48.0 51.1 50.3 52.9 
0.42 49.2 50.1 49.6 54.1 
0.45 50.4 52.5 51.1 55.4 
0.48 49.2 52.2 50.8 56.3 
0.51 49.8 51.6 52.3 52.6 
0.54 50.4 50.0 50.5 51.7 
0.57 50.4 51.8 51.7 55.2 
0.60 51.2 51.9 50.7 56.0 
0.63 50.5 53.7 52.4 56.4 
0.66 51.7 52.2 51.0 53.6 
0.69 51.0 53.2 54.1 50.0 
0.72 50.0 54.3 54.0 52.8 
0.75 49.1 54.3 54.9 54.2 
0.78 49.2 52.0 54.9 53.9 
0.81 48.7 54.1 53.6 53.5 
0.84 48.3 53.6 52.0 55.3 
0.87 49.5 54.9 52.7 54.1 
0.90 49.6 52.8 52.0 52.4 
0.93 50.3 49.4 53.7 52.1 
0.96 53.1 53.3 54.2 55.3 
0.99 52.5 52.1 53.2 54.2 
1.02 51.0 53.9 53.4 56.1 
1.05 52.0 53.0 55.7 53.1 
1.08 51.6 55.0 53.1 53.0 
1.11 52.5 53.7 53.6 52.6 
1.14 51.6 52.4 54.0 52.1 
1.17 51.7 50.3 55.4 51.6 
1.20 52.6 51.4 55.6 52.0 

Table G2: Shot Peened Specimens 
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Depth (mm) Hardness (Rc) 
0.03 50.3 44.9 47.3 44.1 
0.06 53.0 45.2 48.1 48.3 
0.09 54.3 46.6 50.3 49.4 
0.12 54.0 46.7 49.3 49.3 
0.15 50.4 47.3 49.9 47.8 
0.18 47.5 48.0 50.0 51.7 
0.21 47.4 48.2 50.5 51.4 
0.24 48.5 47.6 49.1 49.2 
0.27 48.4 46.4 49.1 48.7 
0.30 48.5 49.7 48.7 49.5 
0.33 48.5 46.6 49.2 48.9 
0.36 48.3 46.5 50.2 47.8 
0.39 49.3 47.6 49.6 49.3 
0.42 49.4 49.4 49.0 47.7 
0.45 50.3 48.0 50.2 49.1 
0.48 50.1 48.8 51.7 49.7 
0.51 51.8 49.0 51.4 51.4 
0.54 51.5 48.0 49.9 53.3 
0.57 52.5 48.9 50.5 53.1 
0.60 51.5 49.3 51.6 53.7 
0.63 49.8 49.9 53.3 52.6 
0.66 48.9 50.0 52.2 53.1 
0.69 50.7 50.2 50.1 52.9 
0.72 45.7 49.5 50.8 52.1 
0.75 50.0 49.0 52.9 51.4 
0.78 52.2 54.3 56.1 56.7 
0.81 53.1 53.3 53.9 54.8 
0.84 53.9 53.4 55.5 53.8 
0.87 51.0 51.6 51.8 52.7 
0.90 52.6 52.1 50.0 54.7 
0.93 52.8 51.9 49.9 51.9 
0.96 53.7 51.8 52.5 54.7 
0.99 53.0 51.8 51.3 53.2 
1.02 54.2 53.9 53.3 52.5 
1.05 53.4 51.6 53.4 49.4 
1.08 54.9 52.1 53.3 50.4 
1.11 54.3 53.7 54.4 53.7 
1.14 54.5 53.3 53.6 54.1 
1.17 53.4 54.0 52.2 52.4 
1.20 51.8 51.4 50.4 52.3 

Fig G3: Ground Specimens 
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Fig G1: EDWC Specimens 
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Fig G2: Shot Peened Specimens 
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Fig. G3: Ground Specimens 
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APPENDIX H: SURFACE ROUGHNESS TESTING 

EDWC Specimens 
 
 

Shot Peened Specimens 
 

Ground Specimens 
 Length Width Length Width Length Width 

3.20 3.30 4.30 0.70 0.50 0.15 0.39 
2.40 3.10 3.30 0.70 0.70 0.12 0.35 
2.60 2.80 3.20 0.94 0.90 0.22 0.42 
3.00 3.10 3.20 0.94 0.76 0.15 0.47 
3.20 3.20 3.30 0.84 0.91 0.18 0.49 
2.60 2.90 3.60 0.87 0.81 0.20 0.44 
2.60 3.30 3.20 0.89 1.65 0.17 0.49 
2.50 4.20 3.10 0.94 1.40 0.24 0.45 
2.90 3.05 2.90 0.86 1.45 0.15 0.51 
2.70 4.20 3.25 0.81 1.25 0.28 0.40 
3.00 3.30 3.40 0.85 1.60 0.15 0.41 
3.00 2.70 2.80 0.70 1.30 0.22 0.38 
3.10 4.20 3.30 0.98 1.00 0.19 0.37 
3.10 2.95 3.50 1.20 0.85 0.20 0.32 
3.40 4.05 3.60 1.40 1.15 0.24 0.38 
3.40 3.30 2.95 1.60 0.80 0.20 0.40 
3.20 3.95 2.50 0.75   0.18   
3.80 4.50 2.95 1.30   0.22   
3.75 4.40 3.05 1.40       
3.45 3.60 3.30 1.30       
2.60 3.40 3.60 1.20       
3.00 2.90 4.20 1.05       
2.85 3.40 4.10 1.10       
2.50 2.90 3.60 0.80       
2.75 3.05 3.00         
3.80 3.05 3.40         
2.95 3.00 3.70         
3.45 2.80 3.60         
2.70 3.80 3.70         
2.90 3.10 2.90         
3.45 3.15 3.40         
2.80 3.50 3.00         
2.90 3.40 2.80         
3.20 3.30 2.60         
3.70 3.00 2.60         
3.60 3.55 2.90         
3.20 3.40 2.95         
3.45 3.80 2.80         
2.80 3.00 3.30         
3.60 3.20 2.90         
3.40 3.15 3.00         
3.20 2.40 3.30         
3.20 2.50 3.45         
4.40 2.90 3.40         
3.00 2.95 2.80         
3.45 2.50 2.90         
2.80 3.40           
2.95 3.10           
3.05 3.60           
2.75 2.75           

 Table H1: Surface Roughness Test Results 
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